
A CONCURP~NCY CONTROL THEORY FOR NESTED TF~A/~SACTIONS*

Preliminary Report

C. Beeri ~, P.A. Bernstein, N. Goodman
Harvard University

M.Y. Lai ~
Bell Laboratories

and

D.E. Shasha
Harvard University

O. INTRODUCTION

Concurrency control is the activity of syn-
chronizing transactions that access shared data.
A concurrency control algorithm is regarded as
correct if it ensures that any interleaved execu-
tion of transactions is equivalent to a serial one.
Such executions are called sG~ia~izab~e. Serial-
izability theory provides a method for modelling
and analyzing the correctness of concurrency control
algorithms [BSW, Pal.

The concept of nested transaction has recently
received much attention [GR], [Mo]. Zn a nested
transaction model, each transaction can invoke sklb-
transactions, which can invoke sub-subtransactions,
and so on. The natural modelling concept is the
t~ee ~og. The leaves of a tree log are atomic
operations executed by the underlying system, in-
ternal nodes are operations (as seen by their
parents) implemented as transactions (as seen by
their children). Nodes are related by a partial
order <, where x <y means x executes before

y [La] .

This work was supported by Rome Air Development
Center, contract number F30602-81-C-0028, by the
Office of Naval Research, contract number
N00014-80-C-674, by the National Science Foundation
grant number MCS79-07762, by Digital Equipment
Corporation and by I.B.M.

tOn leave from the Hebrew University.

SWork performed while this author was at Harvard
University.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

© 1983 ACM 0-89791-110-5/83/008/0045 $00.75

We will use the following as a running example
throughout the paper. Suppose user transactions
issue the operations read a record, denoted r(rec),
and write a record, denoted w(rec), r(ree) is
implemented by fetching the disk page containing
rec into a local buffer, denoted f(P), and then
manipulating that local buffer, w(rec) is imple-
mented by fetching the disk page containing rec
into a buffer, updating the buffer, and then storing
the page back to disk, denoted s(P).

Suppose that synchronization is by two-phase
locking (2PL) [EGLT]. Each transaction locks a
record before accessing it. To ensure that each
write is atomic, a write operation locks the page
containing its record before fetching it and re-
leases the lock after storing it. A read does not
lock the page.

Figure 1 shows a tree log of transactions that
use these operations. The root is a monitor that
runs transactions t I and t 2 . The transactions
access three records that are stored on the same
page. Since the manipulation of a local buffer by
a transaction does not interact with operations of
other transactions, such manipulations are omitted
from the log. In the log, < is the transitive
closure of the relationship denoted by the arrows.

level
run(tl,t 2) o

1

rl(recly X/~] (rec2)/w2(rec %

2 • ~ - ~ ir2(rec2)

2 f~(~) f~{P) s2(P) f~(P) Sl(P) f2 (P)

Figure I. A tree log.

45

In standard serializability ~:eory, this
execution would be represented by a log consisting
only of the leaves of this tree [Pa; BSW]. In
this representation, the log would be judged as
nonserializable: since Sl(P) < f~(P), t I must
precede t2; but since s2(P) < f~(P), tv must
precede t I. No serial log containing t I and
t 2 can satisfy both of these constraints.

Yet, by considering the rest of the tree, we
see that the log really is serializable. It's

equivalent to executing t I followed by t 2. The
fact that s2(P) < f~(P) is of no importance,
because these operations are on different records.

If we had executed Sl(P) <s2(P), the result would
have been the same.

As shown by this example, the nested trans-
action concept is not limited to the case where
application transactions are nested. In a multi-
level system, user operations are expressed in a
high level language; the system translates them,
possibly in several stages, into executions of
programs using low level operations. Every central-
ized database management system contains several
levels. If the system is distributed, or a multi-
version system, there is another level of trans-
lation--given an operation on a logical data item,
it is necessary to choose a physical copy and to
perform the appropriate operation on this copy.
Synchronization in a multilevel system may take
place at any one level, or at several levels (as
in the example). The current state of ¢le art
[EGLT, BSW, Pa, RSL, SLR, BG81, BG82a] does not
provide a framework for understanding concurrency
control in such systems.

We mention two other areas where e~licit or
implicit nesting is a significant feature. The
first area deals with concurrent operations on
search structures such as B-trees and hash tables.
There exists a wide variety of algorithms for per-
forming concurrent searches and updates on such
structures (see, e.g., [ilW, LBY]). The nesting
here is implicit, in that it is convenient to view
the execution of the operations on several levels.
There exists currently no general framework for
understanding and proving the correctness of such
algorithms. The second area is that of atomic
abstract data types [LiWe, ScSp]. The idea here
is to be able to specify and implement abstract
data types that support concurrency for trans-
actions that access them. Nesting is natural
here, since an atomic data type can be viewed on
at least two levels--the specification and the
implementation.

In this paper we extend serializability
theory to a nested transaction model. (A related
proposal, using a different approach, appears in
[Ly].) In addition to nesting, we extend the
theory in two other ways. Firstly, we allow trans-
actions to be arbitrary programs. Classical
serializability dealt with transactions as straight-
line programs, hence was unable to fully explain
certain phenomena, e.g., tile "phanton problem"
[EGLT, BGL]. Secondly, we allow arbitrary opera-
tions, and not just reads and writes. This general u

ization is obviously needed for the treatment of
arbitrary data types, but is also very useful in
all multilevel systems. Our extension enables us

to prove the correctness of a wide variety of con-
currency control algorithms. An important feature
of the extension is that standard serializability
theoretic proofs can be applied without modifica-
tion in nested transaction proofs.

In order to make our results widely applicable,
it was necessary to derive them in the context of
an abstract model of computation, where only the
details that are relevant to concurrency control
theory are made explicit. We view this abstract
model as an important contribution of this paper.
A general description of the model is presented in
Section i. Sections 3-5 then present in details

the main components--the storage system, the trans-
actions and the computations. In Section 6 we
study substitution as a tool for proving equiva-
lence of computations. In Section 7 we study con-
flict preserving serializable logs and in the next
section we deal with various choices of conflict
predicates. The results in these two sections are
of primary significance since all practical con-
currency control algorithms are conflict driven.
S~ction 9 presents examples, and in Section i0 we
present conclusions and directions for future
research.

] . THE MODEL

As stated previously, the high level abstrac-
tion of the model is a major factor in making the

results widely applicable. In this section we
present a general description of our model, and we
explain some of our decisions regarding various
features.

A computing environment consists of two com-
ponents, a system component and transaction manage-
ment component. The system component represents
the storage system; it contains all shared data
and the processes that manage it and support opera-
tions to access the data. The transaction manage-
ment component contains the transactions and
facilities for invoking subtransactions and for
scheduling.

We represent the data by a system state. More
specific concepts, like variables and their values,
location and distribution details, are not used.
These are needed only for the description of
specific applications of the theory. Similarly,
dynamic behavior of the system and the transactions
is described by sets of computations, rather than by
programs. These two abstractions contribute signi-
ficantly to the overall simplicity of our model.

The two components exchange information as
follows. Requests to execute operations are passed
from the transactions to the system. For each com-
pleted operation, a return value is sent by the
system to the issuing transaction. The details of
how information is passed are irrelevant to the
model.

In a distributed system, not every pair of
events is necessarily ordered in time [La]. We
assume that the events of an execution are related

by a partial order, called the execution order. In
any real computing environment, this partial order
has the properties: events observed by the same

46

process are ordered and a message is sent before it
is received.

Two types of events are of interest to us:
the initiations and the completions of operations.
In principle, the execution order may relate any
two events to each other. However, we use only the
partial order defined on the operations, where

operation o I precedes operation 02 in the execu-
tion order, or o I happens before 02, if o I com-
pleted before o 2 was initiated. If neither of the
two operations proceeds the other, then they are
concurrent.

This assumption implies that a transaction's
behavior at any time depends only on the operations
that completed and their return values. Obviously,
there is no significance to the relative order of

operation initiations that occur in a time interval
with no completions. There are cases where trans-
actions seem to depend on completion order in their
choice of one of several alternatives. However, in

all these cases that we are aware of, the choice is
related to issues such as efficiency, termination,
fairness, etc. From the point of view of concurrent
correctness, all the alternatives are correct for
each order of completions that is being considered.
Hence, by introducing nondeterministic behavior,
our assumption holds.

As further justification of our assumption,

we note that in serializability theory, system com-
putations are always assumed to be (equivalent to)
serial, the goal is to serialize the execution of
transactions and the mechanism employed delays the
initiation of some operations until other operations
complete. These are all expressed in terms of
"happened before". Our success in applying our
results to many algorithms witnesses the validity
of the assumption.

This assumption implies that not all the
timing information that may be available is used.
It follows that an execution order may correspond
to several actual executions, possibly with
different results. This introduces indeterminacy
into the system and transaction description. As
noted above, it may even be convenient to assume
nondeterministic behavior. We will usually use
deterministic terminology, for convenience, but
none of our results requires deterministic behavior.

We now describe the basic building blocks that
are used in the following sections. Let S ={Sl,S2,
...} be a set of sytem states; OP be a set of
operations; V be a set of return values; R be the
set of return value functions and POS be the set of
partial orders on OP. The remaining components are
the system S, the transactions T = {tl,t2,...},
and the set of hierarchical computations HC. These
will be defined later.

Operations are issued by transactions and
executed by the system. We assume that each opera-
tion is associated with a unique transaction and
that occurrences of the operation in an execution of
the transaction can be distinguished. In practice,
a system is specified using a set of generic opera-
tions. The set OP of operations is obtained by
attaching indices that identify the transaction and
the occurrence in the execution.

We are interested only in subsets of OP that
occur in finite computations. Let 29~ denote
the collection of all finite subsets ~ o~ n OP.

It is a significant feature of our approach
that a transaction is also regarded as an
operation. Thus, our set of operations contains
both low level and high level operations, though
we do not make this distinction formally. We
assume that there exists a one-to-one correspondence
between the set T and a subset OP T of OP.

POS is the set of partial orders on finite
subsets of OP. We use the abbreviation poser for
partially ordered sets. For convenience, we
usually do not write explicitly the domain of a
partial order, and it is to be inferred from the
context. The notation <[X] is used when we want
to make the domain X explicit, e.g., when we want
to restrict < to the domain X.

V is the set of values that can be returne4
by the system for completed operations or by a
transaction when it terminates. A value may be

anything between a success message and a complex
report printed by a transaction. The null value
~, is a legal return value.

For technical reasons, we want every poser of
members of V - {I} to be in V. Let V0CV,
16V 0, be a set of simple values, and let V =V 0 U
{all finite posets on V 0 -{±}}. Every finite
poset of V-{i} can then be identified with a
member of V. The poset (Q,<) = ({qi,<i},<) is
identified with (Q,~) £v, where

= Uqi ,

= (U i <i) U {(vi..v j)Iv i 6qi,vj 6qj,

(qi,<i) < (qj,<j)}

Each r 6 R is a function that associates
return values with operations in a finite set. As
for partial orders, we usually do not write its
domain, and we use the notation r[X] to make the
domain X explicit.

2. THE SYSTEM

2.1 Sys,tem Computat.ions

We describe the system by the set of computa-
tions it can execute. In general, operations may
arrive concurrently and may be processed concur-
rently. Thus, a computation involves a poset of
operations. Also, in a distributed system, the
concept of global state is not well defined unless
the system is quiescent [ABG, FGL]. For these
reasons, in general, it does not suffice to describe
the effect of each individual operation on the
system state; a description of concurrent operations
must be given.

~ormally, a system ~ is a subset of
S × 2~. x POS × R x S, that satisfies the conditions

~ln
(cl) and (C2) below. Tuples in this product will
be called system tuples; the members of ~ will be
called system computations or ~-computations.

47

A tuple c~= (Sl,O,<,r,s 2) 6~ states that
starting from state Sl, ~ can execute the opera-
tions in 0 such that the execution order is <,
the return values are specified by r and the

final state is s 2. For Ol,O 2 60, we say that o 1
happened before 02 or that o I precedes 02 in

c~ if o I <o 2 . If o I ~ o 2 and 02 ~ o I then
they are concurrent in c~.

Before we can state the conditions on ~, we
need to introduce some concepts. An S-computation

(Sl,O,<,r,s 2) is serial if < is a total order on
O. It is atomic, if the partial order < can be
extended to a total order, i.e., for some total <',

where < ~ <', (Sl,O,<',r,s2) 6~.

In this paper, we will principally use atomic
computations. The computations that involve low
level operations, i.e., those executed by the under-
lying system will be assumed to be atomic. In an
application of our theory, these will be specified
in the form described here, as posets. Higher
level operations, i.e., those corresponding to
transactions, will be specified individually. If
nonserial executions involving these operations
will be included in the system description, they
will have to be proven to be atomic as part of the
correctness proof.

In our running example, the sequence of page
operations With their associated return values
becomes an g-computation when initial and final
states are given. Each level 2 operation has a
well-defined semantics, defined by its effect when
it is executed alone. Hence serial computations
involving reads and writes on records are well
defined. The poset given in level 2 of our tree,

i.e.,rl,w 2 <w I < r2, in which r I and w 2 are
concurrent, if augmented with states, may be con
sidered a system computation. It is part of the
task of proving the correctness of the tree to
show that it is atomic.

In our approach, atomicity is not a basic
concept. Rather, it is definable in terms of
serial computations and equivalence to such compu-
tations. For example, a database system may
regard the operating system interface as atomic.
In practice, these are complex operations and in
a multiprocessing environment they may be inter-
leaved. All the operating system guarantees is
that they can be considered as if executed
serially.

Let us compare atomicity as defined here
to the standard assumptions found in the litera-
ture. For centralized systems, system computa-
tions are assumed to be serial [BSW, Pa]. ~or
distribute~ systems, this is generalized to
assume a partial order <, where eve~I pair of
conflicting operations is <-related. Now,
suppose that operations that are not <-related
are allowed to be arbitrarily interleaved. Then
this assumption is not a sufficient basis for the
theory, because an interleaved execution of commu-
ting operations is not necessarily equivalent to a
serial one. Thus, an explicit assumption about
atomicity must be made. Once such an assumption is
made, there is no need to assume that conflicting
operations are <-related. If it is needed, it can
be assumed to be implied by atomicity, since we can
work with some equivalent serial computation.

We can now state the conditions ~ is re-
quired to satisfy.

Let O I, 02 COP, such that 01 ~02 =~, let <i
and <2 be partial orders on 0 I, 02, resp. and

let <i o <2=<1 5< 2 COl x o2 (i.e., <3 agrees with

<i on O1, with <2 on 02, and requires all

operations of 01 to precede those of 02). Let
r 6 R.

(Cl) (Composition axiom) If, for some Sl, s2, s3,
1 2

c~ = (Sl,Ol,<l,r,s2) and c~ = (s2,02,<2,r,s3)

are in ~, then so is their composition
1 2

c~ =c~ o c~ = (Sl,O 1 UO2,< 1 o<2,r,s3).

(c2) (Decomposition axiom) If, for some Sl,S3,

c~ = (Sl,O 1 502,< 1 o <2,r,s3) 6~, then there
1

exists an s 2 6~ such that c~ = (Sl,Ol,<l,r,s2)

and c~ = (s2,02,<2,r,s3) are in ~. Further
1 2

if c~ is atomic, so are c~ and c~.

Condition (C2) states that if an g-computation
contains a point such that each operation either
precedes or follows this point, then the computa-
tion is a composition of two computations that
have a common state at this point. We will refer
to this state s 2 as an intermediate state. We
do not assume that decomposition is unique. How-
ever, for convenience, we will use this axiom as
if there is a unique decomposition, hence a unique
intermediate state is associated with the break-
point. Our results do not depend on uniqueness.

2.2 Commutat i vi ty

Let oi, o 2 be operations, s a state. We
say that o I and o 2 con~nute w.r.t, s if the
order of o I and 02 in any serial g-computation
from s can be reversed. That is, for all r,s',

(s,{ol,o2}, (Ol,O 2) ,r,s') 62 iff (sf{ol,o2} ,

(o2,o~),r,s') E~. The two operations (generally)
commute if they commute w.r.t, all states. If o 1
and 02 do not commute, then they conflict.

Concurrency control algorithms are usually
designed with general commutativity in mind. State
based commutativity potentially offers more con-
currency, but is more difficult to use. It also
incurs more overhead, since to decide if two opera-
tions commute or conflict, the scheduler needs to
know the intermediate state preceding them. If,
however, operations are known to generally commute,
their order can be reversed whenever they are
adjacent.

A general conflict predicate is a set of pairs
of operations such that it contains all pairs that
conflict, and possibly other pairs as well. Con-
flict predicates are typically used by schedulers
when they need to decide if operations should be
allowed to execute concurrently or not. The pro-
perty of conflict predicates that we need is stated
after the next lemma.

48

LEMMA. Let < be an acyclic binary relation on a
set x and let <i and <2 be two total orders
on x that contain <. Then <2 can be obtained
from <i by transpositions of adjacent~ non
<-related, elements, u

PROPOSITION I. Let CON be a general conflict
predicate, and let (Sl,O,<,r,s 2) be a serial S-
computation. Then, for every total order <' that
contains < N CON, (Sl,O,<',r,s 2) is a serial S-
computation.

Proof. We show that if operations x and y, where

(x,y) ~CON, are adjacent in a serial S-computation,

then their order can be reversed. The claim then

follows from the definition of a conflict predicate

and the lemma. To show that, we use the decomposi-

tion axiom to isolate x and y, their commutati-

vity to reverse their order, then the composition

axiom. []

Can we extend the concept of commutativity so

as to obtain more concurrency, retaining the ad-

vantages of low overhead for the scheduler and the

property expressed in Proposition i? It turns out

that we can. The idea is to use information that

is made available during the computation.

For example, several recent papers [LiWe,
ScSp] suggest the use of operation-return value

commutativity. For operations o I and 02, and

return values v I and v2, we say that (Ol,V I)

and (o2,v 2) commute if the order of o I and 02
can be reversed in every serial S-computation in

which their return values are v I and v2, resp.

Obviously if o I and 02 commute, then for eveR,

v I and v 2 (Ol,V I) and (o2,v2) commute. The
converse does not hold. Thus, operation-return

value commutativity offers more concurrency than
general commutativity, yet it retains the advan-

tages of the latter.

Let f(o, Sl,S2,V) be a function whose
argument types are an operation, two states and a

return value. We can associate with each occur-

rence of an operation o in a serial S-computa-

tion the value f(o,sl,s2,v) , where s I and s 2
are the intermediate states that precede and

follow o, and v is o's return value. We
say that f is a commutativity parameter if when-

ever two adjacent operations commute in a computa-

tion, their associated f-values remain the same

when their order is reversed.

Given two f-values fl and f2, we say

that (ol,f l) and (o2,f2) co~nute if for
every serial computation on oi, o2, if the

corresponding f-values are fl and f2, resp.,

then o I and o 2 commute w.r.t, the state

preceding them. We will refer to this type of
commutativity as operation-f commutativityo It

can easily be seen that if o I and 02 conm~ute

then (ol,fl), (o2,f2) commute, but the converse

does not hold. Thus, more concurrency can be
obtained by using operation-f commutativity. The

definition of a conflict predicate and Proposition

1 can also be extended easily. In this paper, the

results are stated in terms of general cormmutati-

vity and conflict predicates, but they apply

equally (with the appropriate changes) to operation

f commutativity and the corresponding conflict
predicates.

The function f(o,sl,s2,v) =v is a con~uta-
tivity parameter. In many systems, the write set

of an operation, i.e., the set of data item
affected by it is also a valid parameter. For low

level operations, the write set is usually part of

the operation specification, so operation-f

commutativity reduces to commutativity. However,

for high level operations, i.e., for transactions,

the write set is determined only during operation,

so the use of the write set as a commutativity

parameter increases the level of concurrency.

~inally, we note that a vector of commutativity
parameters is also a commutativity parameter. The

semi-queue example presented later uses the return

value and write set as a parameter. This example

illustrates how such parameters can be effectively

used for scheduling.

3. TRANSACTIONS AND SUBTRANSACTIONS

A transaction is any (distributed) program

with any number of agents executing concurrently

on its behalf. As for the system, we choose the

most general representation, namely a set of com-

putations. A transaction has only one meaningful

initial state. It may have more than one final

state, but we assume that its return value contains

all the relevant information about its termination

status. Hence transaction computations do not

contain states.

Formally, a transaction t is a subset of
OP

2fi n ×POS XR ×V, that satisfies the condition (C3)

below. A tuple c = (O,<,r,v) is called a trans-
action tuple. If c 6 t, it is called a t-computa-
tion; usually we use c t to denote t-computations.

A tuple as above represents a computation where O
is the operation set, o I < 02 means that t has

received the return value for o I before it

initiated 02 , r is the return value function and

v is the value returned by t itself. Note that

c t 6t does not imply that if t sends the opera-

tions of 0 to 5, S will respond with the

return values specified by r.

The condition on t is

(C3) If (O,<,r,v) E t and < c <', then
(O,<',r,v) 6t.

As an exan\Dle, assume that o I and o 2 are ini-

tiated concurrently and that t's control

structure requires o 3 to be initiated if o 1

returns the value i. If o I returns first, with

value i, the resulting partial order will be

o I <o 3 - If o 2 returns first, then o I returns
with value i, then o 3 will still be initiated,

and the partial order will be o I <o3, o 2 < 03 .

Thus the condition essentially states that a trans-
action's behavior be, in a sense, independent of

the relative speeds or order of processing of con-

current operations by the system. An initiation

of an operation depends on some previously executed
operations and their results, and is not invali-

dated, if some other concurrent operations have
also terminated.

For a given (O,r,v), there may exist several

partial orders that complete it to a t-computation.

A partial order < is called a transaction order

49

for t and (O,r,v) if (O,<,r,v) 6t but, for
every <' ~ <, (O,<',r,v) ~t. Intuitively~ a trans-
action order represents the dependencies in a com-
putation implied by the control structure of t.
For each operation o, it specifies those opera-
tions and return values that caused t to initiate
o. In most applications, we expect the transaction
order to depend on (O,r) only.

A transaction order for t will be denoted by

<t" We make no assumption about uniqueness of a
transaction order for t and (O,r,v) or about t
being deterministic; our results do not depend on
such assumptions. For convenience, we will usually
use deterministic notation, e.g., we will refer to
the transaction order.

To model the fact that transactions can invoke
subtransactions, we assume the existence of a trans-
lation that associates operations and transactions.
The translation is a one-to-one function between
the set T of transactions and a subset OP T of

OP. Thus, each transaction can be considered as an
implementation of an operation. We denote by t(o)

the transaction associated with operation o.

Assume operation o is initiated by a trans-

action t. If it is not in OPT, it must be sent
directly to ~ for execution. If it is in OPT,
then the subtransaction t(o) may be invoked
instead. Its return value is considered by t as
the return value of o. From t's viewpoint,
the way o is executed is irrelevant; it need not
be aware of the existence of subtransactions.

There are two aspects to correctness~
sequential correctness which applies when a trans-
action executes alone, and concurrent correctness
which applies when executions of several trans-
actions are interleaved. To isolate the issues
that are relevant to concurrent correctness, we
assume in this paper sequential correctness of the
translation.

Sequential correctness is not necessarily
easy to prove. If the meaning of an operation o
is defined by the effect of t(o) on the system,
there is nothing to prove. However, if an abstract
specification is given for o, i.e., the specifica-
tion of ~ describes the effect of applying o on
some states, and t(o) is offered as an implementa--
tion, then its correctness must be proved. Proof

methods for sequential correctness are well known
[MaPn] and will not be discussed here.

Formally, sequential correctness is expressed

as follows:

(C4) (Sequential correctness axiom) Let o be an
operation, t(o) its translation. For all Sl,
s2,O,<,r,v , if (Sl,O,<,r,s 2) is an atomic
E-computation and (O,<,r,v) is a t(o)-compu-
tation, then (Sl,O,~,v,s2) is also an ~-eompu--
tation (obviously atomic).

Note that we assume that whatever t(o) does
can also be achieved by applying o directly. The
converse, i.e., that whatever o does can be
achieved by applying t(o) is not assumed. As re-
marked in [LiWe], a correct implementation of an
operation on an abstract data type is not required

to generate all possible executions of the opera-
tion. Similarly, it is well known that practical
concurrency control algorithm only generate sub-
sets of the serializable executions.

We emphasize that the operations of t(o)
are assumed to be executed atomically. If they
are allowed to invoke subtransactions, whose execu-
tions may be arbitrarily interleaved, sequential
correctness does not apply.

In our running example,~ the operation wl(rec2)

is translated into f~(P)~_ followed by Sl(P). The
transaction order is f2 <Sl" If records do not

1
move from page to page, this a straight-llne trans-
action, it never changes. Note that (C4) can be

applied to rl, w I and r2, but not to w 2.

4. COMPUTATION FORESTS

Assume several transactions are executing.
Since each may invoke subtransactions, the execu-
tion generates a forest, where each node is
labeled with an operation and, for each internal
node, the operation is associated with a transac-
tion, i.e., it is in OP T . Denote the set of all
finite forests so labeled by Y. For convenience,
we identify each node with its label.

The set HC is a subset of S ×F×POS XRXS,
satisfying the conditions stated below. A tuple
c = (Sl,F,<,r,s 2) is called a hierarchical tuple.
Note that if F is simply a set of nodes, it is
also a system tupe. If it is in HC, it is called

a computation forest. In c, s I and s 2 are the
initial and final states, resp., F is the forest

of operations, < is the execution order, and r
is the return value function. Note that r
associates a return value with each node, including
the roots. By definition of F, each internal node
o has a translation t(o).

Given a computation forest c, we can add a
root whose task is to run the transactions at the
roots of F. The value it returns is the poset of
return values of the roots of F. The forest F
then becomes a tree, which we denote by T, and c
becomes a computation tree, c'. The computation
forest c and the computation tree c' are equi-
valent (according to the definition given below).
The tree viewpoint is especially convenient when
the roots of F must satisfy some externally
specified timing constraints. These constraints
can be considered as the transaction order of the
tree root. In this paper, the discussion will
usually be presented in terms of tree. Everything
applies to forests as well.

We introduce some notation. For a computation
tree c, the set of leaves is leaves(T) or
leaves(c); the root is root(T) or root(c). For
a node x, the subtree rooted at x is Tx, and
its leaves are leaves(x). Similarly, if X is a
set of nodes, the forest rooted at X is T X and
its leaves are leaves(X). The set of descendents
of x is desc(x) and the set of childen (i.e.,
inlmediate descendents) is child(x). The lowest
common ancestor of nodes x and y is ica(x,y).
Nodes x and y are incomparable if ica(x,y) is

5O

neither x nor y. A set of pairwise incomparable

nodes is a partial front; a front is a maximal
partial front.

For a front M, c restricted to M, denoted
c[M], is the tuple (Sl,M,< [M],r[M],s2). Note
that c[M] can be viewed as a system tuple, but it
is not necessarily an ~-computation. It can also
be viewed as a "flat" hierarchical tuple, but it is
not necessarily a computation forest. For an in-
ternal node x, c restricted to x, denoted c[x],
is the transaction tuple (child(x),<[child(x)],
r[child(x)],r(x)). It is not necessarily a t(x)-
computation. We denote c[leaves(c)] by c[S]
and call it the system projection of c. It is the
part of c that involves the system.

The conditions on HC follow.

(c5) (Downward order-tree compatibility) Let
x,yET, and pEdesc(x), qEdesc(y). If
x <y then p <q.

(C6) (Transaction validity) For each internal
node x, c[x] is a t(x)-computation.

(C7) (System vaildity) The system projection of
c, c[S], is an atomic ~-computation.

The meaning of (C5) is obvious. If t(x)
completes before t(y) begins, then each operation
of t(x) completes before any operation of t(y)
begins. Condition (C6) requires each internal node
to see a valid t(o)-computation. Condition (C7)
requires the system component to be a valid atomic
~-computation. The atomicity requirement reflects
our goal O f dealing with serializable computations.
If atomicity is not guaranteed for the base level
computations, nothing much can be done to guarantee
serializability for transactions.

PROPOSITION 2. Let c be a computation tree. The
partial order < of c can be extended to a
partial order <' such that the result c' is:a
computation tree and for all nodes x and y, if
p <' q for all p 6 child(x), q E child(y) then
X <' y.

Sketch of Proof. The proof relies on the fact
that (C3) allows us to extend a partial order on a
tree without violating (C6). D

Intuitively, the proposition states that if
all operations in the implementation of x pre-
cede those in the implementation of y, then the
order can be "stretched" so that x precedes y.
Assumption (C3) is crucial for this to hold. In
the sequel, we will assume that < satisfies both
downward compatibility (by (C5)) and upward com-
patibility (by the proposition). Under this
condition,.the order on the leaves determines the
order on T.

5. E~UIVALENCE AND CORRECTNESS

Two computations forests c I and c 2 are
equivalent, denoted c I H c 2, if they have the same
initial and final states and the same poset of (non--
null) return values from the roots. Note that
forests with different sets of roots may be

equivalent, since some roots may return a null
value and some may return posets of values. Any
forest'is equivalent to the tree obtained from it
by adding a dummy root, as explained previously.

We can now deal with various notions of
correctness. Since the set of correct computa-

tions should be closed under equivalence,
correctness can be specified as follows: Let CE
be a set of computations. A computation c is
CE-correct if C ~c' for some c' ECE.

Serializability is a special case. We say
that a computation tree c is serial if < is a
total order on the children of each internal node.
Let SERIAL be the set of serial computation. A
computation is serializabZe if it is SERIAL-
correct. The set of serializable computation is
denoted by SR.

Examp!e]. Let us consider how the simple model
of (flat) serializability described in [BSW,Pa]
fits into our framework. A system state is an
assignment of values to a fixed set of variables.
Transactions are striaght line programs with no
subtransactions. The low level operations are
read(x) and write(x). The value to be written
by write(x) is not known. Since an operation
is supposed to effect a known transformation on
the state, it is assumed that a write(x)
executed by transaction ti, writes a value deter-.

mined by a function fi whose arguments are the
previous values read by ti, such that fi is
always different from fj and fi delivers
different values for different arguments. There
is an implicit assun~tion that each read and
write is atomic. It is also assumed that a
read(x) and write(x) are always related by the
partial order, and for each read(x), there is a
unique last write(x) that precedes it (unless
the read actually accesses the original value of
x).

Transaction t i reads x from transaction tj

if tj performs the last write on x before t i
reads x. The set of ~ive transactions of a com-
putation c is the smallest set that contains

(i) The transactions of c that return
a non-null value, and

(ii) The transactions that write the final
value of some x,

and such that if t i is in the set and t i reads
x from tj than tj is in the set.

Under these assumptions, we have the following.

THEOREM l [SSW, Pa]. Two computations are equi-
valent iff they have the same set of live trans-
actions and the same reads from relation on the
live transactions, c

The if direction can be generalized to our
model. The only if direction does not necessarily
hold, since transactions are not required to be
straight line programs, and the semantics of
operations may be more detailed. []

In our running example, the given tree is
equivalent to a serial computation tree in which

51

t I precedes t 2 (for any assignment of values to
the records). Usually, not all computation trees
are in SR. To ensure serializability, a concur-
rency control mechanism is used to restrict the set
of trees that are allowed to occur. A proof of
correctness for such a mechanism show that this
restricted set is contained in SR. The rest of the
paper is devoted to proof techniques and their
application. We conclude this section with a dis-
cussion of a property of trees that is ve1~ useful
for proving equivalence.

Let c = (Sl,T,<,r,s2). For a front M, T M
is the subforest rooted at M. Let c M = (sI,TM,
<[TM],r[TM],S2). We call c M the subcomputation
rooted at M. Note that CM[S] ~c[S] and that c M
satisfies (C5)-(C7), i.e., it is a computation
forest.

Let T/M denote the tree T with the proper
descendents of M removed, and let c/M = (sI,T/M ,
<[T/M], r[T/M],s2). We call c/M the remainder
computation (modulus M). Note, however, that c/M
may fail to satisfy (C7), hence it is not
necessarily a computation tree.

THEOREM 2. Let c be a computation tree and let
M be a front. Then c[M] is an atomic S-computa-
tion iff c/M is a computation tree and c ~ c/M.

Proof. It is easy to see that c/M satisfies con-
ditions (C5) and (C6). Since c/M[S] =c[M], c/M
satisfies condition (C7), and hence is a computation
tree, iff c[M] is an atomic S-computation. If
c/M is a computation tree, then obviously c ~ c/M.~

The typical way the theorem is applied is by
showing that CM, the subcomputation rooted at M,

can be reduced to its roots, i.e., that c M ~c[M]
(where c[M] is viewed as a hierarchical tuple).

Indeed c M ~c[M] holds iff c[M] is an atomic
S-computation (when viewed as a system tuple). We
thus obtain the followin~ version of the theorem.

THEOREM 2' Let c be a computation and let M
be a front. Then c/M is a computation forest,
equivalent to e, iff c M ~ c[M]. []

COROLLARY I. Every serial computation c is equi-
valent to its root, i.e., c ~c[root(e)].

Sketch of Proof. The proof uses (C4) to reduce
the tree, going from the leaves toward the root. []

By the corollary, every serial computation is
equivalent to a single node computation. To prove

that c 6SR, it suffices to reduce it to its root.
The techniques we present rely on this observation.
Note that Theorem 2, in either form, cannot be con-
sidered as a tool for proving equivalence or
serializability. Rather, it is a framework for
applying such tools. Its significance and power
lies in its generality, since it allows any method
for proving equivalence to be used, and it also
allows different methods to be used in reducing
layers of the tree.

The complexity of determining CE-correctness
depend, of course, on the details of the system and
the transactions. It is known to be NP-complete
for the flat read/write model [Pa]. The complexity
for the general case is unknown.

6. EQUIVALENCE BY SUBSTITUTION

Theorem 2 can be viewed as stating that the
substitution of a subcomputation rooted at a front
by another preserves equivalence. In this section
we present a general theory for substitution.

6.l Partial Orders on Trees

We will need a few definitions and technical
results about partial orders on trees. These
are collected here for convenience.

Let < be a partial order. For sets x,y,
we write x<y if for all xEX, y 6Y, x <y
holds. We write X<Y if for some x Ex, y 6Y,
x < y holds.

Let < be a partial order on leaves(T).
We define two binary relations on T, derived
from <, the pull up of <, denoted <#, and the
strong pull up of <, denoted ~. For incom-
parable nodes x and y, x <+ y if leaves(x) <

leaves(y); x 2+ y if leaves(x) < leaves(y).

LEMMA 2. For < as above, <+ is a partial
order on T.

In our running example, let < be the given
partial order restricted to the leaves. Then

leaves(w2) < leaves(wl) ; leaves(t I) < leaves(t2)
but not leaves(t I) < leaves(t2). Also,

r I % w I <%r 2 and t I <+ t 2 <%t I. There is no
<~ relationship between t I and t 2 .

Let < be a partial order on T. The pull
down of <, denoted <+, is defined by: x <% y
if for some ancestors p of x and q of y,

p <q. In general, <% need not be acyclic.

Let c be a computation. For each internal
node o, there exists a t(o)-transaction order on

child(o), denoted by <t(o)" The order

<t = (U < (o))+
o6T t

is called the transaction order for c. (Actually
more than one can exist; however, as usua~we use
deterministic notation.) The reference to <
as an order is justified by the following lem~ta.

LEMMA 3- The binary relation <t defined above
is a partial order, contained in <. []

LEMMA 4. For

equivalent

(i) x <t(o) y'

(2) x <t y'

(3) x (<t%)% y,

(4) x (kt+)% y.

x,y E child(o) , the following are

52

By the lemg~a <t is closed w.r.t, pull down
and both types of pull up. To determine if
x <tY, all that is needed is to observe the trans-
action order between the children of ica(x,y)
from which x and y are descended.

In the running example, assume that the trans-
action order for each write requires the fetch to

precede the store and that r I <tl w I and

w 2 < t 2 r 2 , b u t t h e r e i s no p r e d e f i n e d o r d e r on

tl, t 2. Then <t is given by fll <t f12 <t Sl;
2

f21 <t s2 <t f2"

Let < be a partial order on leaves (T) , and
let x be a node. We say that < separates x
or that x is separated by <, if for each
y 61eaves(T) -leaves(x), either y <leaves(x) or
leaves(x) <y. A set of nodes is separated by <
iff each node in the set is separated by it. We
will deal wi£h separation of sets only for partial
fronts.

Separability of a node means that the leaves
under it are executed without interleaving with
other leaves. Thus as far as an outside observer
can tell, the transaction at the node is executed
atomically. (It may still be the case, of course,
that operations of subtransactions are interleaved.)

LEMMA 5. If < separates S (where M is a
partial front) than for all x,y 6M, either
leaves (x) < leaves (y) or leaves (y) < leaves (x) . []

C O R O L L A R Y 2. (~+) [M] = (<+)[M], and it is a total
order on M. D

6.2 Substitutions

Our interest in the property of separability
is due to the fact that it is a sufficient condi-
tion for substitution to preserve equivalence. In
the following, let c = (Sl,T,<,r,s 2) be a fixed
computation tree and let x be a node that is
separable by <.

1 2 3
LEMMA 6. For c and x as above, e[S] =asocSocs

i
where c S is an atomic S-computation i=i,...,3,
and c~ =c x[~]. []

In the following, we denote the initial state
of Cx[S] by s{ and its final state by s~.

LEMMA 7- For c and x as above, • Cx = (sI'Tx'
<[Tx], r[T x] ,s~) is a tree computation. []

We recall that by Proposition 2, we may
w.l.o.g, assume that for every node y, if
y < leaves (x) than y < x and if leaves (x) < y
than x < y.

Let d x = (s~,Tx,<x,rx,S ~) be a computation

! tree, where Sl, s~ are the initial and final

states of c x mentioned above, T'x is a tree

with root x, and rx(X) =r(x). The substitution

of d x for c x in c, denoted C[Cx~d x], is

c' = (Sl,T',<',r',s 2) ,

where

(i) T' is T with T x replaced by T'.
x

(ii) <' is equal to < on T-T , and is
equal to <x on T'. For ~6T-Tx,

i if y <x (x <y) th~n y <' T x
(T~ <' y).

' and is (iii) r' is equal to r x on T x
equal to r elsewhere.

THEOREM 3 (Substitution Theorem) Let c be a
computation tree, x a node separable by <, and
let d be a computation tree with root x such
that Xd x ~c x. Then c' =c[c x¢~d x] is a compu-
tation tree and c ~c'. []

Note that, in general, equivalent computations
are not required to have the same root. To per-
form substitution, we also need equality of roots.
The reason is that if the parent transaction sent
the operation x in the old computation, it sends
x in the new computation as well.

Let c, x, c x and d x be as above, and let
c' =c[c x~dx]. In c', x is separable, so we can
substitute c x for the subeomputation d x. It is
easy to see that c =c'[d x~cx]. Thus, substitu-
tion is a reversible operation.

Another important property of substitution is
that the order of substitution is not relevant.

LEMMA 8. (i) Let c be a computation tree and
let x and y be incomparable nodes, separable
by <. Let c x-ck and Cy~-C'. Then y is
separable in c[c x~c x] anH Y

cEcx c ECy = CECy x

(ii) Assume that y6desc(x), x is_separable by
<, Cx-C~., and denote c[cz~c ~] by c. Assume
also that in c x y is separable and let
(Cx)y-= c~. Then y is separable in c and

C[Cy~C~] = c[cx~Cx[(C')xy ~c']]y

The notion of substitution can be generalized,
to allow for substitution of a subforest of a
computation by an equivalent forest. We say that
a partial front M is weakly separable by <, if
for each y 61eaves(x) -leaves(M), either
y <leaves(M) or leaves(M) <y. That is, the
steps of the computation under M are not inter-
leaved with operations that are not under M.
However, the subtrees rooted at M may be inter-
leaved with each other. For a single node,
separation and weak separation are the same.

Assume M is weakly separable by <. Using
the same arguments as for a single separable node,
we have that c[S] is a composition of three
atomic S-computations, the middle one being CM[S] ,
where c M is the subcomputation rooted at M.
It follows that c M is a computation forest.
Assume that for all y, if y <leaves(M) then
y <M and if leaves(M) <y then M <y. Let d M
be a computation forest such that CMHd M , and
both have the same poset of roots and the same

53

return value from each root. Then C[CM~-dM] is
well defined.

THEOREM 3' (Substitution Theorem) For c , M, et~
and d M as above, c'= c[c M ~d M] is a computation
tree and c ~c'. []

The results about reversibility of substitution
and irrelevance of substitution order generalize in
the obvious way. We note that Theorems 2 and 2' are
special cases of the generalized substitution
theorem. In these theorems, reduction, which is a
special case of substitution, is used. Of course,
expansion, the dual of reduction can also be used
in these theorems.

As observed in the previous section, substitu-
tion by itself is not sufficient for proving
correctness of computations, since we still need to
find computations that can replace subcomputations.
Tools are needed that will allow us to transform a
computation to an equivalent one without relying on
previously known equivalences. So far, the only
tool available to us is the use of (C4).

COROLLARY 3. Let c be a computation and M be a
front that is separable by <. If each node in M
is either a leaf or a node whose children are
leaves, then c ~ c/M. []

Note that Corollary 1 follows directly from
this result.

In our running example, the nodes rl, w I and
r 2 on level 2 are separable. To separate w 2,~ we
will need to reverse the order of f~ and f¢,
relying on their commutativity. Then, by (C4), the
computation becomes equivalent to a computation that
contains only levels 0-2, with the order

w 2 < rl< Wl< r 2. Level 1 is still not separable.

7. CONFLICT PRESERVING SERIALIZABL£ LOGS

In all practical applications, concurrency
control algorithms rely on knowledge about conflicts
between operations. When an incoming operation
conflicts with an operation that is already executing,
then either the new operation is delayed, or one of
the transactions aborted. Thus conflicting operations
are prevented from being concurrently executed. The
theory that deals with these algorithms and their
correctness will be presented now.

7.1 Ensuring Transaction Val id i ty

By condition (C7), for every computation c,

c ~] is an atomic ~-computation. Extending the
order on the leaves to be serial does not invalidate
(C5) and (C6), and the result is a computation c'
equivalent to c and with the same root. From now
on, we assume that c[~] is a serial ~-computation.

For a computation c with partial order <,
we use c[< ~<'] to denote the hierarchical tuple
that results from replacing < by <'. This tuple
is not necessarily a computation.

The basic observation that is used in conflict
based treatment of computations is that the order
of commuting leaves may be changed (see Proposition

i). However, in a computation tree, we have to
satisfy also property (C6), i.e., transaction
validity.

LEMMA 9- Let <' be any partial order such that
<t ~ <' Then each internal node o in
c' = [<~<'] sees a t(o)-computation, i.e., c'
satisfies (C5). o

Since < is total on the leaves, for every
two leaves x and y, either x < y or y < x. We
say that leaves x and y are a~'acent if for
every other leaf z, either z < {x,y} or
{x,y} < z.

Assume x and y are adjacent, say x <y.
If x 4- Y, then their order can be reversed with-
out violating (C6). However, order-tree compati-
bility may no longer hold, so additional changes
to < may be required to restore the validity of
(C5).

LEMMA lO. Let x,y be adjacent leaves of c such
that x < y but x ~t y" and let

= < - {(Zl,Z2) IxEdesc(zl),y desc(z2)} U <i

{(y,z) Lz=xor x<z}~{(z,x) Iz<y} .

Then. <.i is a partial order and c l=c[<~< I]
satisfies (C5) and (C6). o

From now on, whenever we reverse the order
of adjacent leaves that are not <t-related, we

assume that the appropriate changes to <i as
described in the lemma, are made.

7.2 Tree Logs

Now, if x and y are adjacent leaves,
there exists an intermediate state preceding x.

if x and y co~ute w.r.t, this state, then
their order can be reversed, the result being a
computation that is equivalent to the one given.
Algorithms that use state based commutativity

potentially offer more concurrency. However, the
need to use state specific information implies
higher overhead and more complex algorithms. The
algorithms in use today all use general commutati-
vity, relying on suitably chosen conflict predi-
cates. As we remarked previously, it is possible,
by using a commutativity parameter, to come closer
to state based commutativity without giving up the
use of conflict predicate. The family of computa-
tions that are serializable by state based commuta-
tivity transformations is studied in the full paper

but is not considered further here.

In the following, state specific information
is not used, hence the states are omitted. We
state our results in terms of operation commutati-
vity, so return values also can be omitted. All
our results remain valid for operation-f commutati-
vity. However, then the f-values must be retained
in the description of the computation, and some
results need to be rephrased. The details are
mostly left to the reader.

Assume that Sl, s2, r are given. A tree
log is a triple "~ = (TI,<,< t) such that

54

c = (Sl,T,<,r,s 2) is a computation tree and <t
is a transaction order for c. We say that £ is
derived from c. A log may be derived from
several computations, but for the discussion we
fix one of them. Note that our definition gener-
alizes the concept of a log in classical seriali-
ability theory, where a log is a poset of opera-
tions, and the transaction order is assumed to be
known (and contained in the given partial order).
If a commutativity parameter f is used, then the
log should contain also the f-values.

We will use freely for logs the terminology
previously used for computations. Thus, we talk
about forest logs• A tuple (0,<) is an S-log
if it is derived from an ~-computation; in part-

icular, £[~] is an S-log. Logs £i and £2 are
equivalent, £I ~£2, if c I ~c 2. (Note that the
scone Sl, s2,r must be used whenever several logs
are discussed.)

7.3 C-Separability and GCPSR Logs

essential order captures this information. We

note that <CON c <, hence it is a partial order
e

on leaves(T), and <CON% contains < .
e t

PROPOSITICN 3.co~et £ and CON be as above.
Then £[< ~ < -+] is a representative log.
Conversely, if £[< ~ <'] is a representative log,
than there exists CON, a conflict predicate for
£, such that <CON = <,

e

Sketch of Proof. Since <CON e contains <t and

<CON, we can use Lemma i0 and (C8) to show that
c
(C6) and (C7) are satisfied when <CON is re-

e
placed by any tree compatible <' that is total
on leaves(T). []

The advantage of a representative log is that
it represents a collection of logs, differing only
in their orders, and that testing if one of these
orders separates M is easy.

Let k = (0,<) be a serial S-log and let CON
LEMMA 12. A total order < separates a partial be a symmetric binary relation on OP. We say that

CON is a conflict predicate for k if the following front M iff it separates ~ = M U (leaves(T) -
property holds, leaves(M)). D

(C8) For every total order <' on 0 that extends
< DCON, (0,<') is an S-log (w.r.t. same
states and return value function).

The definition carries over in the obvious way
to tree logs. CON is a conflict predicate for
£ = (T,<,<t) if it is a conflict predicate for
£[S] = (leaves(T),< [leaves(T)]). The conflict order

<CON < defined by CON on £ is c = [leaves] N CON.
Note that <T °N is acyclic but not necessarily
transitive. We refer to it as an order, since (CS)
holds for it iff it holds for its transitive
closure.

LEMMA li. Every general conflict predicate is a

conflict predicate for all logs.

Proof. The lemma is an immediate corollary of
Proposition i. D

From now on, we restrict our discussion to
fronts. We say that a front M is c-separable
by <e, where <e is a partial order on leaves(T),
if there exists a total extension < of < that

e
separates M.

PROPOSITION 4. The following are equivalent

(I) M is c-separable by <
e

(2) (~ +)[M] is acyclic.
e

Proof. (]) ~ (2) Let < be a total extension of
that separates M. Then, by Corollary 2,

~+) [M] = (<+) [M] is a total order on M. Since
<e c <, it follows that (<e+) [M] is acyclic.

(2) ~ (I): Since (~e+) [M] is acyclic, it can be
extended to a total order on M, say <'. Then

<e c (<'+)[leaves(T)] and the latter separates
M, hence so does each of its total extensions. D

The converse of the lemma does not necessarily

hold. A conflict predicate for a log £ may be COROL[ARY 4. Let £ = (T,<,< t) be a log, let CON
constructed using information specific to £, and be a conflict predicate for £, and M be a front.
it may indicate that x and y commute in £ even
though they conflict w.r.t, some state. If (<CONt)[M]e is acyclic, then there exists a

total order <' that contains <CON and separates
A triple £ = (T,<, <t) , where <t~<' is e

called a representative log if it satisfies the M, and % ~ £' = %[< ~<']. []
fo21owing property

(C9) For every order <' that contains < and
is total on leaves(T), £[< ~ <'] is a tree
log (and <t is its transaction order).

The given triple £ is not required to be a
tree log.

Let CON be a conflict predicate for
£ = (T,<,<t)• The essential order defined by CON

on £ denoted <CON, is (<CON ' e c U<t[leaves(T)])+.

Intuitively, the order of leaves that are either

<~ON-related or <t-related cannot be changed• The

Viewing the nodes of M as transactions, and
the leaves under them as their operations, C-
separability means that these transactions can be
serialized without changing the order of conflic-
ting operations or the transaction order. Thus,
Proposition 4 generalizes the well-known result
[BSW,Pa] that a log is CPSR iff its conflict graph
is acyclic. The generalization is in that there
only the conflict order is used. We use here <e
which combines conflict order and transaction order•

A log £ = (T,<,<=) is (general) conflict
preserving serializab~e, abbr. CPSR (GCPSR), if it
satisfies one of the following conditions.

55

(i) It is a log of depth i.

(2) There exists a conflict predicate for i (a
general conflict predicate), say CON, and a
nontrivial front M (i.e., a front that is
not the root or the leaves) such that M is
C-separable by <~ON and, for some separating
order <' that contains <CON,

e

(i) Every sublog of £[< ~ <']/M is CPSR
(GCPSR), and

(ii) The remainder log i[< ~= <']/M is CPSR
(GCPSR).

A computation is (G)CPSR if the log derived
from it is (G)CPSR.

LEMMA]2. Evel~, GCPSR log is CPSR.

THEOREM 5. Every CPSR log is derived from a
serializable computation. That is, CPSR c SR.

Proof. The proof is by induction on the depth of
the log. The basis, where the depth is i, is
obvious. Assume then that the claim is true for
logs of depth ~ n, and let Z be of depth n+l.
Denote the corresponding computation by c. By
(2i) in the CPSR definition, let <' be a separa-
ting order. Then Z Hi' =i[<~<'], since they have
the same states and return values. By induction
hypothesis, each sublog of Z' rooted at some
x £M is serializable hence can be replaced by its
root x. Thus, ~' { Z'/M. Applying the induction
hypothesis once more, Z'/M is serializable, hence
so is £. D

In our running example, let us use the
standard conflict predicate for read and writes for
the leaves on level 3. Then level 2 is C-separable,
the separating order being f~ <$2 < fl < f2 < s~ < f2

1 1 ~ 2"
The order on the leaves of the remainder log is
w 2 < r I < w I < r 2. Using again the standard conflict

predicate, the front on level 1 is also C-separable.
Since all sublogs are of depth i, this log is
GCPSR. Additional examples will be presented
later.

The theorem induces a recursive technique
for proving serializability. Beside the manage-
ment of sub-problems, we only need to test for
C-separability and find separating orders. Both
are easy when CON and M are given. The tech-
niques generalizes CPSR theory for flat logs,
hence we are able to use results from this theory,
as shown in the examples.

In the full paper we show that reduction of
a tree can always be done bottom up, from the
leaves to the root. That is, the technique can be
used iteratively, instead of recursively. We also
present examples that indicate that choosing the
order of reduction may be a nontrivial problem.

8. CONFLICT PREDICATES FOR SUBLOGS AND REMAINDER
LOGS

The definition of GPCSR logs does not require
the same conflict predicate to be used. We now
discuss the relationships between conflict

predicates, conflict orders and essential orders
of a log, its sublogs and the remainder log.

In what follows, let 10 = (T,<0,< t) be a
given log, CON a conflict predicate for i 0 and

M a front that is C-separable by <CON. To
e

simplify the notation, we use < and < for
c e

<CON, <CON, resp. Also, we write iogs with a
c e

partial order deifned on leaves(T), assuming
implicitly that each such partial order is pulled

up to a partial order on T. Thus, ~ = (T,<e,< t)
is the representative log. We use < to denote
a total order on leaves(T) that extends < e
and separates M, and we write i =~[< ~<] for
the log it defines, e

8.1 Sublogs

For each xEM, let CON x =CON[leaves(x)]

and CON/M = CON -Ux6 M CON x, that is , CON/M re-

lates only pairs from distinct subtrees rooted at
(in particular, for M. For a partial order d<_

<t,<c,< e or <) we write for <d [leaves (x)]

and <d/M for <d -U <x
x6M d"

LEMMA]3. <d c_ <f iff, for all xEM <Xd c <xf,

and <d/M ~ <f/M . D

COROLLARY 5. < is an order that extends < and
separates M iff, for all x 6M <x extend~ <x
and </M is the pull down of a total order on e
M that extends (~e +) [~].

Proof. By the lemma, < extend <e iff for all
x <x extends <Xe and </M extends <e/M. In
addition, < separates M iff (<+) [M] is a
total order on M that extends (~e+) [M]-

It is easily seen that </M= ((<+) [M])+ and
if (<+) [M] extends (<eL) [M] then </M extends

<e" D

What we have just shown is that a separating
order < is a union of distinct components, each
of which can be chosen independently of the
others. The component <x is chosen from the set
of total orders on leaves(x) represented by <x.
The component </M is determined by choosing on~
of the total orders on M represented by
(<e+) [M]. It is this last component that actually
separates ~i. Note that (<e+) [M] = (<e/M)+[M].
Thus, only the <e-relationships among leaves of
different subtrees rooted at M determine whether
M is C-separable. Conflicts and timing constraints
within a subtree are irrelevant. In other words,
only CON/M is relevant for C-separability, and
M is C-separable if (<e/M)+ is acyclic on M.

For x6M, £ is a tree log, derived from
Cx, where c is t~e computation from which Z is
derived. It is easy to see, using Lemma 4,that
<x is the transaction order of this log. Let us
t

consider conflict predicates for ~x" The
obvious choice is CON x.

COROLLARY 6. CON x is a conflict predicate for
~x' and <x <x are the conflict order and

c' e

56

essential order, respectively, defined by it for

x

COROLLARY 7. Let £: (T,<e,<) Be a representa-
tive log, defined by CON, ank let x be c-
separated by <e- Then ~x " <x <X- = (Tx' e' t) is a
representative log, representing all (and only)
the sublogs rooted at x of the logs corresponding
to separating orders for x that extend <e" []

We note that for different separating orders,
the initial and final states of the subcomputa-
tions rooted x may be different. Thus, £x can
possibly be associated with several state pairs.
This is of no significance, since the states are
not used.

By the corollary there is no need to compute
a separating order2 the relevant orders can be

obtained by restricting <c and < to
e

leaves (x) .

If we want to use another conflict predicate,
say CON x, we need to compute explicitly a separa-
ting order, and use it to compute the new conflict
and essential order. We note that, in general,
the replacement of CON x in CON by C-ON x is not
necessarily a conflict predicate for ~0' (though
we expect that in most practical applications it
will be).

PROPOSITION 5. Let -C-oN x be a conflict predicate
for ~x, where ~ = (T,<,<t) , < is a separating
order for M, and x 6M. Then

<C-ON x = (<x N C--~) U (<x _ <x) n c-~
c e e

Proof. The claim follows easily from the fact
that <x c <x.

e --

8.2 The Remainder Log

We turn now to consider the remainder log
Z/M= (T/M,(<+) [M],<t[M]). Since the nodes of M
are not necessarily leaves of ~, we have to use a
new conflict predicate. Let CON M be a conflict
predicate for Z/M, and let <M and <M be the

conflict and essential predicates defined by it
for £/M. Even though <M and <M are deter-
mined by CON M, they are ~elated t~ < and < c e
by the fact that < is constrained to contain <e"

<M PROPOSITION 6. (]) Let d be any one of the
four relations (~c ~) [M], (~c+)+[M], (~e +) [M],
(~e%~+ [M] , then

<Me : (<~ n con M) u (((<+) [M] - <~) n c0N M)

(2) Assume CON M is a conflict predicate for the
remainder logs obtained from all separating orders
that contain <e" Then every relation ~ on M
that relatesMall and only pairs of coNM[M], and
such that ~c U (ke+)[M] is acyclic, is the con-
flict order defined by CON M for the remainder
log of some separating order that extends <e"

Proof. (]) For each of the four possibilities
for the value of <~, <~ ~ (<+)[M]. The claim
follows .

M
(2) By the given properties, Z~ can be extended
to a total order <M on M, that contains (%e+)[M].
Thus, <M = (</M)+ for some separating order that
extends < . The claim follows, m

e

The first part of the proposition brings into
focus two cases that need to be considered in the
relationship between CON, defined on the leaves,
and CON M, defined on M. Let x,y 6M, and let p
range over leaves(x), q range over leaves(y).

Case]: x and y commute (w.r.t. CONM), but for
some p and q, p and q do not commute (w.r.t.
CON). Given a total order on leaves(T), p and

q are <c-related, say P <c q- Hehce, x ~c + y.
However, this relationship does not appear in <M.

c
As an example in a banking system, a transfer
commutes with an audit, even though their accesses
to individual accounts ~ o not commute.

Case 2: For all p and q, p and q commute,
hence ~ and y are not <c+-related. However,
it is possible that (x,y) 6CON M and a <M-rela-
tionship between them needs to be chosen. CAs an

(somewhat contrived) example, assume the existence
of an operation that reads one of several counters,
returns the value read and increments the counter.
Two such operations conflict in general. Yet, in
a given log, if they read different counters, their
leaves commute.

The second part of the proposition allows us
to compute a new <M by (strongly) pulling up <e, c
and extending this pull up in an arbitrary way to
an acyclic relation that covers all pairs of CON M.
Note that if <c ~ is used instead, than an arbi-
trary extension will not do; the extension must be
compatible with <t on M. Also note that the
ass~aption that CON M is a conflict predicate for
all separating orders is necessary since we can
generate any one of these orders.

Let us now consider specific choices for CON M.
The obvious choice is to use a general conflict
predicate CON~. I.e., if x and y commute

CON~ then they commute in general. The w.r.t.
fact that CON~ is a conflict predicate for
(T/M,<t[M]) Vls a corollary of Lemma ii. Note that
in the relationship between CON~ and CON both

V

cases described above can occur. Hence, CON~
defines different conflict and essential orders for
different separating orders. For a separating M

order <, these will be denoted by <~ 0 and <e 0,
rasp. They can be computed using (i) of
Proposition 7.

Consider Case 2 above, intuitively, it would
seem that if, in the given log, the leaves under
x and y commute, then x and y should not be
considered to conflict. We formalize this as
follows. Let Z = (T,<,< t) be a log such that <
is total on leaves(T) and separates M. For any
total order ~M on M, let ~ be (~M+) [leaves(T)]
U (U r. <x). Obviously, ~ is a total order on

xt
leaves~T) that also separates M. It is obtained
from < by changing the relative order of sublogs
rooted at M, without changing the order within
any of the sublogs. We say that CON M is a con-
flict predicate for ~/M in ~ if the following
property holds.

57

(C]0) For every total order ~M on M that

extends (<+) [M] NCOM M, (leave(T),~) is an
~-log (w.r.t. the same states and return
values as in i).

LEMMA 14. Using the previous notation, if £x is
reducible to a single node for each x 6M, then a
conflict predicate for £/M in ~ is a conflict
predicate for ~/M.

Proof. we have to show that under the given con-
ditions, (Cl0) implies (C8). Now, given ~M,
defines a serial ~-log on leaves(T) and separates
M. The sublog consisting of leaves(x) can be
replaced by x, for each x6M, hence ~M defines
a serial ~-iog on M. []

Given CON, a conflict predicate for ~,

define CON~={(x,y) Ix,z6S , (leaves(x) Xleaves(y))
n CON ~ ~}.~ I.e., CON~ is the set of pairs of
elements of M that have a pair of noncommuting
leaves under them. We refer to this type of con-
flict (commutativity) as leaf-based conflict
(commutativity).

As we have seen, if CON is used as a conflict
predicate for sublogs, then for all separating
orders, the representative sublog rooted at x is

~x" We thus obtain.

COROLLARY 7 If, for each x 6 M, [x is CPSR, then
CON~ is a conflict predicate for £[< ~<]/M,
where < is any order that separates ~M and
extends <e []

Note that the use of leaf conflicts relies on
the same idea as the use of a commutativity para-
meter, to obtain additional information from the
computation. However, leaf conflicts are log
specific, hence are not definable by commutativity
parameters.

Denote the conflict and essential orders
defi~d by CON~ on M for a separating order <
by and "<~ i, rasp. They can be computed
by (l~'~f Proposltlon' ~ 7. However, we note that, by
definition of CON~, Case 2 above does not apply.

PROPOSITION 7. (1) <Mc,I = (~c +) [M].

(2) (~e%) [M] c_ <Me,l = (~e %)+[M]

M
COROLLARY 8. CON_ generates the same conflict and
essential orders, hence the same representative log,
for all separating orders. D

It would seem advantageous to combine leaf
M

commutativity with regular commutativity. Let CON 2
be CON~ nCO~, i.e., x and y conflict w.r.t.

M u ± CON 2 only if they generally conflict, and for some
p 61eaveS(x), q 61eaves(y), PM and q also con-
flict. It turns out that CON 2 is not necessarily
a conflict predicate for I/M.

~xample 2. Consider a system with a fixed set of
variables, x,y,z,..., distributed among two nodes
A and B. In a consistent state, each variable
resides at precisely one node. A read(x) opera-
tion tries to read x from A; if A is not there,
it reads x from B. A write(x) uses a similar

protocol, but it searches in B first. A
move(x,source,dest), reads x's value from source,
writes it into dest, then deletes x from source.

A sample log is shown in Fig. 2. The leaves
are ordered in time order from left to right. The

conflicts on the leaves are the pairs (Wl(X,A) ,

r2(x,A)), (w3(Y,B) ,rl(Y,B)) and (r2(Y,A) ,w3(Y,a)).
Assume the only <t relationships are among the
leaves under a node of level 2, e.g., rl(X,A)<t
Wl(X,A). Thus, level 2 is C-separable. The
separating order is obtained by moving r2(Y,A) to
the left of r3(Y,A), and the pair rl(Y,B),Wl(Y,B)
to the right of w3(Y,A). The pull up of the
separating order to level 2 is Wl(X) <r2(x) <r2(Y)
< move3(Y,A,B) <wl(Y). Using CO~ as a conflict
predicate, the only pair in conflict is (Wl(X),
r2(x)). For any other pair, either the operations
commute, or the leaves under them commute. For
example, move commutes with every other operation;
r2(~) leaf commutes with wl(Y). Thus, using
CON~ we obtain that level 1 is C-separable,
implying that the log is serializable. This con-
tradicts the fact that t 2 reads x from tl,
but reads a y-value that existed before t I wrote
into y. []

To understand the error, consider the sequence
r 2 <move 3 <Wl, that needs to be transformed into,
say, move 3 < w I < r 2. In this sequence, r 2 and
move 3 commute, so we can reverse the order of r 2

and move3, obtaining move 3 < r 2 < w I. Now we want
to use leaf commutativity of r 2 and w I to re-
verse their order. This cannot be done however.
The translation of r 2 as given in the log is
valid only for r 2 < move 3. If r 2 follows move3,
its translation is different, namely, r2(Y) reads
y from B. For the new translation, r 2 and w 1
do not leaf commute.

In the full paper we show how the two types of
conflict predicates can be combined in a restricted
way.

9. EXAMPLES

We now present three examples of the use of
our results. Moss's [Mo] nested transaction model
was one of the first to deal with the concept of
nesting. Although it uses a well-known locking
policy, no formal proof of its correctness has
appeared. We present a simple proof of its con-
current correctness. We do not deal with the re-
covery aspects. However, under suitable semantics
for the commitand abort operations, these can be
integrated easily into our proof to show that con-
current correctness still holds.

Our second example is multiversion algorithms.
We show that a satisfactory and rather simple
treatment of these algorithms can be made in our
framework, with no recourse to special theories,
as developed, e.g., in [BG,82].

our last example deals with the specification
and implementation of an abstract data type that
supports atomicity of its own operations and of
transactions using them. Here, our framework is
not sufficient. We need to use two additional con-
cepts that have not been treated in the paper.

58

Level

i t3

r I (x,A) w I (x,A) r 2 (x,A) r 3 (y,A) w 3 (y,B) r I (y,B) w I (y,B) r 2 (y,A) w 3 (y,A)

e c c°

Figure 2. A sample log for a two page system.

These concepts seem to be of great significance for
the treatment of concurrency in data types and
multi-level systems. Their integration into our
framework will be carried out elsewhere.

9. l Moss's Algorithm for Nested Transactions

Moss [Mo] has suggested the following protocol
for a general nested transaction system. For each
node in the transaction tree, its subtransactions
acquire and release locks according to the two
phase locking (2PL) protocol, that is, a transaction

cannot request a lock after releasing any lock.
Locks released by subtransactions are retained by
their parent. They can be acquired by other sub-
transactions under that parent, but not by any
other transactions. After the parent releases any
lock, none of its descendents can request a new
lock.

Note that transactions are arbitrary. We regard
transactions as being in conflict iff a pair of
leaves under them is in conflict. Thus, leaf
commutativity is used here.

To prove the correctness of the algorithm, let
us consider the nodes on an arbitrary front as
transactions, and the leaves under them as opera-
tions. It is easy to see that these transaction
use the 2PL protocol w.r.t, each other. Each of
them requests an appropriate lock before it per-
forms an operation that may conflict with other
operations. Each of them holds its locks (though
it may pass them among its descendents) until it
needs no new locks.

To show that a front M is C-separable, we
have to show that ~e + is acyclic on it, where

<e = (<c U<t)+" Now, (<e+) [M] = (~c+[M] U<t[M]) +,
so it suffices to show the existence of a total
order on M that extends (~c +) [M] b<t[M].
Further, since <t can be any suborder of the
execution order <, we actually need to show that
such an extension exists for (~c+) [M] U< [M].

We rely on a property of 2PL, proved in [BSW].
There, a flat log is called strict serializable,
abbr., SSR, if it can be serialized without rever-
sing the order of noninterleaved transactions.

THEOREM [SS%J]. If aZ1 the transactions use the 2PL
protocol, then every (flat) log is ssR. []

COROLLARY 9. If all transactions obey Moss's pro-
tocol, then every tree log is GCPSR.

Proof. The theorem guarantees that every front M

is C-separable, since (~e +) [M] can be extended to
a total order. Forsublogs rooted at the front, the
new conflict and essential order are <~, <x. For

e
the remainder log, the new conflict and essential

order are (~c~) [M] and (~e+)+[M]. These logs
can be decomposed, using the same argument. The
claim follows by induction. []

9.2 Multiversion Timestamping

In a multiversion database, each write on x
produces a version of x; a read on x returns the
value of one of the versions. Multiversion con-
currency control algorithms have been described in
[BEHR, BHR, CFLNR, Du, Re, Si, SR]. A theoretical
treatment can be found in [BG82b, PK]. In part-
icular, [BG 82b] presents a serializability theory
specially tailored for multiversion algorithms. We
present here a correctness proof for centralized
multiversion timestamping, as first presented, in
[Re]. Our proof is simple, and it does not use the
special theol~ developed in [BG 82].

In the algorithm, each transaction t i obtains
a timestamp, abbr. ts(i), as its first step. Time-
stamps are unique and are issued in a monotonically
increasing sequence. Each version x i of an item
x has a write timestamp and a read timestamp,
denoted wts(xi) and rts(xi) , resp. It is
always the case that wts(x i) ~rts(xi).

The operation readi(x), on behalf of trans-
action ti, returns the version xj of x such
that wts(xj) is the largest wts of any version
of x that is smaller than ts(i). Also, rts(xj)
is replaced by max(rts(xj), ts(i)). For a
writei(x), two cases can occur. If, for some xj,
wts(xj) <ts(i) < rts(xj), then the write is rejected
and t i is aborted, for the write would invalidate
the value xj returned by the read that created
the current rts(xj). If no such xj exists, a
new version xi, with wts(x i) =rts(x i) =ts(i), is
created.

While the transactions view the database as
containing logical data items, the actual database
contains many physical versions of a logical data
item. Thus, we have a multilevel system, where
operations on logical data items are executed as
transaction on the actual system. A forest has

59

three levels. The transactions are found on level i.
The logical level operations are on level 2. These
are get-ts(i), which returns a timestamp for ti,
ri(x) and wi(x). On level 3 we find the transla-
tions of ri(x) and wi(x). An ri(x) translates
into a pair of operations: selecti(x) , which
returns a version number j and also updates
rts(xj), followed by ri(xj). A wi(x) is trans-
lated into wi(xi). We assume that the operations
of aborted transactions do not appear in a completed
computation.

Serial executions are defined as in Section 2.
It is obvious from the description above that in a
serial execution only the last version of an item
is ever read, so the database behaves as a one
copy database. Note that the select operation does
not appear in the description in [BG 82b], and this
is why a special theory with conditions that
guarantee one-copy behavior needs to be developed
there.

We now show that every log generated by the
algorithm is GCPSR. Formal properties of the logs
are presented in [BG 82b]. An intuitive under-
standing should suffice here.

The conflicts on the leaves are: ri(x j) con-
flicts with wj(x~), but not with any other Wk(X k)

3
or wj(yj). Selecti(x) that returns 3 conflicts
with any Wk(X k) such that ts(j) ~ts(k) <ts(i).
The only such Wk(X k) that is allowed by the algo-
rithm is when k =j. Note that operation-return
value commutativity is used here. Finally,
get-ts(i) conflicts with get-ts(j), but with no

other operation.

We show now that the front containing the
transactions, is C-separable. Assuming that <t
relates only pairs of operations of the s~me trans-
action, there are no <t + links at level i. The
<e order on the leaves relates only get-ts(j)
to get-ts(i), where ts(j) < ts(i) and wj(xj)
to selects(x) and ri(xj) , where the select
returns 3. Here also ts(j) <ts(i). It follows
that <e + links at level 1 always lead from a low
timestamp to a higher timestamp, hence there is no
cycle and the front is C-separable.

Since the subtransactions of each transaction
do not interleave, the sublog rooted at each t i
is serial, which shows that the log is GCPSR.

A final remark: The assumption that
selecti(x) and Wk(Xk) are atomic is important.
Assume a selecti(x) selects the version x.,3
but before it has updated its rts, a Wk(Xk),
wh~re ts(j) <ts(k) <ts(i), is allowed to
execute. The w k may find the old value of
rts(j), hence complete successfully, instead of
being rejected. This problem is avoided in
practice by treating the select i and w k as
mutually exclusive sections.

9.3 Atomic Semi-Queues

Several papers [LiW e, ScSp] have recently con-
sidered the specification and implementation of
atomic data types. The basic idea is that atomi-
city properties, like serializability and recover-
ability, have been so far implemented only in

database systems. These papers advocate the con-
struction of programming systems where arbitrary
abstract data types and programs using them can
be specified to have these properties.

Atomic semi-queues and their implementation are
presented as an example in [LiWe]. A similar con-
struction appears in [ScSp]. The goal is to ensure
serializability of arbitrary transactions using
semi-queues. In a regular queue, essentially only
one transaction can be adding (removing) elements,
for otherwise serializability cannot be ensured.
In a situation where strict FIFO is not required,
it is possible to weaken the FIFO requirement so
as to obtain more concurrency.

A semi-queue is a set of cells containing
values. Its operations are e_nq(x), which adds a
cell with value x, and deq - a nondeterministic
operation - that removes an arbitrary cell and
returns its value. Deq is implemented to remove
one of the oldest cells to ensure a measure of
fairness, but this is irrelevant for concurrent
correctness .

The proposed implementation is to use an extensible
array of records. Each record contains a value and
a flag with value e (enqueued) or d (dequeued).
For record p, these are denoted p[val], p[flag].
The array can be dynamically extended at its high
end; the operation enq(x) adds a record with
contents (x,e). A deq is implemented by a
locate, which searches the array from its low end,
and returns the first record p such that
p[flag] =e, followed by remove(p), which sets
p[flag] to d and returns p[val]. If there is
no p for which p[flag] =e, the locate waits.

The operations enq and locate are implemented
as follows: A variable end points to the high
end of the array. Enq is implemented by r(end)
which returns p, where p is the highest record,
followed by w(x,e,p+l) which writes (x,e) into
the p+l'th record, followed by set(end,p+l). A
locate loops through the array, starting at the
low end, using access(p)_ to access the record p,
and test-end(p) to test if p is (currently)
the last record. We assume that the test is
repeated until the value /alse is returned.
Locate returns the first record p which is found
to have p[flag] =e.

A generic operation tree appears in Fig. 3. A
tree log has, of course, many operations of each
type. Note that in a tree log, a transaction node
may have many enq and deq children; similarly,
a locate may have many access and test-end
children. There is a unique child of each of the
given types under an enq and a deq.

• --" i \ , ?ove
r (end) w(p) set (end,p) ~ %

access (p) test-end (p)

Figure 3. A Generic Operation Tree for Semi-Queues

60

The <t in a tree log can w.l.o.g, be assumed
to be a total order on the children of each internal
node. To describe the conflicts on the leaves, we
use a notation where only the parameters of an
operation that are relevant to conflicts are
mentioned. Set(p) conflicts with every other
set(q), with r and with test-end(p-l) and
test-end(p); w(p) conflicts with every other
w(p), with access(p) and remove(p) ; access(p)
conflicts also with remove (p) , and remove (p)
conflicts with any other remove(p).

To ensure serializability, two locking proto-
cols are used. First, each enq(x) locks end
before its r(end) and releases it after its
set(end,p). Thus, the enq's are made atomic with
respect to each other. In our terms, enq's are
separated from each other.

Consider now the interleaving of enq's and
locates. Assume a locale returns p, and an enq
increments end from q to q+l. If p ~q, then
there is no conflict among their leaves, so they
can be separated. Assume p >q, i.e., the locate
contains a sequence of n~0 test-end(q) that
return faZse, executed before the enq, followed by
one test-enq(q) that returns true, executed after
the enq. This sequence is equivalent to its last
element, performed after the enq. We replace the
sequence by this last element and thus separate the
enq and locate, forcing the locate to follow the
enq in the separating order. Note that if the
locate also contains a test-end(q+l), it also
follows the enq.

Now, nodes under locates do not conflict with
each other. A remove(p) conflicts with at most
one node, access(p), under a locate. Hence, we
have shown that the front containing operations
from {enq,locate,remove} is C-separable. The
subtrees rooted at this front are of depth ~i,
hence can be pruned using (C4).

To determine the conflicts on the remainder

tree, we return to our original view of the semi--
queue as a set of cells, since we have essentially
shown that the operations for this view, na/[ely
enq, locate and remove are executed atomically.
Two enqs add different cells, hence they commute.
To determine conflicts between enqs and
locates, we use a commutativity parameter (see
Section 2.1) with two components--the cell
affected by an operation and the return value.
An enq affects a cell p and returns I~ a
locate affects no cell and returns q. A conflict
exists iff p =q. In this case, the locate
follows the enq in the execution order and also
in the pull up of the separating order. Simi-
larly, an enq conflicts with remove(p) only if
the enq affects p; such a remove follows the
locate mentioned above.

The only problem that can prevent separation of
the next front is the existence of several locates
that return p and remove(p)'s. The second pro-
tocol requires that to perform access(p), p should
be locked. If the lock request fails, the locate is
free to access another cell. If p[flag] =d, the
lock is released; if p[flag] =e, the lock is
retained until after the remove(p). Thus,
different locate remove pairs affect different
records. The front containing the enq's and

deq's is thus C-separable. In the separating
order <, enq. (x) <+deq only if deqj removes

l 3
the cell created by enqi(x). Two deq~s never
conflict.

To allow further reduction of the log, the
previous locking protocol is extended. Each enq
and deq locks the cell it affects, and the lock
is held by the issuing transaction according to
the 2PL policy. It is now straightforward to
check that all logs are CPSH.

10. CONCLUSIONS AND FURTHER RESEARCH

We have presented in this paper a general model
for nested transaction systems. The model is
stated in abstract terms, and in addition to
nesting it allows arbitrary transactions and
operations. We have also presented some tools for
proving the equivalence of computations, or the
serializability of computations. In particular,
we have generalized the well-known CPSR concept to
computation trees and provided tools for proving
that trees are CPSR.

Our model is very general so that our results
can be applied directly to a wide variety of
applications. In particular, our model can serve
as a unified framework for dealing with concurrency
in database systems. We have illustrated this by
proving Moss's algorithm and multiversion time-

stamping. Other applications, e.g., hierarchical
locking and replicated data, can also be treated.

There is still more work to be done in making
our model applicable to various types of systems,
where special information is being used in con-
currency control. As an example consider multi-
level systems. Such systems have a fixed number
of levels, hence the structure of computation
trees is fixed and the fronts to be used in re-
ducing such trees are known. Abstract data types
are a special case of such systems. Among the
issues to be treated is the fact that there exist
different views of the system at different levels,
as illustrated in the seni-queue example. This
can be captured by the concept of state equi-
valenc~. Another issue that may arise is when
certain operations can be applied only to certain
states. The correctness proof then needs to show
that they are applied only to such states.

Search structures are also a special case of
multilevel systems. The semi--queue can be con-
sidered a search structure. Our correctness proof
shed light on an issue that seems to be typical in
such structures, namely that in an interleaved
executions operations are performed that will not
appear in any noninterleaved execution. To account
for this, our definition of CPSR needs to be
generalized to allow changes to the translation of
operations.

We have shown that the concept of commutativity
can be extended by considering commutativity para-
meters. This is, potentially, a very useful con-
cept. The treatment of synchronization mechanisms
in database systems is oriented towards read/write
operations, with read sets and write sets as argu-
ments. Synchronization is often discussed in terms
of the data items involved, e.g., locks on data

61

items or timestamps on data items. However, the
view that a lock is a flag associated with an
operation-f value pair may be more promising for
other applications, such as atomic data types.

Our results on some of the issues raised above
will appear in forthcoming papers.

BIBLIOGRAPHY

[ABG] Attar, R., P.A. Bernstein, and N. Goodman,
"Site initialization, Recovery, and Back-up
in a Distributed Database Systems," Prod. 6th
Berkeley Workshop, Feb. 1982, pp. 185-202.

[BHR] Bayer, R., H. Heller, and A. Reiser, "Paral-
lelism and Recovery in Database Systems," ACM
Trans. on Database Sys. 5:2 (June 1980), pp.
139-156.

[BG 81] Bernstein, P.A., and N. Goodman, "Concur-
rency Control in Distributed Database Systems,"
ACM Computing Surveys 13, 2 (June 1981),
pp. 185-221.

[BG 82a] Bernstein, P.A., and N. Goodman, "A
Sophisticate's Introduction to Distributed
Database Concurrency Control," Proc. 8th VLDB,
Sept. 1982, pp. 62-76.

[BG 82b] Bernstein, P.A., and N. Goodman, "Multi-
version Concurrency Control-Theory and Algo-
rithms," Prod. of the ACMSIGACT-SIGOPS Conf.
on Principles of Distributed Computation,
August 1982, Ottawa.

[BGL] Bernstein, P.A., N. Goodman, and M.Y. Lai,
"Laying Phantoms to Rest (by Understanding the
Interactions Between Schedulers and Translators
in a Database System)," Proc. 19811EEE
COMPSAC Conf., Oct. 1981.

[BSW] Bernstein, P.A., D.W. Shipman, and W.S. Wong,
"Formal Aspects of Serializability in Database
Concurrency Control," IEEE Trans. on Software
Engineering, SE-5, 3 (May 1979), 203-215.

[CFLNR] Chan, A., S. Fox, W.T. Lin, A. Nori, and
D. Ries, "The Implementation of an Integrated
Concurrency Control and Recovery Scheme," Prod.
1982 ACM SIGMOD Conf., ACM, N.Y.

[Dubo] Dubourdieu, D.J., "Implementation of
Distributed Transactions," Prod. 1982 Berkeley
Workshop on Distributed Data Management and
Computer Networks, pp. 81-94.

[EGLT] Eswaran, K.P., Gray, J.N., Lorie, R.A., and
Traiger, I.L., "The Notions of Consistency and
Predicate Locks in a Database Systems," Commu-
nications of the ACM, vol. 19, No. ii,
November 1976.

[FGL] Fischer, J.J., Griffeth, N.D., and N.A. Lynch,
"Global States of a Distributed System," Prod.
1st IEEE Annual Symp. on Reliability in Distrib-
uted Software and Database Systems, 1981,
pp. 31-38.

[Gr] Gray, J., "The Transaction Concept: Virtues
and Limitations," Prod. 7th International Conf.
on Very Large Data Bases, Cannes, Sept. 1981,
pp. 144-154.

[KW] Kwong, Y.S., and Wood, D., "A New Method for
Concurrency in B-trees," IEEE Trans. Softw. Eng.
SE-8, 3 (May 1982), pp. 211-222.

[La] Lamport, L., "Time, Clocks, and the Ordering
of Events in a Distributed System," CAC~, 21,
7 (July 1978), pp. 558-565.

[LBY] Lehman, P.L., and Bing Yao, S., "Efficient
Locking for Concurrent Operations on B-Trees,"
ACM TODS 6:4 (Dec. 1981), pp. 650-670.

[LiWe] Liskov, B., and W. Weihl, "Specification
and Implementation of Resilient, Atomic Data
Types," Manuscript, MIT Laboratory of Computer
Sciences, 1982.

[Ly] Lynch, N.A., "Concurrency Control for Resi-
lient Nested Transactions," Prod. 2nd SIGACT-
SIGMOD Conf. on Principles of Database Systems,
Atlanta, March, 1983.

[MaPn] Manna, Z., and A. Pnueli, book in prepara-
tion~ 1983.

[Mo] Moss, T.E.B., "Nested Transactions: An
Approach to Reliable Distributed Computing,"
Ph.D. Thesis, MIT Laboratory for Computer
Science, 1981.

[Pa] Papadimitriou, C.H., "Serializability of
Concurrent Updates," J. ACM 26:4 (oct. 1979),
pp. 631-653.

[PK] Papadimitriou, C.H., and P.C. Kanellakis,
"On Concurrency Control by Multiple Versions,"
Proc. 1st ACM SIGACT-SIGMOD Conf. on Principles
of Database Systems, March 1982.

[RSL] Rosenkrantz, D.J., R.E. Stearns, and P.M.
Lewis, "System Level Concurrency Control for
Distributed Database Systems," ACM TODS 3:2
(June 1978), pp. 178--198.

[Re] Reed, D., "Naming and Synchronization in a
Decentralized Computer System," Tech. Rep. MIT/
LCS/TR-205, MIT, Dept. of Elec. Eng. and
Computer Science, Sept. 1978.

[SiKe~ Silberschatz, A., and Kedem, Z., "Con-
sistency in Hierarchical Database Systems,"
J. ACM 27:1 (Jan. 1980), pp. 72-80.

[ScSp] Schwartz, P., and Spector, A., "Synchroni-
zing Shared Abstract Types," Tech. Rep. CMU-CS-
82-128, CMU Dept. of Computer Science, Sept.
1982.

[SLR] Stearns, R.E., P.M. Lewis If, and D.J.
Rosenkrantz, "Concurrency Controls for Data-
base Systems," Prod. 17th Symp. on Foundations
of Computer Science, IEEE, N.Y., 1976, pp. 19-
32.

[SR] Stearns, R.E., and D.J. Rosenkrantz,
"Distributed Database Concurrency Controls
Using Before-Values," Prod. 1981ACM-SIGMOD
Conf., ACM, N.Y., pp. 74-83.

62

