
Efficient Locking for Concurrent Operations
on B-Trees

PHILIP L. LEHMAN

Carnegie-Mellon University

and

S. BING YAO

Purdue University

The B-tree and its variants have been found to be highly useful (both theoretically and in practice)
for storing large amounts ofinformation, especially on secondary storage devices. We examine the
problem of overcoming the inherent difficulty of concurrent operations on such structures, using a
practical storage model. A single additional “link” pointer in each node allows a process to easily
recover from tree modifications performed by other concurrent processes. Our solution compares
favorably with earlier solutions in that the locking scheme is simpler (no read-locks are used) and
only a (small) constant number of nodes are locked by any update process at any given time. An
informal correctness proof for our system is given,

Key Words and Phrases: database, data structures, B-tree, index organizations, concurrent algorithms,
concurrency controls, locking protocols, correctness, consistency, multiway search trees
CR Categories: 3.73, 3.74, 4.32, 4.33,4.34, 5.24

1. INTRODUCTION

The B-tree [Z] and its variants have been widely used in recent years as a data
structure for storing large files of information, especially on secondary storage
devices [7]. The guaranteed small (average) search, insertion, and deletion time
for these structures makes them quite appealing for database applications.

A topic of current interest in database design is the construction of databases
that can be manipulated concurrently and correctly by several processes. In this
paper, we consider a simple variant of the B-tree (actually of the B*-tree,
proposed by Wedekind [151) especially well suited for use in a concurrent database
system.

Methods for concurrent operations on B*-trees have been discussed by Bayer
and Schkolnick [3] and others [6,12,13]. The solution given in the current paper

Permission to copy without fee all or part of this material is granted provided that the copies are not
made or distributed for direct commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by permission of the Association
for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific
permission.
This research was supported by the National Science Foundation under Grant MCS76-16604.
Authors’ present addresses: P. L. Lehman, Department of Computer Science, Carnegie-Mellon
University, Pittsburgh, PA 15213; S. B. Yao, Department of Computer Science and College of Business
and Management, University of Maryland, College Park, MD 20742.
0 1981 ACM 036%5915/81/1200-0650 $00.75

ACM Transactions on Database Systems, Vol. 6, No. 4, December 1981, Pages 650-670.

Efficient Locking for Concurrent Operations on B-Trees l 651

has the advantage that any process for manipulating the tree uses only a small
(constant) number of locks at any time. Also, no search through the tree is ever
prevented from reading any node (locks only prevent multiple update access).
These characteristics do not apply to the previous solution.

A discussion of a similar problem (concurrent binary search trees) has been
given by Kung and Lehman [a]. The present paper expands some of the ideas in
that paper and applies them to a model in which the concurrent data structure
is stored on secondary storage. In addition, a solution for B-trees has the appeal
of demonstrated practicality (see, e.g., [l]).

While the analysis is performed for B-trees used as primary indexes, the
extension to secondary indexes is straightforward.

2. THE STORAGE MODEL

We consider the database to be stored on some secondary storage device (here-
inafter referred to as the “disk”). Many processes are allowed to operate on these
data simultaneously. Each process can examine or modify data only by reading
those data from the disk into its private primary store (the “memory”). To alter
data on the disk, the process must write the data to the disk from its memory.

The disk is partitioned into sections of a fixed size“(physical pages; in this
paper, these will correspond to logical nodes of the tree). These are the only units
that can be read or written by a process. Further, a process is considered to have
a fixed amount of primary memory at its disposal, and can therefore only examine
a fixed number of pages simultaneously. This primary memory is not shared with
other processes.

Finally, a process is allowed to lock and unlock a disk page. This lock gives that
process exclusive modification rights to that page; also, a process must have a
page locked in order to modify that page. Only one process may hold the lock for
a given page at any time. Locks do not prevent other processes from reading the
locked page. (This does not hold for the solutions given, e.g., in [3].)

We assume that some locking discipline is imposed on lock requests, for
example, a FIFO discipline or locking administration by a supervisory process.

In the protocol and in the algorithms and proofs given below, we use the
following notation. Lowercase symbols (x, t, current, etc.) are used to refer to
variables (including pointers) in the primary storage of a process. Uppercase
symbols (A, B, C) are used to refer to blocks of primary storage. It is these blocks
which are used by the process for reading and writing pages on the disk.

lo&(x) denotes the operation of locking the disk page to which x points. If the
page is already locked by another process, the operation waits until it is possible
to obtain the lock.

z&o&(x) similarly denotes the operation of releasing a held lock.
A +get(x) denotes the operation of reading into memory block A, the contents

of the disk page to which x points.
put(A, x) similarly denotes the operation of writing onto the page to which x

points, the contents of memory block A. The procedures must enforce the
restriction that a process must hold the lock for that page before performing this
operation.

ACM Transactions on Database Systems, Vol. 6, No. 4, December 1981.

652 - P. L. Lehman and S. 8. Yao

Key:K,

. . . <Associated . . .
Information>

Fig. 1. B*-tree nodes (with no “high key”).

To summarize, then, in order to modify a page X, a process must perform
essentially the following operations.

lock(x);
A + get(x); /* read x into memory from disk*/
modify data in A;
PNA, 4; /* rewrite memory to disk */
unlock(x);

3. THE DATA STRUCTURE

3.1 B*-Trees

In this section we develop the data structure to be used by the concurrent
processes. The data structure is a simple variation of the B*-tree described by
Wedekind [15] (based on the B-tree defined by Bayer and McCreight [2]).

The definition for a B*-tree is as follows.

3.1.1 Structure

(a) Each path from the root to any leaf has the same length, h.
(b) Each node except the root and the leaves has at least k + 1 sons. (k is a tree

parameter; 2k is the maximum number of elements in a node, neglecting the
“high key,” which is explained below.)

(c) The root is a leaf or has at least two sons.
(d) Each node has at most 2k + 1 sons.
(e) The keys for all of the data in the B*-tree are stored in the leaf nodes, which

also contain pointers to the records of the database. (Each record is associated
with a key.) Nonleaf nodes contain pointers and the key values to be used in
following those pointers.

B*-trees have nodes that look like those shown in Figure 1. The Ki are instances
of the key domain, and the Pi are pointers. The Pi point to other nodes, or-in
the case of the Pi in leaf nodes-they may point to records associated with the
key values stored in the leaf. This arrangement gives leaf and nonleaf nodes

ACM Transactions on Database Systems, Vol. 6, No. 4, December 1981

Efficient Locking for Concurrent Operations on B-Trees - 653

v
.

p 51 l 56 \ 58 \ “’

Key : 53

<Associated
Information >

Fig. 2. An example B*-tree (with parameter k = 2).

essentially the same structure in our model. M is a marker that indicates a leaf
node and occupies the same position as the first pointer in a nonleaf node. An
example B*-tree is shown in Figure 2.

3.1.2 Sequencing

(a) Within each node, the keys are in ascending order.
(b) In the B*-tree an additional value, called the “high key,” is sometimes

appended to nonleaf nodes (Figure 3).
(c) In any node, N, each pointer, say Pi, points to a subtree (Ti) (whose root is

the node to which Pi points). The values stored in Ti are bounded by the two
key values, Ki and Ki+l, to the “left” and “right” of Pi in node N. This gives
us a set of (pointer, value) pairs in nonleaf nodes, such that the set of values
U, stored in subtree Ti, are bounded by

Ki-1 < u I Ki,

where ko = --CQ (or may be considered to be the last k in the node to the left;
in any case, k. does notphysically exist in node N), and K2k+l is the high key,
if it exists. The high key, then, serves to provide an upper bound on the
values that may be stored in the subtree to which Pzk points and therefore is
an upper bound on values stored in the subtree with root N. Leaf nodes have
a similar definition (see Figure 3), with the stipulations that the Ki are the
keys stored in the tree, and the Pi are pointers to their associated records.

3.1.3 Insertion Rule

(a) If a leaf node has fewer than 212 entries, then a new entry and the pointer to
the associated record are simply inserted into the node.

ACM Transactions on Database Systems, Vol. 6, No. 4, December 1981.

654 l P. L. Lehman and S. B. Yao

Fig. 3. A B*-tree node with a “high key” (&+I).

.

Fig. 4. Splitting a node after adding “47” (k = 2).

(b) If a leaf has 2k entries, then the new entry is inserted by splitting the node
into two nodes, each with half of the entries from the old node. The new
entry is inserted into one of these two nodes (in the appropriate position).
Since one of the nodes is new, a new pointer must be inserted into the father
of the old single node. The new pointer points to the new node; the new key
is the key corresponding to the old half-node. In addition, the high key of
each of the two new nodes is set.’ Figure 4 shows an example of the splitting
of a node.

(cl Insertion into nonleaf nodes proceeds identically, except that the pointers
point to son nodes, rather than to data records.

I More specifically, when splitting node a into a’ and b’, the (new) high key for node a’ is inserted into
the parent node. The high key for node b’ is the same as the old high key for a. A new pointer to b
is also inserted.

ACM Transactions on Database Systems, Vol. 6, No. 4, December 1981.

Efficient Locking for Concurrent Operations on B-Trees * 655

(a)

04

Fig. 5. Counterexample to naive approach.

A node (as in the rules given above) with less than 2k entries is said to be
“safe” (with respect to insertion), since insertion can be done by a simple
operation on the node. Similarly, a node with 2k entries is “unsafe,” since splitting
must occur. A similar definition holds for deletion from a node: a node is “safe”
(respectively, “unsafe”) if deletion can (cannot) occur in a node without its effects
spreading to other nodes, that is, if the node has more than k + 1 (exactly k + 1)
entries.

A simple example suffices to show that the naive approach to concurrent
operation on B*-trees is erroneous.

Consider the B*-tree segment shown in Figure 5a. Suppose we have two
processes: a search for the value 15 and an insertion of the value 9. The insertion
should cause the modification to the tree structure shown in Figure 5b.

Now consider the following sequence of operations:
search(E)

1. ‘Cc4
insert(g)

2.
3. examine C; get ptr toy
4.
5.
6.
7.
a.
9.
10. C t read(y)
11. error: 15 not found!

A t read(x)

examine A; get ptr toy
A + read(y)
insert 9 into A; must split into A, B
PUW, Y’)
put(A, Y)
Add to node x a pointer to node y’.

The problem is that the search first returns a pointer to y (from X) and then
reads the page containing y. Between these two operations, the insertion process
has altered the tree.

ACM Transactions on Database Systems, Vol. 6, No. 4, December 1981.

656 - P. L. Lehman and S. B. Yao

3.2 Previous Approaches

The previous example demonstrates that the naive approach to the concurrent
B-tree problem fails: taking no precautions against the pitfalls of concurrency
leads to incorrect results due to the operations of several processes. To put the
problem in perspective, we briefly outline here some other approaches and
solutions that have been proposed.

The first solution to the concurrent B-tree problem was offered by Samadi
[131. His approach is the most straightforward one that considers concurrency at
all. The scheme simply uses semaphores (which themselves were first discussed
in [5]) to exclusively lock the entire path along which modifications might take
place for any given modification to the tree. This effectively locks the entire
subtree of the highest affected node.

The algorithm proposed by Bayer and Schkoinick [3] is a substantial improve-
ment to Samadi’s method. They propose a scheme for concurrent manipulation
of B*-trees; the scheme includes parameters which may be set depending on the
degree and type of concurrency desired. First modifiers lock upper sections of the
tree with writer-exclusion locks (which only lock out other writers, not readers).
When the actual modifications must be performed, exclusive locks are applied,
mostly in lower sections of the tree. This sparse use of exclusive locks enhances
the concurrency of the algorithm.

Miller and Snyder [12] are investigating a scheme which locks a region of the
tree of bounded size. The algorithm employs pioneer and follower locks, to
prevent other processes from invading the region of the tree in which a particular
process is performing modifications. The locked region moves up the tree,
performing appropriate modifications. With the help of a locking discipline that
uses a queue, readers moving down the tree Vow over” locked regions, avoiding
deadlock. The trade-off between this algorithm and the one presented in the
present paper is that the latter locks a substantially smaller section of the tree,
but requires a slight modification to the usual B-tree or B*-tree structure, to
facilitate concurrency.

Ellis [6] presents a concurrency solution for 2-3 trees. Several methods are used
to increase the concurrency possible, and (it is claimed) these are easily extendible
to B-trees. The paper includes an application of the idea of reading and writing
a set of data in opposite directions (introduced by Lamport [ll]), and that of
allowing a slight degradation to temporarily occur in the data structure. Also,
Ellis uses the idea of relaxing the responsibility of a process to finish its own
work: postponing work to a more convenient time.

Guibas and Sedgewick [6a] have proposed a uniform “dichromatic framework”
for balanced trees. This is a simplified view for studying balanced trees in general:
it reduces all balanced tree schemes to special cases of “colored” binary trees and
has the advantage of conceptual clarity. Those authors are using their framework
to investigate a top-down locking scheme for concurrent operations, which
includes splitting “almost-full” nodes on the way down the tree. This contrasts
with the bottom-up scheme we present below. We project that their scheme will
lock somewhat more nodes than ours (decreasing concurrency) and will require
slightly more storage.

ACM Transactions on Database Systems, Vol. 6. No. 4, December 1981

Efficient Locking for Concurrent Operations on B-Trees * 6 5 7

Fig. 6. A B’i”k-tree node.

Another approach to concurrent operations on B-trees is currently under
investigation by Kwong and Wood [lo].

3.3 Blink-Tree for Concurrency

The Blhk-tree is a B*-tree modified by adding a single “link” pointer field to each
node (Pzk+l-see Figure 6). (We pronounce “Blink-tree” as “B-link-tree.“)

This link field points to the next node at the same level of the tree as the
current node, except that the link pointer of the rightmost node on a level is a
null pointer. This definition for link pointers is consistent, since all leaf nodes lie
at the same level of the tree. The Blhk -tree has all of the nodes at a particular
level chained together into a linked list, as illustrated in Figure 7.

The purpose of the link pointer is to provide an additional method for reaching
a node. When a node is split because of data overflow, a single node is replaced
by two new nod&. The link pointer of the first new node points to the second
node; the link pointer of the second node contains the old contents of the link
pointer field of the first node. Usually, the first new node occupies the same
physical page on the disk as the old single node. The intent of this scheme is that
the two nodes, since they are joined by a link pointer, are functionally essentially
the same as a single node until the proper pointer from their father can be added.
The precise search and insertion algorithms for Blink-trees are given in the next
two sections.

For any given node in the tree (except the first node on any level) there are
(usually) two pointers in the tree that point to that node (a “son” pointer from
the father of the node and a link pointer from the left twin of the node). One of
these pointers must be created first when a node is inserted into the tree. We
specify that of these two, the link pointer must exist first; that is, it is legal to
have a node in the tree that has no parent, but has a left twin. This is still defined
to be a valid tree structure, since the new “right twin” is reachable from the “left
twin.” (These two twins might still be thought of as a single node.) Of course, the
pointer from the father must be added quickly for good search time.

Link pointers have the advantage that they are introduced simultaneously with
the splitting of the node. Therefore, the link pointer serves as a “temporary fix”
that allows correct concurrent operation, even before all of the usual tree pointers
are changed for a new (split) node. If the search key exceeds the highest value in
a node (as indicated by the high key), it indicates that the tree structure has been
changed, and that the twin node should be accessed using the link pointer. While
this is slightly less efficient (we need to do an extra disk read to follow a link
pointer), it is still a correct method of reaching a leaf node. The link pointers
should be used relatively infrequently, since the splitting of a node is an excep-
tional case.

ACM Transactions on Database Systems, Vol. 6, No. 4, December 1981.

Efficient Locking for Concurrent Operations on B-Trees l 659

An additional advantage of the Blhk- tree structure is that when the tree is
searched serially, the link pointer is useful for quickly retrieving all of the nodes
in the tree in “level-major” order, or, for example, retrieving only leaves.

4. THE SEARCH ALGORITHM

4.1 Algorithm Sketch

To search for a value, u, in the tree, the search process begins at the root and
proceeds by comparing u with the values in each node in a path down the tree. In
each node, the comparisons produce a pointer to follow from that node, whether
to the next level, or to a leaf (record) node. If the search process examines a node
and finds that the maximum value given by that node is less than u, then it infers
some change has taken place in the current node that had not been indicated in
the father at the time the father was examined by the search. The current node
must have been split into two (or more) new nodes. The search must then rectify
the error in its position in the tree by following the link pointer of the newly split
node instead of by following a son pointer as it would ordinarily do.

The search process eventually reaches the leaf node in which u must reside if
it exists. Either this node contains u, or it does not contain u and the maximum
value of the node exceeds u. Therefore, the algorithm correctly determines
whether u exists in the tree.

4.2 The Algorithm

Search. This procedure searches for a value, u, in the tree. If u exists in the
tree, the procedure terminates with the node containing u in A and with t
containing a pointer to the record associated with u. Otherwise, A contains the
node where u would be if it existed. The notation used in the following algorithm
is defined in Section 2. In this procedure, we use an auxiliary operation called
scannode, defined as follows:

x t scannode(u, A) denotes the operation of examining the tree node in
memory block A for value u and returning the appropriate pointer from A
(into x).

procedure search(u)
current c root;
A + get(current);
while current is not a leaf do
begin

current c scannode(u, A);
A c get(current)

end;

/ * Get ptr to root node */
/* Read node into memory */

/ * Scan through tree */
/* Find correct (maybe link) ptr */

/ * Read node into memory */

while t c scannode(u, A) = link ptr of A do

begin
current + t ;
A t get(current)

end,

/ * Now we have reached leaves. */

/ * Keep moving right if necessary */

/* Get node */

/ * Now we have the leaf node in which u should exist. */
if v is in A then done “success” else done “failure”

ACM Transactions on Database Systems, Vol. 6, No. 4, December 1981.

660 * P. L. Lehman and S. 6. Yao

Note the simplicity of the search, which behaves just as a nonconcurrent
search, treating link pointers in exactly the same manner as any other pointer.

Note also that this procedure does no locking of any kind. This contrasts with
conventional database search algorithms (e.g., Bayer and Schkolnick [3]), in
which all searches read-lock the nodes they examine.

5. THE INSERTION ALGORITHM

5.1 Algorithm Sketch

To insert a value, u, in the tree, we perform operations similar to that for search
above. Beginning at the root, we scan down the tree to the leaf node that should
contain the value u. We also keep track of the rightmost node that we examined
at each level during the descent through the tree. This descent through the tree
constitutes a search for the proper place to insert u (which is, say, node a).

The insertion of the value u into the leaf node may necessitate splitting the
node (in the case where it was unsafe). In this case, we split the node (as shown
in Figure 8), replacing node a by nodes u’ (a new version of a which is written on
the same disk page) and b’. The nodes a’ and b’ have the same contents as a,
with the addition of the value u. We then proceed back up the tree (using our
“remembered” list of nodes through which we searched) to insert entries for the
new node (b’) and for the new high key of a’ in the parent of the leaf node. This
node, too, may need to be split. If so, we backtrack up the tree, splitting nodes
and inserting new pointers into their parents, stopping when we reach a safe
node-one that does not need to be split. In all cases, we lock a node before
modifying it.

Deadlock freedom is guaranteed by the well-ordering of the locking scheme, as
shown below. Note the possibility that-as we backtrack up the tree-due to
node splitting the node into which we must insert the new pointer may not be the
same as that through which we passed on the way to the leaf. Rather, the old
node we used during the descent through the tree may have been split; the
correct insertion position is now in some node to the right of the one where we
expected to insert the pointer. We use link pointers to find this node.

5.2 The Algorithm

In the following algorithms, some procedures are taken as primitives (in the
manner of scannode above), since they are easily implemented and their opera-
tion is not of interest for purposes of this paper. For example,

A t node.insert (A, w, u) denotes the operation of inserting the pointer w and
the value u into the node contained in A.

u t allocate(2 newpage for B) denotes the operation of allocating a new page
on the disk. The node contained in B will be written onto this page, using the
pointer u.

“A, B t rearrange old A, adding . .” denotes the operation of splitting A into
two nodes, A and B, in core.

Insert. This algorithm inserts a value, u (and its associated record), into the
tree. When it terminates, this procedure will have inserted u into the tree and will

ACM Transactions on Database Systems, Vol. 6, No. 4, December 1981.

Efficient Locking for Concurrent Operations on B-Trees l

Fl b’

(b)

(4

Fig. 8. Splitting node a into nodes a’ and b’. (Note that (d) and (e) show identical structures.)

have split nodes, where appropriate, working its way back up the tree.

procedure insert(o)
initialize stack;
current + root;
A c get(current);

/ * For remembering ancestors ‘/

while current is not a leaf do
begin

t c current;
cm-rent t scannode(v, A);
if new current was not link pointer in A then

push(t);
A c get(current)

end;

/* Scan down tree */

/* Remember node at that level “/

ACM Transactions on Database Systems, Vol. 6, No. 4, December 1981.

662 - P. L. Lehman and S. B. Yao

lock(current); / * We have a candidate leaf */
A + get(current);
movezight; /* If necessary */
if v is in A then stop “v already exists in tree”; /* And t points to its record */
w + pointer to pages allocated for record associated with v;
Doinsertion:
if A is safe then
begin

A + node.insert(A, w, v); / * Exact manner depends if current is a leaf */
put(A, current);
uuIock(current); / * Success-done backtracking “/

end else begin /* Must split node */
u + aUocate(1 new page for B);
A, B + rearrange old A, adding v and w, to make 2 nodes,

where (link ptr of A, link ptr of B) c (u, link ptr of old A);
y + max value stored in new A; / * For insertion into parent */
put@, 4; / * Insert B before A */
put(A, current); / * Instantaneous change of 2 nodes */
oldnode c current; /* Now insert pointer in parent */
v +-Y;
w cu;
current c pop(stack); /* Backtrack */
lock(current); /* WeII ordered */
A t get(current);
movezight; /* If necessary */
unlock(oldnode);
goto Doinsertion / * And repeat procedure for parent */

end

Move.right. This procedure, which is called by insert, follows link pointers at
a given level, if necessary.

procedure move.right
while t t scannode(u, A) is a link pointer of A do
begin

lock(t);
unIock(current);
current c t;

A + get(current);
end

/* Move right if necessary */
/ * Note left-to-right locking */

Note that this procedure works its way back up the tree one level at a time.
Further, at most three nodes are ever locked simultaneously, and this occurs
relatively infrequently: only when it is necessary to follow a link pointer while
inserting a pointer to a split node. In this case, the locked nodes are: the original
half of the split node, and two nodes in the level above the split node, while the
insertion is moving to the right. This is a substantial improvement upon the
solution of only unlocking a node when it is determined that the node is safe.

The correctness of the algorithm relies on the fact that any change in the tree
structure (i.e., any splitting of a node) incorporates a link pointer; a split always
moves entries to the right in the tree, where they are reachable by following the
link pointer.

In particular, we always have some idea of the correct insertion position for an
object (associated with some value) at any level, that is, the “remembered” node
through which our search passed at that level. If the correct insertion position

ACM Transactions on Database Systems, Vol. 6, No. 4, December 1981.

Efficient Locking for Concurrent Operations on B-Trees l 663

has moved, it has done so in a known fashion, that is, via a node splitting to the
right, leaving link pointers with which a search (or insertion) can find it. So the
correct insertion position for an object is always accessible by a process starting
at the old “expected” insertion position.

6. CORRECTNESS PROOF

In order to prove the correctness of our system, we need to prove that the
following two propositions hold for each process:

(1) that it will not deadlock (Theorem l),
(2) that it has correctly performed the desired operation when it terminates.

More specifically:

(a) that alI disk operations preserve the correctness of the tree structure
(Theorem 2))

(b) that a consistent tree is seen by all processes other than the process
making the modifications (Interaction Theorem 3).

6.1 Freedom from Deadlock

First, we undertake the proof of deadlock freedom of our system.
In order to do so, we impose an order on the nodes: bottom to top across levels

and left to right within a given level. This is formalized in the following lemma.

LEMMA 1. Locks areplaced by the inserter according to a well-ordering on
the nodes.

PROOF. Consider the following ordering (<) on the set of nodes in the tree:

(1) At any time, t, if two nodes, a and b, are not at the same distance from the
root of the tree (are not on the same level of the tree), then we say “a < b”
if and only if b is less distant from the root (is at a higher level of the tree)
than a.

(2) If a and b are equidistant from the root (are at the same level), then we say
“a < b” if and only if b is reachable from a by following a chain of one or
more link pointers (b is to the right of a).

We see by inspection of the insertion algorithm that if a < b at time to, then
a < b at all times t > to, since the node creation procedure simply splits a node,
x, into two new nodes, x’ and xn, where x’ < x”, and where

and

Therefore, the nodes form a well-ordering,
The inserter places locks on nodes, following the well-ordering. Once it places

a lock on a node, it never places a lock on any node below it, nor on any node to
the left on the same level.

Therefore, the inserter locks the nodes in the given well-order. Q.E.D.

Since the inserter is the only procedure that locks nodes, we immediately have
the following theorem.

ACM Transactions on Database Systems, Vol. 6, No. 4, December 1981.

664 l P. L. Lehman and S. 8. Yao

THEOREM 1: DEADLOCK FREEDOM. The given system cannotproduce a dead-
lock.

6.2 Correctness of Tree Modifications

To ensure preservation of the tree structure, we must check all operations that
modify that structure. First. we note that tree modification can only be performed
with a “put” operation. The insertion process has three places in its algorithm
where a put is performed.

(1) “put(A, current)” for rewriting a safe node.
(2) “put(B, u)” for unsafe nodes. With this operation, we write the second

(rightmost) of the two new nodes that are formed by a node splitting.
(3) “put(A, current)” for unsafe nodes. Here we write the first (leftmost) of the

two nodes. We actually rewrite a page (node) that was already in the tree,
and modify the link pointer of that page to point to the new node written by
“put(B, .).‘I

Note that in the algorithm (for unsafe nodes), “put(B, u)” immediately precedes
“put(A, current)” for unsafe nodes. We show that this ordering reduces the two
puts to essentially one operation in the following lemma.

LEMMA 2. The operation ‘put(B, u); put(A, current)” is equivalent to one
change in the tree structure.

PROOF. We assume that the two operations write nodes b and a, respectively.
At the time “put(B, u)” is performed, no other node contains a pointer to the
node (b) being written. Therefore, this put operation has no effect on the tree
structure.

Now, when “put(A, current)” is performed, this operation modifies the node to
which current points (node a). This modification includes changing the link
pointer of node a to point. to b. At this time, b already exists, and the link pointer
of b points to the same node as the link pointer of the old version of a. This has
the effect of simultaneously modifying a and introducing b into the tree struc-
ture. Q.E.D.

THEOREM 2. All put operations correctly modify the tree structure.

PROOF

Case 1. The operation “put(A, current)” for safe nodes. This operation modifies
only one locked node in the tree; the correctness of the tree is therefore
preserved.

Case 2. The operation “put(B, u)” for unsafe nodes. This operation does not
change the tree structure.

Case 3. The operation “put(A, current)” for unsafe nodes. By the lemma, this
operation both modifies the current node (say, a) and incorporates an
additional node (say, b) into the tree structure: the node written by
“put(B, u).” Similarly to case 1, a is locked at, the time of “put(A,
current,).” The difference in this case is that the node is unsafe and must
be split. But, by the lemma, we do this with a single operation, preserving
the correct tree structure. Q.E.D.

ACM Tmnsactions on Database Systems, Vol. 6, No. 4, December 1981.

Efficient Locking for Concurrent Operations on B-Trees * 665

6.3 Correct Interaction

It remains to show that other processes still operate correctly regardless of the
action of an insertion process modifying the tree.

THEOREM 3: INTERACTION THEOREM. Actions ofan insertionprocess do not
impair the correctness of the actions of other processes.

In order to prove the theorem, we first consider the case of a search procedure
interacting with an insertion, then of the interaction of two insertion procedures.
In general, in order to show that an operation by an inserter does not impair the
correctness of another process, we consider the behavior of that process relative
to the operation in question. In all cases the operation is atomic.

Assume that the inserter performs a “put” at time to on node a. Consider the
time, t’, at which the other process reads node a from the disk. Since “get” and
“put” operations are assumed to be indivisible, either t’ < to, or t,, < t’. We show
that the latter case presents no problem in the following lemma.

LEMMA 3. If a process P reads node a at some time t’ > to, where to is the time
at which a was changed by an insertion process, I, then the correctness of P is
not affected by that change.

PROOF. Consider the path that P follows through node a. The path that P
follows before it reaches a will not be changed by I. Further, by Theorem 2 above,
any change that process Imakes in the tree structure will produce a correct tree.
Therefore, the path followed by P from a (at time t > t’) will proceed correctly
regardless of the modification. Q.E.D.

In order to easily break the proof of the theorem into cases, we list here the
three possible types of insertion that may be performed for a value on a node.

Type 1. The simple addition of a value and associated pointer to a node. This
type of insertion occurs when the node is safe.

Type 2. The splitting of a node where the inserted value is placed in the left half
of the split node. The left half is the same node as that which was split.

Type 3. Similarly, the splitting of a node where the inserted value is placed in
the right half of the split node. The right half is the newly allocated node.

We now undertake the proof of the theorem. We observe that there are several
aspects (cases) to the correctness of the theorem, and we prove these separately.

PROOF. By Lemma 3, it is only necessary to consider the case where the search
or insertion process P begins to read the node before the change is made by the
insertion process I.

Part 1. Consider the interaction between the inserter I-which changes node
n at time to-and a search process S-which reads node n at time t’ < to. Let n’
denote the node after the change. (The argument in this section is also applicable
to the case where another inserter (I’) is interacting with process 1, and I’ is
performing a search.) The sequence of actions to be considered is: S reads node
n; then I modifies node n to n’; then S continues the search based on the contents

ACM Transactions on Database Systems, Vol. 6, No. 4, December 1961.

666 ’ P. L. Lehman and S. B. Yao

of n. Consider three types of insertions:

Type 1. Process I performs a simple insertion into node it. For cases
where n is a leaf, the inserter does not change any pointer. The
result is equivalent to the serial schedule in which S runs before
I. If n is a nonleaf node, a pointer/value pair for some node, m’,
in the next lower level of the tree is inserted in n. Assume that
m’ is created by splitting I into I’ and m’. The only possible
interaction is when S obtained the pointer to I prior to the
insertion of the pointer to m’. The pointer to 1 now points to I’,
and S will use the link pointer in I’ to reach m’. Thus the search
is correct.

Types 2 and 3. The node n is split into nodes nl’ and n2’ by the insertion. For
the leaf case, the search results on n and on nl’ and n2’ are the
same, except for the newly inserted value which will not be found
by S. If n is not a leaf, then a node below it has split, causing a
new pointer/value pair to be inserted in node n, which causes n
to split. By induction, the split in the level below node n is
correct. By Lemma 3, the searching below node n is also correct.
Therefore, we must simply show the correctness of the split of
node n. Suppose node n splits into nodes nl’ and n2’ that contain
the same set of pointers as node n, with the addition of the newly
inserted node. Then starting from node n, the search will reach
the same set of nodes in the next level as it would working from
nl’ with a link pointer to n2’. The exceptional case is that in
which the search would have followed the newly inserted pointer
had it been present when process S read node n. In this case, the
pointer followed will be to the left of that new pointer. This will
lead the search to a node (say, k) to the left of the node (say, m)
to which the new pointer points. Then the link pointer of Fz will
be followed to (eventually) reach m. This is the correct result.
(The argument for type 3 is identical to that for type 2, except
that the new entry is inserted into the newly created (rather than
the old) half of the split node. This makes no difference to the
argument, however, since the node is read by S before the split
takes place.)

Part 2. We next consider the case where process I interacts with another
insertion process, I’. Process I’ is either searching for the correct node for an
insertion, backtracking to another level, or actually attempting to insert a value/
pointer pair into the node n.

In the case where I’ is searching for a node into which to insert a value/pointer
pair, the search behaves in exactly the same fashion as a search process would.
The proof is therefore the same as given above for a search process.

Part 3. In the case where I’ is backtracking up the tree, as a result of node split
in the level below, I’ needed to back up in order to insert a pointer to the new
half of the split node. Backtracking is done using the record kept in a stack during

ACM Transactions on Database Systems, Vol. 6, No. 4, December 1981.

Efficient Locking for Concurrent Operations on B-Trees l 667

the descent through the tree. At each level, the node that is pushed onto the
stack is the rightmost node among those that were examined at that level.

Consider what may have happened to a given node, n, between the time we
inserted it into the stack and the time we return to the node as we backtrack
through the tree. The node may have split one or more times. These splits will
have caused the formation of new nodes to the “right” of the node n. Since all
nodes to the right of node n are reachable (via link pointers) the appropriate
place to insert the value will be reachable by the insertion algorithm.

Part 4. In the case where process I’ is attempting an insertion into node n, it
will attempt to lock that node. But the process I will already hold the lock on
node n. Eventually, I will release that lock, and I’ will lock the node and then
read it into memory. By the lemma above, the interaction is correct since the
reading by I’ takes place before the insertion by I. Either node n will be the
correct place to make the insertion- in which case it will do so-or the search
will have to follow the link pointer from the node to its right twin. Q.E.D.

6.4 Livelock

We wish to point out here that our algorithms do not prevent the possibility of
livelock (where one process rrms indefinitely). This can happen if a process never
terminates because it keeps having to follow link pointers created by other
processes. This might happen in the case of a process being run on a (relatively)
very slow processor in a multiprocessor system.

We believe, however, that this is extremely unlikely to be a problem in a
practical implementation, given the following observations.

(1) In most systems that we know of, processors run with comparable speeds.
(2) Node creation and deletion occur only a small percent of the time in a B-tree,

so even a slow processor is likely to encounter little difficulty due to node
creation or deletion (that is, it will be required to follow only a small number
of link pointers).’

(3) Only a fixed number of nodes can be created on any given level of the tree,
bounding the amount of “catching up” that a slow processor must do.3

We believe that these ideas combine to produce a vanishingly small probability
of livelock for a process in a practical system (except perhaps in the case where
the speeds of the processes involved are radically different). A simulation would
enable us to verify that our system does work under “reasonable” conditions, and
help us to put bounds on the admissible relative speeds of the processes.

In the case where processes do run at radically different speeds, we might
introduce some additional mechanism to prevent livelock. Several alternatives
are available for the implementation of such a mechanism. A complete discussion
of methods for avoiding livelock is beyond the scope of this paper, but one

‘It is interesting to note that all of the cases of any difficulty in the present system and in other
related systems for concurrency occur only a very small fraction of the time. For example, in a B-tree
nodes need be split infrequently compared to the number of insertions performed.
3 Strictly speaking, this statement ignores the problem of “ghost” nodes created by deletion, which
somewhat increases the number of nodes that can be viewed as being on any given level.

ACM Transactions on Database Systems, Vol. 6, No. 4, December 1981.

668 l P. L. Lehman and S. B. Yao

example of such a method might be to assign priorities to each process, based,
perhaps, on the “age” of the process. This would guarantee that each process
would terminate, since it would eventually become the oldest process, and hence
the process with the highest priority.

7. DELETION

A simple way of handling deletions is to allow fewer than K entries in a leaf node.
This is unnecessary for nonleaf nodes, since deletion only removes keys from a
leaf node; a key in a nonleaf node only serves as an upper bound for its associated
pointer; it is not removed during deletion.

In order, then, to delete an entry from a leaf node, we perform operations on
that node quite similar to those described above for case 1 of insertion. In
particular, we perform a search for the node in which u should lie. We lock this
node, read it into memory, and rewrite the node after removing the value u from
the copy in primary memory. Occasionally, this will produce a node with fewer
than k entries.

Proofs of the correctness of this algorithm are analogous to the proofs for
insertion. For example, the proof of deadlock freedom is trivial, since only one
node need be locked by the deleter.

Similarly, correct operation relies on the observation that if a searcher reads
the node before the value u is deleted, it will report the presence of u in the node.
This reduces to the serial schedule in which the search runs first.

The system we have just sketched is far simpler than one that requires
underflows and concatenations. It uses very little extra storage under the as-
sumption that insertions take place more often than deletions. In situations where
excessive deletions cause the storage utilization of tree nodes to be unacceptably
low, a batch reorganization or an underflow operation which locks the entire tree
can be performed.

8. LOCKING EFFICIENCY

Clearly, at least one lock is required in a concurrent scheme, in order to prevent
simultaneous update of the same node by distinct processes.

The solution given above for insertion uses at most a constant number of locks
(three) for any process at any time. It does this only under the following
circumstances: an inserter has just inserted an entry into some node (leaf or
nonleaf), and has caused that node to be split. In backing up the tree, in order to
insert a pointer to the split half of the new node, the inserter finds that the old
father of the split node is no longer the correct place to perform the insertion and
begins chaining across the level of nodes containing the father in order to find the
correct insertion position for the pointer. Three nodes are locked only for the
duration of one operation.

This type of locking occurs rarely in a Bltik -tree with a large capacity in each
node. Therefore, we can expect an extremely small collision probability for this
structure unless there are many concurrent processes running.

The behavior of this system could be quantified by simulation, which would be
parameterized by the number of concurrent processes, the capacity of each node,
and the relative frequencies of search, insert, and delete operations. Such a
simulation would also be useful for comparison with other concurrency schemes.

ACM Transactions on Database Systems, Vol. 6, No. 4, December 1981.

Efficient Locking for Concurrent Operations on B-Trees - 669

9. SUMMARY AND CONCLUSIONS

The B-tree has been found to be widely useful in maintaining large databases.
Concurrent manipulation of such data has the appeal that many users would be
able to share data; further, this should be feasible, since there are few cases, in a
large database, where the data needs of users will conflict.

We have given an algorithm which performs correct concurrent operations on
a variant of the B-tree. The algorithm has the property that only a (small)
constant number of locks need be used by any process at any time. The algorithm
is straightforward and differs only slightly from the sequential algorithm for the
same problem. (The gain in efficiency of the algorithm presented above, as
compared with sequential algorithms, or other concurrent algorithms could be
quantified by simulation.)

This effect is achieved by a small modification to the data structure that allows
recovery in the case where the position of a process is invalidated by the action
of another process (cf. [8]).

We hope to expand this work to a more general scheme for concurrent database
manipulation. We wish to find a general scheme that entails only a small
modification to the data structure and to the sequential algorithm for a database
problem. This modification should nevertheless allow a process to recover when
its actions have been rendered incorrect by changes to the data structure that
have been made by another process.

Another direction for further work is the study of a general method for
“parallelizing” algorithms: techniques for converting a (well-understood) sequen-
tial algorithm into a concurrent algorithm for the same problem. The goal is to
exploit as much as possible the concurrent nature of the problem that the
algorithm is designed to solve, without sacrificing the correctness of the algorithm.

REFERENCES

(Note. References [4,9, 141 are not cited in the text.)
1. ASTRAHAN, M.M., ET AL. System R: Relational approach to database management. ACM Trans.

Database Syst. 1,2 (June 1976), 97-137.
2. BAYER, R., AND MCCREIGHT, E. Organization and maintenance of large ordered indexes. Acta

Znf 2 (1972), 173-189.
3. BAYER, R., AND SCHKOLNICK, M. Concurrency of operations on B-trees. Acta Inf 9 (1977), l-

21.
4. DIJRSTRA, E.W., ET AL. On-the-fly garbage collection: An exercise in cooperation. Commun.

ACM 21,11 (Nov. 1978), 966-976.
5. DIJRSTRA, E.W. Cooperating sequential processes. In Programming Languages, F. Genuys, Ed.

Academic Press, New York, 1968, pp. 43-112.
6. ELLIS, C.S. Concurrent search and insertion in 2-3 trees. Tech. Rep. 78-05-01, Dep. Computer

Science, Univ. Washington, Seattle, May 1978.
6a. GUIBAS, L.J., AND SEDGEWICK, R. A dichromatic framework for balanced trees. In Proc. 19th

Ann. Symp. Foundation of Computer Science, IEEE, 1978.
7. KNUTH, D.E. The Art of Computer Programming, vol. 3, Sorting and Searching. Addison-

Wesley, Reading, Mass., 1973.
8. KUNG, H.T., AND LEHMAN, P.L. Concurrent manipulation of binary search trees. ACM Trans.

Database Syst. 5,3 (Sept. 1980), 354-382.
9. KUNG, H.T., AND SONG, SW. A parallel garbage collection algorithm and ita correctness proof.

In Proc. 18th Ann. Symp. Foundations of Computer Science, IEEE, Oct. 1977, pp. 120-131.
10. KWONG, Y.S., AND WOOD, D. Concurrency in B- and T-trees. In preparation.
11. LAMPORT, L. Concurrent reading and writing. Commun. ACM20,ll (Nov. 1977) 806-811.

ACM Transactions on Database Systems, Vol. 6, No. 4, December 1981.

670 * P. L. Lehman and S. B. Yao

12. MILLER, R., AND SNYDER, L. Multiple access to B-trees. In Proc. Conf Information Sciences
and Systems (preliminary version), Johns Hopkins Univ., Baltimore, March 1978.

13. SAMADI, B. B-trees in a system with multiple users. Inf. Process. Lett. 54 (Oct. 1976),107-112.
14. STEELE, G.L., JR. Multiprocessing compactifying garbage collection. Commun. ACM 18,9 (Sept.

1975), 125-143.
15. WEDEKIND, H. On the selection of access paths in a data base system. In Data Base Manage-

ment, J.W. Klimbie and K.L. Koffeman, Eds. North-Holland, Amsterdam, 1974, pp. 385-397.

Received June 1979; revised May 1980; accepted October 1980

ACM Transactions on Database Systems, Vol. 6, No. 4, December 1981.

