
Concurrency Control: Methods, Performance, and Analysis
ALEXANDER THOMASIAN

IBM T. J. Watson Research Center, 30 Saw Mill River Road, Hawthorne, NY 10532

Standard locking (two-phase locking with on-demand lock requests and blocking
upon lock conflict) is the primary concurrency control (CC) method for centralized
databases. The main source of performance degradation with standard locking is
blocking, whereas transaction (txn) restarts to resolve deadlocks have a secondary
effect on performance. We provide a performance analysis of standard locking that
accurately estimates its performance degradation leading to thrashing. We next
introduce two sets of methods to cope with its performance limitations. Restart-
oriented locking methods selectively abort txns to increase the level of concurrency
for active txns with respect to standard locking in high-contention environments.
For example, the running-priority method aborts blocked txns based on the
essential blocking principle, which only allows blocking by active txns. The wait-
depth-limited (WDL) method further minimizes wasted processing by basing abort
decisions on the progress made by a txn. Restart waiting serves as a load-control
mechanism by deferring the restart of an aborted txn until conflicting txns have
left the system. These two methods have performance superior to other restart-
oriented methods and standard locking in high-contention environments. In two-
phase processing methods an aborted txn may continue its first phase of execution
in “virtual” mode, that is, without requesting any locks, prefetching data for its
second execution phase. The second execution phase is shorter since no disk I/O is
required, resulting in a lower effective degree of txn concurrency and less data
contention. This method is effective provided access invariance prevails; that is,
txns access the same set of objects in the second phase as they did in the first. The
optimistic die method is appropriate for the first phase and the optimistic kill
method for further phases. Lock preclaiming instead of the optimistic kill method
in the second phase prevents further restarts, which is a weak point of the
optimistic CC method due to the quadratic effect, that is, the probability of failed
validation increases as the square of txn size. Several two-phase processing
methods are described and shown to outperform restart-oriented locking methods
in high-contention environments provided adequate hardware resources are
available. This tutorial reviews CC methods based on standard locking, restart-
oriented locking methods, two-phase processing methods including optimistic CC,
and hybrid methods (combining optimistic CC and locking) in centralized systems.
Its main goals are as follows: (i) succinctly specify CC methods of interest; (ii)
describe models for performance evaluation of CC methods, including new models
that alleviate some of the shortcomings of models used in earlier studies; (iii)
compare the performance of CC methods; (iv) list insights gained from analytic and
simulation studies; (v) review methods to relieve the level of lock contention:
special methods for indices and aggregate data; modified txn structures; and
relaxed levels of consistency for queries; (vi) survey performance evaluation studies
of CC methods; (vii) illustrate the applicability of basic analytic methods to

Permission to make digital / hard copy of part or all of this work for personal or classroom use is granted
without fee provided that the copies are not made or distributed for profit or commercial advantage, the
copyright notice, the title of the publication, and its date appear, and notice is given that copying is by
permission of the ACM, Inc. To copy otherwise, to republish, to post on servers, or to redistribute to
lists, requires prior specific permission and / or a fee.
© 1998 ACM 0360-0300/98/0300–0070 $5.00

ACM Computing Surveys, Vol. 30, No. 1, March 1998

evaluating the performance of CC methods; and (viii) suggest areas of further
investigation.

Categories and Subject Descriptors: D.4.8 [Operating Systems]: Performance—
Modeling and prediction; stochastic analysis; simulation. H.2.4 [Database
Management] Systems—transaction processing

General Terms: Algorithms, Performance

Additional Key Words and Phrases: Adaptive methods, concurrency control,
deadlocks, data contention, flow diagrams, load control, Markov chains, optimistic
concurrency control, queueing network models, restart-oriented locking methods,
serializability, thrashing, two-phase locking, two-phase processing, wait depth
limited methods

CONTENTS

INTRODUCTION
1. MODELING AND ANALYSIS OF TRANSACTION

PROCESSING SYSTEMS
1.1 Transaction Model
1.2 Database Access Model
1.3 Computer System Model

2 STANDARD LOCKING AND ITS PERFORMANCE
2.1 Lock Conflicts and Deadlocks
2.2 A Performance Analysis of Dynamic Locking
2.3 Performance Analyses of Static Locking
2.4 Performance Analyses of Dynamic Locking
2.5 On More Realistic Lock-Contention Models
2.6 Methods to Improve Locking Performance

3. RESTART-ORIENTED LOCKING METHODS
3.1 Description of Restart-Oriented Locking Meth-

ods
3.2 Performance Comparison of Restart-Oriented

Locking Methods
3.3 Performance Analysis of the Running-Priority

Method
4. TWO-PHASE PROCESSING METHODS AND AC-

CESS INVARIANCE
4.1 Optimistic Concurrency Control
4.2 Mechanisms Used by Two-Phase Processing

Methods
4.3 Description and Performance of Two-Phase Pro-

cessing Methods
4.4 Performance Analysis of Optimistic Concurency

Control Methods
5. CONCLUSIONS
GLOSSARY
APPENDIX: NOTATION
REFERENCES

INTRODUCTION

The requirement for concurrency control
(CC)1 arose two decades ago to ensure
correctness when a shared database is

updated by multiple transactions (txn)s
concurrently [Gray and Reuter 1992].
Txn concurrency or multiprogramming
is required to take advantage of multi-
ple processors and CPU-I/O overlap to
attain high txn throughputs.

The universally accepted correctness
criterion for processing txns against a
database is serializability; that is, the
interleaved execution of a set of concur-
rent txns is tantamount to a serial exe-
cution [Date 1983; Bernstein et al. 1987;
Gray and Reuter 1992]. This correctness
criterion is not acceptable for some ap-
plications (e.g., stock trading bids may
have a FCFS (first-come, first-served)
processing requirement [Peinl et al.
1988]. Such specialized systems are not
considered in this tutorial. Standard
locking (i.e., strict two-phase locking
(2PL) with on-demand lock requests and
the general waiting method on lock con-
flict) is almost exclusively used by cur-
rent database management systems
(DBMS)s [Date 1983; Bernstein et al.
1987; Gray and Reuter 1992]. Strict
2PL requires locks to be released only
when the txn is committed or aborted,
since this prevents cascading aborts
[Bernstein et al. 1987; Gray and Reuter
1992]. Cascading aborts occur when a
txn accesses an object modified by an
uncommitted txn, which aborts after re-
leasing the lock. Standard locking with
some deviations is used in most com-
mercial DBMSs [Date 1983; Gray and
Reuter 1992].

We are mainly concerned with CC
methods for centralized high-perfor-1 Abbreviations are summarized in the Glossary.

Concurrency Control • 71

ACM Computing Surveys, Vol. 30, No. 1, March 1998

mance txn processing systems. Due to
the high level of txn concurrency (re-
quired for attaining higher txn through-
puts) and increasing txn complexity,
both of which result in an increase in
the probability of lock conflict, the per-
formance of such systems may be lim-
ited by lock contention. In the case of
standard locking this is in the form of
txn blocking due to lock conflicts, which
may lead to a thrashing behavior in
which the majority of txns in the system
are blocked. Various techniques to re-
duce the level of lock contention are
introduced in this article, but our em-
phasis is on restart-oriented locking
methods and two-phase processing
methods [Franaszek et al. 1992].

Restart-oriented locking methods al-
low some txns encountering lock con-
flicts to be blocked, but reduce the level
of lock contention by aborting other txns
encountering or causing lock conflicts.
Aborted txns are restarted by the sys-
tem at a later time without user inter-
vention. Restart-oriented locking meth-
ods that limit the level of txn blocking
are called wait-depth-limited methods.
The wait-depth-limited (WDL) method
belongs to this category, since it takes
into account txn progress in deciding
which txn among a set of conflicting
txns to abort [Franaszek et al. 1992].
Two-phase processing methods execute
txns in two (or multiple) phases taking
advantage of the fact that txn re-execu-
tion may not require disk I/O provided
an adequately sized database buffer is
available and access invariance prevails
[Franaszek et al. 1990; Franaszek et al.
1992].

Two other widely discussed methods
are optimistic CC (OCC) [Kung and
Robinson 1981] and time-stamp order-
ing (TSO) methods [Ceri and Pelagatti
1984; Cellary et al. 1988], but the latter
are more appropriate in distributed da-
tabases and are known to have a poor
performance otherwise [Ryu and Tho-
masian 1986]. In fact, OCC methods are
viable execution modes for two-phase
txn processing, as in the case of utiliz-
ing the optimistic die and kill methods

in the first and second phases, respec-
tively [Franaszek et al. 1992].

A brief review of analytical modeling
of a typical computer system model is
provided to determine baseline txn per-
formance due to hardware resource con-
tention, that is, ignoring the effect of
data contention. We also outline the
performance analyses of several CC
methods to illustrate the applicability of
analytic techniques. Insights gained
from analytic solutions are given
throughout the article. The analysis of
standard locking is expected to be of
interest to all readers, but otherwise the
analyses of restart-oriented locking
methods and OCC methods and surveys
of analytic studies can be skipped with-
out loss in continuity.

Readers are expected to be familiar
with basic DBMS and CC concepts.
There are texts dealing with CC in da-
tabases and their performance [Bern-
stein et al. 1987; Tay 1987; Cellary et
al. 1988; Kumar 1995; Thomasian
1996a], which are complemented by this
article. This tutorial/survey should be of
value to researchers interested in the
performance of database systems, espe-
cially CC methods, designers of high-
performance txn processing systems,
and professionals concerned with tuning
the performance of txn processing sys-
tems. There is also material for re-
searchers interested in analyzing the
performance of CC methods.

This article is organized as follows. In
Section 1 we describe the txn execution
model, the database access model, and
the computer system model. In Section
2 we analyze the performance of the
standard locking method, discuss its
thrashing behavior, and describe load-
control methods to prevent thrashing.
Analyses of locking methods are next
reviewed. We then introduce a more re-
alistic locking model, which is followed
by a discussion of some of the shortcom-
ings of locking models. Finally, we de-
scribe some recently proposed methods
to reduce the level of lock contention.

In Section 3 we provide a succinct
description of restart-oriented locking

72 • A. Thomasian

ACM Computing Surveys, Vol. 30, No. 1, March 1998

methods, including wait-depth-limited
methods and the WDL method. The per-
formance of these and several other
methods is compared through simula-
tion and we outline the analysis of the
symmetric running priority method. In
Section 4 we describe OCC methods and
various validation options. A specifica-
tion of mechanisms utilized by two-
phase processing methods is followed by
the description of representative two-
phase processing methods. Simulation
results to evaluate the performance of
two-phase processing methods against
each other and with other methods are
reported. Finally, we discuss analytic
solutions for OCC methods in Section
4.4.

In Section 5 we summarize the major
points of the earlier sections of the arti-
cle. We next discuss difficulties in devel-
oping analytic models for predicting
performance degradation due to locking
in operational txn processing systems.
Finally, several areas requiring further
investigation and some new areas
where CC is an issue are listed.

The notation required for analyzing
the performance of CC methods is intro-
duced in Section 1 and summarized in
the Appendix.

1. MODELING AND ANALYSIS OF
TRANSACTION PROCESSING SYSTEMS

We describe models for evaluating the
performance of txn processing systems
as affected by hardware and data re-
source contention. Hardware resource
contention has the primary effect on
performance, whereas data contention
has a secondary effect. Relatively ab-
stract models, both from the viewpoint
of data and hardware resource conten-
tion, are used in performance analyses
and simulation studies of CC methods.
These models are not detailed enough
for predicting the performance of “real”
txn processing systems, but are deemed
adequate for the performance compari-
son of CC methods.

Sections 1.1 through 1.3 describe the
txn, database access, and computer sys-

tem models. The reader is referred to
Chapter 2 in Thomasian [1996a] for a
much more detailed discussion of ana-
lytic and simulation methods to evalu-
ate the performance of CC methods.

1.1 Transaction Model

Transaction Execution Steps. Single-
level or flat txns, as opposed to multi-
level txns [Gray and Reuter 1992], and
relatively short update txns, rather
than batch update txns or read-only
queries, are of main interest in this
study (other txn structures are dis-
cussed in Elmagarmid [1992] and Ra-
mamithram and Chrisanthis [1996]).
Techniques to cope with the lock conten-
tion between long-running read-only
queries and short update txns are dis-
cussed in Section 2.5. A txn accessing k
database objects consists of k 1 1 exe-
cution steps, numbered 0–k. Each step
involves CPU processing and disk ac-
cesses. The last k steps begin with a
database call, which leads to an access
to a single database object, after an
appropriate lock on the object has been
acquired. The completion of the last
step leads to txn commit (i.e., the writ-
ing of log records onto stable storage)
after which the locks held by the txn are
released [Date 1983; Bernstein et al.
1987; Gray and Reuter 1992]. Logging
of commit data onto disk adds to the txn
response time and the holding time of
locks, but logging time can be reduced
by providing a nonvolatile RAM (ran-
dom access memory) for this purpose
[Franaszek et al. 1992]. The number of
objects accessed by a txn is referred to
as txn size. A system may process mul-
tiple txn classes, where txn class k is
denoted by Ck. Txn class is determined
by its size in this work, although other
txn characteristics may be used for this
purpose.

Transaction arrival process. Txns
originate from a finite number of
sources (say S), which may correspond
to bank tellers generating txns after a
think time with a mean Z; that is, the

Concurrency Control • 73

ACM Computing Surveys, Vol. 30, No. 1, March 1998

arrival rate with M txns already at the
system is L(M) 5 (S 2 M)/Z. We con-
sider one-shot txns, such that the user is
not involved after the txn is submitted;
that is, there are no intervening user
think times [Agrawal et al. 1987a]. Qua-
sirandom arrivals with exponentially
distributed think times lead to analyti-
cally tractable models [Kleinrock 1975].
A truncated exponential distribution is
adopted in txn processing benchmarks
to avoid very long think times [Gray
1993].

A system with a sufficiently large S is
considered to be open with a txn arrival
rate independent of the number of txns
at the system. The txn arrival process
in an open system is usually assumed to
be Poisson with an arrival rate l [Klein-
rock 1975]. The mean response time
characteristic (i.e., the mean txn re-
sponse time R(l) versus l) can be used
for the performance comparison of CC
methods in this case.

A system with S 5 M sources is con-
sidered to be closed when Z 5 0. A
completed txn is then immediately re-
placed by a new txn so that the degree
of txn concurrency in the system is al-
ways M. The seemingly unrealistic
closed model is quite useful in compar-
ing the performance of CC methods be-
cause: (i) the solution of a closed model
can be used as a submodel in perfor-
mance evaluation of a system with ex-
ternal arrivals [Lazowska et al. 1984];
(ii) it is easier to estimate the peak
performance of CC methods by simulat-
ing a closed rather than an open model,
which is due to the variability of the
number of txns in an open model. The
performance of a closed system with M
txns can be specified by its throughput
T(M), whereas T(M), M $ 1 is referred
to as its effective throughput character-
istic (ETC). It follows from Little’s re-
sult (that the mean number of requests
in a system is equal to the product of
the arrival rate of requests and the
mean time they spend in the system
[Kleinrock 1975; Lazowska et al. 1984])
that the mean residence time of txns in
the system is R(M) 5 M/T(M).

A frequency-based model specifies the
fraction fk of txns in Ck processed by the
system. In an open system the arrival
rate of txns in Ck is lk 5 lfk, 1 # k #
K, where K is the largest txn size. Note
that ¥k51

K fk 5 1 with fk . 0 for txn
sizes being processed by the system and
fk 5 0 otherwise. The mean number of
txns in Ck is M# k 5 lkRk according to
Little’s result, where Rk is the mean
response time of txns in Ck.

In a closed system we may specify the
degree of txn concurrency Mk of txns in
Ck. A frequency-based model is also ap-
plicable in this case, with a completed
txn being immediately replaced by a
new txn in Ck with probability fk. The
throughput for txn completions in Ck is
a fraction of fk of T(M); that is, Tk(M) 5
fkT(M), 1 # k # K. The performance
comparison of CC methods with a fre-
quency-based closed system simply re-
quires the comparison of their ETCs
[Ryu and Thomasian 1987; Thomasian
1993], and an open model requires the
comparison of the mean-response-time
characteristics, which are more difficult
to obtain (see the hierarchical solution
method in Section 1.3).

1.2 Database Access Model

The granule is the unit of data at which
CC is applied to the database. A granule
may be associated with multiple data-
base objects; for example, a page-level
lock applies to all the records in a page
[Gray and Reuter 1992]. The effect of
granularity of locking on performance
has been considered in several studies
(see, e.g., Tay [1987]). A finer level of
granularity of locking incurs more over-
head, but reduces the level of lock con-
tention. For example, the frequency of
lock conflicts in processing short txns is
lowered with record- rather than page-
level locking, whereas a query accessing
a relational table should preferably use
table-level locking since with record-
and even page-level locking it would
incur a tremendous overhead [Gray and
Reuter 1992; Thomasian 1996a]. Tech-
niques to resolve the lock contention

74 • A. Thomasian

ACM Computing Surveys, Vol. 30, No. 1, March 1998

between txns and read-only queries are
discussed in Section 2.6.

We consider a database with D ob-
jects that are locked in exclusive and
shared mode. This simple locking model
can be justified by the fact that we are
mainly concerned with short txns.

Most studies assume that database
objects are accessed with uniform prob-
abilities. Nonuniformity of database ac-
cess is captured by the hot-spot model
and the b 2 c rule [Tay 1987]; that is, a
fraction b (resp., 1 2 b) of txn accesses
are to a fraction c (resp., 1 2 c) of the
database.

A homogeneous database access
model is postulated in most studies
such that all txn classes follow the same
lock-request pattern (see Section 2.1). A
more realistic database access model for
txn processing with multiple txn classes
and multiple database regions is based
on the heterogeneous database access
model, which is elaborated in Section
2.5.

Sequential database access has been
considered in some early simulation
studies of static locking (see Chapter 4
in Tay [1987]) and is analyzed in Ryu
and Thomasian [1988]. Database access
patterns or granule placements are re-
viewed in Langer and Shum [1982].

Performance analyses of CC methods
can be classified according to whether
the objects accessed and locks obtained
by a txn are distinct or not, which are
referred to as without- and with-re-
placement options [Langer and Shum
1982]. Analyses in the former case lead
to expressions with binomial coeffi-
cients, which can be approximated accu-
rately by simpler expressions for the
with-replacement option (see the ex-
pression for probability of data conflict
in Section 4.4). When the number of
lock requests by a txn (say k) is much
smaller than D, then even if locks are
replaced, the chances that a txn will
request the same lock are very small.
This is why expressions for the proba-
bility of data conflict for with- and with-
out-replacement options yield indistin-
guishable results. Expressions for the

with-replacement option are preferable,
since they are easier to evaluate [Tho-
masian 1996a].

1.3 Computer System Model

A queueing network model (QNM) de-
termines the execution time of txns in
the computer system by taking into ac-
count its processing time at the various
devices of the computer system, as well
as queueing effects. The processing time
at the CPU is determined by txn path-
length and CPU speed. Disk processing
time is determined by the disk access
time and the number of disk I/Os, which
is affected by the miss ratio of the data-
base buffer [Gray and Reuter 1992]. The
buffer hit ratio of a workload is a func-
tion of its buffer space allocation and
the buffer management policy, includ-
ing the buffer replacement policy, for
example, least recently used, LRU
[Gray and Reuter 1992].

The infinite-resource model is useful
in comparing the performance limits of
CC methods [Franaszek and Robinson
1985; Ryu and Thomasian 1987; Tay
1987; Thomasian 1993]. According to
this model, each txn has its own virtual
processor and its execution time is inde-
pendent of the number of txns being
executed concurrently. The mean resi-
dence time of txns in the system is then
r(M) 5 c and the system throughput is
t(M) 5 M/c, M $ 1.

A finite-resource model allows the
level of hardware resource contention to
be varied to determine its effect on over-
all performance [Thomasian and Ryu
1986; Agrawal et al. 1987; Franaszek et
al. 1992; Thomasian 1993]. This is espe-
cially important when comparing the
performance of restart-oriented CC
methods with blocking-oriented CC
methods (such as standard locking),
where the former introduce wasted pro-
cessing (processing not leading to the
successful completion of a txn), whereas
the latter may result in system under-
utilization due to blocked txns.

Figure 1 shows a set of user terminals
accessing a computer system with the

Concurrency Control • 75

ACM Computing Surveys, Vol. 30, No. 1, March 1998

central server QNM, where the central
server is the CPU and the peripheral
servers are the disks. The probability
that a txn completes after the current
CPU burst and a response is sent to a
user terminal is p0. The number of vis-
its to the CPU follows the geometric
distribution Pk 5 p0(1 2 p0)k21, k $ 1,
with the mean equal to 1/p0. After com-
pleting CPU processing, a txn accesses
the nth disk with probability pn such
that the mean number of visits to disk n
is pn/p0. This simple model for txn tran-
sitions does not lend itself to modeling
fixed-size txns. This is accomplished by
making txn transitions at the comple-
tion of CPU processing dependent on
the state of the txn [Irani and Lin 1979;
Thomasian 1982].

QNMs can be analyzed to determine
the response time of txns as affected by
hardware resource contention [Klein-
rock 1975; Lazowska et al. 1984]. Prod-
uct-form QNMs constitute a small sub-
set of QNMs, since several strict
requirements need to be met for a QNM
to be product-form (e.g., the service time
distribution at nodes with the FCFS
discipline is exponential [Lazowska et
al. 1984]). Performance measures such
as throughput, device utilizations, and
mean queue lengths can be computed
efficiently for a product-form QNM us-
ing the mean service demands of txns at
its nodes. The mean service demand of a
txn at a node is the product of the mean
number of visits the txn makes to the
node and the mean service time per

Figure 1. Central server queueing model.

76 • A. Thomasian

ACM Computing Surveys, Vol. 30, No. 1, March 1998

visit. For a given txn arrival rate the
mean residence time at the nodes of an
open QNM can be computed separately,
as if the arrival process to each node
were Poisson [Kleinrock 1975]. In the
case of a closed QNM, the convolution or
mean-value analysis algorithm [La-
zowska et al. 1984] can be used to ob-
tain the system throughput characteris-
tic (STC) t(m), 1 # m # Mmax, where
Mmax is the maximum degree of txn
concurrency.

The device with the highest utiliza-
tion in a QNM is referred to as the
bottleneck device. It is the first to be sat-
urated as the arrival rate (resp., the num-
ber of txns) is increased in an open (resp.,
closed) system. The maximum through-
put is given by tmax 5 1/X9bottleneck,
where X9bottleneck 5 max(X1/m1, . . . ,
XN/mN), with Xn being the mean service
demand and mn the number of servers
at node n [Kleinrock 1975; Lazowska et
al. 1984].

A realistic computer system model for
txn processing cannot be adequately
represented by a product-form QNM, for
example, nonexponential service times
at disks with a FCFS discipline, CPU
priorities, and txn blocking due to lock
conflicts [Franaszek et al. 1992].

Hierarchical solution method. The
hierarchical solution method is useful in
evaluating the performance of txn pro-
cessing systems with external arrivals,
which cannot be solved directly as open
models although the underlying QNM is
product-form, for example, due to con-
straints on the degree of txn concur-
rency or lock conflicts in static locking
[Thomasian and Ryu 1983; Thomasian
1985] (see Section 2.3). The theoretical
justification for this solution method is
the decomposition or aggregation princi-
ple in QNMs [Lazowska et al. 1984]. For
example, the computer subsystem in
Figure 1 can be replaced by an aggre-
gate or flow-equivalent service center
[Lazowska et al. 1984]. In the case of a
single job-type (txn class) the aggregate
server is state-dependent with a com-

pletion rate given by the STC (t(M),
M $ 1).

The processing of txns with Poisson
arrivals can be represented by a birth–
death model, with states corresponding
to the number of txns at the system (M)
[Kleinrock 1975]. The birth rate at all
states is l and the death rate at state M
is t(M). The birth–death model has a
solution provided tmax . l, where tmax is
the maximum attainable throughput. A
system with quasirandom arrivals can
be represented with a birth–death
model with S 1 1 states and arrival
rates L(M) 5 (S 2 M)/Z, 0 # M # S.

Multiple txn classes that have differ-
ent processing requirements can be
specified as different job types in QNM
terminology. The flow-equivalent ser-
vice center in the case of two job types is
specifiable as t1(M1, M2), t2(M1, M2),
M1 $ 0, M2 $ 0. Such flow-equivalent
servers have been utilized in the analy-
ses in Potier and LeBlanc [1983], Tho-
masian [1985], and Thomasian [1993a].

In a single-txn-class system with data
contention, the ETC (T(M), M $ 1)
rather than the STC (t(M), M $ 1)
should be used in the analysis.

Performance degradation due to CC
Methods. This degradation is due to
txn blocking, restarts, or both. In the
following discussion any overheads as-
sociated with txn blocking and aborts
are ignored. The following cases are
possible.

(1) CC methods with no (or negligible)
wasted processing. Standard locking
with dynamic lock requests meets
this criterion, since txn aborts to
resolve deadlocks are rare and txn
blocking due to lock conflicts incurs
a negligible overhead. An analysis
may yield the mean number of ac-
tive (versus blocked) txns M# a in a
system with M txns [Tay et al.
1985]. Provided that the STC is not
highly discontinuous, the effective
throughput is given by T(M) .
t(M# a). Interpolation can be used
when M# a is not an integer.

Concurrency Control • 77

ACM Computing Surveys, Vol. 30, No. 1, March 1998

(2) CC methods with restarts but no
blocking. OCC methods fall into this
category. The system efficiency is
the fraction of useful processing in
the system and can be expressed as
T(M)/t(M) (see Section 3.3 for a
more detailed discussion).

(3) CC methods with blocking and re-
starts. The running priority method
and WDL belong to this category
[Franaszek and Robinson 1985; Fra-
naszek et al. 1992]. Since the
wasted processing is due to active
txns, the system efficiency is defined
as T(M# a)/t(M# a). The method with
the highest efficiency in this case
may not be the method maximizing
M# a and attaining the maximum
throughput with an infinite resource
model (see Section 3.2).

Separation of hardware and data-
resource contention. The separation of
hardware and data contention is a de-
sirable property, since it allows the STC
to be computed only once. This separa-
tion is possible if the data contention
overhead is insignificant or is indepen-
dent of the level of lock contention.
Wasted processing, as in the case of
restart-oriented locking methods, allows
this separation provided the aforemen-
tioned conditions are met [Tay et al.
1985; Tay 1987; Thomasian 1992,
1995a].

The overhead associated with differ-
ent CC methods is comparable [Robin-
son 1984]. This overhead may be in-
cluded in the processing associated with
txn steps, but there is a dependence on
the level of data contention; for exam-
ple, a lock request leading to a conflict
and txn blocking requires additional
CPU processing due to a context switch.
In static locking extra processing is re-
quired to check for the eligibility of
blocked txns for activation [Potier and
LeBlanc 1980; Thomasian and Ryu
1983] (see Section 2.3). Txn aborts re-
quire extra processing to undo txn’s up-
dates and restart the txn.

Lock contention depends on lock hold-
ing times, which are affected by hard-

ware resource contention, whereas
hardware-resource contention is deter-
mined by the number of active txns and
the processing requirements for txn
steps, which are affected by the lock-
contention level. An iterative solution
combining the analysis of the hardware-
resource-contention model with the da-
ta-contention model is therefore re-
quired [Ryu and Thomasian 1990a].

2. STANDARD LOCKING AND ITS
PERFORMANCE

In standard locking, locks are usually
requested on demand, which is referred
to as dynamic locking (DL), whereas in
Static Locking (SL) locks for all data-
base objects required for the execution
of a txn are assumed to be known a
priori and are requested before the txn
begins its execution. Strict 2PL with
locks released at txn completion time is
considered in this study, but some vari-
ations to strict 2PL are discussed in
Section 2.6.

The general waiting (GW) method, ac-
cording to which a txn making a con-
flicting lock request2 is blocked await-
ing the release of the lock, is susceptible
to encountering a deadlock, where two
txns are blocked indefinitely awaiting
the release of each other’s locks. Dead-
locks are resolved by aborting one of the
txns in a deadlock cycle according to one
of the victim selection policies [Agrawal
et al. 1987b]:

(1) the txn that is the current blocker;
(2) a random blocker (i.e., one of the

txns involved in the deadlock cycle);
(3) the txn with the minimum number

of locks;
(4) the youngest txn; and

2 A lock conflict occurs when the requested lock is
held in an incompatible mode by another txn or
there is a pending lock request in an incompatible
mode for it; for example, the lock is held in shared
mode and there is an exclusive lock request pend-
ing for it when another txn requests a shared lock
on it. Lock compatibility tables are given in Date
[1983], Bernstein et al. [1987], and Gray and
Reuter [1992].

78 • A. Thomasian

ACM Computing Surveys, Vol. 30, No. 1, March 1998

(5) the txn with the minimum amount
of work.

It follows from simulation results re-
ported in Agrawal et al. [1987b] that the
deadlock resolution policy has little ef-
fect on the maximum attainable
throughput of the standard locking
method.

Cyclic restarts occur when restarted
txns have lock conflicts with txns with
which they have had lock conflicts be-
fore and this leads to repeated dead-
locks. Cyclic restarts are a possibility
with policies (1) and (2), whereas policy
(4) guarantees that they are prevented.
Policies (3) and (5) are pseudostable in
that they tend to prevent cyclic restarts,
but do not guarantee this. Restart wait-
ing prevents cyclic restarts by delaying
the restart of an aborted txn until the
conflicting txns have left the system.
This method is adopted in simulation
studies reported in Ryu and Thomasian
[1990a], Thomasian and Ryu [1991],
Franaszek et al. [1992], and Thomasian
[1993, 1997a].

Only shared and exclusive locks are
considered, since we are concerned with
lock contention among relatively short
txns (as noted in Section 1.2). A txn
holding a shared lock on an object
should promote it to an exclusive lock
before it can update the object. Dead-
locks will arise if this action is taken by
more than one txn holding a shared lock
on the same object; 97% of deadlocks in
a database prototype were due to such
lock promotion [Date 1983]. When the
updating of an object is a possibility,
txns can prevent deadlocks by acquiring
update locks, since they are compatible
only with shared locks, not with each
other and exclusive locks [Date 1983;
Gray and Reuter 1992]. The analysis of
DB2 traces for several workloads re-
veals that approximately 90% of exclu-
sive locks are obtained directly [Singhal
and Smith 1997]. This can be used as a
justification for not considering lock
promotion and update locks.

The simulation study for validating

analytic solutions detects and resolves
deadlocks immediately. Some systems
carry out deadlock detection on a peri-
odic basis [Gray and Reuter 1992],
which is more appropriate for distrib-
uted databases, since extra messages
are required for deadlock detection
[Ceri and Pelagatti 1984]. Timeouts are
suitable for deadlock resolution in dis-
tributed systems and shared-nothing
architectures, but this method has the
drawback that the timeout interval is
difficult to determine [Jenq et al. 1989].

This section is organized as follows.
In Section 2.1 we derive the probability
of lock conflict, probability of deadlock,
and the mean blocking time per lock
conflict with respect to an active txn. In
Section 2.2 we analyze the performance
of DL and demonstrate its thrashing
behavior. In Sections 2.3 (resp., 2.4) we
survey analytic solutions for SL (resp.,
DL). In Section 2.5 we introduce a het-
erogeneous database access model. We
also discuss some shortcomings of cur-
rent locking models from the viewpoint
of evaluating the performance of txn
processing systems. Finally, in Section
2.6 variations to standard locking are
described.

2.1 Lock Conflicts and Deadlocks

We first analyze a system with fixed txn
sizes and then extend the analysis to
variable txn sizes. A closed system with
M txns is considered in both cases.

Analysis of dynamic locking with
fixed-size transactions with identical
per-step processing times. The mean
txn response time is the sum of its mean
execution time and the mean blocking
times when it encounters a lock conflict.
The increase in txn response time due
to restarts to resolve deadlocks is ig-
nored, since the frequency of deadlocks
tends to be small [Thomasian and Ryu
1991] (also see discussion in Section
2.2). The mean blocking time per step is
u 5 PcW, where Pc is the probability of
lock conflict (per lock request) and W is

Concurrency Control • 79

ACM Computing Surveys, Vol. 30, No. 1, March 1998

the mean waiting time (per lock con-
flict). Noting that there is no blocking in
the first step, the mean txn response
time is R(M) 5 (k 1 1)s(M# a) 1 kPcW
and the effective txn throughput is
T(M) 5 M/R(M).

The mean number of locks (L#) held
per txn is the ratio of the mean time-
space of locks held by txns and the
mean txn response time. In a system
with no lock contention L# 5 k/2, and L#
. k/2 is a good approximation for a
system with lock contention [Ryu and
Thomasian 1990a]. When all lock re-
quests are exclusive the probability of
lock conflict (Pc) for the ith lock request
is

Pc 5

Mean number of locks
held by other txns

Number of database locks
not held by the txn

5
N# 2 i

D 2 i
.

~M 2 1!L#

D
.

~M 2 1!k

2D
,

(2.1)

where N# . (M 2 1)L# is the mean
number of locks held by the other M 2 1
txns in the system, where each txn con-
tributes an average number of locks. We
have taken advantage of the fact that
txn size k($i) tends to be much smaller
than the database size (D), so that the
dependence of Pc on the txn step has
been ignored [Tay 1987; Ryu and Tho-
masian 1990a; Thomasian 1993]. The
probability that a txn encounters a lock
conflict is

Pw 5 1 2 ~1 2 Pc!
k . kPc

.
~M 2 1!k2

2D
. (2.2)

The approximation is justified by the
fact that Pc tends to be small (e.g., less
than 0.001). The probability that two
txns are involved in a two-way deadlock

is [Gray and Reuter 1992]

PD~2! 5 Pr@T1 3 T2#Pr@T2 3 T1#

z ~number of candidates for T2!

5
Pw

2

M 2 1
.

~M 2 1!k4

4D2
. (2.3)

Similar expressions apply to multi-
way deadlocks, but since Pw is very
small, PD(i) for i . 2 is negligibly small
so that PD 5 ¥i$2 PD(i) . PD(2). A
more accurate expression for PD(2) is
obtained in the following.

The fraction of time txns are blocked
in the system (b) is the ratio of txn
blocking time and its mean response
time, which is equal to the fraction of
blocked txns in the system:

b 5
kPcW

R~M!
5

M# b

M
. (2.4)

The equality follows from Little’s result
by multiplying the numerator and de-
nominator of the first fraction by T(M).

In a system with a low lock-conten-
tion level, most lock conflicts are with
active txns. The mean waiting time W1
can be obtained by noting that the prob-
ability of lock conflict increases with the
number of locks (j) that the (active) txn
holds [Thomasian and Ryu 1991]:

W1 5 O
j51

k 2j

k~k 1 1!
@~k 2 j!~s~M# a! 1 u!

1 s9~M# a!] 5
k 2 1

3
@s~M# a! 1 u#

1 s9~M# a!, (2.5)

where k(k 1 1)/2 is a normalization
constant and s(M# a) is the mean dura-
tion of txn steps, which is determined
by analyzing or simulating the corre-
sponding QNM with M# a active txns. The
term in brackets is the mean remaining
processing time after a lock conflict oc-
curs at the jth step of txn execution and

80 • A. Thomasian

ACM Computing Surveys, Vol. 30, No. 1, March 1998

s9(M# a) is the mean residual processing
time of the step in which the lock con-
flict occurred [Kleinrock 1975].3 A simi-
lar expression is derived in Tay et al.
[1985] and Tay [1987]. The fraction of
time that a txn is blocked by an active
txn is A 5 W1/R(M). In the case of
fixed-size txns, it follows from Eq. (2.5)
that A . 1/3.

Eq. (2.3) does not take into account
the fact that T1 should be in the blocked
state for a deadlock to occur. In the case
of two-way deadlocks, the fraction of
time the other txn is blocked is A . 1/3,
which leads to P9D(2) . PD(2)/3 [Tho-
masian and Ryu 1991], where PD(2) is
given by Eq. (2.3). The analysis in Mas-
sey [1986] yields 2P9D(2), and that in
Tay et al. [1985] and Tay [1987] yields
4/3P9D(2).

Analysis of dynamic locking with
variable-size transactions. We distin-
guish txn classes based on their size, as
determined by the number of requested
locks. As stated in Section 1.1, the frac-
tion of txns requesting k locks is de-
noted by fk, 1 # k # K with ¥k51

K fk 5 1,
where K denotes the largest txn size.
The ith moment of the number of re-
quested locks is Ki 5 ¥k51

K kifk.
The mean response time for txns in

Ck is Rk(M) 5 (k 1 1)s(M# a) 1 kPcW,
from which the mean response time
over all txn classes is given as

R~M! 5 O
k51

K

Rk~M! fk 5 r~M# a! 1 K1PcW,

(2.6)

where r(M# a) 5 (K1 1 1)s(M# a). It fol-
lows from Eq. (2.4) that b 5 K1PcW/
R(M) in the case of variable size txns,
hence

R~M! 5 r~M# a!/~1 2 b!, (2.7)

which also applies to fixed-size txns.
The effective throughput can be ob-
tained from the STC T(M) . t(M# a),
since the wasted processing due to
deadlocks is negligibly small.

Pc is determined by the mean number
of locks held by a txn, which is affected
by the distribution of txn size. It follows
from M# k/M 5 fkRk(M)/R(M) that M# k .
Mkfk/K1.4 The mean number of locks
held per txn is then

L# 5
1

M
O

k51

K

L# kM# k .
1

M
O

k51

K k

2
M# k

.
1

2K1
O

k51

K

k2fk 5
K2

2K1

. (2.8)

In the case of the geometric distribu-
tion fk 5 q(1 2 q)k21, k $ 1. Since
K1 5 1/q it follows that setting q 5 1/K
yields K1 5 K and L# . K, as opposed to
L# . K/2 for fixed-size txns; that is, Pc
for this distribution is twice that for
fixed txn sizes [Thomasian and Ryu
1991].

The probability of deadlock per txn is
affected by the third moment of txn size
[Thomasian and Ryu 1991]; for exam-
ple, this probability is an order of mag-
nitude higher for geometrically distrib-
uted txn sizes with the same mean as
fixed-size txns.

A 5 W1/R(M) can be expressed as
follows [Thomasian and Ryu 1991; Tho-
masian 1993].

A 5
W1

R~M!
.

K3 2 K1

3K1~K2 1 K1!
,

(2.9)

which ignores the residual delay in the
step in which the lock conflict occurred.

Validation against simulation has
shown the accuracy of the analysis in
estimating the preceding variables for

3 s9(M# a) equals s(M# a)/2 when the processing time
is fixed, 2s(M# a)/3 when it is uniformly distributed
[Tay 1987], and s(M# a) when it is exponentially
distributed, which is due to the memoryless prop-
erty of this distribution [Kleinrock 1975].

4 The approximation is due to the fact that txn
response times in the numerator and denominator
are proportional to k 1 1 and K1 1 1, rather than
k and K1, respectively.

Concurrency Control • 81

ACM Computing Surveys, Vol. 30, No. 1, March 1998

fixed- and variable-size txns [Thoma-
sian and Ryu 1991].

2.2 A Performance Analysis of Dynamic
Locking

We analyze the performance of DL first
with identical and then different per-
step processing times. Factors contrib-
uting to thrashing are then discussed.

The effect of deadlocks on system per-
formance is ignored in this analysis
since deadlocks tend to be rare (as
shown in Section 2.1) and taking this
effect into account requires a rather
complicated analysis, as in Ryu and
Thomasian [1990a]. Ignoring the
wasted processing due to txn restarts to
resolve deadlocks is justifiable by the
fact that it constitutes a small fraction
of the total processing cost [Thomasian
1993]. According to Eq. (2.3), the proba-
bility of deadlock increases with the
fourth power of txn size, which is a
weakness of the analysis for longer
txns; that is, the mean response time
for these txns is underestimated when
the lock-contention level is high.

Analysis with identical per-step pro-
cessing times. Txn blocking can be
specified by a waits-for graph (WFG),
which is a directed graph with nodes
representing txns and edges the waits-
for relationship. In a system with only
exclusive lock requests, the WFG is a
directed tree, with each blocked txn
pointing to an active txn or another
blocked txn holding the requested lock
(see, e.g., Tay et al. [1985] and Tay
[1987]). The system state can be repre-
sented by a forest of trees, where the
nodes with out-degree zero represent
active txns. Active txns are considered
to be at the roots of the trees and are
designated to be at level zero, txns
blocked by active txns are at level one,
txns blocked by level-one-blocked txns
are at level two, and so on. The number
of levels by which blocked txns are re-
moved from active txns or their level in
the tree is referred to as their wait
depth.

If shared locks in addition to exclu-
sive locks are considered, the WFG is no
longer a directed tree but rather a di-
rected acyclic graph, since a txn might
be blocked by multiple active txns hold-
ing the same shared lock. The evolution
of the WFG depends on the lock-sched-
uling policy. FCFS scheduling assures
fairness and a threshold scheduler for
locks will increase the degree of concur-
rency in processing shared-lock re-
quests [Thomasian and Nicola 1993].5

This results in an increase of the maxi-
mum throughput at which such re-
quests can be processed by the system
[Thomasian and Nicola 1993]. NonFCFS
scheduling of lock requests is not con-
sidered further at this point, but lock
priorities are considered in Section 4.

Simulation studies show that the wait
depth tends to be limited to a few levels
for reasonable simulation parameters
(e.g., txn sizes much smaller than data-
base size) so we first consider the case
when a txn is blocked either by an ac-
tive txn or a txn that is blocked (by
another active txn). The probability of
being blocked by an active (resp.,
blocked) txn is 1 2 b (resp., b) and the
mean blocking time is W1 (resp., W2 5
1.5W1).6 More generally, the probability
that the effective level of blocking of a

5 The threshold scheduler processes shared-lock
requests without regard for enqueued exclusive-
lock requests, until the number of exclusive-lock
requests exceeds a prespecified threshold. At this
point, in-progress shared lock requests are pro-
cessed to completion and further shared lock re-
quests are enqueued. All exclusive-lock requests
are processed next, before the system reverts to
processing shared-lock requests. The cycle re-
peats. This scheme requires timeouts to avoid
long delays in processing lock requests of either
type.
6 This is informally justified as follows. Consider a
txn T2 that has a lock conflict with a blocked txn
T1; for example, T2 3 T1 3 T0. T2 encounters its
lock conflict with T1 at a time distributed uni-
formly over the time T1 was blocked by T0, hence
the extra delay is 0.5W1. T2 may have been
initially blocked by T1, which became blocked at a
later time with T0, resulting in the WFG T2 3 T1
3 T0 as before. It can be argued that T2 had
completed one half of its waiting time when T1
was blocked.

82 • A. Thomasian

ACM Computing Surveys, Vol. 30, No. 1, March 1998

txn (as opposed to its initial level of
blocking) is i, is approximated by
Pb(i) 5 bi21, i . 1 and Pb(1) 5 1 2
b 2 b2 2 b3 The mean waiting
time at level i . 1 is approximated by
Wi 5 (i 2 0.5)W1. The mean overall
waiting time (W) is a weighted sum of
delays incurred by txns blocked at dif-
ferent levels:

W 5 O
i$1

Pb~i!Wi

5 W1F 1 2 O
i$1

bi 1 O
i.1

~i 2 0.5!bi21G .

(2.10)

We define nc 5 K1Pc as the mean
number of lock conflicts per txn. Multi-
plying both sides by nc/R(M) and defin-
ing a 5 ncA (with A 5 W1/R(M)) and
since b 5 ncW/R(M), we have

b 5 a~1 1 0.5b 1 1.5b2 1 2.5b3 1 . . .!.
(2.11)

At low lock-contention levels b . a,
such that M# a . M(1 2 a). The approx-
imation R(M) . r(M)/(1 2 a) for closed
systems or R(l) . r(l)/(1 2 a) for open
systems has been used in numerous per-
formance studies of txn processing sys-
tems. A better approximation for b can
be obtained by substituting b with a on
the RHS of Eq. (2.10) [Thomasian and
Ryu 1991].

We can obtain a closed-form expres-
sion for the series in Eq. (2.11) by as-
suming that it is infinite, since it con-
verges for b , 1, leading to

b3 2 ~1.5a 1 2!b2

1 ~1.5a 1 1!b 2 a 5 0. (2.12)

It is stated in Tay [1990] that “As yet,
there are no proposed measures for the
resource requirements of a given con-
currency control algorithm.” Note that
a, which is the product of the mean
number of lock conflicts per txn and the
mean waiting time per lock conflict
(with respect to active txns) normalized

by mean txn response time, is a single
metric that determines the level of lock
contention for standard locking. Two
different systems will have the same
lock contention level as long as they
have the same a.

The cubic equation has an algebraic
solution that yields 0 # b1 , b2 # 1 and
b3 $ 1 for a # a* 5 0.226 and a single
root b3 . 1 for a . a*. a* can be used as
an indicator of whether the system is
operating in the thrashing region. The
smallest root b1 for a # a* determines
system performance.

Two cases are possible when the STC
(t(m), m $ 1) is a nondecreasing func-
tion, before it attains a fixed value due
to the saturation of the bottleneck re-
source (see Section 1.3): the system is
hardware-resource-bound (e.g., the pro-
cessor saturates while the level of lock
contention in the system is low), or the
system is data-contention-bound and
thrashes before the hardware resource
bound is attained. In the latter case, the
effective throughput T(M) increases
with M and the peak throughput is at-
tained when M# a 5 M(1 2 b) is at its
maximum. Plotting M# a versus b for sev-
eral txn size distributions, it is observed
that M# a is maximized at b . 0.3 [Tho-
masian 1993]. This is also verified from
dM# a/da 5 0, which yields â 5 0.2135
with a corresponding b̂ . 0.3. The ETC
(T(M)), M $ 1) increases with M,
reaches a peak at â corresponding to M̂,
at which point M# a and hence T(M̂) .
t(0.7M̂) (assuming infinite hardware re-
sources) reach their maximum.

If we subject the system to quasiran-
dom arrivals (see Section 1.1), then the
intersection point of L(M) 5 (S 2 M)/Z,
1 # M # S with the ETC T(M), 1 #
M # S, corresponds to the equilibrium
point of the system, where the txn ar-
rival rate is equal to the completion
rate. There may be one intersection
point in the stable or thrashing region,
or two points, in which case the system
is bistable [Tay 1987; Thomasian 1993].

The value of â can be used for load
control, that is, preventing thrashing by
limiting the number of txns activated in

Concurrency Control • 83

ACM Computing Surveys, Vol. 30, No. 1, March 1998

the system. Since the value of a cannot
be estimated directly, the critical value
of the mean number of lock conflicts per
txn (n̂c 5 â/A) can be used for this
purpose, provided A is known. In the
case of fixed-size txns A . 1/3 and n̂c .
0.64, as opposed to n̂c . 0.75 observed
from simulation results [Tay et al. 1985;
Tay 1987]. In the case of the geometric
distribution, A . 1 according to Eq.
(2.9) and n̂c . 0.21. In general, the
value of A computed from this equation
using the first three moments of txn
size distribution (Ki, 1 # i # 3) can be
used to estimate n̂c. Also the critical
value of the probability of lock conflict
per lock request P̂c 5 n̂c/K1 is an easy-
to-use metric for detecting thrashing.

Note that the variability of txn size
has a major effect on system perfor-
mance; for example, in a system with
infinite resources the peak txn through-
put with a (truncated) geometric distri-
bution is a factor of three smaller than
the peak throughput with fixed-size
txns [Thomasian 1993]. In fact the
value of a for fixed-size txns is one sixth
of the a for geometrically distributed
txns with the same mean size.

This analysis is shown to be quite
accurate through validation, except at
the highest contention level at the ex-
treme cases (i) small M and large k
(large txns); and (ii) large M and small
k. The problem in the first case is that
(i) the analysis with mean values is not
applicable to a system with a few txns;
(ii) the analysis does not take into ac-
count the fact that a single txn may
block multiple txns; that is, the wait
depth is over-estimated by the analysis.
Not surprisingly, the analysis underes-
timates the performance in this case. A
detailed analysis to estimate W is un-
dertaken in Tay et al. [1985] and Tay
[1987]. The accuracy of global perfor-
mance measures estimated by this anal-
ysis is comparable to the analysis in
this section, which is based on Thoma-
sian [1993].

Analysis with different per-step pro-
cessing times. The mean processing

time of the ith step of a txn in Ck is
denoted by si

k(M# a), 0 # i # k, 1 # k #
K, where M# a is the vector of the mean
number of txns in different classes and
steps, which determines the duration of
txn steps. The mean txn response time
can be obtained from Eq. (2.6), once Pc,
W, and M# a are determined.

The probability of lock conflict with a
blocked txn with identical per-step pro-
cessing times can be approximated by b,
since active and blocked txns approxi-
mately hold the same number of locks
[Ryu and Thomasian 1990a]. When txn
steps have different processing times
this probability is approximated by r .
L# b/L# , where L# 5 L# a 1 L# b with L# a and
L# b denoting the mean number of locks
held by active and blocked txns, respec-
tively, which can be computed as

L# a 5 O
k51

K

fk O
i51

k isk
i ~M# a!

R~M!
,

L# b 5 O
k51

K

fk O
i51

k ~i 2 1!PcW

R~M!
. (2.13)

The conflict ratio, which is defined as
the ratio of the total number of locks
held by txns and the total number of
locks held by active txns [Moenkeberg
and Weikum 1992; Weikum et al. 1994],
is related to r as conflict ratio 5 1/(1 2
r) or conversely r 5 1 2 1/conflict ratio.

The probability that a txn is blocked
at level i is approximated by Pb(i) 5
ri21, i . 1 with Pb(1) 5 1 2 r/(1 2 r).
The probability of lock conflict is given
by Eq. (2.1). The mean waiting time
with one level of blocking can be ex-
pressed as follows by noting Eq. (2.5) for
a single txn class.

W1 5
1

H
O

k51

K

fk O
i51

k

isk
i ~M# a!

z F O
j51

k

sk
j ~M# a! 1 ~k 2 i! PcWG . (2.14)

84 • A. Thomasian

ACM Computing Surveys, Vol. 30, No. 1, March 1998

The normalization constant is H 5
¥k51

K fk ¥i51
k isk

i (M# a). The term in the
brackets is the mean waiting time in-
curred when a txn has a lock conflict
with an active txn in Ck in its ith pro-
cessing step (we have assumed that txn
steps have an exponential distribution).

The mean waiting time of a txn
blocked at level i is approximated by
Wi 5 (i 2 0.5)Wi, i . 1 as before.
Similarly to Eq. (2.10) we have

W 5 W1~1 1 0.5r 1 1.5r2 1 2.5r3

1 . . .!. (2.15)

Since r , 1, a closed-form approxima-
tion for the preceding series can be ob-
tained assuming that it is infinite; we
have

W 5 W1F1 1
0.5r~1 1 r!

~1 2 r!2 G . (2.16)

Multiplying both sides of the equation
by K1Pc/R(M) yields

b 5 aF1 1
0.5r~1 1 r!

~1 2 r!2 G . (2.17)

Note that in addition to a, the parame-
ter r is required for the analysis in this
case.

To simplify the discussion, we assume
that the durations of txn steps are given
and are independent of M# a. An iterative
solution is required in this case, which
proceeds as follows. Initialize W 5 0;
compute R(M), L# a, L# b, and r; compute
W from Eq. (2.16). Repeat the iteration
step until convergence is attained with
respect to W. The iteration converges in
a few cycles and predicts system perfor-
mance up to the peak throughput quite
accurately.

Investigations with the numerical so-
lution and simulation results obtained
by varying the duration of the last txn
step, which has the most impact on
lock-holding times, lead to 0.2 , r ,
0.3, where the lower (resp., upper) limit
is attained when the duration of the last
step is very long (resp., equal to others).

This range of values for r corresponds to
1.25 , conflict ratio , 1.43, which is
consistent with results in Moenkeberg
[1992]. Similarly to the case of txns
with identical per-step processing
times, M# a is maximized at b . 0.3.

Factors affecting thrashing. In the
case of txns with identical per-step pro-
cessing times, the system load is deter-
mined by a 5 K1PcA, where Pc in-
creases linearly with the mean number
of txns in the system provided that the
effective database size remains fixed.
The load in a system with different per-
step processing times is similarly af-
fected by a.

There is an inherent variability in the
number of txns in an open system with
Poisson arrivals, although the txn ar-
rival rate (l) is fixed. This may tempo-
rarily lead to a . 0.226 and possibly
thrashing. Load control can be applied
by limiting the degree of txn concur-
rency to (M# max), which can be deter-
mined through analysis or simulation
for a specific workload. This is not a
desirable approach, since the variability
in the workload processed by the system
may lead to system underutilization or
thrashing behavior.

One method to reduce the degree of
txn concurrency is for txns to incur
fewer disk accesses, since disk access
times are significantly longer than CPU
processing times. This can be partially
accomplished by increasing the size of
the database buffer to achieve a higher
hit ratio, but a point of diminishing
returns is soon reached. The main stor-
age database paradigm, such as in IMS
Fastpath [Gray and Reuter 1992], elim-
inates disk I/O altogether for smaller
databases, except for logging purposes.

Given a fixed overall processing ca-
pacity, it is advantageous to have a
smaller number of fast processors
rather than a larger number of slow
processors, since aside from multipro-
cessing effects (effective total processing
capacity due to cache interference, stor-
age access conflicts, and OS lock con-
flicts), a higher degree of txn concur-

Concurrency Control • 85

ACM Computing Surveys, Vol. 30, No. 1, March 1998

rency (with a higher data-contention
level) is required in the latter case to
attain the same throughput.

Analytic and simulation results show
that the mean number of active txns
(M# a) is maximized at b . 0.3 at a
degree of txn concurrency M̂, regardless
of whether the per-step processing
times are identical. This provides a very
easy-to-use paradigm for load control,
except in the case of the heterogeneous
database-access model in Section 2.5. In
the case of an infinite-resource model,
as we increase the number of txns in the
system the throughput remains flat be-
yond M̂, since M# a remains the same and
the number of blocked txns increases. It
is lock conflicts with blocked txns that
cause a snowball effect leading to
thrashing; that is, it is best not to in-
crease the number of txns beyond the
point at which the peak throughput is
attained.

The susceptibility of a system to
thrashing is affected by the variability
in the txn mix in the form of txn sizes,
read-only versus update txns, and so on.
A system with fixed-size txns (with
identical per-step processing times) may
run at the critical value a* or even
higher values of a* for a long time (i.e.,
large number of txn completions) before
thrashing occurs, whereas a system
with the geometric txn size distribution
may thrash for values below a* [Thoma-
sian 1993]. In a simulation study re-
ported in Thomasian [1993], the num-
ber of txn completions to thrashing
decreases as the variance of txn size is
increased for the same mean txn size.

2.3 Performance Analyses of Static
Locking

The identities of all required locks are
assumed to be known a priori in SL,
which is only possible at a coarse gran-
ularity of locking (e.g., locks for rela-
tional tables [Date 1983]). The identi-
ties of requested locks depend on the
txn’s input parameters and the state of
the database, the latter of which is not
known a priori but can be determined

by preexecuting txns (see Section 4).
The execution of a txn with SL is
started only when all locks have been
acquired. The strict FCFS and nonstrict
FCFS txn scheduling policies for SL are
considered in Thomasian and Ryu
[1983]. With strict FCFS the queue of
blocked txns is scanned when new locks
become available upon the completion of
a txn and txns are activated in strict
FCFS order; that is, a txn in the queue
cannot be activated if txns preceding it
in the queue have not been activated.
Strict FCFS scheduling can also be im-
plemented by allowing an arriving txn
to acquire available locks and enqueue-
ing lock requests for unavailable locks,
both by an atomic action, to prevent
deadlocks with other txns arriving si-
multaneously [Galler and Bos 1983].

A nonstrict FCFS scheduler scans
blocked txns in FCFS order, but txns at
the head of the queue are bypassed if
their lock requests cannot be fully satis-
fied. The fact that there are no partial
allocations of locks to txns improves
performance by precluding unnecessary
lock conflicts among newly arriving txns
and blocked txns. An arriving txn can
start execution immediately if its lock
requests are satisfied, that is, if it does
not have a lock conflict with currently
active txns. Otherwise, this txn is en-
queued in FCFS order. The starvation
problem of the nonstrict FCFS policy,
that a txn requesting a large number of
locks may be bypassed repeatedly, can
be rectified by reverting to a strict
FCFS policy.

The strict FCFS policy, unlike the
nonstrict policy, does not satisfy the es-
sential blocking property that a txn can
only be blocked by an active txn doing
“useful work,” leading to its commit
[Franaszek and Robinson 1985]. It is
not surprising therefore that a strict
FCFS policy is outperformed by the lat-
ter policy as quantified in Thomasian
and Ryu [1983]. Note that even better
performance could be attained with
strict essential blocking [Franaszek et
al. 1992], which differs from essential
blocking in that it requests locks only

86 • A. Thomasian

ACM Computing Surveys, Vol. 30, No. 1, March 1998

when they are required, that is, on de-
mand locking.

Assuming that fine-granularity lock-
ing is possible with SL, it entails an
increased lock holding time as compared
to DL. Incremental SL is a form of DL
where locks are requested in quick suc-
cession at the beginning of txn execu-
tion. It is therefore not surprising that
DL outperforms incremental SL [Tay et
al. 1985; Tay 1987]. More generally, DL
outperforms SL for lower degrees of txn
concurrency, which is due to the shorter
lock-holding times and lower lock con-
tention in DL, but it is outperformed by
SL when it thrashes [Tay et al. 1985;
Thomasian and Ryu 1986; Tay 1987].
This is because with a nonstrict SL
method the number of txns eligible for
execution increases as more txns are
made available for execution; that is,
the system throughput increases up to
the saturation of the bottleneck re-
source.

There have been a large number of
performance studies of atomic SL [Po-
tier and LeBlanc 1980; Galler and Bos
1983; Thomasian and Ryu 1983; Morris
and Wong 1985; Tay et al. 1985; Thoma-
sian 1985; Tay 1987; Ryu and Thoma-
sian 1988; Thomasian and Ryu 1989].
An analysis of SL using a hierarchical
solution method appears in Potier and
LeBlanc [1980], which is flawed in its
probabilistic analysis of txn conflicts
[Langer and Shum 1982; Thomasian
1996a]. The analyses in Thomasian and
Ryu [1983] and Morris and Wong
[1985], although tedious, accurately es-
timate the performance of SL.

The analysis in Galler and Bos [1983]
uses heuristic approximations, but the
results are not accurate in all cases. A
simplified analysis of SL in Tay [1987]
turns out to be inaccurate in a few
high-contention cases considered in
Morris and Wong [1985]. This analysis
is extended in Thomasian and Ryu
[1989] and applied to the following cas-
es: (i) different distributions for txn pro-
cessing time; (ii) multiple txn classes;
(iii) shared and exclusive lock requests;
and (iv) query and update txns.

2.4 Performance Analyses of Dynamic
Locking

In Sections 2.1 and 2.2 we described an
analytic solution method for DL. Com-
prehensive reviews of analytic solutions
for DL also appear in Tay [1987], Ryu
and Thomasian [1990a], and Thomasian
and Ryu [1991]. Solution methods for
DL roughly belong to one of the follow-
ing categories.

—Analytic solutions based on QNMs ex-
tend the hardware-resource-conten-
tion model to incorporate lock conten-
tion [Irani and Lin 1979; Thomasian
1982]. A central-server model (see
Section 1.3) is utilized to represent
hardware resource contention and D
pseudoservers to represent the lock-
contention delays for the D database
locks, which are only visited when
there is a lock conflict. The mean ser-
vice time at the nodes is the mean
waiting time (W), which is not known
a priori but can be expressed as a
fraction of the mean txn residence
time (R(M)) in the closed system with
M txns (this model is also used in the
following studies). An iterative solu-
tion is proposed in Thomasian [1982],
since R(M) is not known a priori.

—The analytic solution method in Tay
et al. [1985] and Tay [1987] is based
on “flow diagrams,” which are defined
in Section 3.3. The mean waiting time
per lock conflict (W) is estimated by a
detailed analysis [Tay et al. 1985; Tay
1987]. The analysis of a closed system
with M txns leads to a cubic equation
in the mean number of active txns
(M# a), with three roots in the intervals
(2`, M(1 2 k2L/3), (M(1 2 k2L/3),
(M(1 2 k2L/6)), and (M(1 2 k2L/3),
1 `), for k2L , 1.5, where L 5 M/D.
The second root is the only one of
interest. The second term inside the
parentheses can be expressed as k2L/
F . PcW/R(M), with Pc given by Eq.
(2.1). For the upper (resp., lower)
bound, W/R(M) 5 1⁄3 (resp., 2⁄3), with
an arithmetic mean W/R(M) 5 1⁄2
(rather than 1/2.25 in the author’s

Concurrency Control • 87

ACM Computing Surveys, Vol. 30, No. 1, March 1998

earlier works [Tay 1990]), which coin-
cides with the approximation used in
Thomasian [1982].

—The analysis in Section B in Thoma-
sian and Ryu [1991] allows variable
txn sizes and different processing
times for txn steps, which are ob-
tained from an underlying QNM.
Only two levels of txn blocking with
currently active txns and txns that
are blocked by active txns are consid-
ered. Simulation results show that
this analysis is quite accurate up to
relatively high lock-contention levels,
but cannot predict peak throughput
in systems with infinite resources,
that is, at very high levels of txn
concurrency. A similar analysis is
presented in Yu et al. [1993].

—An analytic solution based on a
Markov chain model whose states
represent the number of active txns
(J) in a closed system with M txns
appears in Ryu and Thomasian
[1990a]. The holding time in each
state is determined by analyzing the
QNM of the underlying computer sys-
tem model. At the completion of a
step a txn requests a new lock or
commits. A lock request may result in
the transition J 3 J, J 3 J 2 1, and
J 3 I, I $ J depending on whether
the lock request is successful, unsuc-
cessful with blocking, or unsuccessful
with an abort to resolve the deadlock
caused by its lock request (the locks
released by an aborted txn may acti-
vate other txns). This analysis thus
assumes that the txn causing the
deadlock is aborted to resolve a dead-
lock, because a more sophisticated
lock-conflict resolution method, which
takes into account the progress made
by txns, as in WDL, is much more
difficult to analyze [Thomasian 1992].
A multilevel solution method is
adopted that facilitates bottom-up
validation and allows modifications to
some levels of the analysis without
affecting others (e.g., a different lock
conflict model can be adopted). It is
also based on very few approxima-

tions and takes into account dead-
locks, unlike almost all other analyses
of DL [Tay et al. 1985; Thomasian
1993].

2.5 On More Realistic Lock-Contention
Models

Most performance studies of CC meth-
ods are concerned with a homogeneous
database access model, as defined in
Section 1.2 and analyzed in Sections 2.1
and 2.2. Furthermore, our discussion so
far has been concerned with exclusive
lock requests. We introduce the effective
database-size paradigm for dealing with
shared as well as exclusive locks and
nonuniform database accesses in the
context of the homogeneous model. A
minor variation from this model is the
distinction made between update and
query txns, where the latter only re-
quest locks in shared mode [Tay 1987].
A forerunner of the TPC-C benchmark
[Gray 1993] is described and simulated
in Jenq et al. [1989], which represents
the more realistic heterogeneous data-
base-access model. We briefly describe
this model and propose a table-driven
load-control method for it, since load-
control methods for the homogeneous
database access model are ineffective in
this case [Thomasian 1996b]. We next
discuss the issue of characterizing txn
classes through inspection of txn code or
monitoring txn execution. Finally, we
list some possible shortcomings of the
standard locking models in the context
of relational databases.

Shared and exclusive locks and non-
uniform database accesses. The effec-
tive database size paradigm (EDSP)
provides an elegant approach for deal-
ing with shared and exclusive lock re-
quests and nonuniform database ac-
cesses in the case of the GW method
[Tay et al. 1985; Tay 1987]. It is shown
that shared and exclusive lock requests
to a database of size D can be replaced
with exclusive lock requests to a data-
base of size Deff 5 D/(1 2 s2), where s
denotes the fraction of lock requests

88 • A. Thomasian

ACM Computing Surveys, Vol. 30, No. 1, March 1998

that are in shared mode. In the case of
the nonuniform database-access model,
where a fraction b of database accesses
are to a fraction c of the database, it is
shown in Tay et al. [1985] and Tay
[1987] that Deff 5 D/[b2/c 1 (1 2 b)2/
(1 2 c)]. EDSP in the context of restart-
oriented locking methods is discussed in
Section 3.2.

Heterogeneous database access model.
A closed system with M txns in J txn
classes and I database regions is consid-
ered. Txns in class j (Cj) have a fre-
quency fj and in their nth step (denoted
by Cj,n) access database region i (denot-
ed by Di) with probability gj,n,i. This
can be represented by a bipartite graph,
where one set of nodes represents txn
steps and the other set the database

regions; that is, Cj,nO¡
gj, n, i

Di .
The analytic solution method in Sec-

tions 2.1 and 2.2 is extended in Thoma-
sian [1996b] to analyze this model. Val-
idation results show this analysis to be
acceptably accurate in predicting sys-
tem performance up to high levels of
lock contention, but not the peak
throughput with an infinite resource
model.

Simulation studies of two systems
with four and eight txn classes and five
database regions (with other parame-
ters varied randomly over several ex-
periments) reveal that the critical value
of r (as defined in Section 2.2) varies in
the range (0.211–0.376) in the first sys-
tem and (0.245–0.376) in the other
[Thomasian 1996b]. Conflict ratios are
observed to be in the range (1.26–1.60)
based on the experimental results re-
ported in Weikum et al. [1994], which is
consistent with these figures. In spite of
the concurrence of these results, there
is no guarantee that the range of values
of r will hold in other environments.
Furthermore, even if the preceding
range of critical values for r is generally
applicable, it is too wide to be useful for
load control.

Consider a system whose txns belong
to two disjoint sets from the viewpoint

of accesses to database regions: txns in
one set have a high level of lock conten-
tion, whereas the txns in the other set
do not. The thrashing of txns in the first
set will lead to an overall thrashing
behavior in the system, because due to
the frequency-based model completed
txns in the second set are replaced by
txns in the first set. We can prevent
thrashing by restricting the number of
txns in the two sets to M1 and M2 with
M1 1 M2 5 M, so that the txns in the
second set will not be affected by the
txns in the first set.

As an example of load control based
on the composition of txns in the sys-
tem, consider a system with two (inter-
fering) txn classes. The maximum
throughput attained by the two classes
is T1(M̂1, 0) and T2(0, M̂2). Let us
assume that txns in C1 have a higher
priority and the system is guaranteed to
run T91(. . .) (, T1(M̂1, 0)) txns in C1.
Load control is achievable by providing
a table T1(M1, M2) for various composi-
tions of txn classes to determine the
maximum degree of concurrency for
txns in C2 to guarantee the throughput
for txns in C1 [Thomasian 1996b]. This
method is more flexible than the one
discussed in Weikum et al. [1994],
which sets limits on the degree of con-
currency for txn classes and their com-
binations by adding one txn class at a
time to the txn mix. The problem with
the table-driven approach is the diffi-
culty of generating a table for a system
with a large number of txn classes. It
should be noted that the number of txn
classes contributing to lock contention
may be rather small and it may be
possible to aggregate several txn classes
into one class to reduce the number of
txn classes to be considered. This re-
mains an area for further investigation.

Characterization of transaction work-
loads. Txns in the same txn class may
have a different execution sequence
based on the input data to the txn and
the state of the database. For example,
98% of debit txns are processed nor-
mally, whereas 2% result in an over-

Concurrency Control • 89

ACM Computing Surveys, Vol. 30, No. 1, March 1998

draft requiring additional processing
(e.g., to check credit limits, etc.). This
case can be specified by two subclasses
with respective frequencies. More com-
plex txns may not lend themselves to a
simple classification of their subclasses
based on inspecting txn code, and the
monitoring of txn execution is required
for this purpose. In effect, each txn sub-
class is characterized by its frequency
and the sequence of database calls made
by the subclass is deterministic. The
number of txn subclasses is determined
by all possible paths from the initial to
the final state(s) of the txn, which may
be quite large, even if there are no cy-
cles in its execution. The frequency of a
txn subclass is the probability associ-
ated with the path. This system can be
analyzed by extending the solution
method in Thomasian [1996b].

Other extensions to lock-contention
models. This discussion is in the con-
text of relational DBMSs because of
their popularity.

—Relational models provide locking at
multiple granularity levels, intent
locks, and cursor locks [Date 1983;
Gray and Reuter 1992]. A better un-
derstanding of the locking behavior of
txn processing systems is required for
specifying realistic locking models for
analysis (see e.g., Singhal and Smith
[1997]).

—Determining lock-conflict probabili-
ties with a rather complex lock-com-
patibility matrix, as in the case of
relational DBMSs (see e.g., Date
[1983] and Gray and Reuter [1992]),
is a challenging problem, especially at
higher lock-contention levels.

—A large number of specialized locking
methods with provisions for recovery
have been developed for operations on
index structures [Mohan and Levine
1992]. Performance evaluation of CC
methods for index structures such as
B1 trees has been an area of research
activity by itself. A survey of previous
work and a simulation study appear
in Srinivasan and Carey [1993]. Ana-

lytic methods to compare the perfor-
mance of several locking methods for
B* trees are presented in Johnson
and Shasha [1993].

—It is postulated that an on-demand
locking scheme requests one lock at a
time, but this is not necessarily so. A
database call may entail accesses to
multiple records and the txn may only
proceed after all of the requested
locks are acquired.

—Most performance studies of CC
methods postulate data accesses uni-
formly distributed over a database
whose size (D) is given. In fact, only a
subset of database objects is accessed
at any one time, usually with nonuni-
form probabilities [Singhal and Smith
1997]. Given the probability of lock
conflict (Pc), the database size D can
be estimated using Eq. (2.1), after
taking into account that a fraction s
of lock requests is in shared mode.

—A possible weakness of performance
studies of CC methods is that the
database size (D) remains fixed as the
degree of txn concurrency (M) or the
txn arrival rate (l) is increased. This
is not so for some applications such as
banking, as exemplified by the TPC-A
or TPC-B benchmarks [Gray 1993],
where the number of bank records
increases in proportion to the number
of its clients.

—Schedulers for txn processing systems
take into account several factors,
mainly based on txn response-time
objectives, but also to control the lock-
contention level. Briefly, an IMS txn
has a type and multiple txn types
may belong to a class. Txn classes are
assigned to “message-processing re-
gions” such that each region can pro-
cess several txn classes and a class
may be processable at several regions.
There may be a different processor-
priority level associated with each
class in a region. The effect of txn
scheduling on the level of lock conten-
tion has not been taken into account
in performance studies.

90 • A. Thomasian

ACM Computing Surveys, Vol. 30, No. 1, March 1998

2.6 Methods to Improve Locking
Performance

The concurrent processing of long read-
only queries for decision support appli-
cations and short update txns intro-
duces conflicts between the two
workloads, especially when the former
follows a strict 2PL paradigm. One ap-
proach is to run queries at a reduced
level of consistency of 1 and 2, which
implies reading uncommitted data and
obtaining shared locks only for the du-
ration of the read, respectively [Date
1983; Gray and Reuter 1992]. The latter
ensures cursor stability but does not
guarantee repeatable reads, which re-
quires shared locks with strict 2PL
[Date 1983; Gray and Reuter 1992].
There is a significant degree of conten-
tion between cursor locks and exclusive
locks, according to Singhal and Smith
[1997], which results in a slowdown of
query processing and wasted system re-
sources (e.g., allocated buffer space). A
large number of versioning methods
have been proposed to address this is-
sue, as reviewed in Bober and Carey
[1992] and Mohan et al. [1992b]. The
simulation study in Bober and Carey
[1992] shows that versioning (at the
record rather than page level) allows
improved performance for query pro-
cessing, and Mohan et al. [1992b] pre-
sents a transient versioning method in
the ARIES framework [Mohan et al.
1992a].

The nested txn paradigm offers more
decomposable execution units and finer-
grained control over concurrency and
recovery than flat txns [Moss 1985;
Gray and Reuter 1992]. The decomposi-
tion of units of work into subtasks and
their appropriate distribution in a com-
puter system is a prerequisite for in-
tratxn parallelism [Haerder and Ro-
thermel 1993]. Multilevel txns are
related to nested txns, but are more
specialized [Weikum 1991; Gray and
Reuter 1992]. For example, txns hold
long-term record-level locks (more gen-
erally object-level locks [Weikum and
Hasse 1993]), whereas page-level locks

are held by subtxns for the duration of
operations on records. Compensating
operations for subtxns are provided for
rollback recovery. An implementation of
multilevel txns and a performance eval-
uation using synthetic benchmarks is
reported in Weikum and Hasse [1993].

Ordered sharing allows a flexible
lock-compatibility matrix (among
shared and exclusive lock requests) as
long as operations are executed in the
same order as locks are acquired
[Agrawal et al. 1994]. Thus it introduces
restrictions on how the program realiz-
ing the txn is written; for example, the
acquisition of an exclusive lock on an
object should be followed immediately
by its update. A txn T2 may obtain a
shared lock on an object locked in exclu-
sive mode by T1 (i.e., read the value
written by T1) but this will result in
deferring T2’s commit to after T1’s com-
mit. Simulation results show that there
is an improvement in performance with
respect to standard locking that can be
ascribed to the reduced txn waiting time
with respect to standard locking
[Agrawal et al. 1994].

Altruistic locking allows txns to do-
nate previously locked objects, once
they are done with them but before the
object is unlocked [Salem et al. 1994].
Another txn may lock a donated object,
but to ensure serializability it should
remain in the wake of the original txn
(i.e., accesses to objects should be or-
dered). Cascading aborts, which are a
possibility when the donated object was
locked exclusively, can be prevented
with strict 2PL. This makes the ap-
proach more suitable for read-only que-
ries or long-running txns updating few
records.

The proclamation-based model for co-
operating txns is described in Jagadish
and Shmuelli [1992], which in addition
to its original motivation can be used to
reduce the level of lock contention. This
method is different from altruistic lock-
ing in that a txn, instead of releasing its
lock on an object (that it is not going to
modify again), proclaims one or more
possible values for the object, which can

Concurrency Control • 91

ACM Computing Surveys, Vol. 30, No. 1, March 1998

be accessed by other txns. Txns inter-
ested in the object can proceed with
their execution according to the pro-
claimed value(s). Note that this method
has similarities to the polyvalues
method in Montgomery [1978] (see Sec-
tion 4.3).

Increment/decrement locks are one
approach to relieve the level of lock
contention for aggregate values [Gray
and Reuter 1992], but there is no check-
ing of the value, for example, that it is
negative. The escrow method [O’Neil
1986] is a generalization of the field
calls approach in IMS Fastpath [Gray
and Reuter 1992], where the minimum,
current, and maximum values of an ag-
gregate variable are made available to
other txns. Let us assume that a bank-
ing account with a current balance of
$1,000 has a credit txn for $100 and a
debit txn for $200 in progress. Then the
balance is represented by ($800, $1,000,
$1,100). The final balance is $900 if
both txns are successful. A debit txn for
$500 need not be delayed awaiting the
completion or abort of either or both
txns, since there are adequate funds in
the account in either case.

The synchronization technique and
scheduling policy described in Bayer
[1986] allows simultaneous processing
of a batch txn and short update txns. A
“random” batch txn updates database
records only once in each run (convert-
ing them from old to new records) and
the updates are independent of the or-
der in which they are carried out. There
is a conflict if a short txn needs to
access old and new records. Since the
blocking delay is not tolerable for short
txns, the batch txn may update the re-
quired old records and make them avail-
able to short txns after intermediate
commit points [Date 1983; Bayer 1986].

Lock-holding time by long-lived txns
can be reduced by using intermediate
commit points according to the sagas
paradigm [Garcia-Molina 1987; Gray
and Reuter 1992]. A long-lived txn T is
viewed as a set of subtxns T1, . . . , Tn
that are executed sequentially and can
be committed individually at their com-

pletion. However, the abort of subtxn Tj
results in the undoing of the updates of
all preceding subtxns from a semantic
point of view through compensating
subtxns C1, . . . Cj21. Compensating txns
consult the log to determine the param-
eters to be used for undoing the updates
of aborted txns.

A method for chopping txns into
smaller txns to reduce the level of lock
contention and to increase the level of
txn concurrency, while preserving cor-
rectness, is presented in Shasha et al.
[1995], which also reviews related
works. Preserving correctness requires
knowledge about the set of txns that are
running concurrently with the txn to be
chopped. Examples of correct and incor-
rect “choppings” are given in the paper
and are not repeated here; suffice it to
say that the critical steps that may fail
should be executed first. Simulation re-
sults show a significant improvement in
performance when a long-running txn
(say a batch update) is chopped into
smaller txns, but this is at the cost of an
increased number of commits with the
associated overhead [Shasha et al.
1995]. A related study that extends
Farag and Ozsu [1989] and Korth and
Speegle [1994] appears in Ammann et
al. [1997].

Semantics-based CC methods rely
upon the semantics of txns (see, e.g.,
Garcia-Molina [1983]) or semantics of
objects [Weihl 1988; Badrinath and Ra-
mamithram 1992]. Txn semantics is uti-
lized in Garcia-Molina [1983] and Cel-
lary et al. [1988], where txns are
classified into types and a compatibility
set is associated with different types. A
semantics-based CC method for objects
is based on commutativity of operations.
Recoverability of operations is an exten-
sion of this concept, which allows an
invoked operation to proceed when it is
recoverable with respect to an uncom-
mitted operation [Badrinath and Ra-
mamithram 1992]. Various operations
on stacks and tables belong to this cate-
gory. The two methods based on com-
mutativity of operations presented in
Weihl [1988] differ in that one method

92 • A. Thomasian

ACM Computing Surveys, Vol. 30, No. 1, March 1998

uses intention lists and the other uses
undo logs. This work is extended in
Lynch [1994]. Object-oriented DBMSs
allow a higher degree of txn concur-
rency than provided by simple locking
for operations on abstract data types
[Skarra and Zdonik 1989; Ozsu 1994]. A
more detailed discussion of these topics
appears in Ramamithram and Chrisan-
this [1996].

3. RESTART-ORIENTED LOCKING
METHODS

Restart-oriented locking methods com-
bine blocking and aborts (followed by
system-initiated restarts) to cope with
the performance limitations of standard
locking. We first describe restart-ori-
ented locking methods, various options
for restarting aborted txns, and the is-
sue of resampling of lock requests for
restarted txns with respect to the origi-
nal txns. Section 3.2 provides a perfor-
mance comparison of restart-oriented
locking methods based on simulation re-
sults reported in Thomasian [1997a].
The modeling of shared locks, in addi-
tion to exclusive locks and hot-spots, is
also discussed in this section. Finally, in
Section 3.3 we review analytic studies of
restart-oriented locking methods and
analyze a representative method.

3.1 Description of Restart-Oriented
Locking Methods

The wait depth is the distance (d) of a
blocked txn from active txns at the root
nodes of the respective acyclic WFG.
Only exclusive locks are considered ini-
tially to simplify the discussion, in
which case WFGs are directed trees. A
concise specification of some well-known
restart-oriented locking methods is as
follows:

—According to the no-waiting (NW)
[Tay et al. 1985b] or the immediate
restart method [Agrawal et al. 1987a]
a txn TA that has a lock conflict with
a txn TB is aborted. The WFG TA 3
TB is temporarily formed and re-
duced. The wait depth is d 5 0.

—The asymmetric running priority
(RPA) method [Franaszek and Robin-
son 1985] aborts TB in the WFG TA 3
TB 3 TC when TA becomes blocked
by TB, which is already blocked by
TC. This action is expected to improve
system performance, since it partially
fulfills the strict essential blocking
property [Franaszek et al. 1992] (see
Section 2.3).
It is possible that TB, which was ac-
tive at the time TA became blocked by
it, may become blocked by TC at a
later time. When TC is active, the
Symmetric RP (RPS) method [Fra-
naszek et al. 1992] guarantees that
the wait depth does not exceed one by
aborting a txn such as TB, which is
blocking other txns when it encoun-
ters a lock conflict. The wait depth is
maintained at d 5 1 in this case.7

Adaptive methods are desirable in
that they adjust the wasted process-
ing due to txn aborts to match the
excess processing capacity of the sys-
tem. An adaptive RP method only
aborts a txn at d 5 1 blocking b $ 1
txns, where the txn breadth b is the
number of txns blocked by it [Fra-
naszek et al. 1991a] (this adaptive
method is used in the context of a
two-phase processing method in Sec-
tion 4.4). Wasted processing can be
reduced by increasing the value of b
or by aborting a txn only when its
wait depth d . 1 [Franaszek et al.
1992]. It is also meaningful to consider
a combination of rules based on the
wait depth and breadth (e.g., (i) if d . 1
and b $ 1, and (ii) if d 5 1 and b . 1).

—The asymmetric cautious waiting
(CWA) method [Hsu and Zhang 1992]
aborts TA when it is blocked by TB,
which is itself blocked by TC as in

7 There are two alternatives to ensure this. The
first method checks whether a txn TA encounter-
ing a lock conflict is blocking other txns; if so, it is
aborted. Next it is checked whether TB blocking
TA is blocked itself, and if TB is in the blocked
state, it is aborted. Simulation results have shown
that changing the ordering of these two tests has
little effect on overall performance.

Concurrency Control • 93

ACM Computing Surveys, Vol. 30, No. 1, March 1998

TA 3 TB 3 TC. The symmetric CW
(CWS) method first checks if TA is
blocking other txns, as in (TX, TY,
. . . , TZ) 3 TA 3 TB, and aborts
them when TA becomes blocked. The
wait depth is maintained at d 5 1
with CWS.
Symmetric and asymmetric RP and
CW are deadlock-free [Franaszek and
Robinson 1985; Hsu and Zhang 1992].

—The WDL(d), d $ 1 family of methods
limits the wait depth of blocked txns
to d, taking into account txn progress
in deciding which txn to abort to
achieve this goal [Franaszek et al.
1992]. They are a subset of wait-
depth-limited methods, which only
limit the wait depth (such as RPS or
CWS). The WDL(1) or WDL method is
mainly of interest [Franaszek et al.
1992], since it attains high perfor-
mance at the cost of relatively little
wasted processing. Conflicts are re-
solved by comparing the length of the
txns involved in the conflict. The
length L(TA) of a txn TA is a function
of the progress made by the txn (e.g.,
the number of locks held by TA [Fra-
naszek et al. 1992]). The modified
WDL (MWDL) method [Thomasian
1992] is based on two slightly differ-
ent rules from WDL [Franaszek et al.
1992] such that the comparison of txn
lengths is always confined to two txns
at a time.
Consider a lock request by TA that
causes a lock conflict with TB result-
ing in a transient WFG [(TX, TY, . . . ,
TZ) 3]TA 3 TB[3 TC]. The following
rules are applied when a lock conflict
occurs with the MWDL method.

(1) If TA, which is blocking some
other txns, has a lock conflict with
TB, and then if L(TA) , L(TB), abort
TA, else abort TB.8

WDL makes the comparison
L(TA) , max(L(TB), L(TX), . . . ,
L(TZ)) when TA is blocking txns (TX,
TY, . . . , TZ) [Franaszek et al. 1992].

(2) If TA, which is not blocking any
other txns, has a lock conflict with
TB, which is itself blocked by an ac-
tive txn (TC), if L(TB) # L(TC), then
abort TB, else abort TC.
WDL makes the comparison L(TB) #
max(L(TA), L(TC)) [Franaszek et al.
1992].
Although the WDL family of methods
allows wait depths greater than one,
a wait depth of one yields improved
performance [Franaszek et al. 1992;
Thomasian 1997a] without requiring
excessive extra processing.

—The wound-wait (WW) method
[Rosenkrantz et al. 1978] blocks txn
TA requesting a lock held by TB if TA
is not older than TB; otherwise TB is
aborted. A variant of WW, similarly to
RPA, wounds TB only if it is blocked
(at the site where the conflict oc-
curred in a distributed database).

—The wait-die (WD) method [Rosen-
krantz et al. 1978] allows a younger
txn to wait if it is blocked by an older
txn; otherwise the txn encountering a
lock conflict is aborted.
Txn age is determined by the arrival-
time timestamp. Both WW and WD
methods are deadlock-free [Rosen-
krantz et al. 1978], but similarly to
the CWA and RPA methods allow an
unlimited wait depth. The WW and
WD methods are intended as low-cost
deadlock-prevention mechanisms in
distributed database environments
from the viewpoint of the number of
messages involved. The WW outper-
forms WD according to the simulation
results in [Agrawal et al. 1987b],
which is the reason it is not consid-
ered in Section 3.2.

NW, CW, WD, and the method in
Chesnais et al. [1983] (see Section 3.3)
are nonpreemptive methods [Hsu and
Zhang 1992], in that the txn encounter-

8 We could have used L(TA) . L(TB) instead of
L(TA) $ L(TB) for the else condition and a tie-
breaking rule for equality (e.g., abort the younger
txn). This extra complication is not justified, since
it is not expected to result in an improvement in
performance.

94 • A. Thomasian

ACM Computing Surveys, Vol. 30, No. 1, March 1998

ing a lock conflict is aborted, whereas
RP and WW are preemptive methods
according to this definition. A classifica-
tion is also possible based on txn at-
tributes used in determining the txn to
be aborted (if any). Txn timestamps in
the case of the WW and WD methods
are static attributes that are assigned at
the beginning of txn execution (txn
timestamps are reassigned for each in-
stance of txn execution in the case of the
TSO method). WDL uses a dynamic at-
tribute (i.e., the number of locks cur-
rently held by a txn).

Transaction aborts and restarts.
We distinguish between these two
terms, which have been used inter-
changeably. Txn abort occurs first and a
txn releases its locks and stops its exe-
cution or continues executing in virtual-
execution mode (see Section 4.2).
Aborted txns whose execution is stopped
and txns in virtual-execution mode com-
pleting their execution are automati-
cally restarted by the system. Cyclic
restarts or livelocks need to be prevent-
ed: (i) to reduce the wasted processing
incurred in this manner, and (ii) to en-
sure txn completion within a finite time
interval. The following methods to pre-
vent cyclic restarts are complementary
to those in the introduction to Section 2.

(1) Restart waiting can be easily imple-
mented in a centralized system by
delaying the restart of an aborted
txn until all txns that have con-
flicted with it are completed [Ryu
and Thomasian 1990b; Franaszek et
al. 1992].

(2) Random delays or conflict avoidance
delays [Agrawal 1987a,b; Tay 1987],
which are introduced before a txn is
restarted after its abort, do not
guarantee that cyclic restarts will
be prevented. The drawback of ap-
plying this method is the difficulty
of determining the duration of ran-
dom delays, especially in the case of
variable-size txns.

(3) Immediate restarts are possible in a
system with a backlog of txns, such

that an aborted txn is set aside and
is replaced by a new txn with a
different script [Tay et al. 1985;
Agrawal et al. 1987a], which is de-
fined as the sequence of objects ac-
cessed by the txn. Another interpre-
tation is that the restarted txn
requests a different set of locks from
its prior execution; that is, the txn
does not exhibit access invariance
[Franaszek et al. 1990, 1992]. This
is referred to as lock resampling or
fake restarts, as opposed to no lock
resampling.

The restart waiting-no lock resam-
pling combination of options is mainly
of interest. No lock resampling occurs
with access invariance across successive
executions of a restarted txn and is ex-
pected not to affect the level of lock
contention in the system when txn re-
starts occur, although this is not so for
lock resampling which favors methods
introducing more txn restarts. The re-
start waiting method is straightforward
to implement and allows a fair compar-
ison.

Lock resampling is an inherent short-
coming of the analytic solution methods
that results in overestimating system
performance by an extent that depends
on the frequency of txn restarts. This
effect is quantified in the case of the
NW method in Agrawal et al. [1987a].
Resampling also applies to locking
modes, the class of restarted txns, and
txn processing times. Resampling re-
sults in an unfair advantage to methods
with more frequent restarts, since this
creates a bias of the completed txns in
the system towards txns with the char-
acteristics: (i) a higher fraction of
shared lock requests, (ii) fewer accesses
to hot-spots, and (iii) smaller txn sizes.

3.2 Performance Comparison of Restart-
Oriented Locking Methods

There have been several simulation
studies of restart-oriented locking meth-
ods, most notably Agrawal et al. [1987b]
and Franaszek et al. [1992]. We summa-

Concurrency Control • 95

ACM Computing Surveys, Vol. 30, No. 1, March 1998

rize here the results of a simulation
study with the restart waiting-no lock
resampling options (justified in the pre-
vious section) and exclusive lock re-
quests to compare the performance of
eight methods: GW, NW, CWS, RPS and
RPA, WDL, MWDL, and WW [Thoma-
sian 1997]. The simulation parameters
are: database size D 5 16,384, txn size
K 5 16, txn steps have identical expo-
nential distributions. The number of
txns is varied to obtain the peak
throughput for different hardware re-
source contention levels, which is at-
tained by varying the number of proces-
sors in the system (P).

—GW outperforms other methods for
smaller values of P, but achieves its
maximum throughput at M̂ . 78 with
M# a 5 55 active txns; that is, GW can
utilize at most P 5 55 processors.
Note also that there is little difference
in the peak throughput attained by
different methods at P 5 50, since the
level of lock contention is low.

—NW is outperformed by GW at P 5
50, but NW outperforms GW by al-
most 20% at P 5 100 and its through-
put continues to increase up to P 5
250. NW with the immediate restart-
lock resampling option is susceptible
to thrashing due to repeated restarts.

—CWS introduces a significant im-
provement in performance over NW
that is due to the reduction in wasted
processing. This is also the case for
the CWA method [Hsu and Zhang
1992]. Simulation results show that
the CWS and CWA methods have a
comparable performance (differing by
a few percentage points) and as would
be expected CWS outperforms (is out-
performed by) CWA for small (resp.,
large) values of P, since CWA intro-
duces fewer aborts than CWS.

—The RPS method outperforms CWS in
all cases, which is attributable to the
fact that aborting a blocked txn in the
case of RPS results in an increase in
the number of active txns from one
active txn in TA 3 TB 3 TC to two
active when TB is aborted and is set

aside, whereas an aborted txn in the
case of CWS just starts restart wait-
ing, since an immediate restart will
lead to repeated conflicts and aborts
[Hsu and Zhang 1992].
For smaller values of P, RPA outper-
forms not only RPS but also the WDL
and MWDL methods, which is attrib-
utable to the fact that RPA results in
less wasted processing than the other
methods, such that it can maximize
the useful processing in the system.

—The WDL [Franaszek et al. 1992] and
the MWDL [Thomasian 1992] meth-
ods outperform others (including
RPA) at higher processing capacities.
The peak throughput attained by
these two methods is almost a factor
of four higher than that attained by
GW and 20% higher than RPA. These
results concur with simulation results
in Fanaszek et al. [1992]. It is inter-
esting to note that MWDL, in spite of
its relative simplicity with respect to
WDL, attains a performance very
close to it.

—WW, although outperforming GW for
higher values of P, is outperformed by
all other methods except NW. The
fact that txns are blocked in times-
tamp order results in very little drop
in peak throughput, once it is at-
tained. In effect, unnecessary restarts
are avoided and the restart-waiting
option is not required in this case.

The method with the maximum effec-
tive throughput for a given P maximizes
the number of processors doing useful
work (say Pu). Thus for intermediate
values of P, RPA outperforms WDL,
since it attains a higher Pu. However, as
P is increased, WDL and MWDL utilize
more processors (up to P 5 500) and
attain a higher Pu than RPA [Thoma-
sian 1993].

A simulation with a synthetic work-
load and a lock trace is used in Weikum
et al. [1994] to compare the performance
of several load-control methods, espe-
cially those based on conflict ratios (see
Section 2.2). WDL is shown to have a
superior performance in all cases but

96 • A. Thomasian

ACM Computing Surveys, Vol. 30, No. 1, March 1998

one, which is an accelerated synthetic
workload. The main reason for the suc-
cess of WDL according to this study is
its smaller lock-waiting time with re-
spect to other methods. Note that re-
start waiting in the case of WDL serves
the role of load control.

Synthesizing methods that will maxi-
mize system throughput for a given set
of system parameters remains an open
problem. Guidelines for this purpose are
as follows.

(1) From the viewpoint of data conten-
tion, it should conform with the es-
sential blocking property [Fra-
naszek and Robinson 1985] and
minimize wasted lock-holding time,
which affects system performance
when lock utilizations are high (e.g.,
locks on hot-spots).9

(2) From the viewpoint of hardware re-
source contention it should mini-
mize wasted processing by associat-
ing a higher priority level with txns
that have acquired more processing
than others [Franaszek et al. 1992]
and exhibit adaptiveness to system
load, for example, by reducing the
number of txn aborts when the sys-
tem is overloaded [Franaszek et al.
1991a].

(3) From the viewpoint of reducing txn
response times, care should be
taken not to abort txns that are
near completion but have not yet
entered the commit phase. This en-
tails a reduction in lock-holding
time and wasted processing, which
are both almost doubled when a txn
near its completion is aborted. The
progress made by a txn towards its
completion can be deduced from its
type in some cases (a system with
canned txn classes). The perfor-
mance of a system that takes into

account txn progress with respect to
its completion in deciding which
txns to abort requires further inves-
tigation.

Adaptive methods balance the reduction
in lock contention with wasted process-
ing. Minimizing the wasted processing
up to a point where the bottleneck re-
source in the system (e.g., the proces-
sors) is almost fully utilized is a good
strategy, since this tends to maximize
the useful processing in the system.
This was verified through simulation of
the two-phase processing method in
Franaszek et al. [1991a] (see Section
4.3), which is based on the adaptive RP
method in Section 3.1.

Given that the future lock requests
are known a priori, an “optimal” policy
can be used to determine the best possi-
ble performance, for example, the mini-
mum mean response time for a given
throughput, against which other meth-
ods can be gauged. Unfortunately, an
optimal policy for this purpose is com-
putationally very expensive. In con-
trast, the optimal policy for minimizing
the miss ratio in paging virtual-memory
systems is to simply replace the page
referenced furthest in the future, pro-
vided the trace of page requests is
known.

The performance of methods based on
OCC and access invariance is compared
to the WDL method in Section 4.4.

The effect of shared locks and hot-
spots on performance. It is important
to determine if the relative performance
of the restart-oriented locking methods
also holds in the presence of shared as
well as exclusive locks and hot-spots. A
straightforward extension of RPA with
shared locks restarts all txns holding
the requested lock in shared mode if at
least one of them needs to be aborted
because it is blocked. This method out-
performs the GW method in a system
with infinite resources according to the
simulation results in Thomasian [1993],
but this may not be true in a system
with limited hardware resources.

EDSP (introduced in Section 2.4) is

9 To see why this is so, consider the following
example. The throughput of a system with a sin-
gle hot-spot can be maximized by minimizing the
wasted lock holding time on the hot-spot. Thus the
txn holding this lock cannot be aborted or blocked;
that is, txns that get in its way (by holding locks
required by it) are aborted.

Concurrency Control • 97

ACM Computing Surveys, Vol. 30, No. 1, March 1998

expected to be applicable to wait-depth-
limited methods, since they maintain a
subset of the WFG for the GW method,
but this is not always so. For example,
according to Corollary 5.2 in Tay et al.
[1985b], EDSP for shared and exclusive
locks for NW with lock resampling holds
only for sufficiently low levels of lock
contention. This problem is considered
further in Hsu and Zhang [1995] in the
context of NW and CWA, which are
“equal-chance abort policies”; that is,
the probability of txn abort upon a lock
request is independent of its current
state. The data-flow balance principle is
used in the context of the hot-spot data-
base access model to show that the ef-
fective database size (Deff) is an increas-
ing function of M and that EDSP
underestimates Deff (overestimates the
lock conflict probability) by estimating
Deff at M 5 0. This is because EDSP
does not take into account the lock-
resampling effect. This analysis is of
limited applicability, since it deals with
the less realistic lock-resampling op-
tion.

It follows from simulation results in
Thomasian [1993] that EDSP provides
an acceptably accurate approximation
for the no-lock-resampling option, in-
cluding no resampling of locking modes.
For example, in the case of the NW
method with frequent aborts, simula-
tion results obtained by applying EDSP
to shared and exclusive locks are indis-
tinguishable from the results for the
original model; also, very close results
are obtained with the hot-spot model.
From these experiments, it is conjec-
tured that EDSP applies approximately
to the NW and CWA methods for which
the txn making the lock request is
aborted. This is attributed to the fact
that the expected mix of the modes of
locks held by txns in the system is af-
fected negligibly in this case. However,
there is the second-order effect that a
txn making an exclusive lock request
has a higher probability of lock conflict
than when it makes a shared lock re-
quest.

In the case of RPA, it is observed from

simulation results that the throughput
obtained by applying EDSP to the hot-
spot model matches the original model
quite well. The peak system throughput
is typically overestimated by 5%. EDSP
is less accurate in the case of RPA when
applied to a system with shared and
exclusive locks. This is attributable to
the fact that the composition of txns in
the system is affected when txns are
aborted as a result of a lock conflict (as
in the case of multiple txns holding a
lock in shared mode, which is requested
in exclusive mode, being aborted be-
cause one of them is blocked).

3.3 Performance Analysis of the Running
Priority Method

We briefly review earlier analytic stud-
ies of restart-oriented locking methods
and outline the analysis of a nontrivial
wait-depth-limited method by analyzing
the performance of the RPS method.

Review of earlier analytic studies.
A method according to which a txn en-
countering a lock conflict repeats its
request L times before it is aborted is
described in Chesnais et al. [1983]. A
Markov-chain model representing the
progress of a single txn is used to ana-
lyze system performance. Numerical re-
sults with the immediate restart-lock
resampling option and the infinite-re-
source assumption lead to the conclu-
sion that the best performance is at-
tained at L 5 0, that is, the NW
method. Comprehensive studies of NW
and GW using flow diagrams appear in
Tay et al. [1985b] and Tay et al.
[1985a], respectively (see also Tay
[1987]). It is shown in Tay et al. [1985a]
that the NW method outperforms GW
when there are infinite resources, but at
lower degrees of txn concurrency NW is
outperformed by GW (by at most 5%).
Another study [Ryu and Thomasian
1990b] concludes that GW outperforms
NW in its nonthrashing region, unless
there are infinite resources and the im-
mediate restart-lock resampling option
is in effect. The flow-diagram method of

98 • A. Thomasian

ACM Computing Surveys, Vol. 30, No. 1, March 1998

Tay [1987] is adapted to the analysis of
the CWA method in Hsu and Zhang
[1992].

Flow diagrams, semi-Markov chains,
and Markov Chains. The analysis of
restart-oriented locking methods is sim-
plified by considering the execution of a
single txn as affected by the remaining
txns in the system from the hardware-
and data-resource-contention viewpoint.
The flow diagram or semi-Markov chain
[Kleinrock 1975] depicting the execution
steps of a txn T of size K is shown in
Figure 2. S2i, 0 # i # K (resp., S2i11,
0 # i # K 2 1) correspond to active
(resp., blocked) states. The transition
rates among the states are derived in
the following.

Semi-Markov chains allow a general
distribution for state holding time,
whereas Markov chains stipulate an ex-
ponential distribution [Kleinrock 1975].
The use of semi-Markov chains in the
analysis of the GW, NW, and CWA
methods in Tay et al. [1985a,b] and Hsu
and Zhang [1992], respectively, is possi-
ble because all transitions from the ac-
tive state occur at the time the txn
completes an execution step and makes
a lock request, and only one transition
is possible from the blocked state when
the txn is unblocked due to the release
of the requested lock. RPS, RPA, and
WDL methods allow a txn to be aborted
in the blocked state; that is, there are
two transitions from this state, and the

distribution of waiting time is required
for the analysis. This is expensive com-
putationally, as explained in Thomasian
[1995a]. We therefore assume that wait-
ing times are exponentially distributed.
The assumption that the txn abort pro-
cess is Poisson, which is also made in
analyzing the OCC method in Section
4.4, leads to a low-cost solution for the
semi-Markov chain model. Since the
distribution of the processing time of
txn steps has little effect on perfor-
mance, to simplify the analysis further
we assume that the processing times of
txn steps are exponentially distributed,
so that a Markov chain analysis is pos-
sible.

The state equilibrium equations for
the Markov chain can be solved easily to
obtain the steady-state probabilities pi,
0 # i # 2K [Kleinrock 1975]. The mean
number of visits to Si (vi) can be simi-
larly obtained by noting that v2K 5 1.
Given that hi denotes the mean holding
time at Si, then pi 5 vihi/¥j50

2K vjhj, 0 #
i # 2K. Note that the mean number of
txn aborts is v0 2 1.

Analysis of the RPS method with
fixed-size transactions. This analysis
is intended to illustrate a general solu-
tion method based on the progress made
by a single txn. The state transition
rates of the Markov chain according to
the RPS method are given in the follow-
ing (see Figure 2). Variables required

Figure 2. Markov chain for wait-depth-limited policies.

Concurrency Control • 99

ACM Computing Surveys, Vol. 30, No. 1, March 1998

for analyzing the Markov chain are de-
rived later.

(1) S2 j 3 S2 j12 with rate a2 j, 0 # j #
K 2 1 designates successful lock
requests, and S2K 3 S0 with rate
a2K 5 mK corresponds to the comple-
tion of a txn. The probability that a
txn T encountering a lock conflict at
S2 j is blocking another txn is given
by Qj. Let Pa (resp., Pb) denote the
probability of lock conflict with an
active (resp., blocked) txn, with Pc 5
Pa 1 Pb. We have a2 j 5 [(1 2 Pc) 1
Pb(1 2 Qj)]mj 5 (1 2 Pa 2 PbQj)mj,
0 # j # K 2 1. Pa, Pb, and Qj are
derived in the following.

(2) S2 j 3 S2 j11 with rate b2 j, 1 # j #
K 2 1 designates unsuccessful lock
requests leading to txn blocking. T
is blocked only if it is not blocking
any other txns, and hence b2 j 5
Pa(1 2 Qj)mj, 0 # j # K 2 1.

(3) S2 j 3 S0 with rate c2 j 5 PcQjmj,
1 # j # K 2 1 corresponds to txn
aborts.

(4) S2 j11 3 S2 j12 with rate d2 j11, 0 #
j # K 2 1. The waiting time for the
acquisition of a lock (due to comple-
tion or abort of the txn holding the
lock) is approximated by an expo-
nential distribution W(t) 5 1 2
e2nt, t $ 0, with n 5 1/W.

(5) S2 j11 3 S0 with rate e2 j11, 0 # j #
K designates the abort of T, which
occurs when T9, which is not block-
ing other txns, requests a lock held
by T. We assume that the process
according to which T is aborted at
S2 j11 is Poisson with rate vj (see
Eq. (3.4)).

The probability of lock conflict with ac-
tive (resp., blocked) txns is Pa . (M 2
1)L# a/D (resp., Pb . (M 2 1)Lb/D), where
L# a 5 ¥j51

K jp2 j (resp., L# b 5 ¥j51
K21jp2 j11)

is the mean number of locks held by
active (resp., blocked) txns. The fraction
of blocked txns in the system is given by
b(5 ¥j51

K p2 j21). As in the case of stan-
dard locking (see Section 2.1), the mean
number of active and blocked txns is
given by M# a 5 M(1 2 b) and M# b 5 Mb,

respectively. The mean number of locks
held per txn is L# 5 L# a 1 L# b and hence
Pc . (M 2 1)L# /D. The probability that
an active txn T at S2 j is blocking at
least one of the M# b blocked txns in the
system is approximated by

Qj 5 1 2 @1 2 j/~ML# a!#
M# b, 1 # j # K,

(3.1)

where j/(ML# a) is the probability that
another txn is blocked by the target txn
at S2 j (the denominator denotes the
mean number of locks held by active
txns).

The mean waiting time Wj due to a
lock conflict with an active txn at S2 j is
Wj 5 ¥l.2i

2K n9lhl. Visit ratios with re-
spect to S2 j are obtained as follows:
v92 j 5 1, v92i11 5 b2iv92i, and v92i12 5
(a2i 1 b2id2i11)v92i, j # i # K. This
takes into account lock acquisition by
txn completion or abort. The mean hold-
ing time in Sl is hl 5 si 5 1/mi, when
l 5 2i, j # i # K. The residual process-
ing time in S2 j equals the processing
time in that step, since the per-step
processing times are exponentially dis-
tributed [Kleinrock 1975]. The mean de-
lay in the blocked state Sl is the ex-
pected value of the minimum of two
exponential distributions hl 5 1/(vi 1
n) with l 5 2i 1 1, j # i # K 2 1
[Kleinrock 1975]. The mean waiting
time is given by

W 5 O
j51

K

qjWj , (3.2)

where qj is the probability of lock con-
flict with an active txn at S2 j. The prob-
ability qj equals the time-space product
of the number of locks held at S2 j and
their holding time: qj 5 jp2 j/H, where
H 5 ¥j51

K jp2 j is a normalization con-
stant. The rate of lock requests by the
other txns in the system is

l 5 S1 2
1

MDT~M! O
l50

K21

v2l~1 2 Ql!.

(3.3)

100 • A. Thomasian

ACM Computing Surveys, Vol. 30, No. 1, March 1998

The summation takes into account the
increase in the rate of requested locks
due to txn restarts and the fact that
lock conflicts due to txns that are block-
ing other txns do not have an effect,
since these txns are aborted upon lock
conflict.

The rate at which a txn at S2 j11 is
aborted is proportional to the number of
locks that it holds:

vj 5 jl/D, 0 # j # K 2 1. (3.4)

The mean txn response time is R(M) 5
¥j50

K v2 jsj 1 ¥j50
K21 v2 j11/(n 1 vj). Txn

throughput is given by T(M) 5 M/R(M)
or alternatively by T(M) 5 MmKp2K.
Some of the parameters required for the
analysis are not known a priori; hence
an iterative solution is required, which
tends to converge in a few cycles.

Validation with infinite resources
shows the analysis of the RPS method
to be quite accurate up to very high lock
contention levels, but to underestimate
peak throughput by 8%, which is par-
tially attributable to the fact that the
analysis does not take into account the
possibility of multiple txns being un-
blocked when another txn is aborted
[Thomasian 1995a].

Outline of the analysis of GW and NW
methods. In the case of the NW
method, there are only two transition
types: a2 j 5 mj(1 2 Pa), 0 # j # K 2 1
and c2 j21 5 mjPa, 0 # j # K. It can be
easily shown that p2 j 5 p0(1 2 Pa) j,
1 # j # K. Multiplying both sides of
this equation by M yields the mean
number of txns in different states, as
obtained by the analysis of flow dia-
grams in Tay et al. [1985b] and Tay
[1987]. The analysis in this case is tan-
tamount to solving a polynomial equa-
tion in q 5 1 2 Pa, which can be
derived from the last equation noting
that Pa . N# /D, where N# 5 M ¥j51

K jpj
is the mean number of locks held in the
system. The polynomial has a unique
root in the range (0,1) [Tay 1987].

In the case of GW there are three
transition types, provided that as in Tay

et al. [1985a] we ignore the effect of
deadlocks: a2 j 5 mj(1 2 Pc), 0 # j #
K 2 1, b2 j 5 mjPc, 0 # j # K, and d2 j21 5
n 5 1/W, 1 # j # K. The state equilib-
rium equations are given by p2 j21 5
(mPc/n)p2 j22, 1 # j # K and p2 j 5
p0 5 [1 1 K(1 1 mPc/n)]21, 1 # j # K.
Active states and blocked states have
equal probabilities, since the probability
of a txn encountering a lock conflict is
independent of its step and the possibil-
ity of abort to resolve deadlocks is ig-
nored. System performance in this case
depends on Pc and n 5 1/W. Multiple
levels of txn blocking need to be consid-
ered to estimate W in this case [Tay et
al. 1985a; Thomasian and Ryu 1991;
Thomasian 1993c].

Analysis of RPS with variable trans-
action sizes. The analysis of the fre-
quency-based model of the NW method
in Tay et al. [1985b] and Tay et al.
[1987] uses different transition points
from a single flow-diagram to denote
txn completions. This analysis does not
ensure conservation of txn class fre-
quencies; that is, the fraction of txns
completed by the system differs from
the original frequencies in a manner
favoring shorter txns, which have a
higher probability of success than
longer txns. The analysis for a single
txn class can be extended to multiple
classes with the frequency-based model
by using a separate Markov chain per
class in the analysis, as is done in Tho-
masian [1992, 1995a]. A system with a
given number of txns in two classes is
analyzed by a simple extension of the
analysis for a single txn class in Tay et
al. [1985b] and Tay [1987].

4. TWO-PHASE PROCESSING METHODS
AND ACCESS INVARIANCE

The first phase of txn execution may
lead to its commit, but even if it is not
successful its execution to completion
prefetches data from disk for the second
execution phase of the txn. Two-phase
processing methods increase the
chances of successfully re-executing

Concurrency Control • 101

ACM Computing Surveys, Vol. 30, No. 1, March 1998

txns, if necessary, by allowing a shorter
processing time for txns in the second
phase and a lower effective degree of
txn concurrency in this and further
phases, provided that the database
buffer is large enough to retain pages
accessed by txns and access invariance
prevails [Franaszek et al. 1992]. Access
invariance can be at the logical or phys-
ical level. In the first case a txn accesses
the same logical objects (e.g., records)
and in the second case the same physi-
cal objects (e.g., blocks) are accessed
upon re-execution [Franaszek et al.
1990, 1992]. OCC methods are well
suited for two-phase processing, as is
shown in the following discussion. Mul-
tiphase processing is possible with
OCC, since txn completion in the second
execution phase is not guaranteed.

The restart-oriented methods dis-
cussed in Section 3 also benefit from
access invariance to some degree; that
is, a restarted txn can usually access
pages from the database buffer result-
ing from a txn’s prior execution (up to
the point of the txn’s abort), but unlike
two-phase processing no attempt is
made to continue the execution of an
aborted txn.

Section 4.1 is a brief introduction to
OCC and its validation options. Mecha-
nisms for two-phase txn processing are
described in Section 4.2, followed in Sec-
tion 4.3 by a description of txn schedul-
ing methods and their relative perfor-
mance with respect to each other and
other methods. In Section 4.4 we outline
analytic solution methods for OCC.

4.1 Optimistic Concurrency Control

Optimistic CC (OCC) is a major alterna-
tive to locking [Kung and Robinson
1981; Robinson 1982a], but is less suit-
able than locking in meeting the re-
quirements of DBMSs for high-perfor-
mance txn processing [Haerder 1984;
Mohan 1992]. However, there have been
many prototyping efforts (see Thoma-
sian and Rahm [1990] for a partial list),
numerous proposals for improved algo-
rithms [Menasce and Nakanishi 1982;

Robinson 1984; Haerder 1984; Fra-
naszek et al. 1992], and several analy-
ses of OCC performance [Menasce and
Nakanishi 1982; Moenkeberg and Wei-
kum 1985; Ryu and Thomasian 1987].

The execution of a txn with OCC com-
prises the following phases [Kung and
Robinson 1981].

(1) During the read phase txns access
database objects, possibly updating
a subset of these objects. A “clean”
or committed copy of requested ob-
jects is made available to txns from
the database buffer in this phase,
and dirty copies of the same objects
may exist in the private workspace
of other txns. Reciprocally, the up-
dates (prewrites) of txns during the
read phase do not affect the data-
base buffer, but only the txn’s pri-
vate workspace.

(2) The validation phase is required to
ensure serializability by checking
for data conflicts as described in the
following. Data conflicts are re-
solved by aborting txns that fail
their validation.

(3) A read-only txn is considered com-
pleted after a successful validation,
and a txn that has updated some
objects during the write phase ini-
tiates commit processing by writing
the log records onto disk and then
externalizes updated objects to the
database buffer.

The validation method described in
Kung and Robinson [1981] has the
shortcoming of unnecessarily aborting
txns, which is rectified in Robinson
[1984]. The implementation described
in Menasce and Nakanishi [1982] and
Ryu and Thomasian [1987] requires the
association with “active” database ob-
jects of a timestamp t(O) that indicates
the time at which object O was last
updated. Let t(O, T) denote the time
that object O was read by tnx T. The
following two rules are required for the
correct execution of a txn T.

102 • A. Thomasian

ACM Computing Surveys, Vol. 30, No. 1, March 1998

Read O. Copy object O into T’s local
workspace. In case there is no time-
stamp associated with an object, its
timestamp is set to the current time
t(O) 5 Clock. Also set t(O, t) 5 Clock.

Validate T. For all objects O accessed
by the txn, check in a critical section
whether t(O, T) $ t(O):

—If the condition is not true for any
object, then abort T.

—Otherwise commit T and external-
ize all objects O in the write set
after setting t(O) 5 Clock.

Validation may be carried out in a criti-
cal section serializing the validation
process, which may become a bottleneck
at high txn volumes. Performance can
be improved by acquiring exclusive
locks on all accessed objects by an
atomic action (static locking with strict
FCFS policy; see Section 2.3).

The OCC method can append access
entries (similarly to locks in standard
locking) to linked lists associated with
hash classes identifying accessed ob-
jects. Access entries are used at txn
commit time in identifying conflicted
txns and marking them as “injured.”
According to the kill or broadcast com-
mit method, a txn is aborted “right
away,” but in fact txn abort is usually
deferred until its next interaction with
the CC manager. According to the die or
silent commit option, an injured txn is
aborted only at the end of its execution
[Robinson 1984; Ryu and Thomasian
1987]. No validation is required at the
completion of the read phase when a txn
is already injured; its access entries are
deleted and the txn is aborted. Other-
wise

(1) The relevant access entries are
locked by an atomic action. The txn
is simply delayed if there is a lock
conflict until the required access en-
tries are unlocked.

(2) The access entries of objects up-
dated by the txn are used to injure
txns that have accessed the same
objects.

(3) The txn writes its log records, exter-
nalizes updated objects, and deletes
access entries.

Aborted txns can be restarted right
away, since the conflicting txns have
committed and left the system; that is,
no further conflicts will occur.

Both OCC and 2PL are inefficient
when txns update database hot-spots.
Locking has been extended with field
calls in IMS FastPath to deal with ag-
gregate variables constituting hot-spots
[Gray and Reuter 1992]. The similarity
between OCC and field calls considered
in Gray and Reuter [1992] is repeated
here in the context of an inventory con-
trol application [O’Neil 1987]. A txn
first tests that enough items are avail-
able (e.g., QOH $ Request_size) to sat-
isfy the Request_size for a certain order
and again before txn commit. If the first
(resp., second) test fails, then the txn
follows an alternate path (resp., is
aborted). This method is similar to OCC
in that the object is not updated after
the first test, but only after the second
test is successful. Only one out of M
txns accessing the QOH succeeds with
OCC, whereas all M txns will succeed
with the field-calls approach, as long as
the current value of QOH exceeds the
sum of Request_sizes.

4.2 Mechanisms Used by Two-Phase
Processing Methods

In this section we describe mechanisms
associated with txn scheduling methods
that take advantage of access invari-
ance.

(1) Transaction phases. A txn phase is
an instance of its execution. The
first execution phase of a txn may
lead to txn commit, but even when it
is unsuccessful (e.g., the txn fails its
validation), it serves the role of
priming the database buffer. We
only distinguish among the execu-
tion in the first phase, which usu-
ally requires disk I/O, and further
phases, which do not (provided ac-
cess invariance prevails).

Concurrency Control • 103

ACM Computing Surveys, Vol. 30, No. 1, March 1998

(2) Running modes. We consider three
running modes:
—Virtual Execution (VE). This exe-

cution mode is intended for deter-
mining the script of a txn (i.e., the
set of objects accessed by the txn).
Txn type and the input data to the
txn provide some information
about the future behavior of a txn,
but this also depends on the state
of the database. VE can be used to
predict the data blocks accessed
by a txn with some degree of cer-
tainty, by running a txn without
invoking CC. The “pipelined” txn
processing scheme in Reuter
[1985] is based on VE in the first
phase and serialized execution
(SE), which may be considered a
degenerate form of CC, in the sec-
ond phase. One thread in a mul-
tithreaded experimental txn-pro-
cessing system executes txns in
SE mode, whereas other threads
are used for execution in VE mode
[Li and Naughton 1988].
—Optimistic die and kill methods

are applicable.
—Locking. DL (dynamic locking)

and SL (static locking) or lock
preclaiming are relevant for the
second phase (see Section 4.3),
since they do not introduce any
txn restarts (this is almost true
in the case of DL), whereas re-
start-oriented locking methods,
such as RP (running priority),
are appropriate for the first
phase.

An “aborted” txn releases its locks. If
the txn is in its second phase it begins
restart waiting, and first-phase txns
continue their execution in the weaker
VE or optimistic modes. In the latter
case objects accessed/updated by “abort-
ed” txns are copied into the txn’s private
workspace.
Switching from a weaker to a stronger
mode, such as VE 3 OCC, VE 3 lock-
ing, or OCC 3 locking, is more difficult.
Consider switching an uninjured txn

running in optimistic mode to locking
mode, as considered in Franaszek et al.
[1991a] (see Section 4.3). Upgrading the
access entries of a txn to locks may
result in other txns being injured and
txn updates being externalized at this
point.

(3) Locking priorities. A two-phase pro-
cessing method should specify how
data conflicts are resolved among
txns in the same and different
phases.
Locks are given a higher priority
than access entries, since: (i) txns in
optimistic mode are much more sus-
ceptible to aborts than txns with
standard locking; and (ii) the opti-
mistic mode is used in the first
phase and is followed by the locking
mode in further phases. We next
consider lock conflicts.
—No locking priorities. Lock re-

quests are handled in FCFS order,
regardless of the phase of the txn
making the lock request.

—Nonpreemptive locking priorities.
Lock requests by second-phase
txns are given a higher priority
than first-phase txns.

—Preemptive locking priorities. Lock
requests by txns in the second or
further phases are given preemp-
tive priority with respect to locks
held by first-phase txns. A txn
that loses a lock in the first phase
may continue running in virtual
execution mode.

(4) Transaction spawning. In addition
to simply blocking a txn when it
encounters a lock conflict, it is pos-
sible to spawn a subtxn [Franaszek
et al. 1992]. The subtxn that is pro-
vided with a private workspace runs
in VE mode prefetching data re-
quired for the main txn’s execution.

(5) Checkpointing at the transaction
level. This type of checkpointing can
be used to reduce the wasted pro-
cessing caused by txn aborts. Check-
pointing in OCC is discussed in Sec-
tion 4.3.

104 • A. Thomasian

ACM Computing Surveys, Vol. 30, No. 1, March 1998

(6) CPU priorities. Txns in phase two
have preemptive CPU priority with
respect to txns in phase one, be-
cause it is important to minimize
the holding time for locks and access
entries in this phase (see Section
4.3). Note that the execution time of
txns in the first phase is dominated
by disk I/O time and little is lost by
having a lower CPU priority level in
this phase. A txn in the first phase
will run at an even lower priority
level after it is conflicted; for exam-
ple, the priority level of a txn run-
ning in optimistic die mode is low-
ered after a conflict.

Integrated CC and CPU scheduling
[Franaszek et al. 1991b]. This para-
digm is based on matching the number
of executing txns with the availability of
hardware resources in the system (e.g.,
CPU utilization). For example, txns in
the system are prioritized based on
whether they are runnable in the fol-
lowing categories: (1) standard locking;
(2) RP, that is, txns not runnable by
GW, but runnable with RP, for example,
txn TC in the WFG TC 3 TB 3 TA; (3)
the optimistic method, where all txns
are runnable. Txns in category (1) run
at priority level i (1 is the highest prior-
ity level). When the CPU is underuti-
lized because there are no txns such as
TA to run, the scheduler will first run
txns such as TC. This seems to require
the abort of TB, but this is not required
if a private workspace paradigm is
adopted, which facilitates running in
optimistic mode as well. If the CPU is
still not fully utilized after running txns
such as TC, the scheduler will run all
txns, including txns such as TB. Con-
versely, more conservative running op-
tions are adopted when the CPU is fully
utilized. Further investigations are re-
quired to ascertain the viability of this
method.

4.3 Description and Performance of Two-
Phase Processing Methods

In this section we describe txn schedul-
ing methods utilizing the mechanisms

in Section 4.2. VE and the optimistic die
method are suitable for execution in the
first phase, because they serve the pur-
pose of prefetching data for the second
execution phase. Lock or data conten-
tion is less of a problem in the second
phase, since the mean number of txns
executing in this phase, which deter-
mines the effective degree of txn concur-
rency, tends to be an order of magnitude
smaller than the number of txns in the
first phase. Hence the method used in
the second phase has little effect on
performance. However, to reduce the
variability of txn response times, lock-
ing methods should be used in prefer-
ence to OCC methods, since locking
(with lock preclaiming and preemptive
lock priorities for second-phase txns
with respect to second-phase txns) dis-
allows repeated txn aborts, whereas
OCC allows restarts of second-phase
txns by first-phase txns.

A list of viable two-phase processing
methods is specified as “p1/p2-p29 . . . ,”
where p1 is the CC method used in
phase 1 and p2,p29, . . . are the CC
methods used in phase 2. In case a txn
is aborted in phase 2, it is usually re-
executed with the same CC method, but
this is not always the case, for example,
when access invariance is violated [Tho-
masian and Ryu 1990; Thomasian
1997b]. Representative two-phase pro-
cessing methods are as follows:

(1) VE/SE-DL-SL-optimistic kill. SE
runs txns serially in the second
phase, whereas the other methods
allow concurrent txn processing in
this phase.

(2) Optimistic die/kill. The optimistic
die method in the first phase serves
the purpose of data prefetching,
even though the txn has been con-
flicted, but its repeated use in fur-
ther phases is not justifiable, since
it no longer serves this purpose. Op-
timistic kill, on the other hand, min-
imizes wasted processing in latter
phases.

(3) Optimistic kill/kill. The optimistic
kill method is appropriate for the

Concurrency Control • 105

ACM Computing Surveys, Vol. 30, No. 1, March 1998

first phase in the following cases: (i)
txns are not access-invariant; (ii)
the database is main-storage-resi-
dent or few disk accesses are re-
quired due to a high buffer hit ratio;
and (iii) wasted processing cannot
be tolerated due to limited process-
ing capacity. The preceding com-
ments about txn validation priori-
ties also apply in this case.

(4) Optimistic die/DL-SL. These are ex-
amples of hybrid CC methods, which
have the advantage with respect to
optimistic die/kill that second-phase
txns have priority with respect to
first-phase txns; that is, lock re-
quests conflicting with access en-
tries result in a fatal injury to the
corresponding first-phase txn, un-
less the txn making the lock request
is aborted later to resolve a dead-
lock. Lock preclaiming in the second
phase according to SL ensures that
repeated aborts, which are inherent
in OCC methods, are alleviated
[Thomasian and Rahm 1990; Tho-
masian 1997b] (the advantage of
this method is noted in Lynch et al.
[1994]).

(5) RPA_VE/DL-SL. A txn in the first
phase may be aborted due to the
RPA (asymmetric RP) paradigm or
due to lock preemption by a second-
phase txn, since lock requests by
txns in the second phase have a
preemptive priority with respect to
locks held by first-phase txns. A
first-phase txn conflicted in this
manner copies objects protected by
its locks into a private workspace,
releases its locks, and rather than
being aborted, continues running in
VE mode. A first-phase txn (running
in RPA mode) is blocked when it has
a lock-conflict with an active or
blocked second-phase txn, because
lock requests by second-phase txns
have a higher priority than first-
phase txns.
We use this context to elaborate on
txn spawning at this point. There
are two possibilities when a con-

flicted txn (say T) spawns a subtxn
that starts running in VE mode.
—T is unblocked before the spawned

subtxn completes its execution.
There are two choices: abort the
spawned subtxn or run the
spawned subtxn to the end, so
that no spawning will be required
if the txn is blocked again. This is
so provided access invariance pre-
vails.

—The spawned subtxn completes
while T is still blocked. In this
case T is switched from the first to
the second phase. In case T is
blocked by a first-phase txn and
provided that lock requests by sec-
ond-phase txns have a preemptive
priority with respect to first-phase
txns, then the first-phase txn is
aborted releasing its locks. If T is
blocked by a second-phase txn, it
will remain blocked until this txn
completes.

Simulation results indicate that txn
spawning does not improve perfor-
mance with respect to RP-VE/DL for
the range of modeling parameters
considered [Franaszek et al. 1992].
Txn spawning has been adopted for
real-time txn processing in
Bestavros and Braoudakis [1995].

The branching txn paradigm [Burger
and Thanisen 1992] in the context of
multiversion locking provides for two
instances of txn execution based on the
old and new value of the locked vari-
able. “Branch-restriction policies” are
required, since otherwise the number of
txns in the system grows exponentially,
leading to thrashing due to resource
exhaustion.

Polyvalues provide a similar capabil-
ity for coping with failures in a distrib-
uted database environment through a
bookkeeping tool described in Montgom-
ery [1978]. With two pending txns T1
and T2 there are three polyvalues for
the bank account balance (Binit 2 W1 2
W2, T1, T2), (Binit 2 W1, T1 ¬ T2), and
(Binit 2 W2, ¬ T1, T2), where Binit
stands for initial bank balance, W for

106 • A. Thomasian

ACM Computing Surveys, Vol. 30, No. 1, March 1998

withdrawal, and Ti (resp., ¬Ti) indi-
cates the commit (resp., abort) of txn Ti.
Thus items remaining locked due to the
failure of a commit coordinator can be
accessed conditionally by other txns.
Note that no branching is required by
txns, which just require the balance to
exceed a certain value. The escrow par-
adigm generalizes and formalizes poly-
values in the case of aggregate variables
[O’Neil 1986].

The issue of accessing different ver-
sions of an object arises in the context of
hybrid CC methods as well [Thomasian
and Rahm 1990; Thomasian 1997b]. The
alternatives are

(1) access committed data;
(2) access exclusively locked but uncom-

mitted objects from the database
buffer or the private workspace.
Such objects may be modified again
(i.e., do not necessarily reflect the
version to be committed); and

(3) block access until all exclusive locks
held on the object are released.

Simulation results show little difference
between the performance attained by
the first and third methods in the con-
text of an optimistic die/SL hybrid
method [Thomasian 1997b].

Performance comparison of two-phase
processing methods. We summarize
the simulation results in Franaszek et
al. [1992], which considers a multipro-
cessor with a large database buffer. The
load on the disks is assumed to be bal-
anced and the number of disks is chosen
such that all disks have a 20% utiliza-
tion when the processors are 75% uti-
lized. Disk utilization is based on a
buffer hit ratio of 62.5% when all txns
commit at the end of their first execu-
tion phase. The database buffer is large
enough to ensure that txns running in
their second phase can access data re-
quested in the first phase from the
buffer. Each txn requests 16 locks on
the average, of which 25% are to hot-
spots. The comparison of CC methods is
based on their ETC (T(M), M $ 1), that

is, which CC method attains the maxi-
mum effective throughput.

(1) The VE/DL-SL method provides a
lower bound to the ETC attainable
by two-phase processing methods.
There is no difference between the
performance attained by using the
DL and SL methods in the second
phase, since there are few txns in
this phase at any time and there is
little lock contention. SL is prefera-
ble to DL in that it prevents txn
aborts due to deadlocks. In a high-
data-contention system with ade-
quate hardware resources, VE/DL
outperforms standard locking,
which also follows from the numeri-
cal results obtained from the analy-
sis in Thomasian and Ryu [1991].

(2) The optimistic die/kill method out-
performs the optimistic kill/kill
method in a system with adequate
hardware resources and access in-
variance, but this is not so in a
system with limited hardware re-
sources [Franaszek et al. 1990,
1992]. This is because executing
txns to the end ensures their suc-
cessful re-execution if access invari-
ance prevails, since txn execution
time without disk I/O tends to be
very short. The optimistic kill/kill
method also exhibits the prefetching
effect up to the point of txn abort,
while wasting less processing.

(3) The optimistic die/kill method out-
performs the RP_VE/SL-DL method
in high-contention systems with ad-
equate hardware resources and vice
versa. The main reason is that the
RP_VE running mode results in less
wasted processing in the first phase
than the OCC die policy.

One observation about two-phase pro-
cessing methods is that their perfor-
mance follows the same pattern at very
high lock-contention levels, which is de-
termined by the bottleneck hardware
resource. This is because very few txns
can commit successfully at the end of
their first execution phase and hence

Concurrency Control • 107

ACM Computing Surveys, Vol. 30, No. 1, March 1998

both phases of almost all txns are exe-
cuted. Two-phase processing methods
may outperform the WDL method in
high-data-contention systems with ade-
quate hardware resources [Franaszek
1992]. However, this is not always so;
for example, the WDL method outper-
forms the optimistic die/SL method in a
system with a main storage database
(no prefetching required) and a large
number of processors [Franaszek 1992],
but is outperformed by the optimistic
kill method in this case.

An adaptive method to improve the
performance of two-phase processing
methods is described in Franaszek
[1991a]. Txns are initially run in opti-
mistic die/kill mode and once the bottle-
neck resource (e.g., the processors) be-
comes fully utilized (due to increased
load) a more conservative method such
as RPA is invoked. Further saturation
of CPU utilization may lead to the adap-
tive variant of RPA described in Section
3.1. Simulation results in Franaszek
[1991a] show that the improvement in
performance due to adaptive methods
can be significant.

Checkpointing in optimistic concur-
rency control. The effect of checkpoints
or volatile savepoints [Gray and Reuter
1992]) by individual txns are investi-
gated in the context of the optimistic
kill method in Thomasian [1995b].
Checkpointing is appropriate for OCC
since: (i) it solely uses aborts to resolve
data conflicts and (ii) checkpointing is
facilitated by the private workspace
paradigm (i.e., the updates of aborted
txns need not be undone). There is a
tradeoff between checkpointing over-
head and the saved processing due to
partial rollbacks, which allows a txn to
resume execution from the checkpoint
preceding access to the data item to be
released.

Numerical results obtained from an
analytic solution for the optimistic kill
method with checkpointing show that it
is not effective if database objects are
accessed uniformly, even if checkpoint-
ing overhead is low and a checkpoint is

taken before each data access [Thoma-
sian 1995b]. This is because the proba-
bility with which a data object is con-
flicted is proportional to the length of
time since it was accessed, so that ob-
jects accessed at the beginning of txn
execution are more susceptible to con-
flict than those accessed towards its
completion. In the case where one
checkpoint is to be taken, numerical
results show that the mean response
time and wasted processing are mini-
mized if the checkpoint is taken after 1⁄3
of objects required by a txn are accessed
(this number may not be known a pri-
ori), which implies that only 1⁄3 of the
txn’s processing is saved. Performance
can be improved if accesses to hot-spots
are deferred to the end of txn execution
and a checkpoint is taken prior to these
accesses, because objects held for a
short duration of time are less vulnera-
ble to conflicts and most of txn’s pro-
cessing is preserved if a data conflict
occurs. This may be accomplished by
rewriting the txn program, but this
tends to be very costly.

Improving the performance of optimis-
tic concurrency control. The distinction
backward-oriented and forward-ori-
ented validation in OCC is made in
Haerder [1984], where the former corre-
sponds to the validation method de-
scribed in Section 4.1. In forward-ori-
ented OCC a txn checks whether its
write set conflicts with the read sets of
txns in their read phase and the txn
commits and “the write-sets are only
propagated if they do not conflict with
current read sets of all other active
txns.” Thus forward-oriented validation
in OCC provides opportunities for per-
formance improvement as follows.

(1) Defer txn commit when there is a
conflict. A case when deferring txn
validation results in a potentially
improved performance is as follows.
An object modified by the validated
txn has been read by another txn.
Deferring the introduction of the
modified object into the database al-

108 • A. Thomasian

ACM Computing Surveys, Vol. 30, No. 1, March 1998

lows the other txn to validate suc-
cessfully. Consider T1, which is
ready to commit, having modified
object A to A9. T2, which is in its
read phase, may have read A and
used it to modify B to B9. Deferring
T1’s commit to after T2’s commit
results in the serialization order
T1 3 T2.

(2) A validating txn that conflicts with
other txns may commit suicide, al-
though it has not been injured ear-
lier, since this action is expected to
improve overall performance (e.g.,
by reducing wasted processing).

Deferring the commit of a txn makes
it vulnerable to conflicts with other
txns. In addition, a txn’s suicide to save
another txn may be in vain, since the
conflicting txn may be aborted after all.
A dependency graph can be constructed
among a set of txns to dynamically de-
termine a commit ordering (different
from the order in which txn executions
are completed), which may improve per-
formance with respect to basic OCC.
Similarly to serialization graph testing
[Bernstein et al. 1987], this is at the
cost of added space and complexity. The
validation scheme based on “intervals of
timestamps” is intended to improve the
success rate in a distributed database
environment [Boksenbaum et al. 1987].

4.4 Performance Analysis of Optimistic
Concurrency Control Methods

Analytic modeling methods for OCC and
insights gained from previous studies
are outlined in this section. The analy-
ses of OCC methods are based on Mena-
sce and Nakanishi [1982], Moenkeberg
and Weikum [1985], and Ryu and Tho-
masian [1987].

An Analytic solution for optimistic
concurrency control. The first paper
dealing with the analysis of OCC con-
siders the die method with static data
access; that is, all objects required by a
txn are accessed at the beginning of txn
execution [Menasce and Nakanishi
1982]. We simplify the discussion by

considering a closed system with M
txns.

The probability of a data conflict in a
database with size D when the commit-
ting (resp., conflicting) txn is updating
m (resp., accessing n) data objects,
which are accessed with uniform proba-
bilities, is given by

f~n, m! 5 1 2 S D 2 n
m DY S D

m D . 1

2 ~1 2 n/D!m . nm/D.

In the case of fixed-size txns with size k,
where all k accessed objects are up-
dated, c 5 f(k, k) . k2/D [Franaszek
et al. 1992].

A key observation from the preceding
equation (and the simple analysis in
Franaszek et al. [1992]) is that the
probability of txn abort increases with
the square of its size, which is referred
to as the quadratic effect in Franaszek
et al. [1992]. Thus when txn steps have
equal processing times, the probability
of conflict with an optimistic die (resp.,
kill) method increases proportionally to
k2/D (resp., k2/(2D)). It is observed from
numerical results in Ryu and Thoma-
sian [1987] that in a system with vari-
able txn sizes the wasted processing is
dominated by the largest txn sizes.

The system is represented by a
Markov-chain model whose states (Sj)
specify the number of txns (j) that can
complete successfully. The transition
rates of the Markov chain are obtained
by solving the QNM of the underlying
computer system to obtain the STC
t(M), M $ 1. The state transitions are
affected by the probability that a com-
mitting txn at Sj conflicts with l txns
from the remaining j 2 1 txns, which is
given by

S j 2 1
l Dcl~1 2 c!j212l.

The analysis in Menasce and Nakan-
ishi [1982] underestimates the mean re-
sponse times attained by OCC [Morris
and Wong 1985] because OCC favors

Concurrency Control • 109

ACM Computing Surveys, Vol. 30, No. 1, March 1998

the successful validation of txns with
shorter processing times. The process-
ing times of restarted txns, which are
assumed to be exponentially distributed
in the Markov-chain analysis, are resa-
mpled when a txn is restarted. The
mean execution times of txns completed
by the system tends to be less than the
intended average. It can be argued,
however, that the processing times of
txn phases vary from one execution to
another and that txns with shorter exe-
cution times have a higher probability
of success.

We next outline the analysis in Mor-
ris and Wong [1985]. Txn processing
times are postulated to be exponentially
distributed (with mean 1/m) and the ef-
fect of hardware resource contention is
specified by the processing rate s(M)
such that txns proceed with rate ms(M).
Let u denote the system efficiency or
the fraction of time the system spends
doing useful work. Then the txn comple-
tion rate is T(M) 5 ums(M). A key
assumption used in the analysis is that
running txns observe the commits of
other txns as a Poisson process with
rate l 5 (1 2 1/M)ums(M). The rate at
which a txn is conflicted is then g 5 lc.
The probability of a data conflict for a
txn with processing time x is q 5 1 2
e2gxM/s(M). Provided that the execution
time of a txn is not resampled (it re-
mains equal to x), the number of its
executions in the system follows a geo-
metric distribution Pj 5 q(1 2 q)j21,
j $ 1 with a mean J# (x) 5 1/q 5 egxM/s(M).
The analysis in Menasce and Nakanishi
[1992] assumes that the number of txn
executions (J̃) is independent of txn ex-
ecution time (X̃) and hence E[J̃ X̃] 5 J#
X# .

The system efficiency can be specified
as the ratio of the mean execution time
of a txn and its residence time in the
system:

u 5
E@ xM/s~M!#

E@ xMegxM/s~M!/s~M!#

5
*0

` xe2m xdx

*0
` xe2~m2gM/s~M!! xdx

5 @1 2 ~M 2 1!cu!]2.

gM/s(M) , m is required for the denom-
inator to converge. Solving the qua-
dratic equation yields one acceptable
root: u 5 (1 1 2a 2 =1 1 4a)/4a2 .
1 2 2a, where a 5 (M 2 1)c is small,
such that higher terms in expanding
(1 1 4a)1/2 can be ignored.

This study similarly to Menasce and
Nakanishi [1982] considers the relative
performance of SL and the optimistic
die method. SL (with the FCFS with
skip option; see Section 2.3) outper-
forms the optimistic die method,
whereas the more efficient optimistic
kill method (with static data access) has
a performance indistinguishable from
SL in a system with infinite resources
[Thomasian and Ryu 1986], where the
wasted processing time due to txn re-
starts does not affect the processing
time of other txns.

These analyses are extended in sev-
eral directions in Ryu and Thomasian
[1987]. Numerical results show that the
txn-processing-time distribution affects
the overall performance. The analysis of
the kill method with exponential pro-
cessing times yields u 5 (1 1 a)21 .
1 2 a, which indicates that the die
method is twice as inefficient as the kill
method. The analysis of OCC with dy-
namic (on demand) object accesses takes
into account the fact that the conflict
rate varies according to the number of
data objects that have been accessed.
The analysis of a system with multiple
txn classes, where class is determined
by txn size, considers each class sepa-
rately to ensure that the fraction of txns
in the stream of completed txns is the
same as in the arrival stream (see Sec-
tion 3.3). The analysis can be extended
to take into account the variability in
txn processing times across executions
(e.g., due to the prefetching effect). Also,
different methods can be modeled for
different phases (e.g., optimistic die in

110 • A. Thomasian

ACM Computing Surveys, Vol. 30, No. 1, March 1998

the first phase and optimistic kill or
locking in the second phase).

5. CONCLUSIONS

The performance of an abstract stan-
dard locking model is analyzed in this
article to provide an understanding of
factors leading to its performance deg-
radation. Restart-oriented locking
methods relieve lock contention by se-
lectively aborting txns, and two-phase
processing methods reduce the data con-
tention level in systems with access in-
variance by shortening the holding time
of locks or access entries by prefetching
the data required for txn execution in
the second phase, if it is required. We
summarize the conclusions of previous
simulation and analytic studies regard-
ing the relative performance of CC
methods and survey methods applicable
to the analysis of standard locking, re-
start-oriented locking methods, and
OCC.

Conclusions based on simulation and
analytic studies regarding the relative
performance of CC methods can be sum-
marized as follows.

(1) Standard locking is desirable in low-
lock-contention environments, since
it introduces a minimal amount of
extra processing by aborting txns
only to resolve deadlocks. The level
of lock contention is expected to be
low in relational DBMSs fine-tuned
for txn processing applications [Mo-
han et al. 1992a].

(2) Given that there are no robust load-
control methods to prevent thrash-
ing, especially in environments with
varying workloads, restart-oriented
methods such as the WDL method
with restart-waiting provide an
easy-to-implement solution to this
problem. In fact, simulation results
show that WDL attains a much
higher txn throughput than stan-
dard locking and most other meth-
ods in a high-lock-contention envi-
ronment.

(3) Two-phase processing methods are
beneficial in systems with longer
txn response times due to disk I/O
or remote accesses, resulting in
higher degrees of txn concurrency
and hence higher data contention.
Simulation results show that two-
phase methods result in signifi-
cantly improved performance with
respect to standard locking, as well
as restart-oriented locking methods
such as WDL, provided adequate
hardware resources are available.
Specialized software can be used to
reduce the overhead of executing
txns in the second phase [Reuter
1985]. In addition, provisions need
to be made to reduce the overhead of
undoing the updates of aborted txns,
which also applies to restart-ori-
ented locking methods.

Key insights derived from analytic
and simulation studies are summarized
as follows.

(1) The single metric a (defined in Sec-
tion 2.2) uniquely determines the
lock-contention level in a standard
locking system with the homoge-
neous txn access model and identi-
cal per-step processing times. The
system thrashes beyond the critical
value a* 5 0.226, which is just be-
yond the point where the maximum
throughput in a system with infinite
resources is attained. The mean
number of active txns (M# a) is maxi-
mized at the point where 30% of
txns are blocked (b . 0.3), which
holds for various txn size distribu-
tions and txns with different per-
step processing times [Thomasian
1993].
In a system with finite resources the
maximum throughput is determined
by the bottleneck resource (see Sec-
tion 1.3), which is usually at a rela-
tively low txn-concurrency level re-
sulting in a low lock-contention
level.

(2) Factors leading to thrashing are (i)
a sudden increase in the number of

Concurrency Control • 111

ACM Computing Surveys, Vol. 30, No. 1, March 1998

activated txns; (ii) although the
limit on the degree of txn concur-
rency to prevent thrashing is not
exceeded, an undesirable composi-
tion of txns is activated (e.g., all
activated txns are long); and (iii)
there is a temporary increase in the
number of accesses to hot-spots.

(3) For txns of size k and identical per-
step processing times, the probabil-
ity of lock conflict (Pc) (resp., the
probability of deadlock per txn
(PD)), is proportional to k2 (resp.,
k4) [Gray and Reuter 1992]. For
txns with a variable number of lock
requests, Pc depends on the second
moment of requested locks (see Eq.
(2.8) for the mean number of locks
held per txn) and PD depends on the
third moment of txn size [Thoma-
sian and Ryu 1991]. Thus the vari-
ability of txn size has a major effect
on the lock-contention level.

(4) The mean waiting time for a lock
held by an active txn (W1) is one
third of txn’s mean residence time,
provided that txns have a fixed size
and locks are requested uniformly
over its residence time (see Eq.
(3.5)). The mean waiting time per
lock request (W) is a weighted sum
of the probability of being blocked at
level i (Pb(i)) and the associated
mean waiting time (Wi). It follows
from Eq. (2.10) that W . 1.8W1 at
the point where the mean number of
active txns (M# a) is maximized at
b 5 0.3.
In the case of variable-size txns with
identical steps, W1 is proportional to
the third moment of the number of
requested locks. It follows that the
variability of txn size has a major
effect on the performance degrada-
tion due to lock contention in this
case.

(5) When the per-step processing times
are different, in addition to a, the
fraction of lock conflicts with
blocked txns (r) is a useful measure
of lock contention in standard lock-
ing. Experimentation shows that as

the level of lock contention is varied
0.2 # r # 0.3 [Thomasian 1996b],
which is consistent with the conflict-
ratio metric equal to (1 2 r)21

[Moenkeberg and Weikum 1992].
Similarly to txns with identical per-
step processing times, M# a in this
case is also maximized at b . 0.3.

(6) For the heterogeneous database-ac-
cess model r was observed to vary
over a wider range than for the ho-
mogeneous database-access model.
Although concurring with experi-
mental results in Weikum et al.
[1994], the wider range of values for
r makes it less useful for load con-
trol.

(7) Restart-oriented locking methods
reduce the level of lock contention at
the cost of additional processing. In
a lock-contention-bound system sig-
nificant increases in the maximum
throughput attainable by the system
are possible. The WDL [Franaszek
et al. 1992] and MWDL [Thomasian
1992; 1997] methods outperform
RPS; because they cause less wasted
processing than RPS. This is accom-
plished through heuristics that take
into account txn progress. The RPA
method can outperform both WDL
and MWDL methods in a system
with limited hardware resources be-
cause it results in less wasted pro-
cessing than both of the preceding
methods and RPS.
Adaptive methods that vary the
wait depth and breadth to maximize
CPU utilization, without saturating
it, tend to improve system perfor-
mance.

(8) Optimistic CC methods are suscepti-
ble to abort according to a quadratic
effect; that is, the probability of an
unsuccessful validation increases as
the square of txn size [Franaszek et
al. 1992]. Numerical results based
on the performance analysis in Ryu
and Thomasian [1987] show that in
a system with variable txn sizes
most of the wasted processing is due
to the larger txn sizes.

112 • A. Thomasian

ACM Computing Surveys, Vol. 30, No. 1, March 1998

(9) Two-phase txn-processing methods
reduce the effective level of txn con-
currency to attain higher txn
throughputs. Thus even if the first
execution phase of a txn is unsuc-
cessful, it has the beneficial effect of
prefetching the data from disk,
which can be used by the second
execution phase provided access in-
variance prevails.

There has been little work on analyz-
ing the performance of txn processing
systems taking into account lock-con-
tention effects. This is due to the diffi-
culty of characterizing txn processing
systems from the lock-contention view-
point, rather than the inability to de-
velop appropriate methods for perfor-
mance evaluation (a simulation study
can be used when analysis is not possi-
ble). The locking analysis in Thomasian
[1996b] (see Section 2.5), with appropri-
ate extensions (e.g., to take into account
specialized locking methods for index
structures), might lend itself to “an-
swering engineering questions” [Tay
1990], for example, predicting the effect
of lock contention on the performance of
a txn-processing system. Analytic re-
sults need be validated against mea-
surement results rather than just simu-
lations.

Statistics on lock-contention levels
are provided by most DBMSs, but the
measurement data are not sufficiently
detailed and cannot be easily correlated
with other events in the system. Fur-
thermore, additional information is re-
quired about the database, txns pro-
cessed by the system, and txn
scheduling to synthesize a realistic lock-
contention model. Some of this informa-
tion is proprietary in nature and not
available externally.

Some additional topics related to CC
are as follows.

CC in “advanced database applica-
tions” or “unconventional txn manage-
ment” is an area of current interest
[Barghouti and Kaiser 1991; Elmagar-
mid 1992; Ramamithram and Chrisan-
this 1996]. Alternative txn models such

as sagas, altruistic locking, cooperating
txns, and txn chopping, which were dis-
cussed in Section 2.6, are a step in this
direction. Some of the associated prob-
lems have to do more with scheduling
and coordinating related activities,
rather than CC, such as in the case of
workflow models [Khoshafian and Buck-
iewicz 1995].

Real-time txns or databases are an-
other area of current research. Various
CC methods have been evaluated to de-
termine their suitability for real-time
txn processing and many new CC meth-
ods have been proposed [Ramamithram
1993]. These include methods based on
access invariance, because it provides
an opportunity to preanalyze the objects
required by the txn for its second phase
execution [O’Neil et al. 1995] and hy-
brid methods (see Section 4.3) [Huang
et al. 1991]. Txn spawning for improv-
ing performance in real-time systems
has been considered in Bestavros and
Braoudakis [1995].

Active databases provide timely re-
sponses to time-critical events and this
is accomplished by providing event-con-
dition-action rules to be specified for the
DBMS. A performance evaluation of ac-
tive databases that takes into account
locking effects and distinguishes be-
tween external and rule-management
tasks is reported in Carey et al. [1991].

CC in distributed databases is cov-
ered in an early tutorial [Bernstein and
Goodman 1981] and several texts [Date
1983; Ceri and Pelagatti 1984; Bern-
stein et al. 1987; Cellary et al. 1988]. In
fact, some early CC methods, such as
TSO, WW, and WD methods, were in-
tended for distributed databases. Stan-
dard locking with two-phase commit is
the main approach used for CC and to
ensure atomicity. The number of mes-
sages required for txn execution is quite
important in this case [Ceri and Pel-
agatti 1984]. This includes the number
of messages required for deadlock detec-
tion and two-phase commit. Methods to
reduce the number of messages for com-
mit processing are discussed in Sama-
ras et al. [1995].

Concurrency Control • 113

ACM Computing Surveys, Vol. 30, No. 1, March 1998

Numerous CC methods have been
considered for distributed databases.
The tradeoff between the number of
messages and the information available
to minimize the wasted processing due
to txn aborts is explored for several
variations of the distributed WDL
method in Franaszek et al. [1993]. A
method based on access invariance that
uses OCC in the first phase and lock
preclaiming in the second phase is dis-
cussed in Thomasian and Rahm [1990]
and Thomasian [1998] (these papers
also discuss earlier works in OCC in
distributed databases). A comprehen-
sive simulation study of several CC
methods for distributed databases is re-
ported in Carey and Livny [1991]. An
example of an approach based on allo-
cating fractions of aggregate values to
the nodes of a distributed system is
described in Thomasian [1994] (this pa-
per also surveys related work on this
topic).

In addition to multiprocessors,
shared-nothing and shared-disk sys-
tems are of current interest for txn pro-
cessing. In shared-nothing systems the
data are partitioned to balance the load
(e.g., by using hashing on primary keys
in a relational database). From the
viewpoint of CC these systems behave
as distributed databases, although some
optimizations are possible, for example,
broadcast capability to all processors for
two-phase commit. The simulation of a
preliminary version of the TPC-C
benchmark on a shared-nothing system
appears in Jenq et al. [1989].

In shared-disk or data-sharing sys-
tems multiple computers have access to
a set of shared disks. Txns are routed to
computers to achieve a balanced load
and to attain a higher database buffer
hit ratio [Rahm 1993]. In addition to
concurrency control, there is the issue of
coherency control for the contents of
database buffers across systems [Rahm
1993]. Similar problems arise in client-
server systems, which are addressed in
a simulation study reported in Carey et
al. [1991].

Multidatabase txn management deals

with distributed heterogeneous DBMSs,
possibly with different CC and txn re-
covery methods. Local txns are run un-
der the control of a local DBMS, and a
multidatabase system is provided to run
global txns. The multidatabase system
is to accomplish its task with minimal
modifications to the operation of the
system [Breitbart et al. 1992]. As noted
in Breitbart et al. [1992], most research
to date has been concerned with how to
run txns in a heterogeneous environ-
ment, with no attention paid to perfor-
mance issues: for example, how much
more expensive will it be to run txns
when each box runs a different CC pro-
tocol? A hierarchical architecture for
multidatabase systems is described in
Mehrotra et al. [1997] and techniques
for CC in such systems are developed.

Glossary

CC concurrency control
CPU central processing unit
CWA cautious

waiting—asymmetric [Hsu
and Zhang 1992]

CWS cautious
waiting—symmetric
[Thomasian 1997a]

DBMS data base management
system

DL dynamic locking
EDSP effective database size

paradigm
ETC effective throughput

characteristic
FCFS first-come, first-served

GW general waiting method
(i.e., standard locking)

MWDL modified wait-depth-
limited method [Thomasian
1992]

NW no waiting
OCC optimistic CC [Kung and

Robinson 1981]
QNM queueing network model
RPA running

priority—asymmetric
[Franaszek and Robinson
1985]

RPS running
priority—symmetric
[Franaszek et al. 1992]

SE serialized execution

114 • A. Thomasian

ACM Computing Surveys, Vol. 30, No. 1, March 1998

SL static locking
STC system-throughput

characteristic
TSO time-stamp ordering

method
Txn Transaction

VLDB Very large data bases
WDL wait-depth limited

[Franaszek et al. 1992]
WD wait-die [Rosenkrantz et

al. 1978]
WFG waits-for graph

WW wound-wait [Rosenkrantz
et al. 1978]

2PL two-phase locking

Appendix: Notation

a Mean number of lock conflicts
per txn times the normalized
waiting time for single-level
blocking (a 5 K1PcA with A 5
W1/R(M)).

b Fraction of txns in the blocked
state (b 5 K1PcW/R(M) 5
M# b/M).

Ck Txns in class k that request k
locks.

D Number of data items and
associated locks in the
database.

fk Fraction of txns in class k (Ck)
that also request k locks.

K Largest txn size or maximum
number of locks requested per
txn.

Ki ith moment of the number of
requested locks.

L# a(L# b) Mean number of locks held by a
txn while it is active (blocked)
(L# 5 L# a 1 L# b).

L# k Mean number of locks held by
txns in Ck.

M Number of txns in the closed
system.

M# a(M# b) Mean number of active
(blocked) txns in the system
(M# a 5 (1 2 b) M and M# b 5
bM).

M̂ Multiprogramming level that
maximizes the number of active
txns in the system (M# a) and
potentially system throughput.

nc Mean number of lock conflicts
per txn (nc 5 K1Pc).

Pc Probability of lock conflict per
lock request (Pc . (M 2 1)L# /
D).

PD(i) Probability that a txn
encounters a deadlock of cycle
length i.

rk(M) Mean response time for a txn in
Ck as determined by hardware-
resource contention only.

r(M) Mean response time over all txn
classes as determined by
hardware-resource contention
only (r(M) 5 ¥k51

K rk(M) fk).
Rk(M) Mean response time for txns in

Ck (Rk(M) 5 (k 1 1)s(M# a) 1
kPcW).

R(M) Mean response time over all txn
classes (R(M) 5 ¥k51

K

Rk(M) fk).
r Conflict ratio, which is the

fraction of lock conflicts that
are with blocked txns.

s(M# a) Mean processing time of a txn
step with M# a active txns in the
system.

t(M) System throughput with M txns
as determined by hardware-
resource contention. t(M), M $
1 is referred to as the
throughput characteristic.

T(M) Txn throughput with M txns in
the system as affected by
hardware-resource and lock
contention. T(M), M $ 1 is
referred to as the effective
throughput characteristic of the
system.

W1 Mean txn waiting time due to a
lock conflict with an active txn.

W Mean txn waiting time due to a
lock conflict.

REFERENCES

AGRAWAL, D., EL ABBADI, A., AND LANG, A. E.
1994. The performance of protocols based on
locks with ordered sharing. IEEE Trans.
Knowl. Data Eng. 6, 5 (Oct.), 805–818.

AGRAWAL, R., CAREY, M. J., AND LIVNY, M. 1987a.
Concurrency control performance modeling:
Alternatives and implications. ACM Trans.
Database Syst. 12, 4 (Dec.), 609–654.

AGRAWAL, R., CAREY, M. J. AND MCVOY, L. W.
1987b. The performance of alternative strate-
gies for dealing with deadlocks in database
management systems. IEEE Trans. Softw.
Eng. 13, 12 (Dec.), 1348–1363.

AMMANN, P., JAJODIA, S., AND RAY, I. 1997. Ap-
plying formal methods to semantic-based de-
composition of transactions. ACM Trans. Da-
tabase Syst. 22, 2 (June), 215–254.

BADRINATH, B. R. AND RAMAMITHRAM, K. 1992.

Concurrency Control • 115

ACM Computing Surveys, Vol. 30, No. 1, March 1998

Semantics-based concurrency control: Beyond
commutativity. ACM Trans. Database Syst.
17, 1 (March), 163–199.

BARGHOUTI, N. S. AND KAISER, G. E. 1991. Con-
currency control in advanced database appli-
cations. ACM Comput. Surv. 23, 3 (Sept.),
269–317.

BAYER, R. 1986. Consistency of transactions
and random batch. ACM Trans. Database
Syst. 11, 4 (Dec.), 397–404.

BERNSTEIN, P. A. AND GOODMAN, N. 1981. Con-
currency control in distributed database sys-
tems. ACM Comput. Surv. 13, 2 (June), 185–
221.

BERNSTEIN, P., HADZILACOS, V., AND GOODMAN, N.
1987. Concurrency Control and Recovery in
Database Systems. Addison-Wesley, Reading,
MA.

BESTAVROS, A. AND BRAOUDAKIS, S. 1995. Value-
cognizant speculative concurrency control.
Proceedings of the 21st International Confer-
ence on Very Large Data Bases (Zurich, Swit-
zerland, Sept.) 122–133.

BOBER, P. M. AND CAREY, M. J. 1992. On mixing
queries and transactions via multiversion
locking. Proceedings of the Eighth Interna-
tional Conference on Data Engineering
(Tempe, AZ, Feb.), 535–545.

BOKSENBAUM, C., CART, M., FERRIÉ, J., AND PONS,
J. F. 1987. Concurrent certification by in-
terval of timestamps in distributed database
systems. IEEE Trans. Softw. Eng. 13, 4
(April), 409–419.

BREITBART, Y., GARCIA-MOLINA, H., AND SILBERS-
CHATZ, A. 1992. Overview of multidatabase
transaction management. Int. J. Very Large
Data Bases 1, 181–239.

BURGER, A. AND THANISCH, P. 1994. Branching
transactions: A transaction model for parallel
database systems. In Directions in Databases:
Proceedings of the Twelfth British National
Conference on Databases, BNCOD 12 (Guild-
ford, UK, July), D. S. Bowers, Ed., 121–136.

CAREY, M. J. AND LIVNY, M. 1991. Conflict de-
tection tradeoffs for replicated data. ACM
Trans. Database Syst. 16, 4 (Dec.), 703–746.

CAREY, M. J., JAUHARI, R., AND LIVNY, M. 1991.
On transaction boundaries in active databas-
es: A performance perspective. IEEE Trans.
Knowl. Data Eng. 3, 3 (Sept.), 320–336.

CAREY, M. J., FRANKLIN, M. J., LIVNY, M., AND SHE-
KITA, E. J. 1991. Data caching tradeoffs in
client server DBMS architectures. In Proceed-
ings of the 1991 ACM SIGMOD International
Conference on Management of Data (Denver,
CO, May) 357–366.

CELLARY, W., GELENBE, E., AND MORZY, T. 1988.
Concurrency Control in Distributed Data-
bases. North-Holland.

CERI, S. AND PELAGATTI, G. 1984. Distributed

Databases—Principles and Systems. McGraw-
Hill, New York.

CHESNAIS, A., GELENBE, E., AND MITRANI, I. 1983.
On the modeling of parallel access to shared
data. Commun. ACM 26, 3 (March), 198–202.

DATE, C. J. 1983. An Introduction to Database
Systems, Vol. II. Addison-Wesley, Reading,
MA.

ELMAGARMID, A. K. 1992. Database Transaction
Models for Advanced Applications. Morgan-
Kaufmann, San Mateo, CA.

FARRAG, A. A. AND OZSU, M. T. 1989. Using se-
mantic knowledge of transactions to increase
concurrency. ACM Trans. Database Syst. 14, 4
(Dec.), 503–525.

FRANASZEK, P. AND ROBINSON, J. T. 1985. Limi-
tations of concurrency in transaction process-
ing. ACM Trans. Database Syst. 10, 1
(March), 1–28.

FRANASZEK, P. A., HARITSA, J. R., ROBINSON, J. T.,
AND THOMASIAN, A. 1993. Distributed con-
currency control based on limited wait depth.
IEEE Trans. Parallel Distrib. Syst. 4, 11
(Nov.), 1246–1264.

FRANASZEK, P., ROBINSON, J. T., AND THOMASIAN,
A. 1990. Access invariance and its use in
high contention environments. In Proceedings
of the Sixth International Conference on Data
Engineering (Los Angeles, Feb.), 47–55.

FRANASZEK, P. A., ROBINSON, J. T., AND THOMASIAN,
A. 1991a. Adaptive concurrency control
scheme for transaction processing. IBM Tech.
Disclosure Bull. 33, 9 (Feb.), 29–30.

FRANASZEK, P. A., ROBINSON, J. T., AND THOMASIAN,
A. 1991b. Integrated concurrency control/
CPU scheduling. IBM Tech. Disclosure Bull.
33, 9 (Feb.), 37–40.

FRANASZEK, P., ROBINSON, J. T., AND THOMASIAN,
A. 1992. Concurrency control for high con-
tention environments. ACM Trans. Database
Syst. 17, 2 (June), 304–345.

GALLER, B. I. AND BOS, L. 1983. A model of
transaction blocking in databases. Perform.
Eval. 3, 95–122.

GARCIA-MOLINA, H. 1983. Using semantic knowl-
edge for transaction processing in a distributed
database. ACM Trans. Database Syst. 8, 2
(June), 186–213.

GARCIA-MOLINA, H. AND SALEM, K. 1987. Sagas.
In Proceedings of the 1987 SIGMOD Confer-
ence on Management of Data (San Francisco,
May), 249–259.

GRAY, J. N., Ed. 1993. The Benchmark Hand-
book for Transaction Processing Systems, 2nd
ed. Morgan-Kaufmann, San Mateo, CA.

GRAY, J. N. AND REUTER, A. 1992. Transaction
Processing: Concepts and Facilities. Morgan-
Kaufmann, San Mateo, CA.

HAERDER, T. 1984. Observations on optimistic
concurrency control schemes. Inf. Syst. 9, 2,
111–120.

116 • A. Thomasian

ACM Computing Surveys, Vol. 30, No. 1, March 1998

HAERDER, T. AND ROTHERMEL, K. 1993. Con-
currency control issues in nested transac-
tions. Int. J. Very Large Data Bases 2, 39–74.

HSU, M. AND ZHANG, B. 1992. Performance eval-
uation of cautious waiting. ACM Trans. Data-
base Syst. 17, 3 (Sept.), 477–512.

HSU, M. AND ZHANG, B. 1995. Modeling perfor-
mance impact of hot spots. In Performance of
Concurrency Control Mechanisms in Central-
ized Database Systems, V. Kumar, Ed. Pren-
tice-Hall, Englewood Cliffs, NJ, Chapter 7,
148–164.

HUANG, J., STANKOVIC, J. A., RAMAMITHRAM, K.,
AND TOWSLEY, D. 1991. Experimental eval-
uation of real-time optimistic concurrency
control schemes. In Proceedings of the Seven-
teenth International Conference on Very Large
Data Bases (Barcelona, Sept.), 35–46.

IRANI, K. B. AND LIN, H. L. 1979. Queueing net-
work models for concurrent transaction pro-
cessing in database systems. In Proceedings of
the 1979 ACM SIGMOD International Confer-
ence on Management of Data (Boston, June),
134–142.

JAGADISH, H. V. AND SHMUELLI, O. 1992. A proc-
lamation based model for cooperating transac-
tions. In Proceedings of the Eighteenth Inter-
national Conference on Very Large Data Bases
(Vancouver, Canada, August), 265–276.

JENQ, B. C., TWICHELL, B. C., AND KELLER, T. W.
1989. Locking performance in a shared noth-
ing parallel database machine. IEEE Trans.
Knowl. Data Eng. 1, 4 (Dec.), 530–543.

JOHNSON, T. AND SHASHA, D. 1993. The perfor-
mance of concurrent B-tree algorithms. ACM
Trans. Database Syst. 18, 1 (March), 51–101.

KHOSHAFIAN, S. AND BUCKIEWICZ, M. 1995. In-
troduction to Groupware, Workflow, and
Workgroup Computing. John Wiley, New
York.

KLEINROCK, L. 1975. Queueing Systems, Vol. I:
Theory. John Wiley, New York.

KORTH, H. F. AND SPEEGLE, G. 1994. Formal as-
pects of concurrency control in long duration
transaction systems using the NT/PV model.
ACM Trans. Database Syst. 19, 3 (Sept.), 492–
535.

KRISHNAKUMAR, N. AND BERNSTEIN, A. J. 1994.
Bounded ignorance: A technique for increas-
ing concurrency in a replicated system. ACM
Trans. Database Syst. 19, 4 (Dec.), 586–625.

KUMAR, V., Ed. 1995. Performance of Concur-
rency Control Mechanisms in Centralized Da-
tabase Systems. Prentice-Hall, Upper Saddle
River, NJ.

KUNG, H. T. AND ROBINSON, J. T. 1981. On opti-
mistic concurrency control methods. ACM
Trans. Database Syst. 6, 2 (June), 213–226.

LANGER, A. M. AND SHUM, A. W. 1982. The dis-
tribution of granule accesses made by data-

base transactions. Commun. ACM 25, 11
(Nov.), 831–832.

LAZOWSKA, E. D., ZAHORJAN, J., GRAHAM, G. S., AND
SEVCIK, K. C. 1984. Quantitative System
Performance: Computer System Analysis Us-
ing Queueing Network Models. Prentice-Hall,
Upper Saddle River, NJ.

LI, K. AND NAUGHTON, J. F. 1988. Multiprocessor
main memory transaction processing. In Pro-
ceedings of the International Symposium on
Databases in Parallel and Distributed Sys-
tems (Austin, TX, Dec.), 177–187.

LYNCH, N., MERRITT, M., WEIHL, W., AND FEKETE,
A. 1994. Atomic Transactions. Morgan-
Kaufmann, San Mateo, CA.

MASSEY, W. 1986. A probabilistic analysis of
database systems. In Proceedings of Perfor-
mance 86 and ACM SIGMETRICS 1986 Joint
Conference (Raleigh, NC, May), 141–146.

MEHROTRA, S., KORTH, H. F., AND SILBERSCHATZ, A.
1997. Concurrency control in hierarchical
multidatabase systems. Int. J. Very Large
Data Bases 6, 157–172.

MENASCE, D. A. AND NAKANISHI, T. 1982. Opti-
mistic versus pessimistic concurrency control
mechanisms in database management sys-
tems. Inf. Syst. 7, 1, 13–27.

MOENKEBERG, A. AND WEIKUM, G. 1992. Perfor-
mance evaluation of an adaptive and robust
load control method for the avoidance of data
contention thrashing. In Proceedings of the
Eighteenth International Conference on Very
Large Data Bases (Vancouver, Canada, Aug.),
432–443.

MOHAN, C. 1992. Less optimism about optimis-
tic concurrency control. In Proceedings of the
Second International Workshop on Research
Issues on Data Engineering (Tempe, AZ,
Feb.), 199–204.

MOHAN, C. AND LEVINE, F. 1992. ARIES/IM: An
efficient and high concurrency index manage-
ment method using write-ahead logging. In
Proceedings of the 1992 ACM SIGMOD Inter-
national Conference on Management of Data
(San Diego, June), 371–380.

MOHAN, C., HADERLE, D., LINDSAY, B., PIRAHESH,
H., AND SCHWARTZ, P. 1992a. ARIES: A
transaction recovery method supporting fine
granularity locking and partial rollbacks us-
ing write-ahead locking. ACM Trans. Data-
base Syst. 17, 1 (March), 94–162.

MOHAN, C., PIRAHESH, H., AND LORIE, R. 1992b.
Efficient and flexible methods for transient
versioning of records to avoid locking by read-
only transactions. In Proceedings of the 1992
ACM SIGMOD International Conference on
Management of Data (San Diego, June), 124–
133.

MONTGOMERY, W. A. 1978. Robust concurrency
control for a distributed information system.
MIT-LCS-TR-207, MIT, Lab. for Computer
Science, Cambridge, MA. (Dec.).

Concurrency Control • 117

ACM Computing Surveys, Vol. 30, No. 1, March 1998

MORRIS, R. J. T. AND WONG, W. S. 1985. Perfor-
mance analysis of locking and optimistic con-
currency control algorithms. Perform. Eval. 5,
2, 105–118.

MOSS, J. E. B. 1985. Nested Transactions: An
Approach to Reliable Distributed Computing.
MIT Press, Cambridge, MA.

O’NEIL, P. E. 1986. The escrow transaction
method. ACM Trans. Database Syst. 11, 4
(Dec.), 405–430.

O’NEIL, P. E., RAMAMITHRAM, K., AND PU, C.
1995. A two-phase approach to predictability
scheduling real-time transactions. In Perfor-
mance of Concurrency Control Methods in
Centralized Database Systems V. Kumar, Ed.,
Prentice-Hall, Englewood Cliffs, NJ, 494–522.

OZSU, M. T. 1994. Transaction models and trans-
action management in object-oriented data-
base management systems. In Advances in
Object-Oriented Database Systems. A. Dogac,
M. T. Ozsu, A. Biliris, and T. Sellis, Eds.
Springer-Verlag, New York, 147–184.

PEINL, P., REUTER, A., AND SAMMER, H. 1988.
High contention in a stock trading database:
A case study. In Proceedings of the 1988 ACM
SIGMOD International Conference on Man-
agement of Data (Chicago, June), 260–268.

POTIER, D. AND LEBLANC, P. 1980. Analysis of
locking policies in database management sys-
tems. Commun. ACM 23, 10 (Oct.), 584–593.

PU, C. AND LEFF, A. 1991. Replica control in
distributed databases: An asynchronous ap-
proach. In Proceedings of the 1991 ACM SIG-
MOD International Conference on Manage-
ment of Data (Denver, CO, May), 377–386.

RAHM, E. 1993. Empirical performance evalua-
tion of concurrency and coherency control pro-
tocols for database sharing systems. ACM
Trans. Database Syst. 18, 2 (June), 333–377.

RAMAMITHRAM, K. 1993. Real-time databases.
Distrib. Parallel Databases 1, 199–226.

RAMAMITHRAM, K. AND CHRISANTHIS, P. K. 1996.
Advances in Concurrency Control and Trans-
action Processing. IEEE Computer Society
Press, Los Alamitos, CA.

REUTER, A. 1985. The transaction pipeline pro-
cessor. In International Workshop on High
Performance Transaction Systems (Pacific
Grove, CA, Sept.).

ROBINSON, J. T. 1982a. Design of concurrency
controls for transaction processing systems.
Tech. Rep. CMU-CS-82-114, Ph.D. Thesis,
Computer Science Dept., Carnegie-Mellon
University, Pittsburgh, PA.

ROBINSON, J. T. 1982b. Experiments with trans-
action processing on a multiprocessor. IBM
Res. Rep. RC 9725, Yorktown Heights, NY,
Dec.

ROBINSON, J. T. 1984. Separating policy from
correctness in concurrency control design.
Softw. Pract. Exper. 14, 9 (Sept.), 827–844.

ROSENKRANTZ, D. J., STEARNS, R. E., AND LEWIS,
P. M., II. 1978. System level concurrency
control for distributed database systems. ACM
Trans. Database Syst. 3, 2 (June), 178–198.

RYU, I. K. AND THOMASIAN, A. 1987. Perfor-
mance evaluation of centralized databases
with optimistic concurrency control. Perform.
Eval. 7, 3, 195–211.

RYU, I. K. AND THOMASIAN, A. 1988. Per-
formance analysis of centralized databases
with static locking. Unpublished rep., IBM
T. J. Watson Research Center, Hawthorne,
NY.

RYU, I. K. AND THOMASIAN, A. 1990a. Analysis
of database performance with dynamic lock-
ing. J. ACM 37, 3 (July), 491–523.

RYU, I. K. AND THOMASIAN, A. 1990b. Per-
formance analysis of dynamic locking with the
no-waiting policy. IEEE Trans. Softw. Eng.
16, 7 (July), 684–698.

SALEM, K., GARCIA-MOLINA, H., AND SHANDS, J.
1994. Altruistic locking. ACM Trans. Data-
base Syst. 19, 1 (March), 117–165.

SAMARAS, G., BRITTON, K., CITRON, A., AND MOHAN,
C. 1995. Two-phase commit optimizations
in a commercial distributed environment. Dis-
trib. Parallel Databases, 325–360.

SHASHA, D., LLIRBAT, F., SIMON, E., AND VALDURIEZ,
P. 1995. Transaction chopping: Algorithms
and performance studies. ACM Trans. Data-
base Syst. 20, 3 (Sept.), 325–363.

SINGHAL, M. 1991. Performance analysis of the
basic timestamp ordering algorithm via
Markov modeling. Perform. Eval. 12, 17–41.

SINGHAL, V. AND SMITH, A. J. 1997. Analysis of
locking behavior in three real database sys-
tems. Int. J. Very Large Data Bases 6, 40–52.

SKARRA, A. H. AND ZDONIK, S. B. 1989. Con-
currency control and object-oriented data-
bases. In Object-Oriented Concepts, Data-
bases, and Applications. W. Kim and F. H.
Lochovski, Eds., ACM Press, New York, 395–
421.

SRINIVASAN, V. AND CAREY, M. J. 1993. Per-
formance of B1 tree concurrency control algo-
rithms. Int. J. Very Large Data Bases 2, 361–
406.

TAY, Y. C. 1987. Locking Performance in Cen-
tralized Databases. Academic Press, Orlando,
FL.

TAY, Y. C. 1990. Issues in modeling locking per-
formance. In Stochastic Analysis of Computer
and Communication Systems, H. Takagi, Ed.,
North-Holland, New York, 631–658.

TAY, Y. C., GOODMAN, N., AND SURI, R. 1985a.
Locking performance in centralized data-
bases. ACM Trans. Database Syst. 10, 4
(Dec.), 415–462.

TAY, Y. C., SURI, R., AND GOODMAN, N. 1985b. A
mean value performance model for locking in

118 • A. Thomasian

ACM Computing Surveys, Vol. 30, No. 1, March 1998

databases: The no-waiting case. J. ACM 32, 3
(July), 618–651.

THOMASIAN, A. 1982. An iterative solution to
the queueing network model of a DBMS with
dynamic locking. In Proceedings of the Thir-
teenth Computer Measurement Group Confer-
ence (San Diego, Dec.), 252–261.

THOMASIAN, A. 1985. Performance evaluation of
centralized databases with static locking.
IEEE Trans. Softw. Eng. 11, 2 (April), 346–
355.

THOMASIAN, A. 1988. Distributed optimistic
concurrency control methods for high-perfor-
mance transaction processing. IEEE Trans.
Knowl. Eng. 10, 1 (Jan./Feb.), 2–18.

THOMASIAN, A. 1992. Performance analysis of
locking policies with limited wait depth. In
Proceedings of Performance 92 and ACM SIG-
METRICS Joint Conference (Newport, RI,
June), 115–127.

THOMASIAN, A. 1993. Two-phase locking and its
thrashing behavior. ACM Trans. Database
Syst. 18, 4 (Dec.), 579–625.

THOMASIAN, A. 1994. A fractional data alloca-
tion method for distributed databases. In Pro-
ceedings of the Third International Conference
on Parallel and Distributed Information Sys-
tems (Austin, TX, Sept.), 168–175.

THOMASIAN, A. 1995a. Performance analysis of
locking policies with limited wait depth. Per-
form. Eval. (submitted). Also IBM Res. Rep.
RC 19977, Hawthorne, NY, March.

THOMASIAN, A. 1995b. Checkpointing for opti-
mistic concurrency control methods. IEEE
Trans. Knowl. Data Eng. 7, 2 (April), 332–
339.

THOMASIAN, A. 1996a. Database Concurrency
Control: Methods, Performance, Analyses.
Kluwer Academic, Boston.

THOMASIAN, A. 1996b. On realistic modeling
and analysis of lock contention. Inf. Syst. 21,
5, 409–430.

THOMASIAN, A. 1997. A performance compari-
son of locking policies with limited wait
depth. IEEE Trans. Knowl. Data Eng. 8, 2
(May/June), 421–434.

THOMASIAN, A. 1998. Distributed optimistic
concurrency control methods for high perfor-
mance transaction processing. IEEE Trans.
Knowl. Data Eng. 10, 1 (Jan/Feb.), 2–18.

THOMASIAN, A. AND NICOLA, V. 1993. Per-
formance evaluation of a threshold policy for
scheduling readers and writers. IEEE Trans.
Computers 42, 1 (Jan.), 83–98.

THOMASIAN, A. AND RAHM, E. 1990. A new dis-
tributed optimistic concurrency control
method and a comparison of its performance
with two-phase locking. In Proceedings of
1990 International Conference on Distributed
Computing Systems (Paris, May), 294–301.

THOMASIAN, A. AND RYU, I. K. 1983. A decompo-
sition solution to the queueing network model
of the centralized DBMS with static locking.
In Proceedings of the ACM SIGMETRICS
Conference (Minneapolis, MN, Aug.), 82–92.

THOMASIAN, A. AND RYU, I. K. 1986. Per-
formance comparison of concurrency control
methods for shared centralized databases.
Unpublished rep., IBM T. J. Watson Research
Center, Hawthorne, NY.

THOMASIAN, A. AND RYU, I. K. 1989. A recursive
solution method to analyze the performance of
static locking systems. IEEE Trans. Softw.
Eng. 15, 10 (Oct.), 1147–1156.

THOMASIAN, A. AND RYU, I. K. 1991. Performance
analysis of two-phase locking. IEEE Trans.
Softw. Eng. 17, 5 (May), 386–402.

WEIHL, W. E. 1988. Commutativity based CC
for abstract data types. IEEE Trans. Comput-
ers 37, 12 (Dec.), 1488–1505.

WEIKUM, G. 1991. Principles and realization
strategies of multilevel transaction manage-
ment. ACM Trans. Database Syst. 16, 4
(March), 132–180.

WEIKUM, G., HASSE, C., MOENKEBERG, A., AND ZAB-
BACK, P. 1994. The COMFORT automatic
tuning project. Inf. Syst. 19, 5, 381–432.

YU, P. S., DIAS, D. M., AND LAVENBERG, S. S.
1993. On modeling database concurrency
control. J. ACM 40, 4 (Sept.), 831–872.

Received March 1995; revised March 1997; final revision accepted November 1997

Concurrency Control • 119

ACM Computing Surveys, Vol. 30, No. 1, March 1998

