
A Framework for Modeling Buffer Replacement Strategies

Stephane Bressan, Chong Leng Goh, Beng Chin Ooi, Kian-Lee Tan
School Of Computing

National University Of Singapore
Building S-16, Level 5, Room 05/08

3 Science Drive 2, Singapore 117543

steph,gohcl,ooibc,tankl@comp.nus.edu.sg

ABSTRACT
An e�ective bu�er management system is crucial for any
database management system. While much work has been
expended to provide extensible data t ypes, extensible query
languages and even extensible optimizers, there is very lim-
ited research in providing extensibility at the bu�er man-
agement level. Supporting extensibility at the bu�er man-
agement level is equally, if not more, important as no sin-
gle strategy can perform well in all applications e�ciently.
In this paper, we present a uniform framework for model-
ing bu�er replacement policies. The framework allows the
bu�er manager to be easily extended to provide support
for and �ne-tuning of di�erent replacement policies. Our
work is novel in two aspects. First, the proposed framework
uni�es existing work in this area. Second, our work intro-
duces a new level of extensibility. To our knowledge, none
of the existing extensible DBMSs and storage managers pro-
vide extensibility at the bu�er management level. We im-
plemented an extensible bu�er manager and experimented
with di�erent bu�er replacement polices. The experimental
study illustrates the ease of use and e�ciency of the pro-
posed framework.

1. INTRODUCTION

The bu�er manager plays a critical role in the perfor-

mance of DBMSs by caching part of the database in main

memory to minimize disk I/O. An important task of a bu�er

manager, the replacement policy, is to identify a bu�er page

to be replaced when a page fault occurs. The goal is to

manage the replacement of bu�er pages e�ciently to avoid

unnecessary page faults.

Many replacement policies have been proposed in the liter-

ature: LRU, LRU-K [14], Hotset [15], DBMIN [5], ranking-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
WOODSTOCK ’97 El Paso, Texas USA
Copyright 2000 ACM 0-89791-88-6/97/05 ..$5.00

aware [11], Priority-LRU [3], Priority-DBMIN [3] and Priority-

Hints [10, 4], Hints-based policies [6, 12]. Not surprisingly,

none of these techniques has been shown to guarantee good

performance for all applications. It is clear that as DBMSs

are increasingly being deployed for new and advanced appli-

cations, we can expect to see more specialized replacement

policies being proposed. One such example is the ranking-

aware bu�er replacement strategy recently proposed for search

engine like retrievals [11].

Unfortunately, most of the existing bu�er managers sup-

port only one �xed replacement policy, which is typically

the LRU scheme. For a system such as Oracle 8i that has

di�erent cartridges to support a wide range of applications,

such as text, image and spatial applications, it only supports

LRU replacement strategy. Even in extensible storage man-

agers such as EXODUS, the bu�er manager is also designed

as a non-extensible part of the kernel of the system, and

supports only two replacement policies [16]. It is di�cult to

extend the bu�er manager's repertoire of replacement poli-

cies as the code for the supported policies are all hardwired

into the system.

In this paper, we propose that the bu�er manager should

be extensible. First, supporting extensibility at the bu�er

management level is essential since extensions made at one

level of a DBMS require extension support at other levels as

well [1]. For example, having a new data type extension t yp-

ically requires making extensions to both the access method

and query optimizer. With bu�er replacement extensibility,

it may be possible to custom-tailor a smart bu�er replace-

ment policy to manage bu�er replacements intelligently by

exploiting the reference behaviour of new access methods

or transactions. Second, the emergence of more complex

applications also provides more opportunities for exploiting

domain speci�c semantics to improve system performance

at the bu�er manager level. Finally, supporting bu�er level

Permission to make digital or hard copies of part or all of this work or
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers, or to redistribute to lists, requires prior
specific permission and/or a fee.

CIKM 2000, McLean, VA USA
© ACM 2000 1-58113-320-0/00/11 . . .$5.00

62

Some text in this electronic article is rendered in Type 3 or bitmapped fonts, and may display poorly on screen in Adobe Acrobat v. 4.0 and later. However, printouts of this file are unaffected by this problem. We recommend that you print the file for best legibility.

extensibility facilitates the evaluation and �ne-tuning of new

bu�er replacement policies for domain speci�c operators, al-

gorithms or applications [7, 8, 11, 13].

The remaining of the paper is organized as follow. In Sec-

tion 2, we introduce our framework for an extensible bu�er

management component, with its structure, its properties

and behavior and the priority scheme. Section 3 shows how

the framework can be used to model replacement policies. In

particular, we will discuss how three well-known replacement

policies, namely LRU, MRU and LRU-2 can be implemented

using the proposed priority scheme. Section 4 demonstrates

with a complete example how the framework can be used

to model more complex bu�er replacement policies such as

the Priority-Hints, Priority-LRU and Priority-DBMIN Al-

gorithms. In Section 5, we present the performance analysis

on our proposed framework. Section 6 concludes with a dis-

cussion on the contribution of the work.

2. A FRAMEWORK FOR DESIGNING BUFFER
REPLACEMENT POLICIES

Our framework consists of two components: a hierarchi-

cal model of bu�er pool that supports a two-level model

for bu�er replacement policies, and a priority scheme that

generalizes the representation of replacement criterion.

2.1 Hierarchical Organization of Buffer Pool

The organization of the bu�er pool can be modeled as a

hierarchical structure. The bu�er pool is decomposed into

successive layers of smaller bu�er groups. Each group rep-

resents a collection of bu�er pages that share some common

properties, e.g., pages of the same type such as a free bu�er

pages, or pages owned by the same transaction. The hi-

erarchical organization of the proposed bu�er pool can be

represented as a rooted tree with the root node represent-

ing the entire bu�er pool. Each leaf node represents a local

bu�er group consisting of a subset of bu�er pages, and inter-

nal node represents an abstract bu�er group that consists

of some other abstract or local bu�er groups (represented

by its child nodes). Unlike a local bu�er group, an abstract

bu�er group consists of bu�er subgroups instead of bu�er

pages.

2.2 Priority-Based Scheduling Scheme

Replacement selection policies are essentially scheduling

policies that prioritize bu�er pages for replacement based

on some selection criteria. For example, the LFU selection

policy schedules the less frequently used pages for replace-

ment before the more frequently used ones, while the LRU

selection policy schedules the less recently accessed pages for

replacement before the more recently accessed bu�er pages.

We can thus prioritize local and abstract bu�er groups, so

that local/abstract groups with the lowest priorities are can-

didates for replacement.

2.3 The Framework for Replacement Policies

Our framework is as follows. Each abstract bu�er group is

associated with an abstract selection policy, and each local

bu�er group is associated with a local selection policy. The

selection policy associated with each bu�er group assigns

priority values to the objects in the bu�er group such that

whenever the policy makes a selection, it always selects the

object with the lowest priority value. Associated with each

local (abstract) selection policy is some information, referred

to as local (abstract) control information, which the policy

uses in the assignment, modi�cation, and evaluation of pri-

ority values. Based on the priority values of bu�er groups

and bu�er pages, a replacement bu�er page is selected as fol-

lows. The abstract selection policy �rst selects from among

the various bu�er groups, the one with the lowest priority;

the local selection policy associated with the selected local

bu�er group then selects from it the bu�er page with the

lowest priority as the replacement page.

3. MODELING BUFFER REPLACEMENT
POLICIES

3.1 Modeling Selection Policies

Relating the implementation of this priority scheme to

object-oriented concepts, a priority scheme is a class def-

inition where each class instance has an instance variable

of type C (control information) and a set of methods for

assignment, modi�cation and evaluation of priority values.

A new replacement policy class can be de�ned by inheriting

the priority scheme class and overriding the methods de�ned

within the class.

One important note about our priority scheme is the mod-

eling of priority value for di�erent replacement policies. Due

to the di�erent criteria of bu�er replacement policies, the

priority values for bu�er page (group) may have to be mod-

eled di�erently. A higher level of abstraction is needed so

that a uniform way of modeling the priority value of bu�er

page (group) regardless of the bu�er replacement policy can

63

be achieved. This abstraction can be easily realized by ob-

ject inheritance. Using object inheritance, the priority value

attached to a bu�er page (group) is de�ned with a generic

class. When there is a need for a new form of priority value,

the new priority value can be created through object inher-

itance.

A priority scheme, PS, is modeled as follows.

PS = (P;C; �; �; ; �; �)

The whole idea of creating the PriorityValue class with a

generic Object class, P , is to facilitate the task of modeling

the priority value of di�erent bu�er replacement policy. Be-

cause Object class in Java1 is automatically inherited by all

classes (whether user-de�ned or its libraries), the attribute

class P can be assigned with any user-de�ned class to model

di�erent priority value needed for a new bu�er replacement

policy. We shall see a few examples of this in the later sec-

tions.

Attribute C in class PriorityScheme de�nes the control

information class used in the assignment, update, and eval-

uation of priority values. For similar reason with attribute

P in PriorityValue class, it is de�ned using a generic Object

class in Java.

The �ve methods are:

1. � : Cold ! Cnew is an initialization method that ini-

tializes the control information associated with a Pri-

orityScheme class.

2. � : Sold ! Snew is a priority assignment method that

assigns an initial priority value to a page (group) asso-

ciated with a PriorityScheme class. The parameter in

� is Sold where Sold refers to the bu�er slot informa-

tion for the bu�er page (group) and the updated slot

information Snew is returned.

3. : Sold ! Snew is a priority update method that

updates the priority value of a re-accessed bu�er page

(group). The parameter in is Sold where Sold refers

to the bu�er slot information of a re-accessed bu�er

page (group) and the updated slot information Snew

is returned.

4. � : Si � Sj ! Slowest is a priority comparison method

that compares two bu�er pages' (groups'), priority val-

ues, Si and Sj , and returns the priority value of the

bu�er page (group), Slowest, which is lowest.

1We implemented our extensible bu�er manager in Java.

5. � : SALL ! Si is a priority evaluation method that

evaluates all the bu�er page's (group's) priority values

within a bu�er group, SALL and returns the slot loca-

tion of a bu�er page (group) with the lowest priority.

This method uses the priority comparison to identify

the slot in a bu�er page (group) with the lowest pri-

ority. A default method based on the above argument

is provided. However, in cases where the default eval-

uation method is not su�cient, the programmer can

easily rede�ne it through method overriding.

3.2 Modeling Local Selection Policy Class

A local selection policy controls the assignment, modi-

�cation, and evaluation of priority values for bu�er pages

contained in a local bu�er group. The local selection policy

associated with a local bu�er group initializes the priority

value of a new bu�er page when it is fetched into the bu�er

group and updates it's priority value when the bu�er page

is re-accessed. To select a replacement page from a local

bu�er group, the associated local selection policy evaluates

the priority values of all the pages contained in the group

and picks the page with the lowest priority.

A local selection policy is modeled by �rst inheriting the

PriorityScheme class de�ned in the above section. New re-

placement behavior can be created by:

1. overriding the �ve methods (�; �; ; �; �) in the priority

scheme, and

2. de�ning a priority value and control information needed

for the priority scheme.

We shall illustrate the modeling of local selection policy

class with three sample replacement policies. The �rst ex-

ample is the LRU scheme, and demonstrates how easy it is

to model the scheme in our framework. The second is the

MRU scheme, and it shows even greater ease in modeling

when methods from existing replacement policies (LRU in

our case) can be reused. Finally, we also show how to model

a more complicated LRU-2 scheme. Throughout this paper,

we use S.priority to denote the priority value of a bu�er page

and assume that all these three replacement policies use the

default priority evaluation method.

3.2.1 Modeling the Least Recently Used Policy (LRU)

An LRU policy replaces the least recently used page. The

priority of a bu�er page can therefore be represented by a

logical timestamp value such that the replacement page is

64

the page with the smallest timestamp value (lowest prior-

ity value). The local control information, c, is also a logi-

cal timestamp count that stores the timestamp value of the

most recently accessed page. This value is initialized by the

initialization method to zero before it is used for updating

priority values. When a new page is fetched into the bu�er

group or when a page in the bu�er group is re-accessed, the

local control timestamp count is �rst incremented by one

and then assigned as the new priority value of the bu�er

page. Thus the priority update method is the same as the

priority assignment method. Since a page with a large times-

tamp value has a higher priority, the priority comparison

method simply returns a bu�er page's priority value with

the smallest value. Using the priority comparison method,

the priority evaluation method obtains the bu�er page with

the smallest priority value and returns it. The algorithm

for modeling the LRU local selection policy is outlined in

Figure 1.

PSLRU = fPLRU , CLRU , �LRU , �LRU , LRU , �LRU , �LRU g
CLRU = PLRU
PLRU = Integer type
�LRU () f

c 0
g
�LRU (Sold) f

c c+ 1
Sold:priority c

return Sold
g
LRU = �LRU
�LRU (Si; Sj) f

if (Si:priority > Sj :priority)
return Sj

return Si
g

Figure 1: Modeling of LRU local selection policy.

3.2.2 Modeling the Most Recently Used Policy (MRU)

Unlike the LRU policy, an MRU policy replaces the most

recently used page. The modeling of the MRU local se-

lection policy is shown in Figure 2. It is similar to that

of the LRU policy, except that for the MRU policy, bu�er

page with larger timestamp value has lower priority since the

MRU policy selects the most recently accessed page (page

with largest timestamp value) for replacement. Therefore,

the priority evaluation method returns the complement of a

bu�er page's timestamp value as its priority value.

PSMRU = fPMRU , CMRU , �MRU , �MRU ,
MRU , �MRU , �MRU g

PMRU = PLRU
CMRU = CLRU

�MRU = �LRU
�MRU = �LRU
MRU = LRU
�MRU = complement(�LRU)

Figure 2: Modeling of MRU local selection policy.

3.2.3 Modeling the Least Recently Used-2 Policy (LRU-
2)

The LRU-2 algorithm, an instant of LRU-K [14], uses the

Backward 2-distance to decide the replacement page. The

Backward 2-distance is de�ned as follows. Given a reference

string known up to the time t, r1; r2; : : : ; rt, the backward

2-distance bt(p; 2) is the distance backward to the 2nd most

recent reference to the page p:

bt(p; 2) = x if rt�x has the value

of p and there has been exactly

one i with t� x < i � t where ri = p

=1 if p does not appear at

least 2 times in r1; r2; : : : ; rt

The LRU-2 selects the replacement page whose backward

2-distance is the maximum of all pages in the bu�er. When

there are more than one page with bt(p; 2) =1, a subsidiary

policy is used to select the replacement victim among these

pages; for example, classical LRU could be employed as a

subsidiary policy. Note that LRU-1 corresponds to the clas-

sical LRU algorithm.

In LRU-2, there are two delicate tuning parameters which

we must take note of when implementing it. The �rst is

the correlated reference period. This is a time period dur-

ing which a page is retained in the bu�er once it has been

accessed. The second tuning parameter is the retained in-

formation period which is the length of time a page's access

history is remembered after it is ejected from the bu�er.

Due to space constraint, the algorithm for modeling the

LRU-2 local selection policy will not be presented here. In-

stead, it can be found in the original sbumitted paper which

can be obtained from this web address

http://www.comp.nus.edu.sg/ gohcl/CIKM/cikm.ps.

3.3 Modeling Abstract Selection Policies

The function of an abstract selection policy is to select a

bu�er group when a page fault occurs so that the replace-

65

ment page can subsequently be selected from the appropri-

ate local bu�er group. For consistency, the selection of a

bu�er group from an abstraction bu�er group is modeled

in the same way as that of the local selection policy, i.e.,

using the same priority scheme. Each abstract bu�er group

is associated with a selection policy, referred to as abstract

selection policy, which assigns and updates priority values

to bu�er groups contained in the abstract bu�er group such

that a selection from the abstract bu�er group always picks

the bu�er group with the lowest priority value.

An abstract selection policy controls the assignment, mod-

i�cation, and evaluation of priority for bu�er groups con-

tained in an abstract bu�er group. The abstract selection

policy associated with an abstract bu�er group initializes

the priority value of a new bu�er group created in the ab-

stract bu�er group and updates its priority value when the

bu�er group is accessed. A local bu�er group is said to be

accessed when a bu�er page is added or removed from it; an

abstract bu�er group is said to be accessed when any of the

bu�er groups contained in it is accessed. To select a bu�er

group from an abstract bu�er group, the associated abstract

selection policy evaluates the priority values of all the bu�er

groups contained in the abstract bu�er group and picks the

group with the lowest priority. Due to space limitation, and

to minimize redundancy, we shall defer the example to Sec-

tion 4.

3.4 Modeling Buffer Replacement Policy Class

By combining the modeling of local and abstract selection

policy classes, a bu�er replacement policy class is modeled

as follows:

R = (SA; MA; SL; ML)

SA is a �nite set of abstract selection policy class. MA :

NA ! SA is a surjective function that maps an abstract

bu�er group to an abstract selection policy class. Thus,

each abstract bu�er group of type Ni 2 NA is associated

with an abstract selection policy of class APj 2 SA.

SL = fLP1; : : : ; LPqg is a �nite set of local selection

policy classes, and ML : NL ! 2SL is a function that maps

a local bu�er group class to a non-empty subset of local

selection policy class.

Note that while MA maps an abstract bu�er group to an

abstract selection policy type,ML maps a local bu�er group

to a subset of local selection policy types. This is because

the set of abstract selection policy mappings which forms,

the �rst two steps of our model, is �xed and should be de-

termined at compile-time. On the other hand, the mapping

of a local selection policy class to a local bu�er group can be

determined at run-time depending on the page access pat-

tern. For example, in the EXODUS storage manager [16],

each local bu�er group can be managed by either an LRU

or an MRU replacement policy.

4. MODELING THE PRIORITY-HINTS AL-
GORITHM: A COMPLETE EXAMPLE

So far, we have only illustrated the use of local selection

policy. In this section, we will take a closer look on how our

proposed abstract and local selection policy can be combined

to model a much complex algorithm, the priority-hints al-

gorithm [6, 3, 10].

In the priority-hints algorithm, bu�ers are organised into

\transaction sets" where a transaction set consists of all of

the bu�ers owned by a single transaction. Transaction sets

are arranged in priority order, with recency of arrival of

the owner transaction being used to break ties if there are

multiple transactions of the same priority. Each transaction

set is made up of two kinds of bu�ers: bu�ers currently �xed

by the owner and bu�ers containing un�xed favored pages

of the owner. Besides the transaction sets, the algorithm

maintains a free list of pages in LRU order.

Pages referenced by transaction set in priority-hints algo-

rithm, are classi�ed into two groups: pages that are likely

to be re-referenced by the same transaction (favored pages)

and pages that is likely to be referenced just once (normal

pages). Un�xed favored pages are maintained in MRU or-

der. Note that a transaction set never contains an un�xed

normal page; whenever a normal page is un�xed, it is freed

to the free list.

Explaining priority-hints in our terms would mean that

the free list is modeled as a local bu�er group with a LRU

local selection policy and the list of transaction sets is mod-

eled as a set of abstract bu�er groups, each consists of two

local bu�er groups (Ntrans�unfixed and Ntrans�fixed). A

root abstract bu�er group (Nbuffer) is made up of a lo-

cal bu�er group (Nfree) and a set of abstract bu�er groups

(Npriority).

The replacement criteria in the priority-hints algorithm

can be explained using this hierarchical bu�er organization

as follows. The free list local bu�er group (instance ofNfree)

will be selected as the replacement local bu�er group (if it is

66

non-empty); otherwise, the selection of the local bu�er group

involves two levels of selection. The abstract selection policy

attached to the Nbuffer will �rst select a priority abstract

bu�er group (instance of Npriority) from the bu�er pool and

then the abstract selection policy attached to the selected

priority abstract bu�er group will select the transaction un-

�xed local bu�er group (instance of Ntrans�unfixed).

In the �rst selection, the policy will select the non-empty

priority abstract bu�er group with the lowest transaction

priority level not equal to or greater than the priority level of

the faulting-transaction. If no such group exists, the priority

abstract bu�er group with transaction priority level equal to

that of the faulting transaction is selected. In the second se-

lection, if the selected priority abstract bu�er group has the

same priority level as the faulting-transaction, the transac-

tion local bu�er group owned by the faulting-transaction

will be selected; otherwise, the non-empty transaction lo-

cal bu�er group owned by the `oldest' transaction2 will be

selected. Figure 3 shows the overall modeling of the priority-

hints algorithm.

R = (SA; MA; SL; ML) where
SA = fAP1; AP2g
MA = f(Nbuffer; AP1); (Npriority; AP2)g
SL = fPSLRU ; PSMRUg
ML = f(Nfree; fPSLRUg); (Ntrans�unfixed; fPSMRUg)g

where the de�nition for PSLRU and PSMRU

are shown in Figure 1 and Figure 2 respectively

Figure 3: Modeling of priority-hints algorithm.

The eventual outcome of AP1 is either the free list local

bu�er group or an abstract bu�er group within the list of

Npriority. If the free list local bu�er group is selected, the

replacement page is obtained through the LRU local selec-

tion policy. If one of the abstract bu�er group from the list

of Npriority is selected, then the job of �nding the replace-

ment page is passed down to the abstract selection policy,

AP2 which is attached to the selected priority abstract bu�er

group.

Again, due to space constraint, the modeling of abstract

selection policy AP1 and AP2 using our framework are not

presented. They can be found in the original submitted

paper which can be obtained at this web address

http://www.comp.nus.edu.sg/ gohcl/CIKM/cikm.ps.

When there is a bu�er miss, the control information c2

2The age of a transaction is measured by its admission time;
the oldest transaction therefore refers to the transaction that
was admitted the earliest among the existing transactions.

in AP1 will be set to the faulting transaction. This control

information will then be used by the bu�er manager to �lter

out all the priority abstract bu�er groups whose priority

values are greater than the faulting transaction, before the

eligible set of bu�er groups is being passed into the �method

in AP1.

AP2 is similar to AP1. In the case of AP1, the selection is

done on a mixture of local bu�er group (Nfree) and a set of

abstract bu�er group (Npriority). For AP2, we only need to

make selection from two local bu�er groups. Furthermore,

one of the local bu�er groups will never get selected because

it represents the �xed pages hold by the current transaction.

5. IMPLEMENTATION AND PERFORMANCE
ANALYSIS

We have implemented the extensible bu�er manager as a

component in StorM [9]. StorM is a 100% Java-based (JDK

1.2) storage manager, and consists of a set of Java classes

and objects for the development and tuning of non-standard

data intensive applications. It does not require a special

compiler, a special abstract machine, or a set of (possibly

OS speci�c) native methods. Exploiting the serialization

properties of Java objects, StorM o�ers support for persis-

tency for almost any Java object. StorM also supports an

independent notion of persistent heterogeneous and homo-

geneous collection (�les) of Java objects. The latter feature

can be used for instance for the e�cient implementation of

relations.

We coded a number of bu�er replacement strategies using

the interface provided by StorM. In this paper, we use LRU-

K [14], a very e�cient replacement strategy, to illustrate

the programming of our extensible bu�er manager. We also

coded LRU-K in Java based on the C codes provided by [14]

to provide us a reference point for comparisons and cross

checking.

5.1 Experiments Using LRU-K

We conducted three sets of experiments. The objective is

two fold. We want to show that none of the techniques are

superior in all cases. This calls for the need to easily extend

existing bu�er replacement policies. Second, being able to

compare several di�erent replacement policies demonstrate

the ease in implementing them in our extensible bu�er man-

ager.

5.1.1 Two-Pool Experiment

67

In this set of experiment, we studied the codes available

from ftp://ftp.cs.umb.edu/pub/lru-k/lru-k.tar.Z and ran the

experiments as described in [14].

Basically, we considered two pools of disk pages, Pool 1

with N1 pages and Pool 2 with N2 pages, where N1 < N2.

In this two-pool experiment, alternating references are made

to Pool 1 and Pool 2; then a page from that pool is randomly

chosen to be the sequence element. Thus, each page of Pool

1 has a probability of reference b1 =
1

2N1
of occurring as any

element of reference string w, and each page of Pool 2 has

probability b2 = 1

2N2
. This experiment is meant to model

the alternating references to index and record pages. Sim-

ulation results of the two-pool experiment, with disk page

pools of N1 = 100 pages and N2 = 10; 000 pages were con-

ducted. The bu�er hit ratio (number of hits divided by the

number of logical references) of the LRU-2 implemented on

StorM is measured and compared to those given in [14]. The

results are shown in Table 1. The di�erence between the re-

sults obtained using StorM implementation and those of [14]

is due to random nature of the data set. We, however, ob-

tained the same results when we ran both implementations

on the same data set.

Bu�er LRU-1 LRU-2 AO
Size StorM [14] StorM [14]
60 0.14 0.14 0.274 0.291 0.300
80 0.18 0.18 0.368 0.382 0.400
100 0.22 0.22 0.449 0.459 0.500
120 0.26 0.26 0.493 0.496 0.501
140 0.29 0.29 0.500 0.502 0.502
160 0.32 0.32 0.502 0.503 0.503
180 0.35 0.34 0.503 0.504 0.504
200 0.37 0.37 0.503 0.505 0.505
250 0.42 0.42 0.505 0.508 0.508
300 0.45 0.45 0.510 0.510 0.510
350 0.48 0.48 0.512 0.513 0.513
400 0.50 0.49 0.513 0.515 0.515
450 0.50 0.50 0.518 0.517 0.518
Summary:
Max Averaging Di�. in LRU-1 Hit Ratio = 0.0015
Max Averaging Di�. in LRU-2 Hit Ratio = 0.0033

Table 1: Performance results for the two-pool ex-

periment.

5.1.2 Zipfian Random Access Experiment

In this set of experiment, we use a synthetic workload

with random references to a set of pages with a Zip�an dis-

tribution of reference frequencies as in [14].

Again the bu�er hit ratio of LRU-2 modeled using our

framework is obtained and compared to the results in [14].

Bu�er LRU-1 LRU-2 AO
Size StorM [14] StorM [14]
40 0.53 0.53 0.59 0.61 0.640
60 0.58 0.57 0.63 0.65 0.677
80 0.62 0.61 0.66 0.67 0.705
100 0.64 0.63 0.68 0.68 0.727
120 0.66 0.64 0.70 0.71 0.745
140 0.67 0.67 0.71 0.72 0.761
160 0.70 0.70 0.74 0.74 0.776
180 0.71 0.71 0.75 0.73 0.788
200 0.73 0.72 0.75 0.76 0.825
300 0.79 0.78 0.81 0.80 0.846
500 0.86 0.87 0.87 0.87 0.908
Summary:
Max Averaging Di�. in LRU-1 Hit Ratio = 0.0073
Max Averaging Di�. in LRU-2 Hit Ratio = 0.0090

Table 2: Performance results for Zip�an distribution

of references.

As can be seen from Table 2, we obtain similar results.

5.1.3 Range Queries on B+-Trees

Finally, this last set of experiments study how knowledge

about data structures can call for novel schemes to be de-

signed. Instead of using OLTP traces as in [14], we used

B+-tree range query traces to conduct this experiment.

When managing index data structures, the additional knowl-

edge about the data structure itself (a tree structure) and

its access patterns (depth �rst, backtrack free for B+-tree),

can help devise tailored replacement policies for the bu�er

pool for the index pages [4, 13, 14]. An interesting but very

simple strategy for B+-tree bu�ering is to use the level of

the page in the tree to determine the page priority. Pages

at higher levels in the tree have higher priority as they are

more likely to be visited by other queries. In bu�er replace-

ment, a random choice is made between bu�er pages with

the same lowest priority.

We generated 500,000 random numbers from 0 to the max-

imum integer value, and inserted them into a B+-tree. We

keep the node size small, with a fan-out of 20, to yield a

taller tree. 500 queries were randomly generated, with each

requiring the scanning of about 10% of leaf nodes, and their

traces of traversal are dumped into a �le. To simulate the

situation of 10 concurrent transactions, we picked 10 queries,

and among them, we randomly picked the next node to

visit. When a range query was completed, we picked the

next query in the list. For the performance evaluation, we

dropped the �rst 1000 references to allow the algorithms to

reach a quasi-stable state. Table 3 summarises the bu�er

68

hit rate ratio for each algorithm, priority-based replacement

and LRU-2. Due to space constraints, we only present the

average hit ratio respectively of 5000 references and 40000

references. In real world applications, multiple indexes are

maintained for each table for di�erent purposes, such as for

answering popular queries and generating infrequent but ex-

pensive reports. These two references (5000 vs. 40000) rep-

resent contrasting situations: (1) when traversal of a par-

ticular index is infrequent and interleaved with other index

traversal; (2) when traversal of an index is intensive and

continuous.

Bu�er 5000 ref. 40000 ref.

Size Priority LRU-2 Priority LRU-2
100 0.0390 0.0255 0.0295 0.0301
120 0.0450 0.0305 0.0350 0.0347
140 0.0495 0.0322 0.0384 0.0392
160 0.0555 0.0347 0.0427 0.0433
180 0.0612 0.0355 0.0461 0.0486
200 0.0677 0.0385 0.0522 0.0541
220 0.0732 0.0410 0.0566 0.0590
240 0.0782 0.0417 0.0594 0.0623
260 0.0845 0.0425 0.0628 0.0658
280 0.0908 0.0430 0.0668 0.0695
300 0.0972 0.0437 0.0726 0.0734

Table 3: Performance results for range queries on

B+-trees.

The results show that when the access patterns are short

and highly unstable, the priority-based replacement strat-

egy is more superior. As the references become stable after

40000 page references, the LRU-2 becomes more e�ective

when it detects locality of leaf page references, while the

priority-based replacement strategy �lls the bu�er with in-

dex pages closer to the root.

6. CONCLUSION

In this paper, we have proposed a framework for modeling

bu�er replacement policies. This framework is based on a

hierarchical bu�er pool model and a priority scheme. Using

this framework, a bu�er replacement policy is modeled by

a collection of types (bu�er group types, local selection pol-

icy types, and abstract selection policy types) and mapping

among the types (among bu�er group types, and between

bu�er group types and selection policy types). This abstrac-

tion provides a uniform and generic interface that can serve

as a basis for achieving bu�er replacement extensibility.

We have illustrated the expressive power and exibility

of this framework by using it to model some popular re-

placement policies. We still need to establish formally the

expressive power of our framework. In particular we are

currently trying to establish the correctness of our encod-

ing of the various policies discussed in this paper. Finally,

we have implemented an extensible bu�er manager that in-

corporates the framework to demonstrate how quickly and

easily a replacement policy can be de�ned and coded, and

how e�ective and e�cient the result can be [2].

Acknowledgement

We would like to thank Chee Yong Chan and Hongjun Lu for

their contribution in conceptualizing the concept of exten-

sible bu�er management. This work is partially supported

by the NUS ARC Research Grant 960694.

7. REFERENCES
[1] B.Lindsay and L.Haas. Extensibility in the starburst

experimental database system. In Proceedings of
International Symposium on Database Systems of the 90s,
pages 217{248, 1990.

[2] S. Bressan, C. L. Goh, B. C. Ooi, and K. L. Tan.
Implementing the bu�er replacement policies with the
storm java persistent storage manager (demo paper). In
ACM-SIGMOD, May 2000.

[3] M.J. Carey, R Jauhari, , and M. Livny. Priority in dbms
resource scheduling. In VLDB, pages 397{410, 1989.

[4] C.Y. Chan, B.C. Ooi, and H.J. Lu. Extensible bu�er
management of indexes. In VLDB, 1992.

[5] H. Chou and D.J. DeWitt. An evaluation of bu�er
management strategies for relational database systems. In
VLDB, pages 127{141, 1985.

[6] H. Chou, D.J. DeWitt, R.H. Katz, and A.C. Klug. Design
and implementation of the wisconsin storage system.
Software Practice and Experience, 15(10):943{962, 1985.

[7] B. George and J. R. Haritsa. Secure bu�ering in �rm
real-time database systems. In VLDB, pages 364{475, 1998.

[8] C. H. Goh, B. C. Ooi, D. Sim, and K.L. Tan. Ghost: Fine
granularity bu�ering of indexes. In VLDB, pages 339{350,
1999.

[9] C. L. Goh, M. Anirban, S. Bressan, and B. C. Ooi. Storm:
a 100In OOPSLA workshop on Java and Databases:
Persistence Options, 1999.

[10] R. Jauhari, M.J. Carey, and M.Livny. Priority-hints: An
algorithm for priority based bu�er management. In VLDB,
pages 708{721, 1990.

[11] B. T. Jonsson, M. J. Franklin, and D. Srivastava.
Interaction of query evaluation and bu�er management for
information retrieval. In ACM-SIGMOD, pages 118{129,
June 1998.

[12] M. Lee. Interaction between the query processor and bu�er
manager of a relational database system. Technical Report
RJ6884 (65710), IBM Almaden Research Center, 1989.

[13] S.T. Leutenegger and M. A. Lopez. The e�ect of bu�ering
on the performance of r-trees. In ICDE, pages 164{171,
1998.

[14] E. J. O'Neil, P. E. O'Neil, and G. Weikum. The lru-k page
replacement algorithm for database disk bu�ering. In
ACM-SIGMOD, pages 297{306, 1993.

[15] G.M. Sacco and M.Schkolnick. A mechanism for managing
the bu�er pool in a relational database system using the
hot set model. In VLDB, pages 257{262, 1982.

[16] The EXODUS Project. Using the exodus storage manager
v1.3. Technical report, University of Wisconsin-Madison,
1991.

69

