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Abstract 
Physical database design is important for query performance 
in a shared-nothing parallel database system, in which 
data is horizontally partitioned among multiple independent 
nodes. We seek to automate the process of data partitioning. 
Given a workload of SQL statements, we seek to determine 
automatically how to partition the base data across multiple 
nodes to achieve overall optimal (or close to optimal) 
performance for that workload. Previous attempts use 
heuristic rules to make those decisions. These approaches 
fail to consider all of the interdependent aspects of query 
performance typically modeled by today's sophisticated 
query optimizers. 

We present a comprehensive solution to the problem 
that has been tightly integrated with the optimizer of a 
commercial shared-nothing parallel database system. Our 
approach uses the query optimizer itself both to recommend 
candidate partitions for each table that will benefit each 
query in the workload, and to evaluate various combinations 
of these candidates. We compare a ran.k-based enumeration 
method with a random-based one. Our experimental results 
show that the former is more effective. 

1 Introduction 

Database systems increasingly rely upon parallelism to 
achieve high performance and large capacity [DG92]. 
Most of the major database vendors - such as IBM, 
Microsoft, NCR, Oracle, Sybase, etc. - have sup- 
port for parallelism. Rather than relying upon a sin- 
gle monolithic processor, parallel systems exploit fast 
and inexpensive microprocessors to achieve high cost- 
effectiveness and improved performance. The popular 
shared-memory architecture of symmetric multiproces- 
sors is relatively easy to parallelize, but cannot scale 
to hundreds or thousands of nodes, due to contention 
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for the shared memory by those nodes. Shared-nothing 
parallel systems, on the other hand, interconnect in- 
dependent processors via high-speed networks. Each 
processor stores a portion of the database locally on its 
disk. These systems can scale up to hundreds or even 
thousands of nodes, and are the architecture of choice 
for today's  data warehouses that  typically range from 
tens of terabytes to over 100 terabytes of online storage. 
High throughput and response times can be achieved 
not only from inter-transaction parallelism, but also 
from intra-transaction parallelism for complex queries. 

Because data is partitioned among the nodes in a 
shared-nothing system, and is relatively expensive to 
transfer between nodes, selection of the best way to 
partition the data becomes a critical physical database 
design problem. A suboptimal partitioning of the 
data  can seriously degrade performance, particularly 
of complex, multi-join "business intelligence" queries 
common in today's  data  warehouses. Selecting the 
best way to store the data  is complex, since each table 
could be partitioned in many different ways to benefit 
different queries, or even to benefit different join orders 
within the same query. This puts a heavy burden 
on database administrators, who have to make many 
trade-offs when trying to decide how to partition the 
data, based upon a wide variety of complex queries in 
a workload whose requirements may conflict. 

Previous work in the literature tried to choose parti- 
tioning heuristically or to create a performance model 
separate from the optimizer. Heuristic rules unfortu- 
nately cannot take into consideration the many inter- 
dependent aspects of query performance that modern 
query optimizers do. We build a tool called part i t ion  
advisor to automate the process of partition selection 
by exploiting the sophisticated cost model of the query 
optimizer itself. We use the optimizer's cost estimates 
to both suggest possible partitionings and to compare 
them in a quantitative way that  considers the interac- 
tions between multiple tables within a given workload. 
Our approach therefore avoids redundancy - and pos- 
sible inconsistency - between the partition advisor and 
the query optimizer. Our partit ion advisor has been 
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developed in IBM Universal Database for Unix, Win- 
dows, and OS/2, Enterprise Extended Edition (referred 
to as DB2 in the rest of the paper), and has been tested 
comprehensively on both benchmark and real customer 
data.  

The rest of the paper is organized as follows: We 
discuss related work in Section 2. Section 3 gives an 
overview of our approach. We give some background 
information on DB2 in Section 4. We then describe our 
optimizer extension, cost estimation, and components 
on the client side in Sections 5, 6, 7, respectively. Our 
experimental results are presented in Section 8. We 
discuss usability issues in Section 9 and conclude in 
Section 10. 

2 R e l a t e d  W o r k  

Physical database design in relational DBMSs has been 
studied for decades. How to "horizontally partition" 
rows of tables was among that early work. In a shared- 
nothing environment, horizontal partit ioning takes the 
form of declustering (i.e., partitioning) tables across 
many nodes to support a high degree of intra-query 
parallelism for complex queries, effectively providing a 
static form of load balancing [CNW83, SW85, CABK88, 
Gha90, Zi198, SMR00]. However, none of the previous 
work used the query optimizer in a database server to 
evaluate alternative solutions. Most of the approaches 
tried to come up with some cost models of their own to 
estimate the benefit of different partitions. Therefore, 
the partit ioning decision made by these authors might 
not be consistent with - or as accurate as - the detailed 
cost model used by the optimizer. 

A substantial amount  of research has been conducted 
on dynamic load balancing in parallel shared-nothing 
database systems (a lot of the references can be 
found in [RM93]). The potential for dynamic load 
balancing is limited for operations (such as scans) where 
the execution location is statically determined by the 
partitioning and the allocation of the database among 
processing nodes. As a result, most dynamic load 
balancing work focuses on operators such as joins, which 
typically work on derived data. Our work complements 
that  in dynamic load balancing by recommending the 
data  partit ioning for the stored data. All the strategies 
used in dynamic load balancing can be applied to 
achieve further query improvement. 

Database design is one aspect of database manage- 
ment, the automation of which has become increasingly 
important  as the cost of people grows, while the costs 
of hardware and software decrease. Work in this area 
started as early as 1988 [FST88], in which the authors 
proposed to use the optimizer to evaluate the goodness 
of index structures. The Comfort automatic  tuning 
project [WHMZ94] has investigated architectural prin- 
ciples of self-tuning database and developed self-tuning 

methods for specific performance tuning problems. Mi- 
crosoft Research's AutoAdmin project [CN98, ACN00] 
has developed wizards that  automatically select in- 
dexes and materialized views for a given workload. 
IBM [VZZ+00], Informix [Cor00b], and Oracle [Cor00c] 
have similar projects of building such tools. However, 
our work is the very first to consider the automatic  
selection of table partit ioning in parallel shared-nothing 
database systems. There is a fundamental difference 
between parti t ion selection and index/materialized view 
selection. Indexes and materialized views are auxiliary 
structures that  store redundant data, i.e., in addition 
to the base table. A table can have as many indexes 
(clustered index is an exception) as it needs. However, 
a table can only be partit ioned in exactly one specific 
way. This means that  previous algorithms for selecting 
auxiliary structures cannot be applied directly to the 
selection of optimal partitions. 

3 O v e r v i e w  o f  O u r  A p p r o a c h  
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Figure 1: Architecture of the Parti t ion Advisor 

Given a workload of SQL statements and their fre- 
quency of occurrence, we want to determine automat-  
ically the optimal (or close to optimal) way of parti- 
tioning the data  so that  the overall workload cost is 
minimized. We use the cost estimates of the optimizer 
as our metrics. Figure 1 shows the architecture of the 
parti t ion advisor in DB2. A similar architecture has 
been used for other kinds of advisors in DB2. 

We first describe the changes we made at the 
database server end. Given a query, an optimizer will 
normally generate alternative plans based on various 
physical properties (partition, indexes, etc) the under- 
lying tables have. We refer to this query optimiza- 
tion process as the regular mode. We augment DB2's 
optimizer with two additional modes: RECOMMEND 
PARTITION and EVALUATE PARTITION. For the 
sake of simplicity, we will refer to them as RECOM- 
MEND and EVALUATE mode respectively in the rest 
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of the paper. In RECOMMEND mode, we rely on 
the optimizer to recommend good candidate partitions 
for each statement. Previous work [FST88] generates 
candidate partitions outside the engine, and thus has to 
make multiple calls to the optimizer for each candidate. 
When evaluating a query in RECOMMEND mode, the 
optimizer accumulates a list of partitions for each table 
that  are potentially beneficial to processing of that  
query and generates plans corresponding to each of 
these (virtual) partitions. Optimization then proceeds 
normally to evaluate all of these alternative plans. Once 
the optimizer finds a plan that  it considers optimal for 
the query, it extracts the parti t ion of each base table 
subplan and writes it to a CANDIDATE_PARTITION 
table. In EVALUATE mode, the optimizer first 
reads from the CANDIDATE_PARTITION table those 
"marked" partitions and uses them to replace the real 
parti t ion for the corresponding table. After that,  the 
optimizer optimizes the query, assuming that  the tables 
are parti t ioned in the newly-specified way. When a 
query is optimized in either RECOMMEND or EVAL- 
UATE mode, the query plan is generated without being 
executed. 

On the client side, the parti t ion advisor is built as an 
application tool. After getting a workload, it invokes 
the optimizer to evaluate all the statements in the 
workload in RECOMMEND mode. The advisor then 
collects all the candidate partitions (best for each indi- 
vidual statement) from the CANDIDATE_PARTITION 
table. Subsequently, it performs part i t ion expansion 
to generate additional candidate partitions that  might 
have been missed by each individual statement.  Fi- 
nally, an enumeration algorithm will combine candidate 
partitions from different tables in certain ways and 
evaluate the workload in EVALUATE mode for each 
combination. In the end, the advisor will report to the 
user the best parti t ion that  was chosen for each table 
and the corresponding cost for the workload. 

Our tool can be used to decide either database design 
initially or whenever a major  reconflguration of the 
database occurs. The applications of the parti t ion 
advisor include (but are not limited to) the following: 

• loading a prospective database 

• migrating a database to a different platform or a 
different vendor 

• the workload on a database changes substantially 
• new tables are added or the database has been 

heavily updated 

• database performance has degraded 

One important  aspect of our parti t ion advisor is our 
materialized view support (described in Section 5.1). 
Besides base tables, our tool can recommend partitions 
for materialized views if they are used by the workload. 
This is useful as there are now tools [ACN00] that  

help to determine what materialized views to create 
for a given workload automatically. Wi thout  proper 
recommendations for partitioning, those recommended 
materialized views will typically use some default 
partition, and so won't he able to achieve their full 
benefit. 

Our architecture assumes that  we have some statistics 
on the database for the query optimizer 's cost estima- 
tion. Statistics can be collected when da ta  has already 
been loaded in the system. If da ta  has not been loaded, 
the designer should supply a statistics description file. 
DB2 provides a utility that  generates such a description 
file by scanning through external data. Our technique 
also requires that  there is already an original ("real") 
part i t ion for each table, but  these partitions can be 
picked arbitrarily, e.g. the default partitions assigned 
by DB2. 

4 Background 
In this section, we first briefly describe DB2's parallel 
database system. We then introduce the optimizer used 
in DB2 and the concept of "interesting" partitions. 

D B 2  P a r a l l e l  D a t a b a s e  S y s t e m :  DB2 is based 
on a shared-nothing architecture. A collection of 
processors (nodes) are used to execute queries in 
parallel. A given query is broken up into subtasks, 
and all the subtasks are executed in parallel. To enable 
parallelism, tables are horizontally part i t ioned across 
nodes. The rows of a table are typically assigned 
to a node by applying some deterministic parti t ioning 
function to a subset of the columns. These columns 
are called the partitioning key of the table. Currently, 
DB2 supports hash-based partitioning. DB2 allows 
multiple nodegroups to be defined. A nodegroup can 
be assigned to any subset of the nodes in a system. 
A table can be parti t ioned among all nodes in a 
nodegroup, or can also be replicated across all the 
nodes in a nodegroup. A part i t ion of a table is given 
by a (nodegroup, partit ioning key) pair or just  the 
nodegroup if the table is chosen to be replicated. When 
creating a table, users can specify a part i t ion for the 
table. Otherwise, a default parti t ioning key (the first 
column) and default nodegroup (including all nodes in 
the system) will be used. 

D B 2  o p t i m i z e r :  DB2 uses a conventional bot tom- 
up optimizer that  uses dynamic programming to prune 
dominated alternatives [SAC+79, GLSW93] In a 
parallel environment, the optimizer considers several 
parti t ioning alternatives for (equality) joins. If two 
tables are both  parti t ioned on the join keys (and are in 
the same nodegroup), the join between the two tables 
can be performed locally at each node. This kind of join 
is called a local join [BFG+95]. Otherwise, at least one 
of the participating tables has to be moved. If one of the 
tables (call it table A) is partit ioned on the join key, we 
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can dynamically repartition the other table (call it table 
B)  on the join key to the nodegroup of table A. This 
join method is known as a directed join. Alternatively, 
the optimizer can replicate data  from table B to all 
nodes in table A. This join method is known as a 
broadcast join. Finally, if neither table is parti t ioned 
on the join column, the optimizer could decide to 
repartition both tables over some completely different 
set of nodes using the join key as the partitioning key. 
This method is known as a repartitionedjoin. Typically, 
local joins are cheaper than directed and broadcast 
joins, which are themselves cheaper than repartitioned 
joins, as considerable communication cost can be saved. 

I n t e r e s t i n g  P a r t i t i o n s :  Interesting orders [SAC + 79] 
are row orders that  are beneficial in evaluating a query. 
The optimizer retains the cheapest subplan that  pro- 
duces rows in each "interesting" order and the cheapest 
"unordered" subplan. Those subplans with interesting 
orders could make later operations such as merge join, 
aggregation, and ordering cheaper. In a parallel envi- 
ronment, DB2 also pre-computes beneficial partitions 
for a query as its "interesting" partitions. Similar to 
interesting orders, subplans having interesting parti- 
tions could make the whole plan cheaper. In DB2, the 
optimizer retains the best subplan for each interesting 
partition, in addition to each interesting order. 

DB2 considers the following partitioning keys to 
be interesting: (a) columns referenced in equality 
join predicates, (b) any subset of grouping columns. 
Join columns are interesting because they make local 
and directed joins possible. Grouping columns are 
interesting because aggregations can be done locally at 
each node and then concatenated. These interesting 
partitions are generated before plan generation starts, 
and are accumulated and mapped to each participating 
base table in the query. 

5 Optimizer Extension 
In this section, we describe in detail the extensions we 
have made to the optimizer. In RECOMMEND mode, 
our goal is to determine good candidate partitions for 
each table in each individual statement. For a given 
SQL statement, our approach only recommends one 
best candidate parti t ion for each table referenced by 
the query. By doing so, it 's possible that we will miss 
the overall best parti t ion for the workload. However, 
keeping the top K (K > 1) best candidates can 
be quite expensive, as we have to keep at least the 
top K subplans for every possible join combination. 
Additionally, the optimizer's infrastructure would need 
to be changed significantly. Instead, we try to 
recover some of the missing candidate partitions on 
the client side through parti t ion expansion (described 
in Section 7.1). 

In the following section, we first describe our ap- 

proach to generating candidate partitions in RECOM- 
MEND mode. We also discuss our support for mate- 
rialized views and candidate parti t ion reduction. We 
describe EVALUATE mode in Section 5.2. 

5.1 R e c o m m e n d  P a r t i t i o n s  

The goal in RECOMMEND mode is to find the optimal 
partit ion for each base table for a given query. One 
possible way is to generate a base table plan (a table 
scan plan or an index plan) for each possible partition. 
However, since the number of possible partitions can 
be large (every subset of columns can be used as 
partitioning keys), this approach is prohibitive. We 
observe that not every possible parti t ion of a table is 
beneficial for a query. So, we first compute for each 
base table a list of candidate partitions, each of which 
can help reduce the cost of the query. 

Interesting partitions (as described in Section 4) are 
certainly candidate partitions for each base table, as 
each might benefit some operations in that  query. How- 
ever, there are more candidate partitions than interest- 
ing partitions. Consider a local equality predicate of 
the form col = constant.  If the table is partitioned 
on col, then all the rows satisfying this predicate are 
stored on a single node. Although this concentrates all 
the processing on a single node rather than spreading 
it out, it reduces communication cost and can be a 
winning partition. This parti t ion will not be considered 
as interesting since local predicates are always applied 
before join predicates. So in RECOMMEND mode 
we will generate candidate partitions for every column 
bound to a constant by an equality predicate. Note 
that  for systems supporting range partitioning, columns 
referenced in non-equality predicates might also be ben- 
eficial partitioning keys. 

Another kind of candidate parti t ion is replication. 
Replicating a table across all nodes reduces commu- 
nication cost and can potentially improve query per- 
formance. However, since replication has storage over- 
head, it's probably not a good idea to replicate very 
large tables. Thus, for each table, we add to its 
candidate partition list a replicated parti t ion only if the 
table size is smaller than a threshold. 

We also have to consider another factor that  deter- 
mines a par t i t ion-- the  nodegroup. For each candidate 
partitioning key generated, we have to decide which 
nodegroup to use. One possibility is to use the default 
nodegroup for the query. However, the best nodegroup 
for the query could be different, depending on factors 
such as table size and communication bandwidth. A 
more aggressive approach is to automatically create 
some additional nodegroups and consider a partit ion in 
each of them. The problem is that  this will significantly 
increase the plan search space for the optimizer - the 
number of partitions compound with the search space 
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of joins, which could already be exponential in the 
number of participating tables [OL90]. The approach 
we take is a compromise between the two. We consider 
all nodegroups that  have already been created in the 
database system, and pair them with the candidate 
partitioning keys. 

Once the candidate parti t ion lists have been gen- 
erated, we augment the optimizer so that  instead of 
always generating base table plans using the real par- 
tition, the optimizer will in addition generate a plan 
corresponding to each candidate (virtual) partition. 
The optimizer then continues its usual join enumeration 
process (with more choices on base table plans). When 
the optimizer returns the best overall query plan, it 
writes to a CANDIDATE.PARTITION table the best 
parti t ion chosen for each table in that  plan. 

One subtle issue arises when a table is referenced 
multiple times in a query. When generating subplans, 
each table reference is considered independently. This 
means that  a plan can have two table scans referencing 
the same table with conflicting partitions. Such a 
plan is clearly invalid, as any table can in reality be 
parti t ioned in only one way. However, it is expensive to 
solve this problem completely. This is because we would 
have to traverse the plan tree all the way down to the 
leaves to compare partit ion information of base tables. 
On the other hand, it is not crucial that  we recommend 
exactly one parti t ion for a table. Those partitions are 
just candidates themselves, and are subject to further 
evaluations (we will elaborate on this in subsequent 
sections). So, our implementation allows the optimizer 
to recommend different partitions for a single table 
within a single query. 

S u p p o r t  fo r  M a t e r i a l i z e d  Views :  Materialized 
views are cached query results and can be used to 
improve query performance dramatically. As for base 
tables, finding the right partitions for materialized 
views is essential for query performance. 

We can assemble candidate partitions for a materi- 
alized view by collecting all candidate partitions from 
each table referenced in the materialized view. How- 
ever, some of the candidate partitions may no longer 
be interesting because the predicates that  induce them 
have already been retired by that materialized view. 
For example, suppose we have a materialized view and 
a query defined as follows: 

Materialized View M h  
SELECT * FROM T1, T2 WHERE T l . a  ---- T2.a 
Query Qi:  
SELECT * FROM T1, T2, T3 
WHERE T l . a  ---- T2.a AND T2.b = T3.b 

Note that  M1 can be used to answer Q1 by joining it 
to table T3. A partit ion with T 2 . a  as the partitioning 
key is a candidate partit ion for table T2. However, 

such a parti t ion is not useful for M1 as the join 
predicate T l . a  = T 2 . a  has already been applied within 
the materialized view. As a result, this parti t ion 
shouldn't be considered as a candidate parti t ion for 
M1. On the other hand, a parti t ion with T 2 . b  as 
the partitioning key should be a candidate parti t ion 
for M1 since the predicate T 2 . b  = T 3 . b  has yet to 
be applied. So for materialized views, we make sure 
that  each candidate parti t ion is still useful for some 
predicates not yet applied by the materialized view or 
useful for aggregation and ordering. In the rest of the 
paper, we treat  materialized views in the same way as 
base tables. 

C a n d i d a t e  P a r t i t i o n  R e d u c t i o n :  When a query is 
compiled in regular mode, plans with different part i t ion 
properties are limited. However, in RECOMMEND 
mode, the optimizer will create plans having a part i t ion 
property for each candidate partition. This can intro- 
duce an explosion in the number of plans generated, 
and thus increase both the compilation time and space 
consumption (to keep those plans). 

We aim to reduce the search space in RECOMMEND 
mode by limiting the number of candidate partitions 
considered, without sacrificing the quality of plans too 
much. First of all, we observe that  if two nodegroups 
have the same set of nodes, then for the same set 
of partitioning keys, we only need to consider one 
of those nodegroups. Similar nodegroups can exist 
in a system, because customers often define a new 
nodegroup including all the nodes in the system, the 
same as the default nodegroup. Thus, we check 
if there is a user-defined nodegroup identical to the 
default nodegroup. If so, we won't generate candidate 
partitions in the default nodegroup. Second, we notice 
that  for a single-node nodegroup, it doesn't  mat ter  what 
the partitioning key is, as all the data  will reside on one 
node. So, we make sure that  for such nodegroups, we 
only consider one candidate parti t ion for each table. 
Last, we realize that  for very small tables, different 
partitions only slightly affect the final plan cost. As 
a result, we can just use the original parti t ion for such 
tables. We show in our experimental results in Section 8 
that,  by doing all the above, the compilation t ime in 
RECOMMEND mode is reduced significantly, without 
appreciable loss of plan quality. 

5 .2  E v a l u a t e  P a r t i t i o n s  

Before compiling a query in EVALUATE mode, certain 
partitions in the CANDIDATE_PARTITION table are 
already marked by our enumeration methods in the 
client utility (described in Section 7). Our enumeration 
methods guarantee that  only one parti t ion is marked 
for each table. In EVALUATE mode, the optimizer 
then reads in those marked partitions from the CAN- 
DIDATE_PARTITION table and uses it to replace the 
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original parti t ion of the corresponding table before opti- 
mization starts. The optimization then continues under 
the assumption that  those replaced partitions are the 
real partitions for tables referenced in the query. 

The compilation t ime for a query in EVALUATE 
mode is comparable to that  in regular mode, as each 
base table can still generate only one possible partition. 
The overhead of injecting virtual partitions for each 
table is very little. 

6 C o s t  E s t i m a t i o n  

An important  issue we haven't  talked about  so far is 
how to estimate the cost of plans when we change the 
real parti t ion of a table to a virtual one. In this section, 
we first introduce the cost model used in DB2 and 
then describe our approach to ensuring consistent cost 
estimation when changing partitions. 

D B 2  Cos t  M o d e l :  DB2 uses a detailed cost model 
to estimate query cost. The overall cost is a linear 
combination of I /O cost, CPU cost, and communication 
cost, but  also assumes that  there is some overlap among 
the three components. DB2 collects various kinds of 
statistics on the database, including table cardinality, 
column cardinality (number of distinct values in a 
column), number of data  pages in a table, index 
statistics, and optionally, distribution statistics such as 
histograms and a list of the most frequent values. 

There are two kinds of statistics, one at the table 
level and one at a single node level (we refer to them 
as per-table and per-node statistics, respectively). Both 
sets of statistics are needed for cost estimation. For 
example, when estimating the I /O cost of a scan, the 
per-node level information (such as number of disk 
pages) is used. This is based on the assumption 
that  the scan is performed in parallel across all the 
nodes and is the way that  DB2 employs to encourage 
parallelism (other commercial systems will need similar 
mechanisms). On the other hand, when collecting join 
results from all the nodes (for further operations such 
as aggregation), DB2 uses the per-table cardinality and 
join selectivity to estimate the number of rows to be 
received. This guarantees that  we get consistent join 
cardinality estimates independent of how the data is 
partitioned. After repartitioning, DB2 will derive per- 
node statistics from the per-table ones based on how 
the data  is partitioned. 

E s t i m a t i n g  Cos t  U n d e r  N e w  P a r t i t i o n s :  Ob- 
serve that  while per-table statistics are independent of 
partitions, per-node statistics will change if the un- 
derlying parti t ion changes. In this section, we will 
discuss how to adjust per-node statistics with new table 
partitions in both RECOMMEND and EVALUATE 
mode. 

There are basically two options: (a) use sampling, 
and (b) derive from the old statistics. There are trade- 

offs between the two. Sampling provides more accurate 
information, however, it can be very expensive given 
the number of candidate partitions that  we want to 
simulate (even after parti t ion reduction). Deriving new 
statistics always requires some assumptions that  can be 
different from reality. Nevertheless, deriving statistics 
is much cheaper. Additionally, the optimizer itself has 
to derive some statistics when repartitioning for joins 
and aggregations anyway. So, in the first phase of the 
part i t ion advisor, we opt for deriving statistics. 

We are only interested in adjusting statistics that  
affect base table plans. We distinguish between 
statistics associated with a table (we call them table 
statistics) or an index structure (we call them index 
statistics). We illustrate our approach to adjusting 
these two kinds of statistics. 

Table statistics that  need to be adjusted include 
cardinality and number of pages. We make the 
assumption that  data  is uniformly distributed across 
all the nodes (consistent with the reason for using 
hash partitioning). We calculate the ratio between the 
number of nodes in the old and new partitions, and 
scale the statistics accordingly. 

Typical  index statistics include number of leaf pages 
and number of levels. An index leaf page contains 
a sequence of (unique) keys, each of which has one 
or more row IDs (RID). Both of these can change 
given a new table partition. The number of RIDs 
per node can be adjusted in a fashion similar to the 
per-node cardinality that  was described earlier. We 
use a standard distinct values estimator (Cardenas'  and 
Inverse Cardenas'  formula [Car75]) to first get the per- 
table key count and then scale it down to per-node 
under the new partition. Once we have obtained the 
new per-node key and RID counts, we use them to 
estimate the new number of leaf pages assuming that  
the key size and page occupancy rate are still the same. 
The number of index levels can be adjusted based on 
the new number of leaf pages assuming the same fanout. 
A detailed description of our adjustment is beyond the 
scope of this paper. 

A v o i d  D a t a  Skew:  When estimating new statis- 
tics, one of the assumptions we made is a uniform 
distribution. Clearly, such an assumption won't hold 
if da ta  is skewed. We observe that  there are two 
cases where skew can exist: (a) when there are very 
few key values in the partitioning key, and (b) when 
hash buckets are not distributed evenly by the mapping 
function. The latter is alleviated by the ability in DB2 
to define alternative mappings from the hash buckets 
to nodes (a level of indirection) [Cor00a]. To avoid (a), 
in RECOMMEND mode, we check the key count of 
each candidate parti t ion and only consider partitions 
having enough key values (more than a threshold). The 
threshold is proportional to the number of nodes in the 
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system. 

7 A d v i s o r  on the  Cl ient  Side 

Given a workload, our parti t ion advisor will evaluate 
each query in RECOMMEND mode. After reading 
all the partitions from the CANDIDATE.PARTITION 
table, it assembles a list of candidate partitions for each 
table referenced in the workload. In this section, we 
first describe how to generate additional candidate par- 
titions through part i t ion expansion and then describe 
our enumeration methods. 

7.1 P a r t i t i o n  E x p a n s i o n  

Each part i t ion in the CANDIDATE_PARTITION table 
is the best part i t ion for at least one statement in the 
workload. However, a parti t ion that 's  not the best of 
any query could be the overall best parti t ion for the 
workload. Consider a simple example. Suppose that  
the partit ioning key of the best parti t ion for table T is 

T.a, T.b > for query 1 and < T.a, T.c > for query 
2 (in the same nodegroup). < T.a > could be the 
best partit ioning key for query 1 and 2 together, as 
it can benefit both queries, but neither query chooses 
that  partition. 

We say that  a parti t ion P1 subsumes P2 if P1 and 
P2 are in the same nodegroup and the partitioning key 
of P1 is a superset of P2.  In general, if part i t ion 
P1 subsumes P2,  P2  will benefit at least as many 
queries as P1 does. The only exception is if P2  has 
too few key values, which will introduce potential skew. 
During parti t ion expansion, we will generate additional 
candidate partitions for each table with parti t ioning 
keys that  are a common subset from two or more 
candidate partitions from the same table, as long as the 
number of key values is greater than the threshold. We 
will also include the original parti t ion in the candidate 
parti t ion list if it wasn't recommended for any query in 
RECOMMEND mode. 

7.2 E n u m e r a t i n g  A l g o r i t h m s  

The combinations of partitions from all the tables 
form a search space. Suppose that  we have n tables, 
each with pi (i = 1 to n) candidate partitions. We 
define a configuration C -- (cl,c2,...cn), where ci is 
one of the pi candidate partitions from table i. For 
a statement q, let Costq(C) be the cost of q under 
parti t ion configuration C. Given a workload Q, we want 
to find Copti,~ such that  ~qeC2 Costq(Copt~a~) -- 
rain ~qeQ Cos$q(C), over all Pl*P2...*Pn possible C. 

Given a configuration C, we can mark all the candi- 
date partitions in C in the CANDIDATE_.PARTITION 
table and compile the workload in EVALUATE mode. 
The cost estimation returned by the optimizer will 
be the cost of that  configuration. Our goal is to 
quickly find the optimal configuration, so that  the entire 

(weighted) workload cost is minimized. Each evaluation 
of a configuration is expensive, so unguided enumera- 
tion of all configurations won't  scale with respect to the 
number of tables and workload size. 

To facilitate our search, we first calculate a benefit 
value for each candidate part i t ion in each query, which 
equals the difference between the est imated cost of the 
query evaluated in regular mode and in RECOMMEND 
mode. We then accumulate over all queries in the work- 
load the total benefit for each distinct candidate parti- 
tion. Subsumed partit ions (including those additional 
partitions generated during expansion) will inherit the 
benefit of all the subsuming partitions. Observe that  
the benefit we have accumulated is not the real benefit 
each candidate part i t ion will bring. This is because we 
assign the benefit for the whole query to the underlying 
partitions of all tables in that  query, while in fact, 
some partitions may contribute more to the benefit than 
others. Trying to figure out the exact benefit of each 
candidate part i t ion is difficult because the benefit of one 
parti t ion may not show up unless another parti t ion is 
present. Nevertheless, our experimental results show 
that  our simplified benefit estimation provides good 
search guidance. With the help of benefit values, we 
consider two kinds of enumeration methods: rank-based 
and random-based enumeration. 

7.3 R a n k - b a s e d  E n u m e r a t i o n  

The rank-based method models the problem as a gen- 
eral searching problem. Each configuration corresponds 
to a node in the search tree. We start  with the root 
node, which corresponds to the configuration with each 
table using the parti t ion having the highest benefit 
value among its candidate partitions. To expand a node 
C, we consider all the configurations (referred to as 
child configurations) tha t  differ from C in exactly one 
partition. The different part i t ion has the next highest 
benefit value. Observe that  if the benefit values are 
reliable, a parent configuration should always be better  
than a child configuration for the workload and thus 
should be considered earlier than its children during 
the search. All the expanded nodes will be ranked and 
kept in an ordered queue. The first configuration (with 
the highest rank) in the queue will be the next search 
point. The enumeration process stops when we reach a 
user specified time limit. The  key issue here is to design 
a good ranking function to guide our search. 

A simple ranking function (referred to as rank_benefit) 
will be the sum of the benefit of each parti t ion in 
the configuration. However, it doesn' t  perform well 
in our experiments. The problem is illustrated in the 
example in Table 1. In this example, a configuration 
with partitions (P1, P3)  will be considered first. How- 
ever, a configuration with partit ions (P2,  P3)  will be 
considered better than that  with (P1,  P4)  as the former 
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has a higher total benefit value. However, P4  carries a 
much higher benefit value than P2  and is likely to be 
more important .  

T1 Parti t ion Benefit T2 
P1 10 
P2 9 

Part i t ion Benefit 
P3 1000 
P4 900 

Table 1: Example 

To overcome the above problem, we take into account 
three factors when designing our ranking function: (1) 
the cost of its parent configuration (2) the benefit of the 
parti t ion that 's  different from its parent, and (3) the size 
of the table from which the different parti t ion comes. 
(1) is important  because child configurations share a lot 
of partitions with their parents. So the cost of a parent 
should have some influence on its children. Note that  
the cost of a parent configuration is accurate in the sense 
that  it 's the optimizer's estimation. (3) is important  as 
partitions from bigger tables tend to contribute more to 
the workload than smaller ones. Through experiments, 
we choose the following ranking function (referred to 
as rank_best). We assign the cost of a configuration to 
be the cost of its parent less the benefit of the changed 
partition, weighted by the relative table size. Since a 
configuration can be derived from multiple parents, we 
are being optimistic and always pick the higher rank for 
the configuration. 

rank_best(C) : 
/ P.tblcard "~ C ! - (Cos t (C ' )  - P.benefit  * Vmax_tblcard], where 

is the parent configuration of C, P is the parti t ion 
in C different from C ~ and max_tblcard is the size 
of the largest table in the workload. 

To evaluate a configuration, we have to compile each 
statement in the workload in EVALUATE mode. If 
the number of statements in the workload is large, 
evaluating a configuration can be quite expensive. 
Observe that  a query may not reference all the tables 
in the workload. We define partitions in a configuration 
used by a query its footprint. The cost of a query 
Q will be the same in EVALUATE mode under two 
configurations C1 and C2, if the footprints of Q in C1 
and C2 are the same. To avoid reevaluating statements 
with the same footprint, we cache the cost of each query 
under each of its unique footprints. Before evaluating 
a query under a certain configuration C, we first check 
if the query with its footprint in C can be found in 
the cache. If so, we can use the cached cost directly. 
Otherwise, we will send the query to the server and 
evaluate its cost. 

7.4 R a n d o m i z e d  E n u m e r a t i o n  

We also considered using randomized search algorithms. 
Simulated annealing [KGV83] has been used in data  

clustering in centralized database systems [HLL94] and 
query optimization [IKgl]. However, we chose to use 
Genetic Algorithms [Go189], as they have some good 
searching features (such as avoiding local optima) and 
can be mapped to our problem easily. 

Genetic algorithms are search algorithms based on 
the mechanics of genetics and natural selection. The 
whole search space is modeled as a set of genes, with 
each gene having some number of gene types. Each 
search point is then modeled as a species with all the 
genes set to specific gene types. The algorithm starts 
with an initial population consisting of a set of species 
and tries to derive better search points by evolving next 
generations. There are typically two ways to evolve--  
crossover and mutation. Crossover takes two species 
from the population and randomly recombines their 
genes to form two descendants. The intuition here is 
that good parents are likely to provide better children. 
Mutation picks a species at random and randomly 
changes some of its genes to derive a descendant. 
Descendants are compared with their parents and will 
replace the parents if they are better. 

In order for the genetic algorithm to perform well, 
we need to set up a good initial population. Through 
experiments, we used the best partitions from queries 
with large improvement (for those tables not referenced 
by the query, partitions with the highest accumulated 
benefit are used). We also include the root configuration 
in our initial population. However, our experiments 
showed that  the genetic algorithm is always dominated 
by our rank-based method. 

8 E x p e r i m e n t a l  R e s u l t s  

We developed our parti t ion advisor under DB2. All 
the tests were run on a machine with two 400 MHz 
processors and 1GB of RAM. DB2 allows us to create 
multiple virtual nodes, all running on the same machine. 

We have performed comprehensive tests of the par- 
tition advisor on several workloads. However, due to 
space limitations, we only present our experimental 
results on a 100GB TPC-H [TPC] database and one 
customer database. We simulated an environment with 
8 nodes, each with a 1.4 GHz processor, a 500MB 
buffer pool, and a 100MB/second communication band- 
width. In both databases, there were two additional 
nodegroups besides the default nodegroup: one with 
all nodes and another with a single node. We omit- 
ted update statements in the workload, since shared- 
nothing parallel systems are typically used for large 
data warehouses in which costs are dominated by com- 
plex queries. To avoid a small number of expensive 
queries dominating the workload cost, we adjusted the 
frequency of each statement such that the weighted 
(initial) cost of each statement is roughly equal. The 
threshold of small table size for partit ion reduction, 
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maximal table size for replication and minimal number 
of key values necessary for a candidate partit ion are set 
to be 2,000 (rows), 5 million (rows) and 5,000 respec- 
tively. Because of the size of the databases we used, 
it 's difficult to create a local copy of the real data. DB2 
provides a tool that can collect the catalog and statistics 
in a real database and generate a description file. By 
running those SQL statements from the description file 
in an empty database, we can re-create the metadata  of 
the real database without populating the actual data. 

C o m p i l a t i o n  T i m e  in  R E C O M M E N D  m o d e :  
We first present the results of RECOMMEND mode. 
We selected the 10 most complicated queries (with up 
to hundreds of joins in multiple query blocks and lots 
of aggregation) from a set of our customer queries. 
We compared the compilation time in RECOMMEND 
mode with (referred to as improved) and without doing 
parti t ion reduction (referred to as naive) as described 
in Section 5.1. We report the ratio of compilation time 
in RECOMMEND mode to that  in regular mode in 
Figure 2(a). As we can see, our parti t ion reduction 
techniques cut the average compilation time by more 
than half. Yet Figure 2(b) shows that  partit ion 
reduction doesn't significantly affect the quality of the 
plans we got in RECOMMEND mode: only one of the 
ten queries has a plan with slightly higher cost after 
parti t ion reduction. 

(a) (b) 

Figure 2: Compilation Time Ratio (a) and Plan Cost 
Ratio (b) in RECOMMEND Mode 

T P C - H :  We then present our results on the TPC-  
H database with 22 TPC-H queries. The limited 
number of tables and statements in the workload don't  
adequately test our enumeration methods, as there are 
not that  many configurations. On the other hand, 
because of its simplicity, we can perform a more 
thorough analysis and gain some insights. 

Table 2(a) shows the initial parti t ion for each table, 
as determined by a skilled human. Most of the tables 

are parti t ioned on their primary keys and are spread 
across all 8 nodes. The two smallest tables are created 
on a single node. 

table parti t ion key nodegroup # of nodes 
region 
nation 
part  
partsupp 
lineitem 
orders 
supplier 
customer 

r_regionkey 
r~nationkey 
p_partkey 
ps_partkey 
l_orderkey 
o_orderkey 
s _suppkey 
c_custkey 

(a) Initial ~artitions 

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 
0.0 8.0 0.0 0.0 -0.4 0.0 -0.4 0.0 
Q9 QlO Q l l  Q12 Q13 Q14 Q15 Q16 
-0.4 -0.2 0.0 0.0 8.0 0.0 0.0 -0.4 
Q17 Q18 Q19 Q20 Q21 Q22 
31.4 0.0 0.0 0.0 -0.6 577.0 

(b) Query Speedup(%) 

table benefit 
lineitem 68,489.57 

-3,567.18 
-7,163.52 

nation 23,393.15 
region 32,257.48 
orders 124,350.79 

-8,268.93 
partsupp 15,570.06 

10,798.27 
part 49,947.60 
supplier 24,307.95 
customer 123,743.82 

484.03 

NG R part i t ion key 
1 N l_partkey 
1 N l_orderkey x 
1 N l_suppkey 
2 N x 
2 N x 
1 N o_custkey x 
1 N o_orderkey 
1 N ps_partkey x 
1 N ps_suppkey 
1 N p_partkey x 
1 N s_suppkey × 
1 i N c_custkey x 
1 , Y  

(c) Candidate Part i t ion List 

Table 2: Results on TPC-H 

Table 2(b) shows the speedup as a percentage (=  
~nitial~ost-~ecomme,~d_¢ost~ecom~nd_¢ost * 100) for each individual 
query in RECOMMEND mode. Some of the queries 
had little or no improvement, because the underlying 
tables were already partitioned in the optimal way. 
Query 22 had the biggest improvement. Most of the 
cost in the query comes from a join between the o r d e r s  
table and the cus tomer  table. By choosing to parti t ion 
o r d e r s  on o_custkey instead of o_orderkey ,  the join 
can be performed locally and thus its cost is reduced 
significantly. Query 17 also had significant speedup. 
This query contains a join between l i n e i t e m  and 
p a r t .  In RECOMMEND mode, the optimizer chose 
to parti t ion table l i n e i t e m  on l _ p a r t k e y  so that  a 
local join could be used instead of a directed join. A 
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Figure 3: Cost Improvement as 

few queries had slightly higher costs when evaluated 
in RECOMMEND mode (negative speedup). This is 
caused by the heuristic rules of DB2's query optimizer 
that  favors local and directed joins over repartitioned 
joins. If two subplans can be joined through local 
or directed joins, the optimizer won't even try the 
repartitioned joins. While such heuristic rules are 
justified in most cases, occasionally repartitioned joins 
can be slightly cheaper. When using the real partitions, 
these queries are forced to consider repartitioned join 
plans. When evaluated in RECOMMEND mode, since 
the optimizer has more partit ion choices, it picks up 
partitions that  can form local or directed joins (which 
are in fact a little bit more expensive). However, the 
degradation is relatively small (no more than 0.6%), 
and all the configurations are subject to evaluation in 
EVALUATE mode to verify the workload cost. 

In Table 2(c), we show the candidate parti t ion list 
for each table (each row indicating the benefit of a 
partition, its nodegroup, whether it's replicated and 
its partitioning key). As we can see, most of the 
dimension tables have only one candidate partition, 
with the primary key as the partitioning key. For fact 
tables, there are more candidate partitions, each of 
which has one of the foreign keys as the partitioning key. 
Note that  for the cus tomer  table, one of the candidate 
partitions is to replicate the table on all nodes. So 
replication does help in certain cases. Since there are 
only 24 possible configurations, it's possible for us to 
enumerate them all. The best configuration (partitions 
marked with x) chosen by the partit ion advisor uses 
the original part i t ion for all the tables except for one- -  
o rde r s ,  which is now recommended to be partitioned 
on o_cus tkey  across all nodes. This reduces the cost 
of queries consisting of a join between table o r d e r s  
and table cus tomer .  Observe that  the benefit value we 
calculated for each candidate partit ion is a relatively 
good indicator of its goodness. Every best parti t ion 
except for one has the highest benefit value among 
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candidate partitions of its corresponding table. Only 
the best parti t ion of table l i n e i t e m  has the second 
highest benefit value. The overall improvement of the 
workload is about 4%. This shows that  the original 
partitions chosen by human beings are fairly good for 
this relatively simple workload. 

C u s t o m e r  D a t a b a s e :  We now present the results 
of applying the parti t ion advisor to one of our customer 
databases. We used a workload consisting of 50 
queries. There are 15 tables referenced in the workload. 
After parti t ion recommendation,  each table had from 
1 to 5 candidate partitions. The total number of 
configurations is around 500. We compared the rank- 
based method with the genetic algorithm on this larger 
workload. For the rank-based method,  we tested the 
two ranking functions rank_benefit and rank_best, as 
described in Section 7.3. We also tested a breadth_first 
method, where configurations with lower depth are 
considered earlier. For genetic algorithm, we tested 
three variants with an initial population size of 10, 
15 and 20. We alternate the process of crossover and 
mutation.  The mutat ion rate (the percentage of genes 
to be changed) is set to be 0.5. 

The results are shown in Figure 3(a). The x-axis 
represents the number of configurations (iterations) 
considered by each algorithm, and the y-axis measures 
the best workload cost found after a certain number 
of iterations have been performed. The line marked as 
"initial cost" represents the estimated cost of the entire 
workload under the original (real) partitions. We added 
up the cost of each query in RECOMMEND mode and 
used it as the "lower bound",  since this is the lowest cost 
the workload could theoretically achieve, but may never 
actually be achievable in a bona fide configuration. We 
only show the best genetic variant in this picture. For 
a fair comparison, we allowed each method to consider 
100 configurations. 

As we can see, rank_best converges the fastest among 
all the methods. It is able to find a very good solution 
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Figure 4: Relative Time per Iteration 

at the 10th iteration and the optimal solution (verified 
after we tried all configurations) after only 26 iterations. 
The speedup is more than 22% on a system already 
tuned by human beings, rank_benefit doesn' t  improve 
upon the root configuration within 100 iterations. This 
is because it tends to try partitions with relatively 
small benefit values first. Genetical algorithm converges 
faster than rank_benefit and breadth_first. The initial 
population we chose is relatively good, as it consists of 
a configuration much better than the root configuration. 
However, of all the genetic methods, none of them 
outperformed rank_best. 

In Figure 3(b), we compare three variants of the 
genetic algorithm. As we can see, increasing the 
size of initial population doesn't  necessarily mean 
better  performance. Only two variants of the genetic 
algorithm obtained further improvement later on. In 
both cases, the improvement was obtained through 
mutat ion.  We observe that the most important  feature 
of genetic algorithm is that  good genes can be carried 
around in the population. On the other hand, rank_best 
does something similar by taking into account the cost 
of the parent configuration while calculating the rank of 
its children. Since the cost of the parent configuration is 
actually obtained from the optimizer's estimation, this 
provides more accurate information as which partitions 
are important .  

In the optimal configuration returned by the parti t ion 
advisor, the parti t ion of 11 out of 15 tables doesn't  
change. Among the four tables whose part i t ion does 
change, two of them (relatively small) chose to replicate 
themselves across all the nodes and the other two 
(two largest tables used in the workload) changed 
their partit ioning keys. Among the 50 queries in the 
workload, 66% gained performance while the rest 34% 
either lose ground or had no improvement. 

In Figure 4, we show the normalized t ime taken for 
each iteration for rank_best (figures for other methods 
are similar). After a few iterations, the time spent on 
each iteration is reduced significantly. This shows the 
effectiveness of our caching mechanism (described in 

Section 7.3). Subsequent iterations can benefit a lot 
from cached queries with an identical footprint. 

To summarize, our experimental results validate 
that the part i t ion advisor is able to recommend good 
candidate partit ions for individual statement in the 
workload in a reasonable amount  of time. Significant 
amount  of t ime can be saved in RECOMMEND mode 
by employing our part i t ion reduction technique without 
much plan quality degradation. We demonstrated 
the effectiveness of our rank-based method, which can 
quickly converge to an (close to) optimal solution. Our 
caching mechanism significantly reduces the cost of 
evaluating each configuration. Note that  the databases 
we used have already been tuned by human beings over 
time. Nevertheless, further improvement can still be 
made By our tool over human experts. For applications 
with less reasonable initial partitions (e.g., materialized 
views with default partitions), the improvement would 
be even greater. 

9 Usability Issues 

Cost models in commercial systems have become quite 
sophisticated and have undergone comprehensive tun- 
ing. Thus, they are likely to be more accurate than any 
estimates from external tools. However, it 's impossible 
to model every aspect that  affects execution time, so 
cost estimates may not always be proportional to real 
execution time. We therefore give users the option 
to review all the parti t ioning recommendations given 
by our tool and to make necessary adjustments based 
on considerations that  may not have been completely 
modeled by the tool. While human intervention is still 
necessary, our tool can reduce significant amount  of 
work of database designers. 

Repartit ioning is an expensive process and is not 
expected to be run frequently. On the other hand, as 
observed from our experiments, new configurations may 
not require the complete dataset to be repartitioned. 
So a database designer has to balance the potential  
gain from the new configuration and the amount  of 
migration work that  needs to be done in order to make 
the appropriate decision. 

Our parti t ion advisor can be plugged in materialized 
view selection tools in a parallel database system to find 
out their optimal partition. We observe that  there are 
possible interactions between materialized view selec- 
tion and part i t ion configuration, i.e., a part i t ion config- 
uration can change the materialized views selected for a 
workload and vice versa. We'd like to investigate such 
interaction in our future work. 

Although this paper focuses on a shared-nothing 
database system, our work can be extended to a shared- 
disk system, where a part i t ion is primarily defined by 
the partit ioning keys and the concept of a nodegroup is 
less relevant. 
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10 C o n c l u s i o n  

In this paper, we described DB2's partition advisor, 
a tool that can automate the process of choosing the 
optimal way to partition data stored in a shared- 
nothing parallel system. For a given workload, our 
tool exploits the cost-based query optimizer to both 
recommend likely candidates and to evaluate complete 
solutions in detail. Our rank-based method converges to 
the optimal solution quickly with the ranking function 
we carefully designed. We exploit various techniques 
to reduce the amount of time considering alternative 
solutions while maintaining the quality of solutions. 
Our tool can recommend partitions for both base tables 
and materialized views. We have demonstrated through 
experiments the effectiveness of the tool. 

We plan to investigate in the future the self-managing 
process of other kinds of database design problems, 
and the interactions among different database design 
aspects. 
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