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O. INTRODUCTION 

Concurrency control is the activity of syn- 
chronizing transactions that access shared data. 
A concurrency control algorithm is regarded as 
correct if it ensures that any interleaved execu- 
tion of transactions is equivalent to a serial one. 
Such executions are called sG~ia~izab~e. Serial- 
izability theory provides a method for modelling 
and analyzing the correctness of concurrency control 
algorithms [BSW, Pal. 

The concept of nested transaction has recently 
received much attention [GR], [Mo]. Zn a nested 
transaction model, each transaction can invoke sklb- 
transactions, which can invoke sub-subtransactions, 
and so on. The natural modelling concept is the 
t~ee ~og. The leaves of a tree log are atomic 
operations executed by the underlying system, in- 
ternal nodes are operations (as seen by their 
parents) implemented as transactions (as seen by 
their children). Nodes are related by a partial 
order <, where x <y means x executes before 

y [La] . 
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We will use the following as a running example 
throughout the paper. Suppose user transactions 
issue the operations read a record, denoted r(rec), 
and write a record, denoted w(rec), r(ree) is 
implemented by fetching the disk page containing 
rec into a local buffer, denoted f(P), and then 
manipulating that local buffer, w(rec) is imple- 
mented by fetching the disk page containing rec 
into a buffer, updating the buffer, and then storing 
the page back to disk, denoted s(P). 

Suppose that synchronization is by two-phase 
locking (2PL) [EGLT]. Each transaction locks a 
record before accessing it. To ensure that each 
write is atomic, a write operation locks the page 
containing its record before fetching it and re- 
leases the lock after storing it. A read does not 
lock the page. 

Figure 1 shows a tree log of transactions that 
use these operations. The root is a monitor that 
runs transactions t I and t 2 . The transactions 
access three records that are stored on the same 
page. Since the manipulation of a local buffer by 
a transaction does not interact with operations of 
other transactions, such manipulations are omitted 
from the log. In the log, < is the transitive 
closure of the relationship denoted by the arrows. 

level 
run(tl,t 2 ) o 

1 

rl(recly X/~] (rec2)/w2(rec % 

2 • ~  - ~ ir2(rec2 ) 

2 f~(~) f~{P) s2(P) f~(P) Sl(P) f2 (P) 

Figure I. A tree log. 
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In standard serializability ~:eory, this 
execution would be represented by a log consisting 
only of the leaves of this tree [Pa; BSW]. In 
this representation, the log would be judged as 
nonserializable: since Sl(P) < f~(P), t I must 
precede t2; but since s2(P) < f~(P), tv must 
precede t I. No serial log containing t I and 
t 2 can satisfy both of these constraints. 

Yet, by considering the rest of the tree, we 
see that the log really is serializable. It's 

equivalent to executing t I followed by t 2. The 
fact that s2(P) < f~(P) is of no importance, 
because these operations are on different records. 

If we had executed Sl(P) <s2(P), the result would 
have been the same. 

As shown by this example, the nested trans- 
action concept is not limited to the case where 
application transactions are nested. In a multi- 
level system, user operations are expressed in a 
high level language; the system translates them, 
possibly in several stages, into executions of 
programs using low level operations. Every central- 
ized database management system contains several 
levels. If the system is distributed, or a multi- 
version system, there is another level of trans- 
lation--given an operation on a logical data item, 
it is necessary to choose a physical copy and to 
perform the appropriate operation on this copy. 
Synchronization in a multilevel system may take 
place at any one level, or at several levels (as 
in the example). The current state of ¢le art 
[EGLT, BSW, Pa, RSL, SLR, BG81, BG82a] does not 
provide a framework for understanding concurrency 
control in such systems. 

We mention two other areas where e~licit or 
implicit nesting is a significant feature. The 
first area deals with concurrent operations on 
search structures such as B-trees and hash tables. 
There exists a wide variety of algorithms for per- 
forming concurrent searches and updates on such 
structures (see, e.g., [ilW, LBY]). The nesting 
here is implicit, in that it is convenient to view 
the execution of the operations on several levels. 
There exists currently no general framework for 
understanding and proving the correctness of such 
algorithms. The second area is that of atomic 
abstract data types [LiWe, ScSp]. The idea here 
is to be able to specify and implement abstract 
data types that support concurrency for trans- 
actions that access them. Nesting is natural 
here, since an atomic data type can be viewed on 
at least two levels--the specification and the 
implementation. 

In this paper we extend serializability 
theory to a nested transaction model. (A related 
proposal, using a different approach, appears in 
[Ly].) In addition to nesting, we extend the 
theory in two other ways. Firstly, we allow trans- 
actions to be arbitrary programs. Classical 
serializability dealt with transactions as straight- 
line programs, hence was unable to fully explain 
certain phenomena, e.g., tile "phanton problem" 
[EGLT, BGL]. Secondly, we allow arbitrary opera- 
tions, and not just reads and writes. This general u 

ization is obviously needed for the treatment of 
arbitrary data types, but is also very useful in 
all multilevel systems. Our extension enables us 

to prove the correctness of a wide variety of con- 
currency control algorithms. An important feature 
of the extension is that standard serializability 
theoretic proofs can be applied without modifica- 
tion in nested transaction proofs. 

In order to make our results widely applicable, 
it was necessary to derive them in the context of 
an abstract model of computation, where only the 
details that are relevant to concurrency control 
theory are made explicit. We view this abstract 
model as an important contribution of this paper. 
A general description of the model is presented in 
Section i. Sections 3-5 then present in details 

the main components--the storage system, the trans- 
actions and the computations. In Section 6 we 
study substitution as a tool for proving equiva- 
lence of computations. In Section 7 we study con- 
flict preserving serializable logs and in the next 
section we deal with various choices of conflict 
predicates. The results in these two sections are 
of primary significance since all practical con- 
currency control algorithms are conflict driven. 
S~ction 9 presents examples, and in Section i0 we 
present conclusions and directions for future 
research. 

] .  THE MODEL 

As stated previously, the high level abstrac- 
tion of the model is a major factor in making the 

results widely applicable. In this section we 
present a general description of our model, and we 
explain some of our decisions regarding various 
features. 

A computing environment consists of two com- 
ponents, a system component and transaction manage- 
ment component. The system component represents 
the storage system; it contains all shared data 
and the processes that manage it and support opera- 
tions to access the data. The transaction manage- 
ment component contains the transactions and 
facilities for invoking subtransactions and for 
scheduling. 

We represent the data by a system state. More 
specific concepts, like variables and their values, 
location and distribution details, are not used. 
These are needed only for the description of 
specific applications of the theory. Similarly, 
dynamic behavior of the system and the transactions 
is described by sets of computations, rather than by 
programs. These two abstractions contribute signi- 
ficantly to the overall simplicity of our model. 

The two components exchange information as 
follows. Requests to execute operations are passed 
from the transactions to the system. For each com- 
pleted operation, a return value is sent by the 
system to the issuing transaction. The details of 
how information is passed are irrelevant to the 
model. 

In a distributed system, not every pair of 
events is necessarily ordered in time [La]. We 
assume that the events of an execution are related 

by a partial order, called the execution order. In 
any real computing environment, this partial order 
has the properties: events observed by the same 
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process are ordered and a message is sent before it 
is received. 

Two types of events are of interest to us: 
the initiations and the completions of operations. 
In principle, the execution order may relate any 
two events to each other. However, we use only the 
partial order defined on the operations, where 

operation o I precedes operation 02 in the execu- 
tion order, or o I happens before 02, if o I com- 
pleted before o 2 was initiated. If neither of the 
two operations proceeds the other, then they are 
concurrent. 

This assumption implies that a transaction's 
behavior at any time depends only on the operations 
that completed and their return values. Obviously, 
there is no significance to the relative order of 

operation initiations that occur in a time interval 
with no completions. There are cases where trans- 
actions seem to depend on completion order in their 
choice of one of several alternatives. However, in 

all these cases that we are aware of, the choice is 
related to issues such as efficiency, termination, 
fairness, etc. From the point of view of concurrent 
correctness, all the alternatives are correct for 
each order of completions that is being considered. 
Hence, by introducing nondeterministic behavior, 
our assumption holds. 

As further justification of our assumption, 

we note that in serializability theory, system com- 
putations are always assumed to be (equivalent to) 
serial, the goal is to serialize the execution of 
transactions and the mechanism employed delays the 
initiation of some operations until other operations 
complete. These are all expressed in terms of 
"happened before". Our success in applying our 
results to many algorithms witnesses the validity 
of the assumption. 

This assumption implies that not all the 
timing information that may be available is used. 
It follows that an execution order may correspond 
to several actual executions, possibly with 
different results. This introduces indeterminacy 
into the system and transaction description. As 
noted above, it may even be convenient to assume 
nondeterministic behavior. We will usually use 
deterministic terminology, for convenience, but 
none of our results requires deterministic behavior. 

We now describe the basic building blocks that 
are used in the following sections. Let S ={Sl,S2, 
...} be a set of sytem states; OP be a set of 
operations; V be a set of return values; R be the 
set of return value functions and POS be the set of 
partial orders on OP. The remaining components are 
the system S, the transactions T = {tl,t2,...}, 
and the set of hierarchical computations HC. These 
will be defined later. 

Operations are issued by transactions and 
executed by the system. We assume that each opera- 
tion is associated with a unique transaction and 
that occurrences of the operation in an execution of 
the transaction can be distinguished. In practice, 
a system is specified using a set of generic opera- 
tions. The set OP of operations is obtained by 
attaching indices that identify the transaction and 
the occurrence in the execution. 

We are interested only in subsets of OP that 
occur in finite computations. Let 29~ denote 
the collection of all finite subsets ~ o~ n OP. 

It is a significant feature of our approach 
that a transaction is also regarded as an 
operation. Thus, our set of operations contains 
both low level and high level operations, though 
we do not make this distinction formally. We 
assume that there exists a one-to-one correspondence 
between the set T and a subset OP T of OP. 

POS is the set of partial orders on finite 
subsets of OP. We use the abbreviation poser for 
partially ordered sets. For convenience, we 
usually do not write explicitly the domain of a 
partial order, and it is to be inferred from the 
context. The notation <[X] is used when we want 
to make the domain X explicit, e.g., when we want 
to restrict < to the domain X. 

V is the set of values that can be returne4 
by the system for completed operations or by a 
transaction when it terminates. A value may be 

anything between a success message and a complex 
report printed by a transaction. The null value 
~, is a legal return value. 

For technical reasons, we want every poser of 
members of V - {I} to be in V. Let V0CV, 
16V 0, be a set of simple values, and let V =V 0 U 
{all finite posets on V 0 -{±}}. Every finite 
poset of V-{i} can then be identified with a 
member of V. The poset (Q,<) = ({qi,<i},<) is 
identified with (Q,~) £v, where 

= Uqi , 

= (U i <i ) U {(vi..v j )Iv i 6qi,vj 6qj, 

(qi,<i) < (qj,<j)} 

Each r 6 R is a function that associates 
return values with operations in a finite set. As 
for partial orders, we usually do not write its 
domain, and we use the notation r[X] to make the 
domain X explicit. 

2. THE SYSTEM 

2.1 Sys,tem Computat.ions 

We describe the system by the set of computa- 
tions it can execute. In general, operations may 
arrive concurrently and may be processed concur- 
rently. Thus, a computation involves a poset of 
operations. Also, in a distributed system, the 
concept of global state is not well defined unless 
the system is quiescent [ABG, FGL]. For these 
reasons, in general, it does not suffice to describe 
the effect of each individual operation on the 
system state; a description of concurrent operations 
must be given. 

~ormally, a system ~ is a subset of 
S × 2~. x POS × R x S, that satisfies the conditions 

~ln 
(cl) and (C2) below. Tuples in this product will 
be called system tuples; the members of ~ will be 
called system computations or ~-computations. 
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A tuple c~= (Sl,O,<,r,s 2) 6~ states that 
starting from state Sl, ~ can execute the opera- 
tions in 0 such that the execution order is <, 
the return values are specified by r and the 

final state is s 2. For Ol,O 2 60, we say that o 1 
happened before 02 or that o I precedes 02 in 

c~ if o I <o 2 . If o I ~ o 2 and 02 ~ o I then 
they are concurrent in c~. 

Before we can state the conditions on ~, we 
need to introduce some concepts. An S-computation 

(Sl,O,<,r,s 2) is serial if < is a total order on 
O. It is atomic, if the partial order < can be 
extended to a total order, i.e., for some total <', 

where < ~ <', (Sl,O,<',r,s2) 6~. 

In this paper, we will principally use atomic 
computations. The computations that involve low 
level operations, i.e., those executed by the under- 
lying system will be assumed to be atomic. In an 
application of our theory, these will be specified 
in the form described here, as posets. Higher 
level operations, i.e., those corresponding to 
transactions, will be specified individually. If 
nonserial executions involving these operations 
will be included in the system description, they 
will have to be proven to be atomic as part of the 
correctness proof. 

In our running example, the sequence of page 
operations With their associated return values 
becomes an g-computation when initial and final 
states are given. Each level 2 operation has a 
well-defined semantics, defined by its effect when 
it is executed alone. Hence serial computations 
involving reads and writes on records are well 
defined. The poset given in level 2 of our tree, 

i.e.,rl,w 2 <w I < r2, in which r I and w 2 are 
concurrent, if augmented with states, may be con 
sidered a system computation. It is part of the 
task of proving the correctness of the tree to 
show that it is atomic. 

In our approach, atomicity is not a basic 
concept. Rather, it is definable in terms of 
serial computations and equivalence to such compu- 
tations. For example, a database system may 
regard the operating system interface as atomic. 
In practice, these are complex operations and in 
a multiprocessing environment they may be inter- 
leaved. All the operating system guarantees is 
that they can be considered as if executed 
serially. 

Let us compare atomicity as defined here 
to the standard assumptions found in the litera- 
ture. For centralized systems, system computa- 
tions are assumed to be serial [BSW, Pa]. ~or 
distribute~ systems, this is generalized to 
assume a partial order <, where eve~I pair of 
conflicting operations is <-related. Now, 
suppose that operations that are not <-related 
are allowed to be arbitrarily interleaved. Then 
this assumption is not a sufficient basis for the 
theory, because an interleaved execution of commu- 
ting operations is not necessarily equivalent to a 
serial one. Thus, an explicit assumption about 
atomicity must be made. Once such an assumption is 
made, there is no need to assume that conflicting 
operations are <-related. If it is needed, it can 
be assumed to be implied by atomicity, since we can 
work with some equivalent serial computation. 

We can now state the conditions ~ is re- 
quired to satisfy. 

Let O I, 02 COP, such that 01 ~02 =~, let <i 
and <2 be partial orders on 0 I, 02, resp. and 

let <i o <2=<1 5< 2 COl x o2 (i.e., <3 agrees with 

<i on O1, with <2 on 02, and requires all 

operations of 01 to precede those of 02). Let 
r 6 R. 

(Cl) (Composition axiom) If, for some Sl, s2, s3, 
1 2 

c~ = (Sl,Ol,<l,r,s2) and c~ = (s2,02,<2,r,s3) 

are in ~, then so is their composition 
1 2 

c~ =c~ o c~ = (Sl,O 1 UO2,< 1 o<2,r,s3). 

(c2) (Decomposition axiom) If, for some Sl,S3, 

c~ = (Sl,O 1 502,< 1 o <2,r,s3) 6~, then there 
1 

exists an s 2 6~ such that c~ = (Sl,Ol,<l,r,s2) 

and c~ = (s2,02,<2,r,s3) are in ~. Further 
1 2 

if c~ is atomic, so are c~ and c~. 

Condition (C2) states that if an g-computation 
contains a point such that each operation either 
precedes or follows this point, then the computa- 
tion is a composition of two computations that 
have a common state at this point. We will refer 
to this state s 2 as an intermediate state. We 
do not assume that decomposition is unique. How- 
ever, for convenience, we will use this axiom as 
if there is a unique decomposition, hence a unique 
intermediate state is associated with the break- 
point. Our results do not depend on uniqueness. 

2.2 Commutat i vi ty 

Let oi, o 2 be operations, s a state. We 
say that o I and o 2 con~nute w.r.t, s if the 
order of o I and 02 in any serial g-computation 
from s can be reversed. That is, for all r,s', 

(s,{ol,o2}, (Ol,O 2 ) ,r,s') 62 iff (sf{ol,o2} , 

(o2,o~),r,s') E~. The two operations (generally) 
commute if they commute w.r.t, all states. If o 1 
and 02 do not commute, then they conflict. 

Concurrency control algorithms are usually 
designed with general commutativity in mind. State 
based commutativity potentially offers more con- 
currency, but is more difficult to use. It also 
incurs more overhead, since to decide if two opera- 
tions commute or conflict, the scheduler needs to 
know the intermediate state preceding them. If, 
however, operations are known to generally commute, 
their order can be reversed whenever they are 
adjacent. 

A general conflict predicate is a set of pairs 
of operations such that it contains all pairs that 
conflict, and possibly other pairs as well. Con- 
flict predicates are typically used by schedulers 
when they need to decide if operations should be 
allowed to execute concurrently or not. The pro- 
perty of conflict predicates that we need is stated 
after the next lemma. 
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LEMMA. Let < be an acyclic binary relation on a 
set x and let <i and <2 be two total orders 
on x that contain <. Then <2 can be obtained 
from <i by transpositions of adjacent~ non 
<-related, elements, u 

PROPOSITION I. Let CON be a general conflict 
predicate, and let (Sl,O,<,r,s 2) be a serial S- 
computation. Then, for every total order <' that 
contains < N CON, (Sl,O,<',r,s 2) is a serial S- 
computation. 

Proof. We show that if operations x and y, where 

(x,y) ~CON, are adjacent in a serial S-computation, 

then their order can be reversed. The claim then 

follows from the definition of a conflict predicate 

and the lemma. To show that, we use the decomposi- 

tion axiom to isolate x and y, their commutati- 

vity to reverse their order, then the composition 

axiom. [] 

Can we extend the concept of commutativity so 

as to obtain more concurrency, retaining the ad- 

vantages of low overhead for the scheduler and the 

property expressed in Proposition i? It turns out 

that we can. The idea is to use information that 

is made available during the computation. 

For example, several recent papers [LiWe, 
ScSp] suggest the use of operation-return value 

commutativity. For operations o I and 02, and 

return values v I and v2, we say that (Ol,V I) 

and (o2,v 2) commute if the order of o I and 02 
can be reversed in every serial S-computation in 

which their return values are v I and v2, resp. 

Obviously if o I and 02 commute, then for eveR, 

v I and v 2 (Ol,V I) and (o2,v2) commute. The 
converse does not hold. Thus, operation-return 

value commutativity offers more concurrency than 
general commutativity, yet it retains the advan- 

tages of the latter. 

Let f(o, Sl,S2,V) be a function whose 
argument types are an operation, two states and a 

return value. We can associate with each occur- 

rence of an operation o in a serial S-computa- 

tion the value f(o,sl,s2,v) , where s I and s 2 
are the intermediate states that precede and 

follow o, and v is o's return value. We 
say that f is a commutativity parameter if when- 

ever two adjacent operations commute in a computa- 

tion, their associated f-values remain the same 

when their order is reversed. 

Given two f-values fl and f2, we say 

that (ol,f l) and (o2,f2) co~nute if for 
every serial computation on oi, o2, if the 

corresponding f-values are fl and f2, resp., 

then o I and o 2 commute w.r.t, the state 

preceding them. We will refer to this type of 
commutativity as operation-f commutativityo It 

can easily be seen that if o I and 02 conm~ute 

then (ol,fl), (o2,f2) commute, but the converse 

does not hold. Thus, more concurrency can be 
obtained by using operation-f commutativity. The 

definition of a conflict predicate and Proposition 

1 can also be extended easily. In this paper, the 

results are stated in terms of general cormmutati- 

vity and conflict predicates, but they apply 

equally (with the appropriate changes) to operation 

f commutativity and the corresponding conflict 
predicates. 

The function f(o,sl,s2,v) =v is a con~uta- 
tivity parameter. In many systems, the write set 

of an operation, i.e., the set of data item 
affected by it is also a valid parameter. For low 

level operations, the write set is usually part of 

the operation specification, so operation-f 

commutativity reduces to commutativity. However, 

for high level operations, i.e., for transactions, 

the write set is determined only during operation, 

so the use of the write set as a commutativity 

parameter increases the level of concurrency. 

~inally, we note that a vector of commutativity 
parameters is also a commutativity parameter. The 

semi-queue example presented later uses the return 

value and write set as a parameter. This example 

illustrates how such parameters can be effectively 

used for scheduling. 

3. TRANSACTIONS AND SUBTRANSACTIONS 

A transaction is any (distributed) program 

with any number of agents executing concurrently 

on its behalf. As for the system, we choose the 

most general representation, namely a set of com- 

putations. A transaction has only one meaningful 

initial state. It may have more than one final 

state, but we assume that its return value contains 

all the relevant information about its termination 

status. Hence transaction computations do not 

contain states. 

Formally, a transaction t is a subset of 
OP 

2fi n ×POS XR ×V, that satisfies the condition (C3) 

below. A tuple c = (O,<,r,v) is called a trans- 
action tuple. If c 6 t, it is called a t-computa- 
tion; usually we use c t to denote t-computations. 

A tuple as above represents a computation where O 
is the operation set, o I < 02 means that t has 

received the return value for o I before it 

initiated 02 , r is the return value function and 

v is the value returned by t itself. Note that 

c t 6t does not imply that if t sends the opera- 

tions of 0 to 5, S will respond with the 

return values specified by r. 

The condition on t is 

(C3) If (O,<,r,v) E t and < c <', then 
(O,<',r,v) 6t. 

As an exan\Dle, assume that o I and o 2 are ini- 

tiated concurrently and that t's control 

structure requires o 3 to be initiated if o 1 

returns the value i. If o I returns first, with 

value i, the resulting partial order will be 

o I <o 3 - If o 2 returns first, then o I returns 
with value i, then o 3 will still be initiated, 

and the partial order will be o I <o3, o 2 < 03 . 

Thus the condition essentially states that a trans- 
action's behavior be, in a sense, independent of 

the relative speeds or order of processing of con- 

current operations by the system. An initiation 

of an operation depends on some previously executed 
operations and their results, and is not invali- 

dated, if some other concurrent operations have 
also terminated. 

For a given (O,r,v), there may exist several 

partial orders that complete it to a t-computation. 

A partial order < is called a transaction order 
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for t and (O,r,v) if (O,<,r,v) 6t but, for 
every <' ~ <, (O,<',r,v) ~t. Intuitively~ a trans- 
action order represents the dependencies in a com- 
putation implied by the control structure of t. 
For each operation o, it specifies those opera- 
tions and return values that caused t to initiate 
o. In most applications, we expect the transaction 
order to depend on (O,r) only. 

A transaction order for t will be denoted by 

<t" We make no assumption about uniqueness of a 
transaction order for t and (O,r,v) or about t 
being deterministic; our results do not depend on 
such assumptions. For convenience, we will usually 
use deterministic notation, e.g., we will refer to 
the transaction order. 

To model the fact that transactions can invoke 
subtransactions, we assume the existence of a trans- 
lation that associates operations and transactions. 
The translation is a one-to-one function between 
the set T of transactions and a subset OP T of 

OP. Thus, each transaction can be considered as an 
implementation of an operation. We denote by t(o) 

the transaction associated with operation o. 

Assume operation o is initiated by a trans- 

action t. If it is not in OPT, it must be sent 
directly to ~ for execution. If it is in OPT, 
then the subtransaction t(o) may be invoked 
instead. Its return value is considered by t as 
the return value of o. From t's viewpoint, 
the way o is executed is irrelevant; it need not 
be aware of the existence of subtransactions. 

There are two aspects to correctness~ 
sequential correctness which applies when a trans- 
action executes alone, and concurrent correctness 
which applies when executions of several trans- 
actions are interleaved. To isolate the issues 
that are relevant to concurrent correctness, we 
assume in this paper sequential correctness of the 
translation. 

Sequential correctness is not necessarily 
easy to prove. If the meaning of an operation o 
is defined by the effect of t(o) on the system, 
there is nothing to prove. However, if an abstract 
specification is given for o, i.e., the specifica- 
tion of ~ describes the effect of applying o on 
some states, and t(o) is offered as an implementa-- 
tion, then its correctness must be proved. Proof 

methods for sequential correctness are well known 
[MaPn] and will not be discussed here. 

Formally, sequential correctness is expressed 

as follows: 

(C4) (Sequential correctness axiom) Let o be an 
operation, t(o) its translation. For all Sl, 
s2,O,<,r,v , if (Sl,O,<,r,s 2) is an atomic 
E-computation and (O,<,r,v) is a t(o)-compu- 
tation, then (Sl,O,~,v,s2) is also an ~-eompu-- 
tation (obviously atomic). 

Note that we assume that whatever t(o) does 
can also be achieved by applying o directly. The 
converse, i.e., that whatever o does can be 
achieved by applying t(o) is not assumed. As re- 
marked in [LiWe], a correct implementation of an 
operation on an abstract data type is not required 

to generate all possible executions of the opera- 
tion. Similarly, it is well known that practical 
concurrency control algorithm only generate sub- 
sets of the serializable executions. 

We emphasize that the operations of t(o) 
are assumed to be executed atomically. If they 
are allowed to invoke subtransactions, whose execu- 
tions may be arbitrarily interleaved, sequential 
correctness does not apply. 

In our running example,~ the operation wl(rec2) 

is translated into f~(P)~_ followed by Sl(P). The 
transaction order is f2 <Sl" If records do not 

1 
move from page to page, this a straight-llne trans- 
action, it never changes. Note that (C4) can be 

applied to rl, w I and r2, but not to w 2. 

4. COMPUTATION FORESTS 

Assume several transactions are executing. 
Since each may invoke subtransactions, the execu- 
tion generates a forest, where each node is 
labeled with an operation and, for each internal 
node, the operation is associated with a transac- 
tion, i.e., it is in OP T . Denote the set of all 
finite forests so labeled by Y. For convenience, 
we identify each node with its label. 

The set HC is a subset of S ×F×POS XRXS, 
satisfying the conditions stated below. A tuple 
c = (Sl,F,<,r,s 2) is called a hierarchical tuple. 
Note that if F is simply a set of nodes, it is 
also a system tupe. If it is in HC, it is called 

a computation forest. In c, s I and s 2 are the 
initial and final states, resp., F is the forest 

of operations, < is the execution order, and r 
is the return value function. Note that r 
associates a return value with each node, including 
the roots. By definition of F, each internal node 
o has a translation t(o). 

Given a computation forest c, we can add a 
root whose task is to run the transactions at the 
roots of F. The value it returns is the poset of 
return values of the roots of F. The forest F 
then becomes a tree, which we denote by T, and c 
becomes a computation tree, c'. The computation 
forest c and the computation tree c' are equi- 
valent (according to the definition given below). 
The tree viewpoint is especially convenient when 
the roots of F must satisfy some externally 
specified timing constraints. These constraints 
can be considered as the transaction order of the 
tree root. In this paper, the discussion will 
usually be presented in terms of tree. Everything 
applies to forests as well. 

We introduce some notation. For a computation 
tree c, the set of leaves is leaves(T) or 
leaves(c); the root is root(T) or root(c). For 
a node x, the subtree rooted at x is Tx, and 
its leaves are leaves(x). Similarly, if X is a 
set of nodes, the forest rooted at X is T X and 
its leaves are leaves(X). The set of descendents 
of x is desc(x) and the set of childen (i.e., 
inlmediate descendents) is child(x). The lowest 
common ancestor of nodes x and y is ica(x,y). 
Nodes x and y are incomparable if ica(x,y) is 
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neither x nor y. A set of pairwise incomparable 

nodes is a partial front; a front is a maximal 
partial front. 

For a front M, c restricted to M, denoted 
c[M], is the tuple (Sl,M,< [M],r[M],s2). Note 
that c[M] can be viewed as a system tuple, but it 
is not necessarily an ~-computation. It can also 
be viewed as a "flat" hierarchical tuple, but it is 
not necessarily a computation forest. For an in- 
ternal node x, c restricted to x, denoted c[x], 
is the transaction tuple (child(x),<[child(x)], 
r[child(x)],r(x)). It is not necessarily a t(x)- 
computation. We denote c[leaves(c)] by c[S] 
and call it the system projection of c. It is the 
part of c that involves the system. 

The conditions on HC follow. 

(c5) (Downward order-tree compatibility) Let 
x,yET, and pEdesc(x), qEdesc(y). If 
x <y then p <q. 

(C6) (Transaction validity) For each internal 
node x, c[x] is a t(x)-computation. 

(C7) (System vaildity) The system projection of 
c, c[S], is an atomic ~-computation. 

The meaning of (C5) is obvious. If t(x) 
completes before t(y) begins, then each operation 
of t(x) completes before any operation of t(y) 
begins. Condition (C6) requires each internal node 
to see a valid t(o)-computation. Condition (C7) 
requires the system component to be a valid atomic 
~-computation. The atomicity requirement reflects 
our goal O f dealing with serializable computations. 
If atomicity is not guaranteed for the base level 
computations, nothing much can be done to guarantee 
serializability for transactions. 

PROPOSITION 2. Let c be a computation tree. The 
partial order < of c can be extended to a 
partial order <' such that the result c' is:a 
computation tree and for all nodes x and y, if 
p <' q for all p 6 child(x), q E child(y) then 
X <' y. 

Sketch of Proof. The proof relies on the fact 
that (C3) allows us to extend a partial order on a 
tree without violating (C6). D 

Intuitively, the proposition states that if 
all operations in the implementation of x pre- 
cede those in the implementation of y, then the 
order can be "stretched" so that x precedes y. 
Assumption (C3) is crucial for this to hold. In 
the sequel, we will assume that < satisfies both 
downward compatibility (by (C5)) and upward com- 
patibility (by the proposition). Under this 
condition,.the order on the leaves determines the 
order on T. 

5. E~UIVALENCE AND CORRECTNESS 

Two computations forests c I and c 2 are 
equivalent, denoted c I H c 2, if they have the same 
initial and final states and the same poset of (non-- 
null) return values from the roots. Note that 
forests with different sets of roots may be 

equivalent, since some roots may return a null 
value and some may return posets of values. Any 
forest'is equivalent to the tree obtained from it 
by adding a dummy root, as explained previously. 

We can now deal with various notions of 
correctness. Since the set of correct computa- 

tions should be closed under equivalence, 
correctness can be specified as follows: Let CE 
be a set of computations. A computation c is 
CE-correct if C ~c' for some c' ECE. 

Serializability is a special case. We say 
that a computation tree c is serial if < is a 
total order on the children of each internal node. 
Let SERIAL be the set of serial computation. A 
computation is serializabZe if it is SERIAL- 
correct. The set of serializable computation is 
denoted by SR. 

Examp!e ]. Let us consider how the simple model 
of (flat) serializability described in [BSW,Pa] 
fits into our framework. A system state is an 
assignment of values to a fixed set of variables. 
Transactions are striaght line programs with no 
subtransactions. The low level operations are 
read(x) and write(x). The value to be written 
by write(x) is not known. Since an operation 
is supposed to effect a known transformation on 
the state, it is assumed that a write(x) 
executed by transaction ti, writes a value deter-. 

mined by a function fi whose arguments are the 
previous values read by ti, such that fi is 
always different from fj and fi delivers 
different values for different arguments. There 
is an implicit assun~tion that each read and 
write is atomic. It is also assumed that a 
read(x) and write(x) are always related by the 
partial order, and for each read(x), there is a 
unique last write(x) that precedes it (unless 
the read actually accesses the original value of 
x). 

Transaction t i reads x from transaction tj 

if tj performs the last write on x before t i 
reads x. The set of ~ive transactions of a com- 
putation c is the smallest set that contains 

(i) The transactions of c that return 
a non-null value, and 

(ii) The transactions that write the final 
value of some x, 

and such that if t i is in the set and t i reads 
x from tj than tj is in the set. 

Under these assumptions, we have the following. 

THEOREM l [SSW, Pa]. Two computations are equi- 
valent iff they have the same set of live trans- 
actions and the same reads from relation on the 
live transactions, c 

The if direction can be generalized to our 
model. The only if direction does not necessarily 
hold, since transactions are not required to be 
straight line programs, and the semantics of 
operations may be more detailed. [] 

In our running example, the given tree is 
equivalent to a serial computation tree in which 
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t I precedes t 2 (for any assignment of values to 
the records). Usually, not all computation trees 
are in SR. To ensure serializability, a concur- 
rency control mechanism is used to restrict the set 
of trees that are allowed to occur. A proof of 
correctness for such a mechanism show that this 
restricted set is contained in SR. The rest of the 
paper is devoted to proof techniques and their 
application. We conclude this section with a dis- 
cussion of a property of trees that is ve1~ useful 
for proving equivalence. 

Let c = (Sl,T,<,r,s2). For a front M, T M 
is the subforest rooted at M. Let c M = (sI,TM, 
<[TM],r[TM],S2). We call c M the subcomputation 
rooted at M. Note that CM[S] ~c[S] and that c M 
satisfies (C5)-(C7), i.e., it is a computation 
forest. 

Let T/M denote the tree T with the proper 
descendents of M removed, and let c/M = (sI,T/M , 
<[T/M], r[T/M],s2). We call c/M the remainder 
computation (modulus M). Note, however, that c/M 
may fail to satisfy (C7), hence it is not 
necessarily a computation tree. 

THEOREM 2. Let c be a computation tree and let 
M be a front. Then c[M] is an atomic S-computa- 
tion iff c/M is a computation tree and c ~ c/M. 

Proof. It is easy to see that c/M satisfies con- 
ditions (C5) and (C6). Since c/M[S] =c[M], c/M 
satisfies condition (C7), and hence is a computation 
tree, iff c[M] is an atomic S-computation. If 
c/M is a computation tree, then obviously c ~ c/M.~ 

The typical way the theorem is applied is by 
showing that CM, the subcomputation rooted at M, 

can be reduced to its roots, i.e., that c M ~c[M] 
(where c[M] is viewed as a hierarchical tuple). 

Indeed c M ~c[M] holds iff c[M] is an atomic 
S-computation (when viewed as a system tuple). We 
thus obtain the followin~ version of the theorem. 

THEOREM 2' Let c be a computation and let M 
be a front. Then c/M is a computation forest, 
equivalent to e, iff c M ~ c[M]. [] 

COROLLARY I. Every serial computation c is equi- 
valent to its root, i.e., c ~c[root(e)]. 

Sketch of Proof. The proof uses (C4) to reduce 
the tree, going from the leaves toward the root. [] 

By the corollary, every serial computation is 
equivalent to a single node computation. To prove 

that c 6SR, it suffices to reduce it to its root. 
The techniques we present rely on this observation. 
Note that Theorem 2, in either form, cannot be con- 
sidered as a tool for proving equivalence or 
serializability. Rather, it is a framework for 
applying such tools. Its significance and power 
lies in its generality, since it allows any method 
for proving equivalence to be used, and it also 
allows different methods to be used in reducing 
layers of the tree. 

The complexity of determining CE-correctness 
depend, of course, on the details of the system and 
the transactions. It is known to be NP-complete 
for the flat read/write model [Pa]. The complexity 
for the general case is unknown. 

6. EQUIVALENCE BY SUBSTITUTION 

Theorem 2 can be viewed as stating that the 
substitution of a subcomputation rooted at a front 
by another preserves equivalence. In this section 
we present a general theory for substitution. 

6.l Partial Orders on Trees 

We will need a few definitions and technical 
results about partial orders on trees. These 
are collected here for convenience. 

Let < be a partial order. For sets x,y, 
we write x<y if for all xEX, y 6Y, x <y 
holds. We write X<Y if for some x Ex, y 6Y, 
x < y holds. 

Let < be a partial order on leaves(T). 
We define two binary relations on T, derived 
from <, the pull up of <, denoted <#, and the 
strong pull up of <, denoted ~. For incom- 
parable nodes x and y, x <+ y if leaves(x) < 

leaves(y); x 2+ y if leaves(x) < leaves(y). 

LEMMA 2. For < as above, <+ is a partial 
order on T. 

In our running example, let < be the given 
partial order restricted to the leaves. Then 

leaves(w2) < leaves(wl) ; leaves(t I) < leaves(t2) 
but not leaves(t I) < leaves(t2). Also, 

r I % w I <%r 2 and t I <+ t 2 <%t I. There is no 
<~ relationship between t I and t 2 . 

Let < be a partial order on T. The pull 
down of <, denoted <+, is defined by: x <% y 
if for some ancestors p of x and q of y, 

p <q. In general, <% need not be acyclic. 

Let c be a computation. For each internal 
node o, there exists a t(o)-transaction order on 

child(o), denoted by <t(o)" The order 

<t = ( U < (o))+ 
o6T t 

is called the transaction order for c. (Actually 
more than one can exist; however, as usua~we use 
deterministic notation.) The reference to < 
as an order is justified by the following lem~ta. 

LEMMA 3- The binary relation <t defined above 
is a partial order, contained in <. [] 

LEMMA 4. For 

equivalent 

(i) x <t(o) y' 

(2) x <t y' 

(3) x (<t%)% y, 

(4) x (kt+)% y. 

x,y E child(o) , the following are 
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By the lemg~a <t is closed w.r.t, pull down 
and both types of pull up. To determine if 
x <tY, all that is needed is to observe the trans- 
action order between the children of ica(x,y) 
from which x and y are descended. 

In the running example, assume that the trans- 
action order for each write requires the fetch to 

precede the store and that r I <tl w I and 

w 2 < t 2  r 2 ,  b u t  t h e r e  i s  no  p r e d e f i n e d  o r d e r  on  

tl, t 2. Then <t is given by fll <t f12 <t Sl; 
2 

f21 <t s2 <t f2" 

Let < be a partial order on leaves (T) , and 
let x be a node. We say that < separates x 
or that x is separated by <, if for each 
y 61eaves(T) -leaves(x), either y <leaves(x) or 
leaves(x) <y. A set of nodes is separated by < 
iff each node in the set is separated by it. We 
will deal wi£h separation of sets only for partial 
fronts. 

Separability of a node means that the leaves 
under it are executed without interleaving with 
other leaves. Thus as far as an outside observer 
can tell, the transaction at the node is executed 
atomically. (It may still be the case, of course, 
that operations of subtransactions are interleaved.) 

LEMMA 5. If < separates S (where M is a 
partial front) than for all x,y 6M, either 
leaves (x) < leaves (y) or leaves (y) < leaves (x) . [] 

C O R O L L A R Y  2. (~+) [M] = (<+)[M], and it is a total 
order on M. D 

6.2 Substitutions 

Our interest in the property of separability 
is due to the fact that it is a sufficient condi- 
tion for substitution to preserve equivalence. In 
the following, let c = (Sl,T,<,r,s 2) be a fixed 
computation tree and let x be a node that is 
separable by <. 

1 2 3 
LEMMA 6. For c and x as above, e[S] =asocSocs 

i 
where c S is an atomic S-computation i=i,...,3, 
and c~ =c x[~]. [] 

In the following, we denote the initial state 
of Cx[S] by s{ and its final state by s~. 

LEMMA 7- For c and x as above, • Cx = (sI'Tx' 
<[Tx], r[T x] ,s~) is a tree computation. [] 

We recall that by Proposition 2, we may 
w.l.o.g, assume that for every node y, if 
y < leaves (x) than y < x and if leaves (x) < y 
than x < y. 

Let d x = (s~,Tx,<x,rx,S ~) be a computation 

! tree, where Sl, s~ are the initial and final 

states of c x mentioned above, T'x is a tree 

with root x, and rx(X) =r(x). The substitution 

of d x for c x in c, denoted C[Cx~d x], is 

c' = (Sl,T',<',r',s 2) , 

where 

(i) T' is T with T x replaced by T'. 
x 

(ii) <' is equal to < on T-T , and is 
equal to <x on T'. For ~6T-Tx, 

i if y <x (x <y) th~n y <' T x 
(T~ <' y). 

' and is (iii) r' is equal to r x on T x 
equal to r elsewhere. 

THEOREM 3 (Substitution Theorem) Let c be a 
computation tree, x a node separable by <, and 
let d be a computation tree with root x such 
that Xd x ~c x. Then c' =c[c x¢~d x] is a compu- 
tation tree and c ~c'. [] 

Note that, in general, equivalent computations 
are not required to have the same root. To per- 
form substitution, we also need equality of roots. 
The reason is that if the parent transaction sent 
the operation x in the old computation, it sends 
x in the new computation as well. 

Let c, x, c x and d x be as above, and let 
c' =c[c x~dx]. In c', x is separable, so we can 
substitute c x for the subeomputation d x. It is 
easy to see that c =c'[d x~cx]. Thus, substitu- 
tion is a reversible operation. 

Another important property of substitution is 
that the order of substitution is not relevant. 

LEMMA 8. (i) Let c be a computation tree and 
let x and y be incomparable nodes, separable 
by <. Let c x-ck and Cy~-C'. Then y is 
separable in c[c x~c x] anH Y 

cEcx c   ECy = CECy x 

(ii) Assume that y6desc(x), x is_separable by 
<, Cx-C~., and denote c[cz~c ~] by c. Assume 
also that in c x y is separable and let 
(Cx)y-= c~. Then y is separable in c and 

C[Cy~C~] = c[cx~Cx[(C')xy ~c']]y 

The notion of substitution can be generalized, 
to allow for substitution of a subforest of a 
computation by an equivalent forest. We say that 
a partial front M is weakly separable by <, if 
for each y 61eaves(x) -leaves(M), either 
y <leaves(M) or leaves(M) <y. That is, the 
steps of the computation under M are not inter- 
leaved with operations that are not under M. 
However, the subtrees rooted at M may be inter- 
leaved with each other. For a single node, 
separation and weak separation are the same. 

Assume M is weakly separable by <. Using 
the same arguments as for a single separable node, 
we have that c[S] is a composition of three 
atomic S-computations, the middle one being CM[S] , 
where c M is the subcomputation rooted at M. 
It follows that c M is a computation forest. 
Assume that for all y, if y <leaves(M) then 
y <M and if leaves(M) <y then M <y. Let d M 
be a computation forest such that CMHd M , and 
both have the same poset of roots and the same 
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return value from each root. Then C[CM~-dM] is 
well defined. 

THEOREM 3' (Substitution Theorem) For c ,  M, et~ 
and d M as above, c'= c[c M ~d M] is a computation 
tree and c ~c'. [] 

The results about reversibility of substitution 
and irrelevance of substitution order generalize in 
the obvious way. We note that Theorems 2 and 2' are 
special cases of the generalized substitution 
theorem. In these theorems, reduction, which is a 
special case of substitution, is used. Of course, 
expansion, the dual of reduction can also be used 
in these theorems. 

As observed in the previous section, substitu- 
tion by itself is not sufficient for proving 
correctness of computations, since we still need to 
find computations that can replace subcomputations. 
Tools are needed that will allow us to transform a 
computation to an equivalent one without relying on 
previously known equivalences. So far, the only 
tool available to us is the use of (C4). 

COROLLARY 3. Let c be a computation and M be a 
front that is separable by <. If each node in M 
is either a leaf or a node whose children are 
leaves, then c ~ c/M. [] 

Note that Corollary 1 follows directly from 
this result. 

In our running example, the nodes rl, w I and 
r 2 on level 2 are separable. To separate w 2,~ we 
will need to reverse the order of f~ and f¢, 
relying on their commutativity. Then, by (C4), the 
computation becomes equivalent to a computation that 
contains only levels 0-2, with the order 

w 2 < rl< Wl< r 2. Level 1 is still not separable. 

7. CONFLICT PRESERVING SERIALIZABL£ LOGS 

In all practical applications, concurrency 
control algorithms rely on knowledge about conflicts 
between operations. When an incoming operation 
conflicts with an operation that is already executing, 
then either the new operation is delayed, or one of 
the transactions aborted. Thus conflicting operations 
are prevented from being concurrently executed. The 
theory that deals with these algorithms and their 
correctness will be presented now. 

7.1 Ensuring Transaction Val id i ty  

By condition (C7), for every computation c, 

c ~] is an atomic ~-computation. Extending the 
order on the leaves to be serial does not invalidate 
(C5) and (C6), and the result is a computation c' 
equivalent to c and with the same root. From now 
on, we assume that c[~] is a serial ~-computation. 

For a computation c with partial order <, 
we use c[< ~<'] to denote the hierarchical tuple 
that results from replacing < by <'. This tuple 
is not necessarily a computation. 

The basic observation that is used in conflict 
based treatment of computations is that the order 
of commuting leaves may be changed (see Proposition 

i). However, in a computation tree, we have to 
satisfy also property (C6), i.e., transaction 
validity. 

LEMMA 9- Let <' be any partial order such that 
<t ~ <' Then each internal node o in 
c' = [<~<'] sees a t(o)-computation, i.e., c' 
satisfies (C5). o 

Since < is total on the leaves, for every 
two leaves x and y, either x < y or y < x. We 
say that leaves x and y are a~'acent if for 
every other leaf z, either z < {x,y} or 
{x,y} < z. 

Assume x and y are adjacent, say x <y. 
If x 4- Y, then their order can be reversed with- 
out violating (C6). However, order-tree compati- 
bility may no longer hold, so additional changes 
to < may be required to restore the validity of 
(C5). 

LEMMA lO. Let x,y be adjacent leaves of c such 
that x < y but x ~t y" and let 

= < - {(Zl,Z2) IxEdesc(zl),y desc(z2)} U <i 

{(y,z) Lz=xor x<z}~{(z,x) Iz<y} . 

Then. <.i is a partial order and c l=c[<~< I] 
satisfies (C5) and (C6). o 

From now on, whenever we reverse the order 
of adjacent leaves that are not <t-related, we 

assume that the appropriate changes to <i as 
described in the lemma, are made. 

7.2 Tree Logs 

Now, if x and y are adjacent leaves, 
there exists an intermediate state preceding x. 

if x and y co~ute w.r.t, this state, then 
their order can be reversed, the result being a 
computation that is equivalent to the one given. 
Algorithms that use state based commutativity 

potentially offer more concurrency. However, the 
need to use state specific information implies 
higher overhead and more complex algorithms. The 
algorithms in use today all use general commutati- 
vity, relying on suitably chosen conflict predi- 
cates. As we remarked previously, it is possible, 
by using a commutativity parameter, to come closer 
to state based commutativity without giving up the 
use of conflict predicate. The family of computa- 
tions that are serializable by state based commuta- 
tivity transformations is studied in the full paper 

but is not considered further here. 

In the following, state specific information 
is not used, hence the states are omitted. We 
state our results in terms of operation commutati- 
vity, so return values also can be omitted. All 
our results remain valid for operation-f commutati- 
vity. However, then the f-values must be retained 
in the description of the computation, and some 
results need to be rephrased. The details are 
mostly left to the reader. 

Assume that Sl, s2, r are given. A tree 
log is a triple "~ = (TI,<,< t) such that 
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c = (Sl,T,<,r,s 2) is a computation tree and <t 
is a transaction order for c. We say that £ is 
derived from c. A log may be derived from 
several computations, but for the discussion we 
fix one of them. Note that our definition gener- 
alizes the concept of a log in classical seriali- 
ability theory, where a log is a poset of opera- 
tions, and the transaction order is assumed to be 
known (and contained in the given partial order). 
If a commutativity parameter f is used, then the 
log should contain also the f-values. 

We will use freely for logs the terminology 
previously used for computations. Thus, we talk 
about forest logs• A tuple (0,<) is an S-log 
if it is derived from an ~-computation; in part- 

icular, £[~] is an S-log. Logs £i and £2 are 
equivalent, £I ~£2, if c I ~c 2. (Note that the 
scone Sl, s2,r must be used whenever several logs 
are discussed.) 

7.3 C-Separability and GCPSR Logs 

essential order captures this information. We 

note that <CON c <, hence it is a partial order 
e 

on leaves(T), and <CON% contains < . 
e t 

PROPOSITICN 3.co~et £ and CON be as above. 
Then £[< ~ < -+] is a representative log. 
Conversely, if £[< ~ <'] is a representative log, 
than there exists CON, a conflict predicate for 
£, such that <CON = <, 

e 

Sketch of Proof. Since <CON e contains <t and 

<CON, we can use Lemma i0 and (C8) to show that 
c 
(C6) and (C7) are satisfied when <CON is re- 

e 
placed by any tree compatible <' that is total 
on leaves(T). [] 

The advantage of a representative log is that 
it represents a collection of logs, differing only 
in their orders, and that testing if one of these 
orders separates M is easy. 

Let k = (0,<) be a serial S-log and let CON 
LEMMA 12. A total order < separates a partial be a symmetric binary relation on OP. We say that 

CON is a conflict predicate for k if the following front M iff it separates ~ = M U (leaves(T) - 
property holds, leaves(M)). D 

(C8) For every total order <' on 0 that extends 
< DCON, (0,<') is an S-log (w.r.t. same 
states and return value function). 

The definition carries over in the obvious way 
to tree logs. CON is a conflict predicate for 
£ = (T,<,<t) if it is a conflict predicate for 
£[S] = (leaves(T),< [leaves(T)]). The conflict order 

<CON < defined by CON on £ is c = [leaves] N CON. 
Note that <T °N is acyclic but not necessarily 
transitive. We refer to it as an order, since (CS) 
holds for it iff it holds for its transitive 
closure. 

LEMMA li. Every general conflict predicate is a 

conflict predicate for all logs. 

Proof. The lemma is an immediate corollary of 
Proposition i. D 

From now on, we restrict our discussion to 
fronts. We say that a front M is c-separable 
by <e, where <e is a partial order on leaves(T), 
if there exists a total extension < of < that 

e 
separates M. 

PROPOSITION 4. The following are equivalent 

(I) M is c-separable by < 
e 

(2) (~ +)[M] is acyclic. 
e 

Proof. (]) ~ (2) Let < be a total extension of 
that separates M. Then, by Corollary 2, 

~+) [M] = (<+) [M] is a total order on M. Since 
<e c <, it follows that (<e+) [M] is acyclic. 

(2) ~ (I): Since (~e+) [M] is acyclic, it can be 
extended to a total order on M, say <'. Then 

<e c (<'+)[leaves(T)] and the latter separates 
M, hence so does each of its total extensions. D 

The converse of the lemma does not necessarily 

hold. A conflict predicate for a log £ may be COROL[ARY 4. Let £ = (T,<,< t) be a log, let CON 
constructed using information specific to £, and be a conflict predicate for £, and M be a front. 
it may indicate that x and y commute in £ even 
though they conflict w.r.t, some state. If (<CONt)[M]e is acyclic, then there exists a 

total order <' that contains <CON and separates 
A triple £ = (T,<, <t) , where <t~<' is e 

called a representative log if it satisfies the M, and % ~ £' = %[< ~<']. [] 
fo21owing property 

(C9) For every order <' that contains < and 
is total on leaves(T), £[< ~ <'] is a tree 
log (and <t is its transaction order). 

The given triple £ is not required to be a 
tree log. 

Let CON be a conflict predicate for 
£ = (T,<,<t)• The essential order defined by CON 

on £ denoted <CON, is (<CON ' e c U<t[leaves(T)])+. 

Intuitively, the order of leaves that are either 

<~ON-related or <t-related cannot be changed• The 

Viewing the nodes of M as transactions, and 
the leaves under them as their operations, C- 
separability means that these transactions can be 
serialized without changing the order of conflic- 
ting operations or the transaction order. Thus, 
Proposition 4 generalizes the well-known result 
[BSW,Pa] that a log is CPSR iff its conflict graph 
is acyclic. The generalization is in that there 
only the conflict order is used. We use here <e 
which combines conflict order and transaction order• 

A log £ = (T,<,<=) is (general) conflict 
preserving serializab~e, abbr. CPSR (GCPSR), if it 
satisfies one of the following conditions. 

55 



(i) It is a log of depth i. 

(2) There exists a conflict predicate for i (a 
general conflict predicate), say CON, and a 
nontrivial front M (i.e., a front that is 
not the root or the leaves) such that M is 
C-separable by <~ON and, for some separating 
order <' that contains <CON, 

e 

(i) Every sublog of £[< ~ <']/M is CPSR 
(GCPSR), and 

(ii) The remainder log i[< ~= <']/M is CPSR 
(GCPSR). 

A computation is (G)CPSR if the log derived 
from it is (G)CPSR. 

LEMMA ]2. Evel~, GCPSR log is CPSR. 

THEOREM 5. Every CPSR log is derived from a 
serializable computation. That is, CPSR c SR. 

Proof. The proof is by induction on the depth of 
the log. The basis, where the depth is i, is 
obvious. Assume then that the claim is true for 
logs of depth ~ n, and let Z be of depth n+l. 
Denote the corresponding computation by c. By 
(2i) in the CPSR definition, let <' be a separa- 
ting order. Then Z Hi' =i[<~<'], since they have 
the same states and return values. By induction 
hypothesis, each sublog of Z' rooted at some 
x £M is serializable hence can be replaced by its 
root x. Thus, ~' { Z'/M. Applying the induction 
hypothesis once more, Z'/M is serializable, hence 
so is £. D 

In our running example, let us use the 
standard conflict predicate for read and writes for 
the leaves on level 3. Then level 2 is C-separable, 
the separating order being f~ <$2 < fl < f2 < s~ < f2 

1 1 ~ 2" 
The order on the leaves of the remainder log is 
w 2 < r I < w I < r 2. Using again the standard conflict 

predicate, the front on level 1 is also C-separable. 
Since all sublogs are of depth i, this log is 
GCPSR. Additional examples will be presented 
later. 

The theorem induces a recursive technique 
for proving serializability. Beside the manage- 
ment of sub-problems, we only need to test for 
C-separability and find separating orders. Both 
are easy when CON and M are given. The tech- 
niques generalizes CPSR theory for flat logs, 
hence we are able to use results from this theory, 
as shown in the examples. 

In the full paper we show that reduction of 
a tree can always be done bottom up, from the 
leaves to the root. That is, the technique can be 
used iteratively, instead of recursively. We also 
present examples that indicate that choosing the 
order of reduction may be a nontrivial problem. 

8. CONFLICT PREDICATES FOR SUBLOGS AND REMAINDER 
LOGS 

The definition of GPCSR logs does not require 
the same conflict predicate to be used. We now 
discuss the relationships between conflict 

predicates, conflict orders and essential orders 
of a log, its sublogs and the remainder log. 

In what follows, let 10 = (T,<0,< t) be a 
given log, CON a conflict predicate for i 0 and 

M a front that is C-separable by <CON. To 
e 

simplify the notation, we use < and < for 
c e 

<CON, <CON, resp. Also, we write iogs with a 
c e 

partial order deifned on leaves(T), assuming 
implicitly that each such partial order is pulled 

up to a partial order on T. Thus, ~ = (T,<e,< t) 
is the representative log. We use < to denote 
a total order on leaves(T) that extends < e 
and separates M, and we write i =~[< ~<] for 
the log it defines, e 

8.1 Sublogs 

For each xEM, let CON x =CON[leaves(x)] 

and CON/M = CON -Ux6 M CON x, that is , CON/M re- 

lates only pairs from distinct subtrees rooted at 
(in particular, for M. For a partial order d<_ 

<t,<c,< e or <) we write for <d [leaves (x) ] 

and <d/M for <d -U <x 
x6M d" 

LEMMA ]3. <d c_ <f iff, for all xEM <Xd c <xf, 

and <d/M ~ <f/M . D 

COROLLARY 5. < is an order that extends < and 
separates M iff, for all x 6M <x extend~ <x 
and </M is the pull down of a total order on e 
M that extends (~e +) [~]. 

Proof. By the lemma, < extend <e iff for all 
x <x extends <Xe and </M extends <e/M. In 
addition, < separates M iff (<+) [M] is a 
total order on M that extends (~e+) [M]- 

It is easily seen that </M= ((<+) [M])+ and 
if (<+) [M] extends (<eL) [M] then </M extends 

<e" D 

What we have just shown is that a separating 
order < is a union of distinct components, each 
of which can be chosen independently of the 
others. The component <x is chosen from the set 
of total orders on leaves(x) represented by <x. 
The component </M is determined by choosing on~ 
of the total orders on M represented by 
(<e+) [M]. It is this last component that actually 
separates ~i. Note that (<e+) [M] = (<e/M)+[M]. 
Thus, only the <e-relationships among leaves of 
different subtrees rooted at M determine whether 
M is C-separable. Conflicts and timing constraints 
within a subtree are irrelevant. In other words, 
only CON/M is relevant for C-separability, and 
M is C-separable if (<e/M)+ is acyclic on M. 

For x6M, £ is a tree log, derived from 
Cx, where c is t~e computation from which Z is 
derived. It is easy to see, using Lemma 4,that 
<x is the transaction order of this log. Let us 
t 

consider conflict predicates for ~x" The 
obvious choice is CON x. 

COROLLARY 6. CON x is a conflict predicate for 
~x' and <x <x are the conflict order and 

c' e 
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essential order, respectively, defined by it for 

x 

COROLLARY 7. Let £: (T,<e,<) Be a representa- 
tive log, defined by CON, ank let x be c- 
separated by <e- Then ~x " <x <X- = (Tx' e' t ) is a 
representative log, representing all (and only) 
the sublogs rooted at x of the logs corresponding 
to separating orders for x that extend <e" [] 

We note that for different separating orders, 
the initial and final states of the subcomputa- 
tions rooted x may be different. Thus, £x can 
possibly be associated with several state pairs. 
This is of no significance, since the states are 
not used. 

By the corollary there is no need to compute 
a separating order2 the relevant orders can be 

obtained by restricting <c and < to 
e 

leaves (x) . 

If we want to use another conflict predicate, 
say CON x, we need to compute explicitly a separa- 
ting order, and use it to compute the new conflict 
and essential order. We note that, in general, 
the replacement of CON x in CON by C-ON x is not 
necessarily a conflict predicate for ~0' (though 
we expect that in most practical applications it 
will be). 

PROPOSITION 5. Let -C-oN x be a conflict predicate 
for ~x, where ~ = (T,<,<t) , < is a separating 
order for M, and x 6M. Then 

<C-ON x = (<x N C--~) U (<x _ <x) n c-~ 
c e e 

Proof. The claim follows easily from the fact 
that <x c <x. 

e -- 

8.2 The Remainder Log 

We turn now to consider the remainder log 
Z/M= (T/M,(<+) [M],<t[M]). Since the nodes of M 
are not necessarily leaves of ~, we have to use a 
new conflict predicate. Let CON M be a conflict 
predicate for Z/M, and let <M and <M be the 

conflict and essential predicates defined by it 
for £/M. Even though <M and <M are deter- 
mined by CON M, they are ~elated t~ < and < c e 
by the fact that < is constrained to contain <e" 

<M PROPOSITION 6. ( ] )  Let d be any one of the 
four relations (~c ~) [M], (~c+)+[M], (~e +) [M], 
(~e%~+ [M] , then 

<Me : (<~ n con M) u ( ((<+) [M] - <~) n c0N M) 

(2) Assume CON M is a conflict predicate for the 
remainder logs obtained from all separating orders 
that contain <e" Then every relation ~ on M 
that relatesMall and only pairs of coNM[M], and 
such that ~c U (ke+)[M] is acyclic, is the con- 
flict order defined by CON M for the remainder 
log of some separating order that extends <e" 

Proof. (]) For each of the four possibilities 
for the value of <~, <~ ~ (<+)[M]. The claim 
follows . 

M 
(2) By the given properties, Z~ can be extended 
to a total order <M on M, that contains (%e+)[M]. 
Thus, <M = (</M)+ for some separating order that 
extends < . The claim follows, m 

e 

The first part of the proposition brings into 
focus two cases that need to be considered in the 
relationship between CON, defined on the leaves, 
and CON M, defined on M. Let x,y 6M, and let p 
range over leaves(x), q range over leaves(y). 

Case ]: x and y commute (w.r.t. CONM), but for 
some p and q, p and q do not commute (w.r.t. 
CON). Given a total order on leaves(T), p and 

q are <c-related, say P <c q- Hehce, x ~c + y. 
However, this relationship does not appear in <M. 

c 
As an example in a banking system, a transfer 
commutes with an audit, even though their accesses 
to individual accounts ~ o not commute. 

Case 2: For all p and q, p and q commute, 
hence ~ and y are not <c+-related. However, 
it is possible that (x,y) 6CON M and a <M-rela- 
tionship between them needs to be chosen. CAs an 

(somewhat contrived) example, assume the existence 
of an operation that reads one of several counters, 
returns the value read and increments the counter. 
Two such operations conflict in general. Yet, in 
a given log, if they read different counters, their 
leaves commute. 

The second part of the proposition allows us 
to compute a new <M by (strongly) pulling up <e, c 
and extending this pull up in an arbitrary way to 
an acyclic relation that covers all pairs of CON M. 
Note that if <c ~ is used instead, than an arbi- 
trary extension will not do; the extension must be 
compatible with <t on M. Also note that the 
ass~aption that CON M is a conflict predicate for 
all separating orders is necessary since we can 
generate any one of these orders. 

Let us now consider specific choices for CON M. 
The obvious choice is to use a general conflict 
predicate CON~. I.e., if x and y commute 

CON~ then they commute in general. The w.r.t. 
fact that CON~ is a conflict predicate for 
(T/M,<t[M]) Vls a corollary of Lemma ii. Note that 
in the relationship between CON~ and CON both 

V 

cases described above can occur. Hence, CON~ 
defines different conflict and essential orders for 
different separating orders. For a separating M 

order <, these will be denoted by <~ 0 and <e 0, 
rasp. They can be computed using (i) of 
Proposition 7. 

Consider Case 2 above, intuitively, it would 
seem that if, in the given log, the leaves under 
x and y commute, then x and y should not be 
considered to conflict. We formalize this as 
follows. Let Z = (T,<,< t) be a log such that < 
is total on leaves(T) and separates M. For any 
total order ~M on M, let ~ be (~M+) [leaves(T)] 
U (U r. <x). Obviously, ~ is a total order on 

xt 
leaves~T) that also separates M. It is obtained 
from < by changing the relative order of sublogs 
rooted at M, without changing the order within 
any of the sublogs. We say that CON M is a con- 
flict predicate for ~/M in ~ if the following 
property holds. 
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(C]0) For every total order ~M on M that 

extends (<+) [M] NCOM M, (leave(T),~) is an 
~-log (w.r.t. the same states and return 
values as in i). 

LEMMA 14. Using the previous notation, if £x is 
reducible to a single node for each x 6M, then a 
conflict predicate for £/M in ~ is a conflict 
predicate for ~/M. 

Proof. we have to show that under the given con- 
ditions, (Cl0) implies (C8). Now, given ~M, 
defines a serial ~-log on leaves(T) and separates 
M. The sublog consisting of leaves(x) can be 
replaced by x, for each x6M, hence ~M defines 
a serial ~-iog on M. [] 

Given CON, a conflict predicate for ~, 

define CON~={(x,y) Ix,z6S , (leaves(x) Xleaves(y)) 
n CON ~ ~}.~ I.e., CON~ is the set of pairs of 
elements of M that have a pair of noncommuting 
leaves under them. We refer to this type of con- 
flict (commutativity) as leaf-based conflict 
(commutativity). 

As we have seen, if CON is used as a conflict 
predicate for sublogs, then for all separating 
orders, the representative sublog rooted at x is 

~x" We thus obtain. 

COROLLARY 7 If, for each x 6 M, [x is CPSR, then 
CON~ is a conflict predicate for £[< ~<]/M, 
where < is any order that separates ~M and 
extends <e [] 

Note that the use of leaf conflicts relies on 
the same idea as the use of a commutativity para- 
meter, to obtain additional information from the 
computation. However, leaf conflicts are log 
specific, hence are not definable by commutativity 
parameters. 

Denote the conflict and essential orders 
defi~d by CON~ on M for a separating order < 
by and "<~ i, rasp. They can be computed 
by (l~'~f Proposltlon' ~ 7. However, we note that, by 
definition of CON~, Case 2 above does not apply. 

PROPOSITION 7. (1) <Mc,I = (~c +) [M]. 

(2) (~e%) [M] c_ <Me,l = (~e %)+[M] 

M 
COROLLARY 8. CON_ generates the same conflict and 
essential orders, hence the same representative log, 
for all separating orders. D 

It would seem advantageous to combine leaf 
M 

commutativity with regular commutativity. Let CON 2 
be CON~ nCO~, i.e., x and y conflict w.r.t. 

M u ± CON 2 only if they generally conflict, and for some 
p 61eaveS(x), q 61eaves(y), PM and q also con- 
flict. It turns out that CON 2 is not necessarily 
a conflict predicate for I/M. 

~xample 2. Consider a system with a fixed set of 
variables, x,y,z,..., distributed among two nodes 
A and B. In a consistent state, each variable 
resides at precisely one node. A read(x) opera- 
tion tries to read x from A; if A is not there, 
it reads x from B. A write(x) uses a similar 

protocol, but it searches in B first. A 
move(x,source,dest), reads x's value from source, 
writes it into dest, then deletes x from source. 

A sample log is shown in Fig. 2. The leaves 
are ordered in time order from left to right. The 

conflicts on the leaves are the pairs (Wl(X,A) , 

r2(x,A)), (w3(Y,B) ,rl(Y,B)) and (r2(Y,A) ,w3(Y,a)). 
Assume the only <t relationships are among the 
leaves under a node of level 2, e.g., rl(X,A)<t 
Wl(X,A). Thus, level 2 is C-separable. The 
separating order is obtained by moving r2(Y,A) to 
the left of r3(Y,A), and the pair rl(Y,B),Wl(Y,B) 
to the right of w3(Y,A). The pull up of the 
separating order to level 2 is Wl(X) <r2(x) <r2(Y) 
< move3(Y,A,B) <wl(Y). Using CO~ as a conflict 
predicate, the only pair in conflict is (Wl(X), 
r2(x)). For any other pair, either the operations 
commute, or the leaves under them commute. For 
example, move commutes with every other operation; 
r2(~) leaf commutes with wl(Y). Thus, using 
CON~ we obtain that level 1 is C-separable, 
implying that the log is serializable. This con- 
tradicts the fact that t 2 reads x from tl, 
but reads a y-value that existed before t I wrote 
into y. [] 

To understand the error, consider the sequence 
r 2 <move 3 <Wl, that needs to be transformed into, 
say, move 3 < w I < r 2. In this sequence, r 2 and 
move 3 commute, so we can reverse the order of r 2 

and move3, obtaining move 3 < r 2 < w I. Now we want 
to use leaf commutativity of r 2 and w I to re- 
verse their order. This cannot be done however. 
The translation of r 2 as given in the log is 
valid only for r 2 < move 3. If r 2 follows move3, 
its translation is different, namely, r2(Y) reads 
y from B. For the new translation, r 2 and w 1 
do not leaf commute. 

In the full paper we show how the two types of 
conflict predicates can be combined in a restricted 
way. 

9. EXAMPLES 

We now present three examples of the use of 
our results. Moss's [Mo] nested transaction model 
was one of the first to deal with the concept of 
nesting. Although it uses a well-known locking 
policy, no formal proof of its correctness has 
appeared. We present a simple proof of its con- 
current correctness. We do not deal with the re- 
covery aspects. However, under suitable semantics 
for the commitand abort operations, these can be 
integrated easily into our proof to show that con- 
current correctness still holds. 

Our second example is multiversion algorithms. 
We show that a satisfactory and rather simple 
treatment of these algorithms can be made in our 
framework, with no recourse to special theories, 
as developed, e.g., in [BG,82]. 

our last example deals with the specification 
and implementation of an abstract data type that 
supports atomicity of its own operations and of 
transactions using them. Here, our framework is 
not sufficient. We need to use two additional con- 
cepts that have not been treated in the paper. 
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Level 

i t3 

r I (x,A) w I (x,A) r 2 (x,A) r 3 (y,A) w 3 (y,B) r I (y,B) w I (y,B) r 2 (y,A) w 3 (y,A) 

e c c° 

Figure 2. A sample log for a two page system. 

These concepts seem to be of great significance for 
the treatment of concurrency in data types and 
multi-level systems. Their integration into our 
framework will be carried out elsewhere. 

9. l Moss's Algorithm for Nested Transactions 

Moss [Mo] has suggested the following protocol 
for a general nested transaction system. For each 
node in the transaction tree, its subtransactions 
acquire and release locks according to the two 
phase locking (2PL) protocol, that is, a transaction 

cannot request a lock after releasing any lock. 
Locks released by subtransactions are retained by 
their parent. They can be acquired by other sub- 
transactions under that parent, but not by any 
other transactions. After the parent releases any 
lock, none of its descendents can request a new 
lock. 

Note that transactions are arbitrary. We regard 
transactions as being in conflict iff a pair of 
leaves under them is in conflict. Thus, leaf 
commutativity is used here. 

To prove the correctness of the algorithm, let 
us consider the nodes on an arbitrary front as 
transactions, and the leaves under them as opera- 
tions. It is easy to see that these transaction 
use the 2PL protocol w.r.t, each other. Each of 
them requests an appropriate lock before it per- 
forms an operation that may conflict with other 
operations. Each of them holds its locks (though 
it may pass them among its descendents) until it 
needs no new locks. 

To show that a front M is C-separable, we 
have to show that ~e + is acyclic on it, where 

<e = (<c U<t )+" Now, (<e+) [M] = (~c+[M] U<t[M]) +, 
so it suffices to show the existence of a total 
order on M that extends (~c +) [M] b<t[M]. 
Further, since <t can be any suborder of the 
execution order <, we actually need to show that 
such an extension exists for (~c+) [M] U< [M]. 

We rely on a property of 2PL, proved in [BSW]. 
There, a flat log is called strict serializable, 
abbr., SSR, if it can be serialized without rever- 
sing the order of noninterleaved transactions. 

THEOREM [SS%J]. If aZ1 the transactions use the 2PL 
protocol, then every (flat) log is ssR. [] 

COROLLARY 9. If all transactions obey Moss's pro- 
tocol, then every tree log is GCPSR. 

Proof. The theorem guarantees that every front M 

is C-separable, since (~e +) [M] can be extended to 
a total order. Forsublogs rooted at the front, the 
new conflict and essential order are <~, <x. For 

e 
the remainder log, the new conflict and essential 

order are (~c~) [M] and (~e+)+[M]. These logs 
can be decomposed, using the same argument. The 
claim follows by induction. [] 

9.2 Multiversion Timestamping 

In a multiversion database, each write on x 
produces a version of x; a read on x returns the 
value of one of the versions. Multiversion con- 
currency control algorithms have been described in 
[BEHR, BHR, CFLNR, Du, Re, Si, SR]. A theoretical 
treatment can be found in [BG82b, PK]. In part- 
icular, [BG 82b] presents a serializability theory 
specially tailored for multiversion algorithms. We 
present here a correctness proof for centralized 
multiversion timestamping, as first presented, in 
[Re]. Our proof is simple, and it does not use the 
special theol~ developed in [BG 82]. 

In the algorithm, each transaction t i obtains 
a timestamp, abbr. ts(i), as its first step. Time- 
stamps are unique and are issued in a monotonically 
increasing sequence. Each version x i of an item 
x has a write timestamp and a read timestamp, 
denoted wts(xi) and rts(xi) , resp. It is 
always the case that wts(x i) ~rts(xi). 

The operation readi(x), on behalf of trans- 
action ti, returns the version xj of x such 
that wts(xj) is the largest wts of any version 
of x that is smaller than ts(i). Also, rts(xj) 
is replaced by max(rts(xj), ts(i)). For a 
writei(x), two cases can occur. If, for some xj, 
wts(xj) <ts(i) < rts(xj), then the write is rejected 
and t i is aborted, for the write would invalidate 
the value xj returned by the read that created 
the current rts(xj). If no such xj exists, a 
new version xi, with wts(x i) =rts(x i) =ts(i), is 
created. 

While the transactions view the database as 
containing logical data items, the actual database 
contains many physical versions of a logical data 
item. Thus, we have a multilevel system, where 
operations on logical data items are executed as 
transaction on the actual system. A forest has 
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three levels. The transactions are found on level i. 
The logical level operations are on level 2. These 
are get-ts(i), which returns a timestamp for ti, 
ri(x) and wi(x). On level 3 we find the transla- 
tions of ri(x) and wi(x). An ri(x) translates 
into a pair of operations: selecti(x) , which 
returns a version number j and also updates 
rts(xj), followed by ri(xj). A wi(x) is trans- 
lated into wi(xi). We assume that the operations 
of aborted transactions do not appear in a completed 
computation. 

Serial executions are defined as in Section 2. 
It is obvious from the description above that in a 
serial execution only the last version of an item 
is ever read, so the database behaves as a one 
copy database. Note that the select operation does 
not appear in the description in [BG 82b], and this 
is why a special theory with conditions that 
guarantee one-copy behavior needs to be developed 
there. 

We now show that every log generated by the 
algorithm is GCPSR. Formal properties of the logs 
are presented in [BG 82b]. An intuitive under- 
standing should suffice here. 

The conflicts on the leaves are: ri(x j) con- 
flicts with wj(x~), but not with any other Wk(X k) 

3 
or wj(yj). Selecti(x) that returns 3 conflicts 
with any Wk(X k) such that ts(j) ~ts(k) <ts(i). 
The only such Wk(X k) that is allowed by the algo- 
rithm is when k =j. Note that operation-return 
value commutativity is used here. Finally, 
get-ts(i) conflicts with get-ts(j), but with no 

other operation. 

We show now that the front containing the 
transactions, is C-separable. Assuming that <t 
relates only pairs of operations of the s~me trans- 
action, there are no <t + links at level i. The 
<e order on the leaves relates only get-ts(j) 
to get-ts(i), where ts(j) < ts(i) and wj(xj) 
to selects(x) and ri(xj) , where the select 
returns 3. Here also ts(j) <ts(i). It follows 
that <e + links at level 1 always lead from a low 
timestamp to a higher timestamp, hence there is no 
cycle and the front is C-separable. 

Since the subtransactions of each transaction 
do not interleave, the sublog rooted at each t i 
is serial, which shows that the log is GCPSR. 

A final remark: The assumption that 
selecti(x) and Wk(Xk) are atomic is important. 
Assume a selecti(x) selects the version x.,3 
but before it has updated its rts, a Wk(Xk), 
wh~re ts(j) <ts(k) <ts(i), is allowed to 
execute. The w k may find the old value of 
rts(j), hence complete successfully, instead of 
being rejected. This problem is avoided in 
practice by treating the select i and w k as 
mutually exclusive sections. 

9.3 Atomic Semi-Queues 

Several papers [LiW e, ScSp] have recently con- 
sidered the specification and implementation of 
atomic data types. The basic idea is that atomi- 
city properties, like serializability and recover- 
ability, have been so far implemented only in 

database systems. These papers advocate the con- 
struction of programming systems where arbitrary 
abstract data types and programs using them can 
be specified to have these properties. 

Atomic semi-queues and their implementation are 
presented as an example in [LiWe]. A similar con- 
struction appears in [ScSp]. The goal is to ensure 
serializability of arbitrary transactions using 
semi-queues. In a regular queue, essentially only 
one transaction can be adding (removing) elements, 
for otherwise serializability cannot be ensured. 
In a situation where strict FIFO is not required, 
it is possible to weaken the FIFO requirement so 
as to obtain more concurrency. 

A semi-queue is a set of cells containing 
values. Its operations are e_nq(x), which adds a 
cell with value x, and deq - a nondeterministic 
operation - that removes an arbitrary cell and 
returns its value. Deq is implemented to remove 
one of the oldest cells to ensure a measure of 
fairness, but this is irrelevant for concurrent 
correctness . 

The proposed implementation is to use an extensible 
array of records. Each record contains a value and 
a flag with value e (enqueued) or d (dequeued). 
For record p, these are denoted p[val], p[flag]. 
The array can be dynamically extended at its high 
end; the operation enq(x) adds a record with 
contents (x,e). A deq is implemented by a 
locate, which searches the array from its low end, 
and returns the first record p such that 
p[flag] =e, followed by remove(p), which sets 
p[flag] to d and returns p[val]. If there is 
no p for which p[flag] =e, the locate waits. 

The operations enq and locate are implemented 
as follows: A variable end points to the high 
end of the array. Enq is implemented by r(end) 
which returns p, where p is the highest record, 
followed by w(x,e,p+l) which writes (x,e) into 
the p+l'th record, followed by set(end,p+l). A 
locate loops through the array, starting at the 
low end, using access(p)_ to access the record p, 
and test-end(p) to test if p is (currently) 
the last record. We assume that the test is 
repeated until the value /alse is returned. 
Locate returns the first record p which is found 
to have p[flag] =e. 

A generic operation tree appears in Fig. 3. A 
tree log has, of course, many operations of each 
type. Note that in a tree log, a transaction node 
may have many enq and deq children; similarly, 
a locate may have many access and test-end 
children. There is a unique child of each of the 
given types under an enq and a deq. 

• --" i \ ,  ?ove 
r (end) w(p) set (end,p) ~ % 

access (p) test-end (p) 

Figure 3. A Generic Operation Tree for Semi-Queues 
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The <t in a tree log can w.l.o.g, be assumed 
to be a total order on the children of each internal 
node. To describe the conflicts on the leaves, we 
use a notation where only the parameters of an 
operation that are relevant to conflicts are 
mentioned. Set(p) conflicts with every other 
set(q), with r and with test-end(p-l) and 
test-end(p); w(p) conflicts with every other 
w(p), with access(p) and remove(p) ; access(p) 
conflicts also with remove (p) , and remove (p) 
conflicts with any other remove(p). 

To ensure serializability, two locking proto- 
cols are used. First, each enq(x) locks end 
before its r(end) and releases it after its 
set(end,p). Thus, the enq's are made atomic with 
respect to each other. In our terms, enq's are 
separated from each other. 

Consider now the interleaving of enq's and 
locates. Assume a locale returns p, and an enq 
increments end from q to q+l. If p ~q, then 
there is no conflict among their leaves, so they 
can be separated. Assume p >q, i.e., the locate 
contains a sequence of n~0 test-end(q) that 
return faZse, executed before the enq, followed by 
one test-enq(q) that returns true, executed after 
the enq. This sequence is equivalent to its last 
element, performed after the enq. We replace the 
sequence by this last element and thus separate the 
enq and locate, forcing the locate to follow the 
enq in the separating order. Note that if the 
locate also contains a test-end(q+l), it also 
follows the enq. 

Now, nodes under locates do not conflict with 
each other. A remove(p) conflicts with at most 
one node, access(p), under a locate. Hence, we 
have shown that the front containing operations 
from {enq,locate,remove} is C-separable. The 
subtrees rooted at this front are of depth ~i, 
hence can be pruned using (C4). 

To determine the conflicts on the remainder 

tree, we return to our original view of the semi-- 
queue as a set of cells, since we have essentially 
shown that the operations for this view, na/[ely 
enq, locate and remove are executed atomically. 
Two enqs add different cells, hence they commute. 
To determine conflicts between enqs and 
locates, we use a commutativity parameter (see 
Section 2.1) with two components--the cell 
affected by an operation and the return value. 
An enq affects a cell p and returns I~ a 
locate affects no cell and returns q. A conflict 
exists iff p =q. In this case, the locate 
follows the enq in the execution order and also 
in the pull up of the separating order. Simi- 
larly, an enq conflicts with remove(p) only if 
the enq affects p; such a remove follows the 
locate mentioned above. 

The only problem that can prevent separation of 
the next front is the existence of several locates 
that return p and remove(p)'s. The second pro- 
tocol requires that to perform access(p), p should 
be locked. If the lock request fails, the locate is 
free to access another cell. If p[flag] =d, the 
lock is released; if p[flag] =e, the lock is 
retained until after the remove(p). Thus, 
different locate remove pairs affect different 
records. The front containing the enq's and 

deq's is thus C-separable. In the separating 
order <, enq. (x) <+deq only if deqj removes 

l 3 
the cell created by enqi(x). Two deq~s never 
conflict. 

To allow further reduction of the log, the 
previous locking protocol is extended. Each enq 
and deq locks the cell it affects, and the lock 
is held by the issuing transaction according to 
the 2PL policy. It is now straightforward to 
check that all logs are CPSH. 

10. CONCLUSIONS AND FURTHER RESEARCH 

We have presented in this paper a general model 
for nested transaction systems. The model is 
stated in abstract terms, and in addition to 
nesting it allows arbitrary transactions and 
operations. We have also presented some tools for 
proving the equivalence of computations, or the 
serializability of computations. In particular, 
we have generalized the well-known CPSR concept to 
computation trees and provided tools for proving 
that trees are CPSR. 

Our model is very general so that our results 
can be applied directly to a wide variety of 
applications. In particular, our model can serve 
as a unified framework for dealing with concurrency 
in database systems. We have illustrated this by 
proving Moss's algorithm and multiversion time- 

stamping. Other applications, e.g., hierarchical 
locking and replicated data, can also be treated. 

There is still more work to be done in making 
our model applicable to various types of systems, 
where special information is being used in con- 
currency control. As an example consider multi- 
level systems. Such systems have a fixed number 
of levels, hence the structure of computation 
trees is fixed and the fronts to be used in re- 
ducing such trees are known. Abstract data types 
are a special case of such systems. Among the 
issues to be treated is the fact that there exist 
different views of the system at different levels, 
as illustrated in the seni-queue example. This 
can be captured by the concept of state equi- 
valenc~. Another issue that may arise is when 
certain operations can be applied only to certain 
states. The correctness proof then needs to show 
that they are applied only to such states. 

Search structures are also a special case of 
multilevel systems. The semi--queue can be con- 
sidered a search structure. Our correctness proof 
shed light on an issue that seems to be typical in 
such structures, namely that in an interleaved 
executions operations are performed that will not 
appear in any noninterleaved execution. To account 
for this, our definition of CPSR needs to be 
generalized to allow changes to the translation of 
operations. 

We have shown that the concept of commutativity 
can be extended by considering commutativity para- 
meters. This is, potentially, a very useful con- 
cept. The treatment of synchronization mechanisms 
in database systems is oriented towards read/write 
operations, with read sets and write sets as argu- 
ments. Synchronization is often discussed in terms 
of the data items involved, e.g., locks on data 
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items or timestamps on data items. However, the 
view that a lock is a flag associated with an 
operation-f value pair may be more promising for 
other applications, such as atomic data types. 

Our results on some of the issues raised above 
will appear in forthcoming papers. 
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