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This paper describes the concepts used in the implementation of DBDSGN, an experimental physical 
design tool for relational databases developed at the IBM San Jose Research Laboratory. Given a 
workload for System R (consisting of a set of SQL statements and their execution frequencies), 
DBDSGN suggests physical configurations for efficient performance. Each configuration consists of 
a set of indices and an ordering for each table. Workload statements are evaluated only for atomic 
configurations of indices, which have only one index per table. Costs for any configuration can be 
obtained from those of the atomic configurations. DBDSGN uses information supplied by the 
System R optimizer both to determine which columns might be worth indexing and to obtain 
estimates of the cost of executing statements in different configurations. The tool finds efficient 
solutions to the index-selection problem; if we assume the cost estimates supplied by the optimizer 
are the actual execution costs, it finds the optimal solution. Optionally, heuristics can be used to 
reduce execution time. The approach taken by DBDSGN in solving the index-selection problem for 
multiple-table statements significantly reduces the complexity of the problem. DBDSGN’s principles 
were used in the Relational Design Tool (RDT), an IBM product based on DBDSGN, which performs 
design for SQL/DS, a relational system based on System R. System R actually uses DBDSGN’s 
suggested solutions as the tool expects because cost estimates and other necessary information can 
be obtained from System R using a new SQL statement, the EXPLAIN statement. This illustrates 
how a system can export a model of its internal assumptions and behavior so that other systems 
(such as tools) can share this model. 

Categories and Subject Descriptors: H.2.2 [Database Management]: Physical Design-access meth- 
ods; H.2.4 [Database Management]: Systems-queryprocessing 

General Terms: Algorithms, Design, Performance 

Additional Key Words and Phrases: Index selection, physical database design, query optimization, 
relational database 

1. INTRODUCTION 

During the past decade, database management systems (DBMSs) based on the 
relational model have moved from the research laboratory to the business place. 
One major strength of relational systems is ease of use. Users interact with these 
systems in a natural way using nonprocedural languages that specify what data 
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are required, but do not specify how to perform the operations to obtain those 
data. Statements specify which tables should be accessed as well as conditions 
restricting which combinations of data from those tables are desired. They do 
not specify the access paths (e.g., indices) used to get data from each table, or 
the sequence in which tables should be accessed. Hence, relational statements 
(and programs with embedded relational statements) can be run independent of 
the set of access paths that exist. 

There has been controversy about how well relational systems would perform 
compared to other DBMSs, especially in a transaction-oriented environment. 
Critics of relational systems point out that their nonprocedurality prevents users 
from navigating through the data in the ways they believe to be most efficient. 
Developers of relational systems claim that systems could be capable of making 
very good decisions about how to perform users’ requests based on statistical 
models of databases and formulas for estimating the costs of different execution 
plans. Software modules called optimizers make these decisions based on statis- 
tical models of databases. They perform analysis of alternatives for executing 
each statement and choose the execution plan that appears to have the lowest 
cost. Two of the earliest relational systems, System R, developed at the IBM San 
Jose Research Laboratory [4, 5, 10, 111 (which has moved and is now the IBM 
Almaden Research Center), and INGRES, developed at the University of Cali- 
fornia, Berkeley [37], have optimizers that perform this function [35, 401. 
Optimizer effectiveness in choosing efficient execution plans is critical to system 
response time. Initial studies on the behavior of optimizers [2, 18, 27, 421 have 
shown that the choices made by them are among the best possible, for the set of 
access paths. Optimizers are likely to improve, especially since products have 
been built using them [20, 22, 291. 

A relational system does not automatically determine the set of access paths. 
The access paths must be created by authorized users such as database admin- 
istrators (DBAs). Access-path selection is not trivial, since an index designer 
must balance the advantages of access paths for data retrieval versus their 
disadvantages in maintenance costs (incurred for database inserts, deletes, and 
updates) and database space utilization. For example, indexing every column is 
seldom a good design choice. Updates will be very expensive in that design, and 
moreover, the indices will probably require more total space than the tables. (The 
reasons why index selection is difficult are discussed further in Section 2.1.) 
Database system implementers may be surprised by which index design is best 
for the applications that are run on a particular database. Since those responsible 
for index design usually are not familiar with the internals of the relational 
system, they may find the access-path selection problem very difficult. A poor 
choice of physical designs can result in poor system performance, far below what 
the system would do if a better set of access paths were available. Hence, a design 
tool is needed to help designers select access paths that support efficient system 
performance for a set of applications. 

Such a design tool would be useful both for initial database design and when a 
major reconfiguration of the database occurs. A design tool might be used when 

-the cost of a prospective database must be evaluated, 
-the database is to be loaded, 
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-the workload on a database changes substantially, 
-new tables are added, 
-the database has been heavily updated, or 
-DBMS performance has degraded. 

In System R, indices (structured as B+-trees [14]) are the only access paths to 
data in a table (other than sequentially scanning the entire table). Each index is 
based on the values of one or more of the columns of a table, and there may be 
many indices on each table. Other systems, such as INGRES and ORACLE [34], 
also allow users to create indices. In addition, INGRES allows hashing methods. 
One of the most important problems that a design tool for these systems must 
solve is selecting which indices (or other access paths) should exist in the database 
[31, 411. Although many papers on index selection have appeared, all solve 
restricted versions of the problem [l, 6-8, 16, 17, 23, 25, 26, 28, 30, 36, 391. Most 
restrictions are in one of the following areas: 

(1) Multiple-table solutions. Some papers discuss methodologies for access- 
path selection for statements involving a single table, but do not demonstrate 
that their methodologies can be extended effectively to statements on multiple 
tables. One multitable design methodology was proposed based on the cost 
separability property of some join methods. When the property does not hold, 
heuristics are introduced to extend the methodology [38, 391. 

(2) Statement generality. Many methodologies limit the set of user statements 
permitted. Often they handle queries whose restriction criteria involve compari- 
sons between columns and constants, and are expressed in disjunctive normal 
form. Even when updates are permitted, index and tuple maintenance costs are 
sometimes not considered. When they are, they are usually viewed as independent 
of the access paths chosen for performing the maintenance. 

(3) Primary access paths. Often the primary access path is given in advance, 
and methods are described for determining auxiliary access paths. This means 
that the decision of how to order the tuples in each table has already been made. 
However, the primary access path is not always obvious, nor is it necessarily 
obvious which statements should use the primary access path and which should 
use auxiliary paths. 

(4) Disagreement between internal and external system models. This problem 
occurs only in systems with optimizers. The optimizer’s internal model consists 
of its statistical model of statement execution cost and the way it chooses the 
execution plan it deems best. The optimizer calculates estimates of cost and 
cardinality based on its internal model and the statistics in the database catalogs. 
A design tool may use an external model independent of the model used by the 
optimizer. This approach has several serious disadvantages: The tool becomes 
obsolete whenever there is a change in the optimizer’s model, and changes in the 
optimizer are likely as relational systems improve. Moreover, the optimizer may 
make very different assumptions (and hence different execution-plan choices) 
from those made by the external model. Even if the external model is more 
accurate than the optimizer’s model, it is not good to use an external model, 
since the optimizer chooses plans based on its own model. 
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We believe a good design tool should deal with all the above issues. It should 
choose the best set of access paths for any number of tables, accept all valid 
input statements, solve the combined problem of record placement and access- 
path selection, and use the database system to obtain both statistics (when the 
database tables exist) and cost estimates [32]. When the database does not exist 
yet, the tool should accept a statistical description of the database from the 
designer and obtain cost estimates based on those statistics from the database 
system. 

In this paper we discuss the basic principles we considered in constructing an 
experimental design tool, DBDSGN, that runs as an application program for 
System R. In creating DBDSGN we have attempted to meet all the requirements 
described above. We have also discovered some general principles governing 
design-tool construction, and have learned how a DBMS should function to 
support design tools. These principles have been adopted in the Relational Design 
Tool (RDT) [ 191. RDT is an IBM product, based on DBDSGN, which performs 
design for SQL/DS [20], a relational system based on System R. 

We developed the methodology for the index-selection problem for System R, 
but did not forget the more general problem of access-path selection for systems 
with hashing and links as well. We discuss the extension of the DBDSGN 
methodology to these access paths in Section 7. DBDSGN’s major limitation is 
its assumption that only one access path can be used for each different occurrence 
of a table in a statement; this assumption is false for systems using tuple identifier 
(TID) intersection methods. We believe the concepts and results that arose from 
designing and implementing this tool are also valid for different DBMSs with 
other access paths; some of the concepts may also be valuable for designing 
integrated system families where large systems export descriptions of their 
internal assumptions and behaviors so that other systems (such as tools) can 
share them. 

We assume the reader is familiar with relational database technology and 
standard query languages used in relational systems. We use SQL [9] as the 
query language. 

2. THE PROBLEM OF INDEX SELECTION IN RELATIONAL DATABASES 

2.1 Problem Complexity 

Data in a database table can be accessed by scanning the entire table (sequential 
scan). The execution of a given statement may be sped up by using auxiliary 
access paths, such as indices. However, the existence of certain indices, although 
improving the performance of some statements, may reduce the performance of 
other statements (such as updates), since the indices must be modified when 
tables are. In System R, some indices, called clustered indices, enforce the ordering 
of the records in the tables they index. All other indices are called nonchstered 
indices. The overall performance of the system depends on the set of all existing 
indices, as well as on the ways the tables are stored. Although System R supports 
multicolumn indices (as described in Section 7), this paper focuses on indices on 
single columns. 
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Given a set of tables and a set of statements, together with their expected 
frequencies of use, the index-selection problem involves selecting for each table 

-the ordering rule for the stored records (which determines the clustered index, 
if any), and 

-a set of nonclustered indices, 

so as to minimize the total processing cost, subject to a limit on total index space. 
We define the total processing cost to be the frequency weighted sum of the 
expected costs for executing each statement, including access, tuple update, and 
index maintenance costs. A weighted index space cost is also added in. 

Clustered indices frequently provide excellent performance when they are on 
columns referenced in a given statement [2, 351. This might indicate that the 
solution to the design problem is to have a clustered index on every column. Such 
a solution is not possible, since (without replication) records can be ordered only 
one way. On the other hand, nonclustered indices can exist on all columns and 
may help to process some statements. A set of clustered and nonclustered indices 
on tables in a database is called an index configuration (or more simply a 
configuration) if no table has more than one clustered index and no columns 
have both clustered and nonclustered indices. We will only be interested in index 
designs that are configurations. A configuration proposed for a particular index- 
selection problem it is called a solution for that problem. 

It may seem that finding solutions to the design problem consists of choosing 
one column from each table as the ordering column, putting a clustered index on 
that column, and putting nonclustered indices on all other columns. This fails 
for three reasons: 

(1) For each additional index that exists, extra maintenance cost is incurred 
every time an update is made that affects the index (inserting or deleting records, 
updating the value of the index’s column). Because of the cost of maintenance 
activity, a solution with indices on every column of every table usually does not 
minimize processing costs. 

(2) Storage costs must be considered even when there are no updates. Typi- 
cally, a System R index utilizes from 5 to 20 percent of the space used by the 
table it indexes, so the cost of storage is not negligible. 

(3) Most importantly, a global solution cannot generally be obtained for each 
table independently. Any index decision that you make for one table (e.g., which 
index is clustered) may affect the best index choices for another table. 
Some examples showing the interrelationship among index choices are given 
in Section 4. 

These considerations show that the design problem presented at the beginning 
of this section does not have a simple solution. Even a restricted version of the 
index-selection problem is in the class of NP-hard problems [13]. Thus, there 
appears to be no fast algorithm that will find the optimal solution. However, we 
must question whether the optimal solution is the right goal, since the problem 
specification and the problem that the designer actually wants solved usually are 
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not identical. Approximations include 

-the statements that are the input for the problem usually represent an approx- 
imation to the actual load that will be submitted to the system, 

-the frequencies associated with these statements are likely to be approxima- 
tions, 

-the statistics for the data the tool uses (which may be given by the designer or 
derived from the database itself) represent the data a% they exist at the time 
the design is done and may not accurately reflect future changes, and 

-the statistical model used by the optimizer is correct only for some data 
distributions. Imprecision exists when the actual data do not fit the underlying 
assumptions of the model [2, 121. 

For these reasons, instead of finding the optimal solution to the index design 
problem, we would like to get a set of reasonable design-s, each of which has a 
relatively low performance cost. From this set a designer can choose the one he 
or she deems best, based on considerations that may not have been completely 
modeled. By an appropriate use of some heuristics, combined with more exact 
techniques, DBDSGN can find a set of reasonable solutions quickly. The designer 
may iterate through several executions of some of DBDSGN’s phases, tuning 
simple heuristic parameters to try to achieve better solutions (at the expense of 
additional execution time). A discussion of some of these techniques appears in 
this paper. 

2.2 A Methodology for Index Selection 
Methodologies for the index-selection problem are based on models of data 
retrieval and update. Some solve the problem in a wholly analytic way; others 
use heuristic searches to find a quasi-optimal solution. However, all previous 
examples compute the estimated costs of retrievals and updates using analytic 
formulas. Since we assume the database management system uses an optimizer 
to choose an access-path strategy, it makes sense to use the optimizer itself to 
provide the estimated processing cost of a given statement. The optimizer examines 
the set of access paths that exist and computes the best expected cost for a 
statement by evaluating different join orders, join methods, and access choices. 
By using the optimizer’s cost estimates as the basis for our design tool, we obtain 
three significant advantages. 

First, the tool is independent of optimizer improvements. An analytic expres- 
sion for the cost of performing a given statement must be based on current 
knowledge of the strategy used by the optimizer and will become invalid if the 
optimizer computations are altered. For example, suppose a statement includes 
a predicate on a column for which there is a nonclustered index. An early version 
of the System R optimizer determined the cost of accessing the tuples using the 
nonclustered index by assuming that a data page was read for each retrieved 
tuple [35]. In a later version of the system, the optimizer recognized that the 
TIDs are stored in increasing order, so a smaller number of estimated page hits 
results when the number of tuples for a given key value is comparable to the 
number of data pages [2]. This type of change would have an immediate impact 
on a tool that used an analytic model of the optimizer’s behavior. As another 
example, two systems based on System R, SQL/DS [20] and DB2 [22], have 
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different physical data managers, which lead to differences in their optimizer 
cost models that a design tool should not need to know about. 

Second, the query may be transformed to an equivalent form before it reaches 
the optimizer (or by the optimizer itself). For example, nested queries may be 
transformed to joins [ 15, 241. A tool using an external model may not understand 
these transformations; even if it does, it will have to be changed when the 
transformations change. 

Third, using the optimizer we can guarantee any proposed solution is one the 
optimizer will use to its full advantage. Working with an external model could 
result in a solution that has good performance according to the analytic model. 
However, when the optimizer is confronted with the set of access paths described 
in the solution it may choose an execution plan different from the one predicted 
by the tool, which may result in poor performance. To illustrate this, consider 
an example involving the table 

ORDERS: (ORDERNO, SUPPNO, PARTNO, DATE, QTY, . . . .) 

in the statement 

SELECT ORDERNO,SUPPNO 
FROM ORDERS 
WHERE PARTNO= 
AND DATE BETWEEN 870601 AND 870603. 

An external model based on more detailed statistics than those available to the 
optimizer might suggest that an index I nATE on DATE performs much better 
than an index IpAsrNo on PARTNO (which might have been created for another 
statement). But the optimizer might choose I PARTNo instead, so that the index 
InDATE is useless. Even worse, the external model could suggest solutions that are 
poor because the optimizer makes unexpected choices. Thus, we believe that 
attempts to outsmart the optimizer are misguided. Instead, the optimizer itself 
should be improved. 

A design tool can interact with the DBMS to collect information without 
physically running a statement by using the SQL EXPLAIN facility [20, 211, a 
new SQL statement originally prototyped by us for System R. EXPLAIN causes 
the optimizer to choose an execution plan (including access paths) for the 
statement being EXPLAINed and to store information about the statement in 
the database in explanation tables belonging to the person performing EXPLAIN. 
These tables can then be accessed and summarized using ordinary queries. The 
system does not actually execute the EXPLAINed statement, nor is a plan for 
executing that statement stored in the database. Actually executing statements 
would determine the actual execution costs for a particular configuration, but 
executing each statement for each different index combination is unacceptably 
expensive in nontrivial cases. (When we speak of costs in the rest of this paper, 
we mean the optimizer’s cost estimates; actual execution costs are explicitly 
referenced as such.) 

The four options for EXPLAIN are REFERENCE, STRUCTURE, COST, 
and PLAN. EXPLAIN REFERENCE identifies the statement type (Query, 
Update, Delete, Insert), the tables referenced in the statement, and the columns 
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Fig. 1. Architecture of DBDSGN. 

referenced in the statement in ways that influence their plausibility for indexing. 
EXPLAIN STRUCTURE identifies the structure of the subquery tree in the 
statement, the estimated number of tuples returned by the statement and its 
subqueries, and the estimated number of times the statement and its subqueries 
are executed. EXPLAIN COST indicates the estimated cost of execution of the 
statement and its subqueries in the plan chosen by the optimizer. EXPLAIN 
PLAN describes aspects of the access plan chosen by the optimizer, including 
the order in which tables are accessed for executing the statement, the access 
paths used to access each table, the methods used to perform joins (nested loop, 
merge scan), and the sorts performed. 

DBDSGN has five principal steps. Figure 1 shows an overall description of the 
architecture of the design tool and identifies its major interactions with the 
designer and the DBMS. 

(1) Find referenced tables and plausible columns. Based on an analysis of the 
structure of the input statements obtained using EXPLAIN, we allow only the 
columns that are “plausible for indexing” to enter into the design process. 
(Different columns may be plausible for different statements.) The designer 
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indicates which tables should be designed for and which should remain as they 
are. 

(2) Collect statistics on tables and columns. Statistics are either provided by 
the designer or extracted from the database catalogs. 

(3) Evaluate atomic costs. Certain index configurations are called atomic be- 
cause costs of all configurations can be obtained from their costs. The EXPLAIN 
facility is used to obtain the costs of these atomic configurations (which are 
called atomic costs). 

(4) Perform index elimination. If the problem space is large, a heuristic-based 
dominance criterion can be invoked to eliminate some indices and to reduce the 
space searched during the last step. 

(5) Generate solutions. A controlled search of the set of configurations leads 
to the discovery of good solutions. The designer supplies parameters that control 
this search. 

3. COST MODEL 

3.1 Workload Model 

When a designer is asked to supply an index design for a database, he or she 
must determine the workload that is expected for that system over a specified 
time period. The expected workload during that period is characterized by a set 
of pairs 

W = (Cqiv Wi), i = 1, 2, . . . 9 4), 

where each qi is a statement expressed in the DBMS’s language and each wi is 
its assigned weight. The term statement refers to queries (both single-table queries 
and multitable joins), updates, inserts, and deletes. 

The qi are the statements that the designer expects to be relatively important 
during the time period. The statements in the workload W may come from 
different sources: 

-predictable ad hoc statements that will be issued from terminals, 
-old application programs that will be executed during the period, or 
-new application programs that will be executed during the period. 

The weight Wi associated with each statement is a function of 

-the frequency of execution of the statement in the period, or 
-system load when the statement is run (e.g., statements that can be run off- 

shift may be given smaller weights, and statements that require particularly 
fast response time may be given larger weights). 

Different statements that are treated identically by the optimizer could be 
combined, although this requires special knowledge of the optimizer. For example, 
a System R query with the predicate PARTNO = 274 could be combined with a 
query with the predicate PARTNO = 956 since the predicates have the same 
selectivity (the reciprocal of the number of different PARTNO values). Either 
query could be included in the workload, with the sum of the original weights 
specified. A query with PARTNO < 274, however, could not be combined with 
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one requesting PARTNO < 956, since the System R optimizer associates different 
selectivities with these predicates. 

For application programs, the assignment of the weights is a difficult problem. 
In general, as we mentioned in Section 2.1, frequencies must be approximated. 
Designers may know how often an application will be run, but may find it difficult 
to predict the frequency of execution of a statement due to the complexity of 
program logic. Furthermore, there can be statements like the “CURRENT OF 
CURSOR” statement in SQL, in which tuples are fetched under the control of 
the calling program, and the “SELECT FOR UPDATE” statement where the 
decision to update depends on both program variables and tuple content. For 
applications that already run on the database, a performance monitor can help 
solve this problem. 

3.2 Atomic Costs 

This section describes some aspects of the behavior of the System R optimizer. 
A tool like DBDSGN could be used for other relational systems if they follow 
the principles described in this section. It is not the aim of this paper to describe 
how the optimizer makes its decisions. For a more detailed description, the reader 
is referred to other papers [2, 351. The basic principles used by the System R 
optimizer in processing a given statement are as follows: 

Optimizer principles 

(Pl) Exactly one access path is used for each appearance of a table in the 
statement. 

(P2) The costs of all combinations using one access path per table appearance 
are computed, and the one with the minimal cost is chosen. 

Principle (Pl) would not be true of a system that used conjunction of indices on 
a single table (such as TID intersection, which System R does not support). 
Principle (P2) might not be true for an optimizer that used heuristics to limit its 
search for the plan with the smallest expected execution cost. Principle (P2) can 
be relaxed slightly. It is not necessary for the optimizer to compute all costs, as 
long as it finds the plan with the smallest expected cost. 

The cost of executing a statement consists of three components: tuple access 
cost, tuple maintenance cost, and index maintenance cost. In this section we 
consider only the access costs; we deal with maintenance costs in the next section. 
To clarify the above principles, first consider a statement on a single table that 
has n indices. The optimizer computes n + 1 access costs (n using each single 
index, and 1 using sequential scan) and chooses the access path with the minimal 
cost. The access costs are computed independently, since the presence of a given 
index cannot influence the computation of the cost of accessing the table through 
another index (since by principle (Pl) only one index per table can be used). 

Now consider a statement q that is a t-table join, where Ij is the set of indices 
on thejth table. Let C,(W, (~2, . . . , at) be the optimizer’s best (smallest) cost of 
executing q when the access paths al, c+, . . . , (Y~ are used, where aj is either one 
of the indices in Ij or sequential scan p. The tables may be accessed in many 
orders, and many join methods are possible even when the access paths are fixed. 
Because of the Optimizer principles, we can think of the optimizer as if it 
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calculated each C, (aI, (Ye, . . . , Q) independently. The choice it selects for 
execution is the one with the minimal estimated cost, so we define 

COST,(Il, 12, . . . , It) = min C,(ai, (Ye, . . . , at). 
OLjE1julPl 

COSTJI,, 12, . . . , It) is the cost that the optimizer returns to the design 
tool. Let ISET denote the collection of indices that exist on a set of tables. 
For the index configuration ISET, we write COST,[ISET] to represent 
COST&, 12, . . . , I,), where Ij is the set of indices in ISET that are on the jth 
table. Indices in ISET on tables not referenced in the statement do not affect 
COST,[ISET]. For a single-table statement against a table with n columns, we 
can build n2”-’ + 2” different index configurations. (There are n clustering 
choices, and for each of these, there are 2”-l different nonclustered sets. If no 
clustered index is chosen, there are 2” sets of nonclustered indices.) For a join 
query, the number of configurations is the product of the number of configura- 
tions on each table, which is exponential in the total number of columns in the 
tables. 

Configurations with at most one index per table are called atomic configura- 
tions, and their costs are called atomic costs, since (as we shall show) costs for all 
other configurations can be computed from them.l Atomic configurations for a 
table (or set of tables) are atomic configurations where indices are only on 
that table (or set of tables). Atomic configurations for a statement are configu- 
rations that are atomic for the tables in that statement. 

PROPOSITION 1. The cost of a query (single-table query or join) for a con- 
figuration is the minimum of the costs for that query taken over the atomic 
configurations that are subsets of the configuration. More formally, 

COST,[ISET] = min COST,[ASET] 
ASETCISET 

(where the ASETs are atomic). 

This proposition follows from the definition of COST,. COST,[ISET] is the 
minimum of the Cq(al, LYE, . . . , at) values, where the cys are access paths over 
appropriate tables (and any (Y can be sequential scan). Similarly replacing 
COST,[ASET] by its definition, each C,(ai, CY~, . . . , at) appears in the right- 
hand side minimum at least once, and the C, terms involving sequential scan 
appear more than once. Since both minimums are over the same set of C, terms, 
they are equal, proving the proposition. 

Performing EXPLAIN COST only for atomic configurations significantly 
reduces the number of cost inquiries to the optimizer performed by DBDSGN. 
For a query on a table with n columns, there are 2n + 1 atomic configurations 
(n with 1 clustered index, n with 1 nonclustered index, and the configuration 
with no indices), so the number of EXPLAIN COSTS is reduced from exponential 
to linear in the number of columns. For a t-table join, recall that the number of 
configurations is exponential in the total number of columns in the joined tables. 
The number of atomic configurations for a join equals the product of the number 

1 Configurations with more than one index per table are admitted to evaluate statements with self- 
joins (when a table is joined with itself), but for simplicity we omit discussion of this case. 
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of atomic configurations for each single table. That is, if we let nj be the number 
of columns in the jth table of the join, there are Ilfcl (2nj + 1) atomic configu- 
rations for the join. Despite this significant reduction, the computation of all 
atomic costs may still be impractical for large nj and t. In Sections 3.4, 4.1, and 
4.2, we describe methods to reduce the number of indices considered when atomic 
costs are computed. 

SQL also permits statements with nested subqueries. Each statement subquery 
can be treated independently from the others (except for the execution frequency 
[35]), even when a subquery references a table appearing higher up in the 
subquery tree (a “correlated” subquery). This is because EXPLAIN provides 
separate information about each subquery in the subquery tree. In particular, 
DBDSGN uses EXPLAIN STRUCTURE to determine the subquery structure 
of each statement and the number of times each subquery is performed. DBDSGN 
uses this together with subquery cost information returned by EXPLAIN COST 
to compute the cost for the entire query and each subquery. 

3.3 Maintenance Costs 

Maintenance statements in System R can involve only a single table. (Mainte- 
nance statements may have subqueries, but DBDSGN handles them separate 
from the root of the subquery tree, just as it does when the root is a query.) These 
statements have three steps: 

(1) Using some access path(s), the tuples acted upon are found (or the locations 
for inserted tuples are found). 

(2) The tuples are modified, deleted, or inserted. 
(3) Indices on the table are updated, if necessary. 

The cost of maintaining indices may be substantial, so a design tool must 
consider the cost of performing this maintenance when it evaluates a physical 
design. Furthermore, the maintenance cost cannot be considered constant for 
every index. In [33] the following is shown: 

(1) The maintenance cost depends on the form of the statement, such as the 
predicates in the WHERE clause, and the contents of the SET clause for update 
statements. 

(2) Another distinction in cost computation must be made based on the way 
the tuples and indices to be modified are accessed. In particular, the access path 
determines the order in which the tuples in the data pages (and the TIDs in the 
index leaf pages) are scanned. Different formulas apply based on whether or not 
these objects are scanned in the same order they are stored. 

In [33] the different cases are described and formulas for maintenance cost are 
given. DBDSGN takes all of the above issues into account. 

We separate the costs returned by the optimizer for a maintenance statement 
into two components: 

(1) the cost of accessing and modifying tuples, and 
(2) the cost of maintaining indices on columns that are affected by the statement. 
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The notion of atomic cost is also valid for maintenance statements, and we 
distinguish between the atomic access costs (which we define as the sum of the 
costs of accessing and modifying tuples) and the atomic index maintenance costs. 
Fortunately, a small set of atomic index maintenance costs determines the cost 
of maintenance statements for any set of indices in the database. DBDSGN must 
determine the cost of updating any index, no matter what access path is used to 
access the tuples. The important distinction is not which access path is used, but 
whether the access path and updated index are ordered in the same way. When 
they are, this is called an ordered scan; when they are not, this is called an 
unordered scan. For instance, for a clustered index the scan is ordered if the 
access path is either that same index (which can occur for inserts and deletes) or 
sequential scan;’ in these cases, the modifications follow the order in which the 
TIDs are stored in the index leaves. If the clustered index is updated following a 
scan on a nonclustered index instead, the TIDs may be hit in an unordered way, 
incurring a higher cost. For updating a nonclustered index, the only ordered scan 
is the index itself. 

Let ISET be a set of indices, and let q be a maintenance statement. Since q 
can involve only one table (although subqueries can mention other tables), we 
assume without loss of generality that ISET is only on the modified table. 
Because of the Optimizer principles, the optimizer’s cost estimate for executing 
maintenance statement q in configuration ISET is 

COST, [ISET] = min C,(a) + c U,(P, a) , 
aEISETU(p) BEISET 1 

where C, here is the cost of accessing and modifying tuples using access path (Y, 
and U,(p, a) is the cost of updating index p if access path (Y is used as the access 
path to the table. As with queries, indices in ISET on tables not referenced in a 
maintenance statement do not affect COST,[ISET]. The definition of COST, 
above is consistent with the definition of COST, in the previous section for 
single-table queries. 

Let q be a statement on a single table (including updates, deletes, and inserts, 
as well as queries on a single table), and let AP,(ASET) be the access path chosen 
by the optimizer to process q in atomic configuration ASET (which is either p or 
the one index in ASET that is on the referenced table). The following proposition 
decomposes the cost of q for configuration ISET into the costs C, and U, for 
atomic configurations ASET included in ISET. 

PROPOSITION 2. Let 

COSTG[ISET] = min COSTJASET] + c &(A AP,WET)) 
ASETCISET BEISET-ASET 1 

* An UPDATE cannot use an index on an updated column as an access path in System R. When a 
column entry in a given tuple is modified, the TID associated with the tuple is removed from the 
group of TIDs following the old key value in the index on that column and inserted in the group of 
the new key value. Accessing the tuples through an index that is currently modified may lead to 
hitting the same TID more than once. 
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(where the ASETs are atomic). Then, 

COST; [ISET] = COSTJISET]. 

PROOF. Let the n indices in ISET be al, ayp, . . . , (Y,. By definition, 
COST,[ISET] is the minimum of the following costs: 

CO = C,(P) + li Uptai, PI 
i=l 

Cl = C&Y,) + z? UqC% a11 
i=l 

i=l 

COST; [ISET] is the minimum of 

ci = COST,[bll + E f-J&% P) = co, 

Cl’ = COST,[{ai)] + C uq(P, APq({ail)) = min(c0, cl), 
BEISET--(al) 

c; = COST,&z)] + BEISET-,n21 U&t AP,(~zI)) = mW0, cd, lx 

c:, = COST,[(a,j] + 1 U,(P, AJ’,(iw,l)) = min(co, cd. 
BEISET--(a,] 

Hence, COST; [ISET] = min(co, cl, CZ, . . . , c,), demonstrating the proposi- 
tion. Cl 

As we mentioned earlier in this section, for an index /3 the maintenance cost 
U,(/3, a) depends on whether the access to ,8 is an ordered or unordered scan and 
is otherwise independent of (Y’S column. (This is also true when (Y is p.) Thus, 
there are only two costs to be computed for ,6. Let Ui (p) be the cost of updating 
p if (Y determines an ordered scan of p, and let Vi (p) be the cost of updating p if 
(Y determines an unordered scan of p. U,(p, (Y) is either U,(p) or U:(p). 

Performing EXPLAIN COST for atomic configurations, DBDSGN can collect 
the maintenance cost of a given index for both ordered and unordered scans. For 
example, assume q is an UPDATE statement, and we want to evaluate the 
maintenance cost of an index p. The atomic configurations with /3 that are of 
interest for q depend on whether p is clustered or nonclustered. Performing 
EXPLAIN COST for q with /3 clustered, we obtain from the optimizer a cost 
C,(p), for the access and tuple maintenance, and a cost U,(p, p), for updating 
the index. The only possible access path for the optimizer is sequential scan p, 
so U, (p, p) = Vi (/3) is the cost of maintaining the index fl following an ordered 
scan. Similary the configuration with ,6 nonclustered gives us the cost U:(p) of 
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the unordered scan.3 Similar considerations can be applied for DELETE and 
INSERT statements. The reader is referred to [33] for details on the cost 
formulas. 

3.4 Columns Plausible for Indexing 

Performing EXPLAIN COST only for atomic configurations significantly re- 
duces the number of cost inquiries to the optimizer. This section describes a 
technique for reducing the number of cost inquiries even further. 

The number of index candidates on a table equals twice the number of columns 
in the table (because indices may be clustered or nonclustered). However, not all 
columns are plausible candidates for indexing. Columns that appear in a state- 
ment in ways that support use of indices are called plausible columns (for that 
statement). Other columns are called implausible. The considerations that deter- 
mine the set of plausible columns for each statement are optimizer dependent. 
The critical requirement is that, for the statement, implausible columns must 
have (essentially) the same costs for indices, no matter what other indices exist. 
For System R the considerations include the following: 

(1) A column is plausible if there is a predicate on it and the system can use 
an index to process that predicate. This happens when the predicate is ANDed 
to the rest of the WHERE clause, and it is usable as a search argument to 
retrieve tuples through an index scan. That is, the predicate has the form column 
op X, where op is a comparison or range operator (>, 2, =, I, <, BETWEEN, 
IN), and X is a constant, a program variable, or a column in a different table. 
For example, for the table 

PARTS: (PARTNO, DESCRIP, SUPPNO, QONORD, QONHAND, 
COLOR, WEIGHT, . . . .) 

in the statement 

SELECT PARTNO, DESCRIP 
FROM PARTS 
WHERE SUPPNO = 274 
AND (COLOR = ‘RED’ OR WEIGHT > 37) 
AND QONORD = QONHAND + 50, 

SUPPNO is plausible for statement (S2), but COLOR and WEIGHT are im- 
plausible. QONORD is also implausible, because it is compared with the result 
of an expression. 

(2) A column that is not plausible because of selection predicates may still be 
a plausible candidate for indexing for other reasons. For example, there may be 
a GROUP BY or ORDER BY clause on the column.4 

3 We assume here that the cost of updating an index following an unordered scan is always the same, 
no matter what access path is chosen. This is not always true (see [33] for details), but we think it a 
reasonable approximation. 
’ The optimizer could even decide that a column that does not appear in the statement is plausible. 
Moreover, an implausible index might be a better access path than sequential scan in certain cases. 
Since all indices on implausible columns have almost identical costs, a single implausible represent- 
ative can be added to the plausible set. 
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(3) If a table is not mentioned in a statement, all its columns are implausible 
for that statement. 

Using EXPLAIN REFERENCE, DBDSGN identifies the set of plausible 
columns for each statement. This avoids putting optimizer-dependent informa- 
tion on plausibility into DBDSGN. More generally, the design tool identifies the 
set of plausible access paths for each statement, which includes the clustered and 
nonclustered indices on the plausible columns,5 as well as sequential scan. 
Plausible columns may be unusable for a particular statement because of system 
constraints. For example, a column that is changed by an UPDATE statement 
may not be usable even if it appears in an index-processable predicate (see 
footnote2). In a system that supported links and hashing, some links and hashed 
access paths would also be plausible for a given statement. 

We believe the database system (rather than the designer) should determine 
plausibility. The optimizer is the best judge of its own capabilities. Moreover, it 
is simpler for designers to let the system automatically determine plausibility 
rather than to specify plausible columns themselves. Since EXPLAIN REFER- 
ENCE is only performed once per statement, determining the columns plausible 
for indexing is inexpensive. 

Limiting access-path choices to plausible access paths greatly reduces the 
number of cost evaluations requested from the optimizer. A configuration is 
plausible for a statement if all indices in it are plausible for that statement. The 
following criterion is used to limit the number of times EXPLAIN COST is 
performed: 

(Cl) Costs are obtained for each statement only for plausible atomic configura- 
tions for that statement. 

The validity of this criterion is a consequence of Propositions 1 and 2 of 
Sections 3.2 and 3.3. 

The value of plausibility in reducing the complexity of the index-selection 
problem is illustrated by the following example: Consider the table PARTS 
mentioned above and the table ORDERS of Section 2.2, where each table has 
10 columns. Without plausibility a design tool would consider 5,120 (10 X 2’) 
configurations for each table with one index clustered and the others nonclus- 
tered, and 1,024 (2”) configurations with all indices nonclustered, for a total of 
6,144 configurations. For the two tables together, there are a total of 37,748,736 
(6,1442) configurations. Plausibility allows us to drastically reduce the number of 
configurations. Consider the following statement: 

(S3) 
SELECT P.PARTNO, P.QONORD 
FROM PARTS P, ORDERS 0 
WHERE O.PARTNO = P.PARTNO 
AND O.SUPPNO = 15 
AND P.WEIGHT > 200 
AND P.QONHAND BETWEEN 100 AND 150. 

’ In an early version of DBDSGN [32], there was no distinction between plausible and implausible 
columns, and all columns of the table were considered index candidates. This meant less dependence 
on the optimizer’s special properties, but it was also much less efficient. 

ACM Transactions on Database Systems, Vol. 13, No. 1, March 1988. 



Physical Database Design for Relational Databases l 107 

Of the 20 columns in PARTS AND ORDERS, only 5 are plausible for statement 
(S3): PARTNO, WEIGHT, and QONHAND for PARTS, and PARTNO and 
SUPPNO for ORDERS. Hence, there are 160 plausible configurations on the 
two tables, and only 35 of them are atomic plausible configurations. Suppose 
that another statement in the same workload is 

64) 

SELECT * 
FROM PARTS P, ORDERS 0 
WHERE O.PARTNO = P.PARTNO 
AND O.DATE = 840701 
AND P.WEIGHT < 300. 

All the columns in PARTS and ORDERS appear in the select list, but only 
four are plausible. For statement (S4) there are 64 plausible configurations, of 
which 25 are atomic plausible configurations. Fifteen of those are also atomic 
plausible for (S3). The total number of different atomic plausible configurations 
for (S3) and (S4) is 45. In practical workloads many columns in the database are 
not referenced, and some columns are only referenced in the SELECT lists and 
never in the WHERE clauses. The plausible configurations for joins often 
intersect considerably; it is particularly common for several statements to have 
the same join columns (because of hierarchical and network relationships that 
exist in the data tables). Furthermore, as we previously indicated, not all columns 
referenced in the WHERE clauses are plausible. Hence, performing index selec- 
tion on the basis of the plausible configurations can be practical. 

3.5 Catalog Statistics 

The cost of executing a statement in the database’s current configuration can be 
obtained using EXPLAIN COST. The optimizer uses statistics in the database 
catalogs to determine the costs of execution plans and chooses the plan with the 
lowest cost estimate. Thus, the optimizer will return the cost estimate for a 
statement in a configuration if the system catalogs describe that configuration. 
Among the statistics used by the optimizer in making cost estimates are 

-for each table, table cardinality (number of tuples in the table) and the number 
of pages occupied by the table; 

-for each column, the average field length, the column cardinality (number of 
distinct values for the column), and the maximum and minimum values in the 
column; and 

-for each index, the number of leaves and levels. 

The obvious way to get the cost of a statement in a configuration is to create 
that configuration (thereby causing the right statistics to be in the catalog) and 
to perform that statement. Executing many statements on large tables is typically 
unacceptable. Creating configurations and performing EXPLAIN COST is better 
since the optimizer’s cost model is used and the statements are not actually 
executed. But it is still very expensive to create combinations of indices on large 
tables, and such activity would also interfere with normal operations on tables. 
DBDSGN uses a different approach that does not have these disadvantages and 
moreover allows design even when the tables are not yet populated with tuples. 
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Instead of building configurations, DBDSGN simulates them by changing 
entries in the database catalogs. To do this it must have statistics describing the 
configurations, and these statistics can come from several sources. For tables 
that are already populated, DBDSGN can obtain statistics for tables and columns 
using the UPDATE ALL STATISTICS statement [3, 201, and based on these 
can estimate index statistics. If indices already exist, DBDSGN can use their 
statistics. For tables that have not been loaded yet (or whose contents are 
expected to change drastically), the designer can supply statistics in a file. Thus, 
DBDSGN can do design even when there are no tuples in the database (as long 
as the tables exist). 

DBDSGN updates the system catalogs to simulate atomic configurations that 
are plausible for some statement. If DBDSGN updated the catalog descriptions 
for the actual tables, applications using these tables would be delayed and find 
incorrect information in the catalogs. Instead, alterations are made on catalog 
entries for artificial tables that are created by DBDSGN, which we call skeleton 
replicas. DBDSGN creates these replicas exactly as the actual tables were created. 
It then updates the catalog entries for the tables and their columns so that their 
statistics are those of the actual tables (or are the statistics provided by the 
designer). The skeleton replicas have the same statistics as the actual tables, but 
contain no tuples and are used only by DBDSGN. Simulating an atomic config- 
uration involves creating the indices in that configuration (on the replicas) and 
putting the right index statistics into the catalog. (Indices on empty tables are 
created quickly.) The skeleton replicas are used only for EXPLAIN COST; they 
are never accessed. 

3.6 Computation of Atomic Costs 

In order to generate solutions to the index-selection problem, we need to compute 
the costs of the statements for plausible atomic configurations. One significant 
component of DBDSGN’s execution time is the catalog-update activity required 
to simulate different index configurations. In System R the system catalogs are 
stored in the database, so every catalog update affects the database.‘j 

We say that one configuration covers another for statement q if they have the 
same indices for all tables referenced in q. A set of configurations covers another 
for statement q if each configuration in the second set is covered for q by a 
configuration in the first set. A set of configurations is minimal for a workload if 
it contains no configuration that is covered by the other configurations for every 
statement in the workload. Since the cost of a statement is independent of indices 
on tables not referenced in the statement, to obtain all plausible atomic costs it 
suffices to simulate a (minimal) set of atomic configurations that covers the set 
of plausible atomic configurations for the workload. 

Consider statements on a single table. Since the same index may be plausible 
for more than one statement, the number of system catalog updates necessary to 
simulate the configurations equals the total number of different indices that are 

’ The cost of catalog updates would he insignificant if catalog data could he stored outside the database 
(e.g., in tiles or program variables). The database system would have to be changed to use this 
(spurious) cache, rather than the actual catalog data. This would also eliminate the need for the 
skeleton-replica tables described in the previous section. 

ACM Transactions on Database Systems, Vol. 13, No. 1, March 1988. 



Physical Database Design for Relational Databases - 109 

plausible for at least one statement. (Sequential scan must be counted once for 
each table.) For single-table statements, catalog updates could be done efficiently 
on a table-by-table basis. 

For a workload that includes joins, the number of catalog updates may be very 
high, since the number of atomic configurations to be simulated grow exponen- 
tially with the number of tables joined. We want to reduce the number of catalog 
updates by never simulating a configuration more than once, by simulating a 
minimal set of configurations for the workload, and by simulating configurations 
in a sequence that reduces the number of catalog updates. In this section we 
describe a simple procedure to enumerate (a cover for) the plausible atomic 
configurations so that DBDSGN can obtain the plausible atomic costs for all 
statements in the workload. 

For a statement q involving & tables, let NA, be the number of plausible access 
paths to the ith table of the statement. The number of different atomic configu- 
rations to be simulated is 

h NA,. 
i=l 

If atomic configurations are enumerated using Gray coding (any other enumer- 
ation scheme generating each configuration once would be acceptable), with 
table CJ as the highest order (least frequently changing) column and table 1 as the 
lowest order (most frequently changing) column, then the number of catalog 
updates is 

$, is minimized by permuting the tables so that the NA, values are monotonically 
increasing. Different table permutations may be used for different statements. 
\k = C, $, catalog updates suffice to compute costs for all statements. In many 
cases the plausible configurations for joins intersect considerably;so performing 
the cost computations independently for each join risks creating identical config- 
urations more than once. To avoid this (and hence to reduce the number of 
catalog updates), whenever we simulate an atomic configuration we compute the 
cost of each statement for which that configuration is plausible. (More generally, 
we compute the cost for each statement such that the simulated configuration 
covers a plausible configuration.) Ordering the statements so that the ones with 
the largest number of tables are processed first also may reduce the number of 
configurations generated (since a join involving many tables may enumerate 
configurations needed by simpler statements). 

Join cost computation rules 

(1) The list of join statements is ordered in decreasing order of the number of 
tables referenced. 

(2) For each join Q, all the plausible atomic configurations are enumerated using 
Gray coding with the tables permuted so that the NA, values are increasing. 
A configuration is simulated only if the cost of q for that configuration has 
not been computed yet. 
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(3) For each simulated configuration, EXPLAIN COST is performed for every 
join (after the current join in the join list) such that the simulated configu- 
ration covers an atomic configuration that is plausible for that join. 

3.7 Required Indices 

There are two types of index requirements that may be specified for DBDSGN. 
The designer may want the indices for some tables to be exactly as they are 
in the database. The workload W described in Section 3.1 identifies a set of 
tables T. The designer can partition T into two sets Texist and Tdesign. The 
indices that already exist in the database for tables in Texist are not be be altered. 
For example, the designer may not be authorized to redesign those tables (e.g., 
system catalogs), or the indices for Texist may have already been selected for 
specific applications. The designer specifies the tables in Tdesign, and DBDSGN 
suggests index designs for those tables. All other tables are in Terist, and existing 
indices are used for them. If the indices to the tables in Texist change, the solutions 
recommended by DBDSGN for the tables in Tdesign might also change. 

In addition, the designer may require certain index choices for tables in Tdesign. 
For example, the clustered index for some table may already have been chosen. 
Indices may also be required to enforce a constraint; in System R the uniqueness 
of keys is enforced by creating a “unique” index. DBDSGN allows indices to be 
required or excluded from all solutions. A variation of this permits fast evaluation 
of an individual index configuration. 

4. INDEX ELIMINATION 

In the previous section, we described plausible access paths. Plausibility is based 
on the appearances of columns in statements, not on the costs of access paths. 
Plausibility is a valid criterion for restricting the costs evaluated; if the solution- 
generation procedure described in Section 5 is followed so that the entire space 
is searched, all configurations are considered, and the optimal index configura- 
tions are found (if we assume the costs furnished by the optimizer are the actual 
execution costs). Analyzing all possible plausible atomic configurations, however, 
may be impractical when a workload includes joins on many tables where a large 
number of columns are plausible. Deciding whether or not to do index elimination 
involves trading improved execution time of the design tool versus finding better 
(i.e., nearer optimal according to optimizer cost estimates) solutions. As we 
discussed earlier, finding the (apparently) optimal configuration is not required, 
since statistics provide an incomplete description of the database, and the 
optimizer’s cost formulas furnish an approximation to actual cost. 

In this section we describe heuristic criteria for deciding which plausible indices 
are likely to be chosen as access paths by the optimizer when other access paths 
exist in the database. These criteria, based on access cost, can reduce the set of 
configurations. First we describe index-elimination criteria for statements on one 
table, and then we consider the multitable case. 

4.1 Index Elimination on a Single Table 

In this section we assume all statements are on a single table. Hence, all atomic 
configurations have (no more than) one index. Index elimination is not usually 
necessary in this case since the number of plausible atomic configurations is 
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small. However, we begin with a single-table example to help motivate the 
technique used for index elimination in the multitable case. 

DBDSGN simulates configurations column by column (clustered and nonclus- 
tered indices), and EXPLAIN COST is performed for all statements for which 
the column is plausible. Index elimination is carried out by comparing every 
index choice with every other index choice, as well as with sequential scan. A set 
of elimination criteria is valid if the criteria never eliminate an index that appears 
in the optimal solution. The elimination criteria we describe here are valid for 
single-table queries. When the workload also contains maintenance statements 
and joins, the criteria may not be valid. The problems associated with the 
maintenance and join costs are discussed at the end of this section and in the 
next section. 

Let C,(j) be the cost of query qi with index j. If Ci(k) < C,(j), then, if both 
indices exist in the design, the optimizer will prefer k toj. We must also consider 
the memory cost mj for each index j, which we define to be the number of pages 
in the index (multiplied by a storage weight g supplied by the designer to trade 
off page costs versus execution costs in computing total cost of a configuration). 
If Ci(k) 5 C,(j) f or all qi, then the optimizer will never take j if k is in the design. 
If this is true, k is a better index choice than j, and we can eliminate j from 
consideration (unless the storage mk required for index k is more than mj). 

These considerations lead to the following definition: 

(DEFl) Given two indices j and k, if mk 5 mj and, for all qi E IV, Ci(k) % s,(j), 
then j is dominated (as an index choice) by k. If equality holds for all qi 
and m, then k and j are equivalent. 

When indices are equivalent, all but one can validly be eliminated. The configu- 
ration with no indices is represented by a vector R(p) of costs Ci(p) that 
corresponds to sequential scan. The optimizer never returns a cost Ci( j) > Ci(p), 
so any index equivalent to sequential scan can validly be eliminated. 

Let CLUST be the set of plausible clustered indices over all the qi, and 
NONCLUST be the set of plausible nonclustered indices over all the qi. The 
following four criteria based on DEFl can validly be used to eliminate indices 
from CLUST and NONCLUST. (After an index is eliminated, it cannot eliminate 
any indices.) 

(El) If k, j E CLUST and k dominates j, then eliminate j from CLUST. 
(E2) If j E CLUST is equivalent to k E NONCLUST, and k and j are indices on 

the same column, then eliminate j from CLUST. 
(E3) If j E NONCLUST is equivalent to p, then eliminate j from NONCLUST. 
(E4) If k, j E NONCLUST, and k dominates j, then eliminate j from 

NONCLUST. 

Each of these criteria is valid because the optimizer uses only one access path 
per table (see Section 3.2) and there is only one table. Criteria (El) and (E2) 
should be applied in that order before (E3) and (E4), since otherwise we may 
eliminate an index before it has the chance to eliminate others. Criteria (E3) and 
(E4) may be applied in either order. Criteria (El) and (E4) eliminate dominated 
indices and keep only one among equivalent indices. Criterion (E2) eliminates 
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any clustered index that is equivalent to the nonclustered index on the same 
column, because there is no advantage in keeping the tuples ordered on that 
column. In (E3), nonclustered indices are compared with the configuration with 
no indices and eliminated if equivalent. If the corresponding clustered indices 
are equivalent to p, they are eliminated by (E2) ( since no nonclustered index can 
be better than a clustered index on the same column). After the application of 
the above criteria, CLUST and NONCLUST contain only the indices that are 
comparatively useful for at least one query (or have small memory cost). 

Table I shows costs for a table T, with 6 plausible columns and 4 queries. 
(Normally, different columns might be plausible for different queries.) The single 
index atomic costs are arranged in a matrix with 4 rows (queries) and 13 columns 
(6 for the costs of clustered indices, 6 for the nonclustered indices, and 1 for 
sequential scan). Ignoring memory costs for simplicity, the results of index 
elimination for that cost matrix are as follows: 

Results of elimination 

-Criterion (El): lc eliminates 6c; 2c eliminates 4c. 
-Criterion (E2): In eliminates lc. 
-Criterion (E3): p eliminates 4n and 6n. 
-Criterion (E4): None. 

Further elimination criteria may be applied to CLUST and NONCLUST if 
they still contain many elements. Other indices can be eliminated if they are 
“almost” dominated by some index. If strict domination is used, indices may 
survive the elimination process because they are slightly better than others for 
a few queries, even though they are much worse in most queries. Heuristic 
elimination criteria may be preferable to strict domination. Let the maximum 
advantage of k over j for all qi be 

M&j = max iwi[Ci(j) - ci(k)l), 
9; 

and let c be an elimination coefficient specified between 0 and 1. Heuristic 
elimination criteria can be based on the following domination definition: 

(DEF2) An index k e-dominates an index j if 

and for storage 

MAj,k 5 &MAk,j, 

u(mk - mj) I EMAh,j 

where c is the storage weight supplied by the designer. 

Index k c-dominates index j if the maximum advantage of j over k (over both 
estimated execution cost and storage cost) is less than or equal to a fraction of 
the maximum advantage of k over j. Zero-domination is identical to domination 
((DEFl)), so index elimination is the same as index elimination with E = 0. 
c-domination might be defined in other ways (e.g., by comparing total advantages 
or by comparing maximum advantage to total advantage), but we prefer 
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Table I. Cost Matrix for Index Elimination 

No 
Clustered indices Nonclustered indices index 

lc 2c 3c 4c 5c 6c In 2n 3n 4n 5n 6n P 

91 100 100 50 100 90 100 100 100 50 100 100 100 100 
Qz 150 10 50 35 40 150 150 20 50 150 40 150 150 
43 5 10 10 10 10 5 5 10 10 10 10 10 10 
44 100 60 100 200 100 200 100 140 200 200 130 200 200 

comparison of maximum advantages, since this comparison means that elimi- 
nated indices are comparatively unimportant. 

Domination increases monotonically as c increases; that is, if j cl-dominates k, 
then j cz-dominates k for E, < Q. Assuming storage costs are equal, for any pair 
of indices j and k there is a smallest E between 0 and 1 such that one index 
c-dominates the other (based on the ratio of their maximum advantages; if both 
maximum advantages are 0, the indices are equivalent). c-domination is not 
transitive, so the order in which elimination is applied may change the set of 
eliminated indices. 

If the clustered index were chosen on a table, further index elimination could 
be done based on that choice. This motivates an additional elimination criterion. 
Fix a particular table. Let Go contain all the surviving indices on that table in 
NONCLUST. For each clustered index k on that table that survived index 
elimination, let Gk contain clustered index k as well as the nonclustered survivors. 
Elimination is performed within each group Gk by applying a domination criterion 
using the clustered index within the group: 

(E5) For each group Gk, if k in CLUST E-dominates an index j in NONCLUST 
or if k and j are indices on the same column, then eliminate j from Gk (but 
not from any other group). 

Criterion (E5) eliminates the nonclustered index on the clustered column 
(which is always dominated by the corresponding clustered index) and eliminates 
other indices that are dominated by the clustered index. Elimination using (E5) 
can be done only group by group and not globally on NONCLUST, since 
nonclustered indices dominated by some clustered choices may be useful for 
other clustered choices. The results of applying (E5) to the Gk are called the basic 
groups for the table. 

We previously showed index elimination for Table I, which is the same as 
index elimination with E = 0. Index elimination using the e-domination definition 
for E = i yields the following results: 

Results of elimination with E = i 

-Criterion (El): lc eliminates 6c; 2c eliminates 4c; 3c eliminates 5c. 
-Criterion (E2): In eliminates lc. 
-Criterion (E3): p eliminates 4n and 6n. 
-Criterion (E4): 2n eliminates In. 
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-Criterion (E5): In the basic group for 2c, 2c eliminates 2n and 5n. 
-Criterion (E5): In the basic group for 3c, 3c eliminates 3n and 5n. 

Basic groups after elimination with E = 3 

-Ck 34, 
-(3c, 2n), and 
-(2n, 3n, 6%). 

For maintenance statements as well as queries, costs are compared for atomic 
configurations only. Since the rest of the solution is not determined, DBDSGN 
cannot include the cost of maintaining other indices in its cost comparisons 
during the index-elimination phase. Hence, elimination criteria may not be valid 
heuristics when there are maintenance statements in the workload. 

4.2 Index Elimination for Multitable Statements 

Most approaches to index selection are restricted to single-table statements. 
Approximate solutions are obtained by performing the index selection separately 
table by table. This approach does not work for a system like System R, whose 
join methods do not have the separability property [38, 391. System R has two 
methods for performing joins: “nested loop” and “merge scan” [2, 351. The 
optimizer chooses the sequence in which tables are joined, the join methods, and 
the access path used for each table. For an n-way join, it can use the two methods 
in any appropriate sequence of 2-way joins. In each join the choice of table order, 
the join method, and the access paths on tables cannot be done independently. 

From our experience with System R and DBDSGN, we concluded that the 
single-table criteria of the previous section are also good (although not necessarily 
valid) in the multitable case, when the following (optimizer-dependent) restric- 
tions are obeyed: 

(51) Indices can only eliminate other indices on the same table. 
(52) Clustered indices on join columns can never be eliminated. 
(53) Indices on join columns can never eliminate any other indices. 

Restriction (Jl) arises because indices are single-table access paths. 
Restriction (52) arises because merge scan is often a very efficient join method 

when both join columns are clustered. This can seldom be detected from single 
index atomic costs. Consider, for example, the two tables ORDERS and PARTS 
of Sections 2.2 and 3.4, and the following SQL statement: 

65) 

SELECT O.SUPPNO, P.QONORD 
FROM PARTS P, ORDERS 0 
WHERE O.PARTNO = P.PARTNO 
AND O.SUPPNO = 15 
AND P.QONHAND BETWEEN 100 AND 150. 

Assume that a decision has been made to cluster the PARTS table on DESCRIP 
and that a nonclustered index on PARTNO exists for PARTS. Given this, the 
best clustered index for ORDERS is probably on SUPPNO. This allows quick 
retrieval of the tuples from ORDERS that have SUPPNO = 15. For each of 
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these tuples, the corresponding tuples in PARTS (having the same PARTNO) 
can be found using the index on PARTNO on PARTS (nested-loop method). 
The best choice of clustered index for ORDERS would be entirely different had 
the choice for clustered index on PARTS been PARTNO. In this case, clustering 
ORDERS on PARTNO would enable even faster processing of statement (S5). 
The join predicate would be resolved by performing one pass over each table via 
the clustered index (merge-scan method). This shows that the selection of a 
clustered index cannot be done independently for each table. 

Restriction (53) arises because some very good solutions would be ignored if 
indices on join columns were allowed to eliminate indices on nonjoin columns. 
There are two negative results that could occur without (53). Suppose the 
workload contains just statement (S5). Apply index elimination to nonclustered 
indices on columns SUPPNO and PARTNO of the table ORDERS. For sim- 
plicity, we only consider the costs of the nested-loop join method. In the nested- 
loop method for two tables, one table is the outer table, and the other is the inner 
table. For each qualifying outer-table tuple (satisfying predicates on that table), 
matching inner-table tuples are found (satisfying join predicates and predicates 
on the inner table). Let Ex be the expected number of tuples that satisfy 
predicates on the outer table X (which will also be the number of times the inner 
table is scanned), let py be the cost of the sequential scan on the table Y, let 
C(aj) be the cost of accessing the outer table using the index on column j, and 
let C’(czj) be the access cost to retrieve tuples matching an outer tuple using 
the index on column j of the inner table. The optimizer cost estimates are as 
follows [35]: 

-For the index on column O.SUPPNO, the minimum of Al and A2 are 

Al = ~pAnTs + EpAnTsC’(O.SUPPNO) (using PARTS as outer) 

and 

A2 = C(O.SUPPNO) + EennnnsPpAnTs (using ORDERS as outer). 

-For the index on column O.PARTNO, the minimum of A3 and A4 are 

A3 = PPARTS + EpAnTsC’(O.PARTNO) (using PARTS as outer) 

and 

A4 = ‘ORDERS + EORDER#PARTS (using ORDERS as outer). 

Suppose that each index has access cost less than the sequential scan cost and 
that A3 is less than both Al and A2. Index elimination would eliminate the index 
on OSUPPNO. But, if we put an index on the QONHAND column on PARTS, 
the cost of accessing the PARTS table might significantly be reduced. Define 
Bl and B3 by substituting C(P.QONHAND) for PrAnTs in the equations for Al 
and A3. Similarly define B2 and B4 by substituting C’(P.QONHAND) for PpAnrs 
in the equations for A2 and A4. The cost reduction from A2 - B2 is Eonnnns 
times greater than the cost reduction from A3 - B3. If EonDEns is large, the 
value of A2 will now be much less than the value of A3. Thus, the decision to 
eliminate the index on O.SUPPNO was poor. 
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A second outcome that produces even worse results could occur if we ignored 
restriction (53). Again we use statement (S5) as an example. The nonclustered 
index on O.PARTNO could eliminate all other nonclustered indices on ORDERS 
(because cost A3 with ORDERS as the inner relation for a nested-loop join is 
small); similarly P.PARTNO could eliminate all other nonclustered indices on 
PARTS (because executing a nested-loop join with PARTS as the inner relation 
might be cheaper than the alternatives). These join-column indices would not 
both be used for a nested-loop execution of (S5), since one of them would be on 
the outer table and there is no nonjoin predicate on either column. (An index 
can be used to scan all the tuples in a table, but this is typically not profitable.) 
Thus, the optimizer is forced to choose sequential scan on one of the two tables, 
and consequently one of the indices will be useless for (S5). 

DBDSGN does permit elimination of nonclustered indices on join columns by 
other indices. If A3 is more than Al (or A2), then if we put an index on a column 
on PARTS then A3 remains more than Al (or A2). This is true of A4 as well as 
A3, and nonclustered indices are poor choices for merge-scan joins. Hence, the 
nonclustered index on join column O.PARTNO can safely be eliminated when it 
is dominated by another nonclustered index. 

Our discussion of restrictions (52) and (53) shows that solutions for the single- 
table case do not extend to the multitable case in a trivial way (i.e., by combining 
all the individual solutions for each table) for System R. We have done a series 
of experiments that show that index elimination is a good heuristic when (Jl), 
(J2), and (53) are followed. 

After DBDSGN does index elimination for a specified value of c, it indicates 
how many plausible atomic costs there are for the indices that survived. The 
designer can then choose to supply a different value of E. 

5. SOLUTION GENERATION 

The last step in the design process is a controlled search of the space of subsets 
of the survivor indices in CLUST and NONCLUST to find good solutions to the 
index-selection problem. Solutions, which are index configurations, are annotated 
with the access costs, maintenance costs, and access paths used for each statement 
in the workload and the total cost. The total cost can also depend on the total 
storage and the storage weight u if a designer wants to balance execution time 
versus the cost of storage. Storage cost is ignored in this section, but is simple to 
include. 

The indices in CLUST and NONCLUST are stored in a list (called the survivor 
list) where the clustered indices precede the nonclustered indices. (If the designer 
chooses not to do index elimination, CLUST is the set of all plausible clustered 
indices, and NONCLUST is the set of all plausible nonclustered indices.) The 
search is done through a tree expansion that enumerates the configurations so 
that no configuration appears more than once in the tree. The ordering of the 
survivor list matters; we describe survivor-list ordering rules later in this section. 

Before the start of tree expansion, DBDSGN asks the designer whether there 
is an index storage limit; if there is, the designer has to supply the maximum 
number of pages available for an index configuration in the database. 
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Table 

Survivors 

Basic groups 

Tl T2 

2c 3c 2n 3n 5n 7c 9n 

2c 3n 7c 9n 

3c 2n 5n 9n 

2n 3n Sn 

Survivor list 2c 7c 3c 9n 2n Sn 3n 

Fig. 2. An example of a survivor list and basic groups. 

Fig. 3. First expansion. 

The root of the tree represents the solution with no indices on any table. A 
node’s children always have one additional index, so the nodes at level k have 
exactly k indices. Adding a node’s children to the tree is referred to as expanding 
the node. The tree’s growth proceeds according to the following rules: 

Tree expansion rules 

(1) The root is expanded with one child for each index on the survivor list. 
(These nodes represent solutions having only one index on the database.) 

(2) For each node, expansion is done with indices that appear later in the 
survivor list than any index already in the node. 

(3) A node can be expanded only with indices that belong to the basic groups of 
the clustered indices already present in the solution represented by that 
node. 

(4) If a node has no clustered index for a table, any clustered index on that table 
can be added, but only nonclustered indices in the all-nonclustered basic 
solution for that table can be added to that node. (Recall that clustered 
indices precede nonclustered indices in the survivor list.) 

(5) Any node that exceeds the index storage limit specified by the designer is 
pruned. 

To explain how the tree grows, we use an example. Suppose design is for the 
table T, of Section 4, and for a table Tz, whose survivor list and basic groups are 
shown in Figure 2. 

Figure 3 shows the first expansion of the tree with solutions having only one 
index on the database. In this figure the root has no indices. However, when 
partial designs for some tables have been specified as described in Section 3.7 
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Fig. 4. Second expansion. 

(requiring some indices on those tables, but allowing additional indices), the root 
is the set of required indices. 

In Figure 4 the tree is expanded from the first level to the second, and the 
application of the procedure is shown. For example, the solution represented by 
7c is not expanded with 2c; the solution (2c, 7c) is already present and equivalent 
to (7c, 2~). No expansion takes place for the solution with 3n, which is the last 
index in the survivor list, but all possible combinations of 3n with other indices 
appear elsewhere in the tree. Furthermore, 2c is not expanded with 3c or 5n 
because they do not belong to the same group, and 3c is not expanded with 3n. 

For each node a total cost is computed during the expansion. This total cost is 
the weighted sum of all the costs of the statements (access and maintenance 
costs) when the database has the set of indices represented by that node. Let 
ISET be the set of indices in a given node. The total cost of the solution 
represented by that node is 

TOTALCOST[ISET] = c w,COST,[ISET], 
4 

where COST,[ISET] is the cost of statement 4 as defined in Section 3.2 for 
queries and in Section 3.3 for maintenance statements. 

The solution in a node can be worse than its parent solution. Assume we start 
from a node having ISET as a solution and we add index LY. The access advantage 
of a solution ISET’ = ISET U ((Y) is 

A = TOTALCOST[ISET] - TOTALCOST[ISET’] 
= x w,COST,[ISET] - C w,COST,[ISET’]. 

9 4 

COST,[ISET’] can be efficiently computed using atomic costs as the mini- 
mum of 

(1) COST,[ISET], and 
(2) the minimum value of COST,[ASET], taken over atomic subsets of ISET 

that contain (Y. 

If (Y is used for q in configuration ISET’, then the access paths for q correspond 
to those in some ASET containing (Y. A cannot be negative. If A is 0, no atomic 
cost including (Y is better than those without (Y, so (Y is not used as an access path 
in any statement for configuration ISET’. If A is positive, the disadvantage in 
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maintenance cost must be considered: 

D=cw, 2 u,(P, AJ’JISET’)) - c U&J APJISET)) . 
Q j3EISET’ BEISET I 

The difference inside the square brackets is not simply C, U,(a, AP,(ISET’)), 
the additional maintenance cost for index LY, because the maintenance costs of 
other indices may have changed based on the change of some access-path choices. 
Thus, to correctly evaluate maintenance costs, the design tool has to keep track 
of the actual access paths for each statement. ISET’ has a better total cost than 
ISET only if A is greater than D. 

Furthermore, knowing the actual access paths allows us to detect wasteful 
solutions. These are solutions that contain one or more indices that are never 
taken as access paths. In the index-elimination phase, we ensure that no index 
is dominated by any other single index; in solution generation we want to ensure 
that no index is wasted because it is overpowered (in a solution) by a set of other 
indices. Wasteful solutions can arise in two ways: 

(1) The most recently added index (Y is not used in any statement. That is, ISET 
overpowers cy. 

(2) When a is added to ISET, some index p in ISET is no longer in an access 
path for any statement. That is, ISET U (LY) - (0) overpowers /3. 

If a wasted index is plausible for some join, future additions of indices on 
different tables may make it useful for that join. If that index is not plausible for 
a join (or all the plausible indices for the other tables in the same join are already 
in the solution), then that index will always be wasted, no matter how the solution 
is expanded. In that case, the node can be pruned from the tree. 

At the end of expansion, the tool displays the S solutions having the smallest 
cost, where S is a parameter specified by the designer. Wasteful solutions are 
never displayed (so they may be dropped as soon as they have been expanded). 
The full expansion of the tree is shown in Figure 5. (No index storage limit is 
considered in the expansion.) The circles indicate the best solutions (S = 3). 
Some nodes are pruned because the tool detects wasteful solutions. When 
maintenance statements are present in the workload, the best solutions are not 
necessarily at the leaves of the tree. 

Exploring all the solutions in the tree may be extremely time consuming when 
there are many tables in the database with a large number of surviving indices. 
Thus, we allow a controlled partial expansion of the tree, using breadth-first 
search with heuristic pruning. The search is conducted by expanding all solutions 
with no more than L indices and keeping only the best N, where N and L are 
parameters specified by the designer, with N 2 S. Each of these N solutions is 
then expanded by at most L additional indices (assuming they were at the frontier 
of the previous expansion). This process continues until no further expansion is 
possible. 

Because of this pruning rule, each different ordering of the survivor list 
determines a different tree (even though the set of solutions examined during 
the first L index expansion is always the same). This is because the survivor list 
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0 

2c 7c 3c 9 2 5n 3n 

9 3n 3c 9n Zn 5 3n Bn Zn 5n Zn 5n 3n 5n 3n 3n 

ij 

9n 34 3n/ On Zn/2 5 34!\ \YJ 5n 34 34 3\ 

2 5n 3n 3n 3n 3n 1 

Fig. 5. Full expansion. 

imposes a discipline on a node’s descendants, denying them certain indices. We 
want “influential” indices to be early in the survivor list, so that other indices 
can still be added, despite pruning. (E.g., if the first index in the list was good 
only for some low-frequency statement, it might be pruned completely after the 
first L index expansion.) The order of the survivor list is determined by two 
rules: 

Survivor list ordering rules 

(1) The clustered indices are st.ored before the nonclustered ones. (Clustered 
indices are, in general, the most influential. Thus, they should be considered 
before the nonclustered ones. They also allow the identification of the basic 
groups.) 

(2) The indices in each set (clustered and nonclustered) are ordered according 
to their total cost, computed on the basis of their weighted total single index 
atomic costs: C, w,COST,(a). (Indices with higher total single index costs are 
usually less influential than indices with lower total single index costs.) 

This ordering for the survivor list is likely to be one of the best among the 
possible permutations of indices. 

In Figures 6-8 the expansion of the same tree as in Figures 3-5 is shown with 
N = 3 and L = 1. (We assume the order of the survivor list is the same as for 
Figures 3-5.) The circles indicate the best solutions found at each level of 
expansion. The best solutions obtained with pruning need not be the same as for 
full expansion. In this example, however, the number of nodes searched dropped 
from 48 to 27. If we set L = 1, we visit a number of nodes proportional to the 
number of surviving indices. In general, the number of nodes grows exponentially 
in L. If we make L the number of surviving indices, we visit the entire tree. The 
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Fig. 6. First expansion with N = 3 and L = 1 

Fig. 7. Second expansion with N = 3 and L = 1. 

Fig. 8. Full expansion with N = 3 and L = 1. 

trade-off is that some of the low-cost solutions appearing in the unrestricted tree 
may not appear in the restricted tree, so some of the best solutions may be 
missed. By controlling these two parameters, a designer can get a good set of 
choices rather quickly. DBDSGN allows a designer to pursue different choices of 
N, L, and the index storage limit in the same run. We have found that choosing 
L = 3 usually allows DBDSGN to find the best solutions. Even with much larger 
values of L, this part of the program is comparatively fast, since all the atomic 
costs are available. 

When a designer chooses to use the heuristic parameters in solution generation, 
not all solutions are examined, and some join costs may never be needed. A 
designer may prefer that DBDSGN generate join costs dynamically, as they are 
needed, rather than before solution generation. Also, after DBDSGN displays 
solutions for the specified heuristic parameters, the designer may choose to 
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perform solution generation again with different heuristic parameters. DBDSGN 
supports this without repeating EXPLAIN COST for any cost previously deter- 
mined. 

6. AN EXAMPLE 

We now give an example of the type of input that can be submitted to the tool 
and the type of output it produces. For the example we use a database containing 
the following three tables: 

PARTS: (PARTNO, QONHAND, . . . .) 
ORDERS: (ORDERNO, PARTNO, SUPPNO, DATE, QTY, . . . .) 
QUOTES: (SUPPNO, PARTNO, MINQTY, MAXQTY, PRICE, . . . .) 

The tables are stored in pages of 4 K bytes. PARTS has 8,000 tuples of 10 
columns each and is stored in 428 pages; ORDERS has 24,000 tuples of 10 
columns each and is stored in 618 pages; and QUOTES has 72,000 tuples of 8 
columns each and is stored in 696 pages. The workload is composed of the ten 
statements shown in Figure 9 with their weights. 

The tool detects that 12 columns are plausible for some statements (these are 
the columns listed in the table definitions reported above). Index elimination 
with elimination coefficient E = 0 and storage weight c = 1 eliminates two 
clustered indices (on O.QTY and Q.MAXQTY) and five nonclustered indices (on 
P.QONHAND, Q.MAXQTY, Q.MINQTY, Q.PRICE, and O.QTY). In addition 
to the single-index and sequential scan costs, the tool requests 238 join costs 
when all costs are precomputed. 

Figure 10 shows the solution obtained with a full expansion of the tree without 
memory limit. The figure also shows the costs and access path chosen for each 
statement, and the total storage and access cost of the proposed solution. Without 
actually creating the indices (i.e., by providing statistics to the catalogs for the 
empty table replicas and the indices through an input file), the CPU time spent 
to run the example was approximately 12 seconds on an IBM 3081. 

7. EXTENSIONS TO OTHER ACCESS PATHS 

Multicolumn indices are allowed in System R, and DBDSGN deals with them in 
a way different from the other indices. It considers multicolumn indices only if 
the designer specifies them. The group of columns the multicolumn index refers 
to is treated as if it were a separate column. 

Indices are the only access paths (besides sequential scan) supported in 
System R. Links were implemented in System R, but are used only for system 
catalogs. Hashing is not supported. In this section we discuss briefly how the 
principles underlying DBDSGN can be applied to systems that support other 
access paths. 

Dealing with hashing is simple since hashing is a single-table access path that 
determines the physical placement of the records in a table (just as a clustered 
index does). Some of the major considerations for extending DBDSGN to 
consider hashing are as follows: 

-Hashing on a column is a primary access path that is incompatible with 
clustered indices (or hashing on other columns) on the same table. 
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WEIGHT WORKLOAD STATEMENTS 

5 

5 

5 

20 

10 

20 

20 

10 

2 

5 

SELECT SUPPNO, PRICE 

~::Ea~ii?il - 6963 AND YINO-IY < 1000 AND MAXQPI b 1000 

SELECT X. ORDERNO, X. PARTNO. Y. DESCRIP, X .DAlE. X. MY 
FROM ORDERS X, PARTS Y 
WHERE X.PARTNO - Y.PARlNO 
ANDX.SUPPNO- ‘CHR’ANDX.DATEBElWEEN63DDOAND831216 

SELECT SUPPNO. MINtPRICD, MAX(PRICD 
FROM QUOTES 
WHEREPmO - 11175CROUP BYSUPPND 

INSERT INTO ORDERS VALUES ( . . , . . , . . . . . . 1 

SELECT PARTNO, W 
FROM ORDERS 
WHEREORDERNO- ‘BNTJFX’ ORDER BY QIY 

UPDATE QUOTES 
SET PRICE- PRICE*1 . 1 
WHERESUPPNO- ‘JNS’ 

DELm FROM ORDERS 
WHERESUPPNO- ‘JNS’ 

SELECT X . PARTNO. X. DESCRIP,Y. PRICE 
FROM PARTS x, 0uDTES Y 
WHEREX.PARlNO -Y.PARTNO 
AND Y.SUPPNO - ‘WJM’ 

SELECT Y .SUPPNO.Y. ORDERND,X. PARTN0.X. DESCRIP 
FROM PARTS X. ORDERS Y. OUOTES 2 
WHEREX.PARlNO-Y.PARTNOANDY.SUPPNO-Z.SUPPNO 
AND Z . PRICE<5000 AND Y. DATE-64031 6 

0ELEl-E FROM ORDERS 
WHERE DAD640530 AND PARTNO IN 

%ki~No 
WHERE OONHAND>lODO) 

Fig. 9. Workload statements and their weights. 

-Hashing is a plausible access path for the same columns for which indices are 
plausible, except those referenced in clauses involving order (such as ORDER 
BY, GROUP BY, and column > “value”). 

-Hashed columns participate in the elimination heuristic in the same way 
clustered indices do. 

-Basic groups are generated for the hashed columns just as for the clustered 
indices, except that hashing is compatible with a nonclustered index on the 
same column. 

Links are more complicated; for simplicity we consider only a form of nonclus- 
tered binary links. (DBDSGN could also be used for more general types of links.) 
A link provides paths from parent tuples in one table to child tuples in a second 
table. The link is a bidirectional access path between two tables that have 
a 1: N relationship. Each parent points to its first child, and each child points to 
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17 

4 

D 

0 

TABLE CLUSTERED INDEX NON-CLUSTERED INDEXES 

PARTS QONHAND PARTNO 

ORDERS SUPPNO ORDERNO, DATE 

QUOTES SUPPNO PARTNO 

STATEMENT ACCESS COST MINT. COST ACCESS PATHS 

1 QUOTES. PARTNO 

2 PARTS. PARTNO 
ORDERS.SUPPNO 

3 QUOTES. PARTNO 

4 ORDERS.SUPPNO 

5 ORDERS. ORDERNO 

6 QUOTES. SUPPNO 

7 ORDERS.SUPPNO 

8 PARTS. PARTNO 
QUOTES. SUPPNO 

9 PARTS. PARTNO 
ORDERS. DATE 
QUOTES. SUPPNO 

10 ORDERS. DATE 

PARTS. QONHAND 

28 

0 

12 

27 

11 

339 

0 

12 

D 

1 

146 

0 

163 0 

4 

313 

8 

0 

. S. Finkelstein et al. 

TOTAL COST - 10095 STORAGE COST - 449 

Fig. 10. Solution proposed by DBDSGN. 

the next, as well as to the parent. The existence of this 1: N relationship is a 
logical constraint (all children must have parents). 

Links can be plausible access paths for the execution of joins. For example, 
assume ORDERS and PARTS have a 1: N relationship based on PARTNO. 

SELECT P.PARTNO, P.DESCRIP 
FROM PARTS P, ORDERS 0 
WHERE P.TYPE = ‘BOLT’ AND O.DATE > 840109 
AND P.PARTNO = O.PARTNO. 

A link on PARTNO between PARTS and ORDERS would help retrieve all 
ORDERS tuples with a given part number, and such a link is a plausible access 
path for statement (S6). 
ACM Transactions on Database Systems, Vol. 13, No. 1, March 1938. 
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Links may also be plausible for statements that are not joins. The concatenated 
access path consisting of an index on the PARTNO column of PARTS and the 
PARTNO link is plausible for the following statement, even though the PARTS 
table does not appear explicitly: 

697) 

SELECT ORDERNO, DATE 
FROM ORDERS 
WHERE PARTNO = 7163. 

The index on PARTS can be used to access the tuple with PARTNO = 7163, 
and the link used to retrieve the ORDERS tuples with the same part number. 

Some of the major considerations for extending DBDSGN to consider links 
are that 

-1: N relationships are specified (in the system catalogs), 
-concatenated access paths must be considered, 
-atomic configurations never include two links between the same pair of tables 

(unless a table appears more than once in the FROM clause of a statement), 
and 

-the access-path elimination heuristic is restricted for links in the same way as 
for join columns. 

For clustered links, linked tables are interspersed in the same data pages to 
keep parent tuples close to child tuples. Costs depend on the nesting complexity 
of interspersion, so atomic configurations must be defined based on different 
levels of interspersion. This requires a more fundamental change to DBDSGN 
than hashing or nonclustered links. 

8. CONCLUSION 

In this paper we presented the fundamental principles used in the design and 
implementation of a practical physical database design tool, DBDSGN. The 
design methodology is sufficiently general that it can be applied to other DBMSs 
with optimizers, since it is nearly independent of the optimizer used and can be 
extended to handle other types of access paths. DBDSGN obtains cost estimates 
and other information it needs from the DBMS rather than from an external 
model whose decisions might be different from those of the optimizer. By 
restricting cost evaluation for each statement to plausible atomic configurations, 
the number of configurations is significantly reduced. When the problem space 
is large, index-elimination and solution-generation heuristics can be used to 
reduce execution time, but still find good solutions. 

Our experience with DBDSGN suggests several observations: 

-Database tools should be designed and prototyped as the database system is 
being designed and prototyped, with people familiar with the system involved 
in building the tools. 

-The size of the design problem can be reduced validly. One method is to 
identify atomic costs from which all costs can be computed. A second method 
is to identify choices that are implausible. Heuristics should be applied (if 
necessary) only after application of these valid methods. 
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-A tool should not use an independent model of the behavior of the underlying 
system, even if that model is more accurate than the system’s internal model. 
Instead, the database system should export a description of its behavior. Tools 
based on that description can be independent of many changes in the system. 
Improvements in formulas and statistics should be incorporated into the 
optimizer, not into tools. 

-The database system can export descriptions of its behavior by storing the 
descriptions in database tables. This approach supports extraction and sum- 
marization of behavior data using standard database operations. 

DBDSGN was built as a prototype for System R, and was the basis for an 
IBM product, Relational Design Tool (RDT), which performs physical design 
for SQL/DS. 
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