
Goal-Oriented Buffer Management Revisited*

Kurt P. Brown Michael J. Carey Miron Livny

64k Inc., San Jose, CA IBM Almaden Research Center, San Jose, CA University of Wisconsin, Madison, WI

kpbt2acm.org carey@almaden.ibm .com miron@cs.wise.edu

Abstract

In this paper we revisit the problem of achieving multi-class
workload response time goals by automatically adjusting the
buffer memory allocations of each workload class. We discuss
the virtues and limitations of previous work with respect to
a set of criteria we lay out for judging the success of any
goal-oriented resource allocation algorithm. We then intro-
duce the concept of htt rate concavity and develop a new
goal-oriented buffer allocation algorithm, called Class Fenc-
ing, that is based on this concept. Exploiting the notion of
hit rate concavity results in an algorithm that not only is
as accurate and stable as our previous work, but also more
responsive, more robust, and simpler to implement.

1 Introduction

In a multiclass database workload, each class exhibits
different resource consumption patterns, and each may
have its own performance goal. For example, a three-
class workload might consist of TPC-A-like transactions,
critical decision support queries, and non-critical data
mining queries. The performance goals for this workload
might specify an average response time of one second
for the transactions, one minute for the decision support
queries, and no specific goal for the data mining queries
(i.e. “best effort”). Today, these goals would be achieved
by manually tuning various low level “knobs” provided
by the DBMS, possibly including buffer pool sizes, mul-
tiprogramming levels, data placement, dispatching pri-
orities, prefetch block sizes, commit group sizes, etc.
Ideally, the DBMS should accept per-class performance
goals as inputs, and it should adjust its own low-level
knobs in order to achieve them.

1.1 Goal-Oriented Basics

Among the many knobs that can be used to control re-
sponse times in a DBMS, memory allocation is perhaps
the most important because it determines the amount of
disk bandwidth consumed. If we assume that all other

*This work was partially supported by the IBM Corporation

through a Research Initiation Grant.

Permission to make digitahhard copy of part or all of this work for personal
or classroom use is granted without fee prowded that mples are not made
or d[stributad for profit or commercial advantage, the copyright notice, the

title of the publication and its date appear, and notice IS gwen that
copying is by permission of ACM, Inc. To copy otherwise, to republish, to
post on servers, or to redistribute to INs., requires prior specific permission
and/or a fee.

SIGMOD ’96 6/96 Montreal, Canada
0 1996 ACM 0-89791 -794-4/96/0006 ...$3.50

knobs remain fixed, the problem of goal-oriented mem-
ory allocation can be stated as follows: For each class
with an average response time goal, a memory alloca-
tion must be found such that its observed response time
is as close as possible to its goal. In this paper we will
restrict ourselves to the allocation of disk buffer memory,
i.e. memory that is used to store copies of disk pages, as

opposed to other typesof workzng Storage memory (e.g.
sort work areas, join hash tables, etc.).

Because of the complexities inherent in real-world
database management systems and workloads, accu-
rately predicting the disk buffer allocation required to
achieve a particular response time is extremely difficult.
Therefore, the general approach common to all goal-
oriented resource allocation work [Pierce 83, Ferg 93,
Brown 93, Brown 94, Brown 95, Chung 94] is the notion
of feedback coupled with “best guess)’ estimation. The
idea is to observe the actual response times of a class rel-
ative to its response time goal, and to use the difference
between the two as an input to an estimator that will ad-
just resource allocation knobs in order to move the class
closer to its goals. This process of observing, estimating,
and adjusting knobs is repeated continuously at regular
intervals, The length of these intervals can be expressed
as a predefine number of transaction completions, and
should be chosen to strike a good balance between re-
sponsiveness and statistical stability [Brown 95].

1.2 Criteria for Success

How successfully a class meets its response time goal is
not the only criterion with which to judge a goal-oriented
resource allocation algorithm. In our view, the following
criteria must be satisfied by any goal-oriented resource
allocation algorithm before it can be seriously considered
for an implementation in an industrial-strength DBMS.

Accuracy: The observed average response times for
goal classes should be close to their goals. A conve-
nient way to quantify accuracy is the performance index
[Nikolaou 92], which is simply the average observed re-
sponse time divided by the average response time goal.
A performance index of one is ideal, greater than one
indicates a goal violation, and less than one indicates an
exceeded goal. Other metrics are needed to deal with
different forms of goals (e.g. 90th percentile response
time limits), but in this paper we will restrict ourselves
to average response time goals.

Responsiveness: The number of knob adjustments
(intervals) it takes to bring a class to its goal should be as
small as possible, especially if the interval between each

353

knob adjustment is relatively long. A responsiveness cri-
terion rules out simplistic exhaustive search strategies
that can score high inaccuracy, but may require lots of

time to search for the solutlon.
Stability: The variance in the response times of goal

classes should not increase significantly relative to a sys-
tem without goal-oriented allocation mechanisms. Thus,
for a stable workload, all knobs should be left alone once
the goals have been achieved.

Overhead: A goal-oriented memory manager should
minimize the extent to which it reduces overall system
efficiency. Overhead can be tested by taking the observed
class response times for a particular workload running on
a non-goal-oriented system and using them as goals for
the same workload running on a goal-oriented system.
One of the classes can be chosen arbitrarily as a no-goal
class; any response time degradation in this class will
then indicate the reduction in system capacity (assuming
the goals for the other classes can be met).

Robustness: The system should handle as wide a
range of workloads as possible, while avoiding any knob
adjustments for a class that cannot be controlled by the
given knob. For example, if a class is dominated by large
file scans and the DBMS has an effective prefetching
strategy, then the response time for such a class will not
be controllable via the buffer allocation knob because
the prefetcher will guarantee a very high hit rate with
very little memory. As another example, any increase in
the multiprogramming level knob for a class that only
rarely queues for admission into the DBMS is not likely
to affect the response time for the class either.

Practicality: The algorithm should not make any un-
realistic assumptions about the workload or the DBMS
in general. For example, it would be unreasonable
to assume that all workloads are static and therefore
amenable to off-line analysis. Likewise, the algorithm
should not place too many restrictions on the behavior
of the basic resource allocation mechanisms of the DBMS
and/or OS, or assume it has full control over all aspects
of those mechanisms.

It should be noted that these criteria will normally
be in conflict (stability versus responsiveness, respon-
siveness versus overhead, etc.), and therefore a goal-
oriented resource allocation algorithm necessarily repre-
sents a careful balance between them.

1.3 Our Work

In earlier work, we described a goal-oriented buffer man-
agement algorithm called Fragment Fenczng [Brown 93].
Encouraged by our initial simulation studies, we
built a prototype version of Fragment Fencing in
DB2/6000, IBM’s commercial relational database for
Unix [IBM 93 b]. We then experimented with our simu-
lated workloads and some additional workloads, includ-
ing the TPC-B, TPC-C, and multi-user TPC-D bench-
marks [TPC 94]. Our prototype performed as expected
for the types of workloads that we had used in our simu-
lation studies, and accurately held classes to their goals
in a stable manner.

While our initial experiments were encouraging, our

experiments with the TPC workloads uncovered two
problems with Fragment Fencing. The first problem was
the fact that our prototype exhibited certain unantici-
pated overheads when coupled with DB2/6000’s page re-
placement policy. The second problem was the difficulty
of extending Fragment Fencing to handle a wider range
of workloads than it had been designed for. Specifically,
our experience with a wider range of workloads made us
realize that lifting one of Fragment Fencing’s simplifying
assumptions (uniform access within database fragments)
would require a different, and more general, approach to
predicting buffer hit rates. This paper describes a new
algorithm, called Class Fencing, that features a hit rate
predictor based on a notion that we call hzt ~ate concav-
ity. Exploiting the notion of hit rate concavity results
in an algorithm that not only is as accurate and stable
as Fragment Fencing, but also more responsive, more
robust, and simpler to implement. In addition, Class
Fencing’s memory allocation mechanism eliminates the
overhead problem that we discovered in our Fragment
Fencing prototype.

In the next section, we review the Fragment Fencing
algorithm in more detail and discuss some of the insight
that we gained from implementing it in an industrial-
strength DBMS. We also discuss the only other goal-
oriented memory management algorithm of which we are
aware, Dynamtc Tuning [Chung 94]. We then explain
the notion of hit rate concavity and describe the Class
Fencing algorithm in Section 3. In Section 4, we describe
a detailed simulation model that is used in Section 5 to
analyze the performance of Class Fencing. Finally, we
summarize our findings and discuss our planned future
work in Section 6.

2 Previous Approaches

Goal-oriented buffer allocation algorithms can be de-
scribed abstractly in terms of three components: a Te-
sponse tame estzmator that estimates response time as
a function of buffer hit rate, a hzt rate estzmator that
estimates buffer hit rate as a function of memory allo-
cation, and a buffer allocation mechanzsm that is used
to divide up memory between the competing workload
classes. The basic idea behind existing goal-oriented
buffer allocation algorithms is to first use the response
time estimator (in the inverse) to determine a target
buffer hit rate that can achieve the response time goal.
Next, the hit rate estimator is used (in the inverse) to
determine a buffer allocation that can achieve this tar-
get hit rate. Finally, the buffer allocation mechanism is
used to give each class its required memory. These steps
are repeated continuously for each class in the hope that
each successive estimate will bring the classes closer to
their response time goals. This abstract framework will
be used in the remainder of this section to describe the
Dynamic Tuning and Fragment Fencing algorithms, and
will be used again in Section 3 to explain the Class Fenc-
ing algorithm.

354

2.1 Dynamic Tuning Description

The Dynamic Tuning algorithm [Chung 94] differs from
other goal-oriented algorithms ([Ferg 93, Brown 93,
Brown 94]) in one important respect: response time

goals are specified with respect to low-level buffer man-
agement requests (i. e., in terms of target service times for
individual get/read page requests) as opposed to overall
transaction response times. Dynamic Tking’s low level
of goal specification allows it to use the following simple
linear estimate to predict buffer request response times:

R’” = (10 - ~~~es’(JO) x D

HITest (M) is the estimated hit rate for the class that
will result from a memory allocation Jl, and D is the
average time required for moving a page from disk to
memory.

To estimate hit rate as a function of memory, the Dy-
namic Tuning algorithm adopts observations from Be-
lady’s virtual memory study [Belady 66], modeling the

hit rate function as 1 – a/Mb, where M is the memory
allocation and the constants a and b are specific to a
particular combination of workload and buffer page re-
placement policy. To compute a and b, Dynamic Tuning
observes the hit rates that result from the two most re-
cent memory allocations, plugs these observations into
the model, and solves the two simultaneous equations
that result. With a specific a and b in hand, Dynamic
Tuning can use the inverse of the Belady equation to esti-
mate the memory required to achieve a particular target
hit rate.

Once a target memory allocation for a class is deter-
mined, Dynamic Tuning uses this allocation as the size
of a buffer pool partition that is dedicated to the class.
The entire buffer pool is essentially partitioned into sepa-
rate pools for each class that are managed by completely
autonomous buffer managers. The size of each pool is
allowed to vary dynamically in response to changing sys-
tem loads.

2.2 Dynamic Tuning Issues

While the Belady equation used by Dynamic Tuning’s
hit rate estimator is a good approximation to the gen-
eral shape of most hit rate functions, it is not always a
good “fit” for any particular function. To illustrate how
well the curve-fitting approach used by Dynamic Tun-
ing’s hit rate estimator works with an actual hit rate
function, Figure 1 shows a simulated hit rate function
for a multi-user index nested loops join workload (solid
line). It was derived by running such a workload over a
range of different memory allocations using the detailed
DBMS simulation model that we describe in later in Sec-
tion 4. Also shown in Figure 1 are two different ‘(fittings”
that were derived by taking a pair of points from the sim-
ulated hit rate curve and feeding them into the Belady
equation described above (dashed lines).

Figure 1 shows that using the Belady equation to pre-
dict hit rates at larger memory allocations from obser-
vations at smaller allocations can result in pessimistic
estimates, i.e. the predicted hit rate can be much lower
than would actually be achieved. Normally, pessimistic

1

0,8

0.6

0,4

Oi___--J
o 5 10 20 25

Memory(M!)

Figure 1: Curves from 1 – a/Mb

estimates are safer than optimistic ones, but this is not
the case for goal-oriented buffer allocation – a pessimistic
hit rate estimate will result in a memory allocation that
may be much larger than is actually needed. This will
cause the algorithm to “overshoot” its target goal, and
can create unstable oscillations in a class’s performance.
Instead, a goal-oriented memory allocator should err on
the side of a smaller allocation in order to maximize sta-
bility. Dynamic Timing overcomes this problem (as does
Fragment Fencing) by only changing memory allocations
in small chunks; 1 this policy prevents unstable behavior,
but can result in poor responsiveness because it takes
many knob turns to achieve high memory allocations
when such an allocation is necessary to achieve a tight
response time goal.

While the ~odel equation used by Dynamic Tuning
is a reasonable choice, there are inherent problems with
any curve-fitting approach. Whatever the model equa-
tion, any real curve that doesn’t fit the model will be
estimated with low accuracy. It is also difficult to de-
termine if a curve-fitting estimate will be optimistic or
pessimistic. More complex, higher order functions have
the same problem; the model equation will only give a
good estimate for those hit rate curves that “look simi-
lar” to the model eauation. Real hit rate curves have a
wide range of shapes and are difficult to capture accu-
rately with a single analytical model.

Dynamic Tuning’s approach to memory allocation is
to partition the buffer pool and assign each class to a
vartition managed bv its own buffer mamzer, as described. “.

earlier. This approach is simple and effe~t ive for classes
that do not share data, but some provision needs to be
made for classes that do share buffer pages. Sharing is
not discussed in [Chung 94].

2.3 Fragment Fencing Description

Fragment Fencing’s response time estimator makes the
simplifying assumption that response time and buffer

12.570of the total buffer pool was used in [Chung 94]. Similarly,
Fragment Fencing caps its per-step changes in memory allocation

at 10% of the buffer pool [Brown 93].

355

miss rate are directly proportional. Using this relation-
ship, the target hit rate estimated to achieve the response
time goals is computed as:

H.ll’t=”get = 1.0 – (lfo~’” * (RgO”t/RO~s”))

where RObSVand R9°a1 are the observed response time
and response time goals, respectively, and Mob’” is the
observed miss rate that occurs with the observed re-
sponse time. While real response times are functions
of many other variables besides buffer hit rate (includ-
ing disk/cpu/network queueing and service times, lock
waits, MPL waits, etc.), assuming a linear relationship
is reasonable in the case of a disk-bound class.

Rather than estimating the overall hit rate function
for each class, Fragment Fencing estimates it in a piece-
meal fashion for each fragment of the database that is
referenced by the class. A fragment is defined as all of
the pages within a relatively uniform reference unit, e.g.
a single relation or a single level of a tree-structured in-
dex. A uniform reference probability is assumed across
the pages of a fragment, and the hit rate of a fragment is
therefore estimated to be equal to the percentage of the
fragment that is memory resident. Fragment Fencing’s
goal is to determine, for each fragment, the minimum
number of pages that must be memory-resident in order
to achieve an overall target hit rate for the class. These
minimum amounts are called taTget ?’eszdenczes and are
analogous to a working set size for each fragment.

When a class’s hit rate needs to be increased by
some amount, all of the fragments referenced by the
class are sorted in order of decreasing class tempeTatuTe

[Copeland 88, Brown 93], which is their size-normalized
access frequency (in references per page per second). Us-
ing the assumption that the hit rate on a particular frag-
ment is identical to its target residency, the fragments
referenced by a class are processed in order from hottest
to coldest by increasing the target residency for each one
until the hit rates for all fragments add up to the overall
hit rate required by the class. This process is reversed
when a class’s hit rate needs to be decreased.

Once Fragment Fencing’s hit rate estimator has de-
termined a target residency for each database fragment
referenced by a class, some mechanism is needed to en-
force these target residencies. This is done by modifying
the existing DBMS’s buffer replacement policy to first
ask the Fragment Fencing component if removing a page
from memory would violate a minimum residency target;
if so, the page is not replaced. This type of “passive” al-
location allows Fragment Fencing to co-exist with any
type of buffer replacement policy, be it global or local.
It is passive in the sense that it does not explicitly direct
the appropriate pages znto the buffer pool; it only pre-
vents their ejection from the pool by the DBMS’s native
replacement policy.

2.4 Fragment Fencing Issues

A potential problem with a fragment-oriented approach,
as noted in [Brown 93], is what happens when references
within a fragment are not uniform. Since Fragment Fenc-
ing measures the actual hit rates of each fragment, it can

easily test for violations of the uniform reference assump-
tion by comparing the estimated hit rate to the actual
hit rate. If they are significantly different, it is clear that
the fragment is being referenced non-uniformly. How-
ever, once confronted with the knowledge that fragment
references are non-uniform, it is not clear what the frag-
ment’s memory allocation should be. Additionally, it is
not clear what an average per-page reference frequency
means when references are non-uniform within a frag-
ment. The more frequently referenced pages of a frag-
ment will certainly have a higher temperature than the
average for the fragment, and therefore sorting fragments
by a fragment-wide metric is not very meaningful.

Another problem with Fragment Fencing has to do
with its “passive” memory allocation mechanism. Keep-
ing the DBMS’s replacement policy “in the dark” with
regard to which buffer frames are fenced or not provides
a high degree of independence from the underlying re-
placement policy [Brown 93], but it also has the poten-
tial for significant overhead. Because the replacement
policy is unaware of which frames are fenced, it is forced
to waste time inspecting frames that seem like good
candidates – only to be overruled by Fragment Fenc-
ing. For example, if 80% of the buffer pool is fenced
off, then 8070 of the candidate pages for replacement
will be overruled. This problem is particularly trouble-
some for clock-based replacement policies (like that of
DB2/6000) because fenced frames may cluster together
physically in the buffer table; when the clock hand moves
into such a cluster, it may have to inspect a large num-
ber of consecutive frames before finding one that can be
replaced. In order to eliminate this overhead, all fenced
frames must somehow be removed from consideration for
replacement.

3 Class Fencing

In this section, we describe Class Fencing, our improved
goal-oriented buffer management algorithm. Class Fenc-
ing adopts the same response time predictor as Fragment
Fencing (see Section 2.3), i.e. Class Fencing also assumes
that miss rate and response time are proportional. How-
ever, it uses a more general hit rate prediction technique
based on a notion that we call hat Tate concawty. Class
Fencing’s memory allocation mechanism allows for data
sharing between classes and represents a compromise be-
tween the rigid partitions of Dynamic Tuning and the
passive fences of Fragment Fencing. The remainder of
this section describes the concept of hit rate concavity
and then explains how this concept is used by Class Fenc-
ing to predict buffer hit rates. Class Fencing’s memory
allocation mechanism is then described, and the section
closes by discussing two more detailed aspects of the al-
gorithm: estimating memory allocations in the presence
of data sharing and computing memory usage statistics.

3.1 The Hit Rate Concavity Assumption

Class Fencing estimates the buffer hit rate that will re-
sult from a particular buffer allocation by exploiting the

356

following concavity theorem2:

Regardless of the database reference pat-
tern, hit rate as a function of buffer memory
allocation is a concave junction under an opti-
mal replacement policy.

The concavity theorem says that the slope of the hit rate
curve never increases as more memory is added to an
optimal buffer replacement policy. An optimal buffer re-
placement policy is defined as one that always chooses
the least valuable page to replace (e.g. Belady’s MIN al-
gorithm [Belady 66]). While optimal replacement poli-
cies are not realizable in practice because they require
knowledge of future reference patterns, we will argue
shortly that the behavior of industrial-strength DBMS
replacement policies are “optimal enough” that hit rate
concavity applies to them as well.

An informal proof of the concavity theorem can be
stated as follows: The slope of the hit rate curve rep-
resents the marginal increase in hit rate obtained by
adding an additional page of memory. The steeper the
slope, the higher the “value” of a particular page (as
measured by its ability to increase the hit rate).3 An
optimat buffer replacement policy must choose pages for
memory residency in decreasing order of their value in
order to achieve the highest hit rate for a given amount
of memory. Thus, since the slope measures value, and
value cannot increase as more memory is added, nei-
ther can the slope. Note that concavity also implies that
there are no “knees” in an optimal hit rate function. Any
knee indicates a “mistake” in page replacement, i.e. im-
plying that lower-valued pages (to the left of the knee)
were made memory resident before higher-valued pages
(to the right of the knee).

In order to make use of the concavity theorem in a
real DBMS, we must ask how close today’s commercial
DBMS replacement policies are to an optimal policy –
i.e. when do they make mistakes? A DBMS should
make fewer page replacement mistakes than an operat-
ing system (where hit rate knees are common) for two
reasons: knowledge of future page reference behavior,
and the presence of indexes. A DBMS knows when ac-
cesses are going to be sequential versus random. It can
prefet ch sequent ially accessed pages just before they are
referenced, and once they are referenced, it can toss or
retain these pages based on knowledge of the total num-
ber of pages that will be scanned [Stonebraker 81]. Ran-
dom accesses to pages are generally made via indexes,4
and there are a number of techniques available to insure
that more valuable index pages are not replaced by less
valuable data pages [Haas 90, O’Neil 93, Johnson 94].
For index pages themselves, it is possible to use ref-
erence frequency statistics or information about the

2A similar theorem has been proven for the case of an IRM
reference pattern coupled with an LRU replacement policy by van

den Berg and Towsley [van den Berg 93]. To our knowledge, no

one has explicitly stated it in the form we do here, although some
Previous work has exploited the notion of c-cavity in =-w case
[Dan 95].

3 This notion of page value is synonymous with the concept of

mar-gznrd gain defined in [Ng 91].

4 This is certainly true for relational systems, but less so for

object-oriented systems that support navigational access.

last few references to insure that more valuable index
pages are not replaced by less valuable index pages
[Copeland 88, O’Neil 93, Brown 93].

While it would be impossible to offer any definitive
statement about the likelihood of a hit rate knee in real-
world buffer managers, we conducted an empirical study
of two simulated buffer managers, one modeled after
DB2/MVS [Cheng 84, Teng 84, IBM 93a] and the other
modeled after DB2/6000 [IBM 93 b]. For both of these
buffer managers, we mapped the hit rate functions for
the TPC A/B and C benchmarks, as well as all of the
canonical database reference patterns documented in the
DBMIN Query Locality Set Model [Chou 85]. None of
them showed a knee. Additional empirical evidence for
concavity is provided by Dan et al [Dan 95], where hit
rat e functions derived from actual traces of DB2/MVS
customers were also seen to be free of knees.

While we acknowledge that hit rate function knees are
possible in the real world, we believe that they represent
pathological cases. Therefore, Class Fencing will adopt
the assumption that hit rate concavity holds for the most
commonly occuring workloads running on a typical com-
mercial DBMS. Of course, it must also be prepared to
accept the failure of this assumption. We will address the
impact of non-concave hit rate functions after explaining
how the concavity assumption is used by Class Fencing
to estimate hit rates, which we now turn our attention
to.

3.2 Estimating Hit Rates Using the Con-
cavity Assumption

The hit rate concavity assumption is useful because it en-
ables a simple straight line approximation to be used to
predict the memory required to achieve a particular hit
rate.5 Only the last two hit rate observations are needed,
and the accuracy of the estimate improves with each new
hit rate observation at larger memory allocations. More-
over, unlike a curve-fitting estimator, a straight line ap-
proximation always predicts a conservative lower bound
for its memory allocation. Figure 2 illustrates how the
required buffer allocation for a class can be predicted
with this approach.

The dashed curve in Figure 2 represents a hypothetical
hit rate function for a class, from zero pages up to some
maximum memory allocation Mm”” (some large percent-
age of the total buffer pool). The horizontal line labeled
HT represents a target hit rate that the hit rate estima-
tor receives as input (from the response time estimator).
The idea is to move the class as quickly as possible to the
“X”, which represents the memory allocation MT that
results in the target hit rate HT. The point labeled 01
indicates the initial observed hit rate HI of the class with
its “naturally occuring” memory allocation Ml – this al-
location is what the existing non-goal-oriented DBMS
memory allocation policy would “naturally” give to the
class in the context oft he current workload. To estimate
the memory required to achieve the target hit rate HT, a

6 A straight line approximation of buffer hit rate functions was

also used in [Chen 93] to predict a memory allocation that maxi-

mizes marginal gain [Ng 91].

357

1.0
I

I

----~.

HT

H3 — –

H2

vHI ‘- - 01

0.0 I I I I
I

o Ml tv12 M3 M-r M max

Memory

Figure 2: Estimating a concave hit rate function

line extending from the origin through 01 is computed;
the point at which this line intersects the target hit rate
(El) represents a lower bound (M2) on the memory al-
location that can achieve the target hit rate HT. If the
actual memory allocation required to achieve HT was
less than M2, this would mean that the concavity as-
sumption had been violated. After increasing the class’s
memory allocation to M2 and waiting long enough to
insure statistical stability, a second observation 02 oc-
curs and another estimate E2 IS computed using points
01 and 02. Estimate E2 predicts a required memory
allocation of M3. With one more estimate using points
02 and 03, the target hit rate is achieved. If any esti-
mate line were to intersect the lllmaz limit instead of the
target hit rate, then the target hit rate is unachievable.

Assummg that concavity holds, Class Fencing’s hit
rate predictor allows it to aggressively allocate memory
in large increments because it can be confident that it
will not ‘{overshoot” or be mislead by unachievable hit
rate targets Large memory allocation increments mean
that Class Fencing can be extremely responsive, espe-
cially in the case of very tight goals. If the concavity
assumption does not hold, however, then there may be
knees in the hit rate curve. The effect of a hit rate knee
on Class Fencing’s hit rate predictor depends on where
the observation points are relative to the knee. If they
are straddling the knee (with one point on either side of
it), then the slope computed across the two points w1ll
still be fairly accurate. In the worst case, one of the

observations will lie directly in the knee. Such a worst
case scenario is illustrated in Figure 3. In this case, the
computed slope wdl be too low, the estimated memory
allocation (iM3) no longer represents a lower bound, and
Class Fencing will overshoot the allocation for the class.
In order to correct for these (hopefully rare) cases, Class
Fencing must therefore incorporate code to estimate in
the downward as well as the upward direction. In Figure
3, for example, the next estimate after E2 would extrap-
olate between points 03 and 02. One more estimate
would likely be required to achieve the goal.

o:d-. ----—
El

HT
/*/

H2 — –

:o~i, ~, I
o Ml M2 MT M3 M ‘=

Memory

Figure 3: Overshooting a non-concave hit rate function

3.3 Class Fencing’s Memory Allocation

Class Fencing’s memory allocation mechanism is a com-
promise between the rigid partitions of Dynamic Tun-
ing and the passive fences of Fragment Fencing. Instead
of building individual fences around each database frag-
ment referenced by a class, a single fence is built to pro-
tect all of the pages referenced by the class, regardless
of which fragment they belong to. The choice of which
pages belong inside versus outside the fence is made by
a buffer manager that is local to the class. A separate
global buffer manager manages pages for no-goal classes
as well as any “less valuable” unfenced pages that be-
long to goal classes. The global buffer manager is the
source for all “victim” frames necessary to satisfy any
page miss. Note that since the global buffer manager
contains no fenced frames, no additional overhead is re-
quired on a page replacement decision in order to deal
with fenced frames. Finally, a single buffer frame table
and associated disk-page-to-buffer-frame mapping table
is shared by all buffer managers, both global and local.

For each goal class that cannot meet its goal “natu-
rally” by competing for frames in the global buffer man-
ager (a vzolatmg class), a separate and identical instance
of the existing DBivIS replacement policy is cloned to
manage a set of frames that are then protected from
replacement by other competing classes. The choice of
replacement policy is irrelevant to the Class Fencing al-
gorithm, it is simply replicated when a goal class is
in violation. Each violating class C has a limit deter-
mined by Class Fencing’s hit rate predictor, poolSzze[C],
that represents the maximum number of buffer frames
that can be managed by class C’s local buffer manager.
The global buffer manager also has a pool size, pool-
Stze[GL OBA.L], and the sum of the local and global pool
sizes equals the total amount of DBMS buffer pool mem-
ory. Any pool size increase for a goal class implies a
corresponding decrease in the pool size for the global
buffer manager, and any local pool size decrease implies
a global pool size increase of identical size. Like Dynamic
Tuning, Class Fencing’s goal is to set a pool size for each
violating class so that it can meet its goal. Unlike Dy-
namic Tuning, however, only the replacement policy is

358

replicated for each class; the common frame table and
mapping table enables buffered pages to be shared across
classes. 6

Class Fencing’s allocation mechanism operates as fol-
lows. On a buffer miss by a violating class, a free frame
is stolen from the global buffer manager and then re-
assigned to the local buffer manager for the violating
class. If the local buffer manager now exceeds its pool-
Szze limit, then zts replacement policy is called upon to
choose a frame to donate back to the global buffer man-
ager, where it is treated as recently referenced.7 On a
buffer miss by a no-goal class, or by a goal class that
“naturally” meets its goal with the existing buffer alloca-
tion mechanism, one of the frames managed by the global
buffer manager is chosen for replacement; the referenced
page is read into that frame and assigned to the global
buffer manager. The page then stays in memory until
the global buffer manager’s replacement policy decides
to eject it. If all classes can meet their goals with the
exist ing allocation mechanism, then no local buffer man-
agers exist and the syst em’s behavior is indistinguishable
from a non-goal-oriented system.

3.4 Class Fencing Details

There are two additional details that need to be ad-
dressed to complete our description of Class Fencing.
The first stems from the fact that a class that shares
data with other classes can use buffer frames that are
controlled either by its local buffer manager or by some
other buffer manager. Any page referenced by a class
while it is still in memory is considered “in use” by the
referencing class, regardless of which buffer manager con-
trols the page. Thus, the pool size for a class only repre-
sents a lower bound on the number of frames used by the
class; it does not represent the total number of frames
in use by the class. On the other hand, Class Fencing’s
hit rate estimator is based on the total number of frames
used by a class, regardless of which buffer manager they
reside in. For sharing classes, some mechanism is needed
to translate the hit rate estimat or’s proposed memory
allocation into a (necessarily smaller) pool size value for
the class. For non-sharing classes, this translation is not
needed because the pool size is the same as the number
of frames in use for these classes.

Predicting the number of frames in use by a shar-
ing class given a particular pool size is relatively simple.
Whenever a class C is observed, the percentage p of non-
local buffer frames that it is using can be computed as

6 A similar sharing technique was used by the DBMIN algorithm

[Chou 85]. Class Fencing differs from that approach in that DB-

MIN partitioned memory on the basis of file instances and used a

different replacement policy for each instance. Class Fencing parti-
tions around classesand uses an identical replacement policy (the
existing DBMS replacement policy) for each one.

7Actually, if the page chosen for replacement by a local buffer
manager comes from a database fragment that is not shared by
any other classes, it can be safely tossed out of the buffer pool

immediately. This is because there is no chance of harming the

buffer hit rate of any other class by doing so. Shared pages must

remain resident in the global buffer before they are ejected because

they are likely to be referenced by (and reassigned to the buffer

manager for) another class.

follows:

nonLocal[C] = bufSize – poolSize[C]

p = (inUse[C] – nwnLocal[C]) / nonLocaZIC]

Here, inUse [C] is a running count of the total num-
ber of frames used (referenced) by the class at any mo-
ment (regardless of which buffer manager controls them),
numLocal [C] is the number of frames currently managed
by the class’s local buffer pool, and buj%ze is the total
number of DBMS buffer pool frames. When the pool
size is increased for the class, the miss rate of the class
decreases, and therefore the rate at which the class asks
for frames from the global buffer manager also decreases.
The currently observed percentage p thus represents an
upper bound on the percentage of frames that this class
will utilize outside of its local buffer pool after its pool
size is increased. Using p as an upper bound, the es-
timated number of frames utilized by a class C, given
its current pooLSize[CJ and a local pool size increase of
ApoolSize (which causes a decrease in nonLocal[Cfi, can
be computed as

inUse[C] “$ = poolSize[C] + ApoolSize

+p. (nonLocal[C] – ApoolSize)

Solving this equation for ApooWize allows Class Fencing
to determine the new local pool size that is likely to result
in the targeted overall buffer allocation for a class.

The final algorithmic detail addresses the fact that the
count of frames used by a given class can vary dramat-
ically over time. As just explained, the current value of
m Use[C] represents the (transient) amount of memory
used by a class C at a particular time. Therefore, instead
of using m Use[C] directly, a time- wezghted frame count
is actually used instead. This means that the X-axes of
Figures 2 and 3 should actually be interpreted as the
time-weighted counts of frames in use during the current
observation interval; the time-weight ed frame count for
a class is reset at the end of every observation interval.
The cost of maintaining a time-weighted frame count for
each class is low, as a single floating point multiply is all
that is needed on every page-in or page-out of a frame
that is used by a class.

a Simulation Model

This section provides a brief description of the simulated
DBMS configuration, database, and workload models
that we will use for evaluating Class Fencing. A more
detailed description can be found in [Brown 96].

4.1 System Configuration Model

The external workload source for the system is modeled
by a set of simulated terminals. Each terminal submits
a stream of transactions of a particular class, one after
another. In between submissions, each terminal “thinks”
(i.e. waits) for some random, exponentially distributed
amount of simulated time. The number of terminals and

359

the think times used in this study were chosen to provide
average disk utilizations of 50 to 60$70.

The simulated configuration contains eight disks that
are modeled after the Fujitsu Model M2266 (1 GB, 5.25”)
disk drive. The simulated disk caches are disabled for
this study in order to produce more consistently reprod-
ucible results (see [Brown 96]). The system’s simulated
30 MIP CPU is scheduled using a round-robin policy
with a 5 millisecond time slice, and the disk queue is
managed using an elevator algorithm.

The buffer pool consists of a set of 3072 main mem-
ory page frames of 8K bytes each (24 MB). While a 24
megabyte buffer pool is on the low end for our workload
and configuration, it is appropriate to study Class Fenc-
ing in a memory-constrained environment since buffer
hit rates are a significant performance factor; if memory
were unconstrained, then hit rates would be too high to
observe the effects of any memory management decisions.
The buffer manager is modeled after that of DB2/MVS
[Teng 84, IBM 93a] It utilizes separate LRU chains for
sequential and random accesses, and includes an asyn-
chronous prefetcher which operates as follows: At the
initiation of a file or index leaf page scan, the prefetcher
asynchronously orders the next block of pages (eight 8K
pages in our case) to be prefetched. When the penul-
timate page in the prefetch block is referenced, an 1/0
for the next block of pages is asynchronously scheduled.
This approach enables the prefetcher to stay just ahead
of the scanning process while using a minimal amount of
memory.

4.2 Database Model

The database model consists of a t we-part database, with
one part modeled on the TPC-C benchmark [TPC 94]
using a scale factor of one (one warehouse), and the other
drawn from a previously published performance study
of the DBMIN buffer management algorithm [Chou 85].
The DBMIN portion of the database is a subset of the
original Wisconsin Benchmark Database [Bitten 83], ex-
cept that here we scale up the number of tuples in each
relation by a factor of ten. A detailed summary of the
DBMIN and TPC-C databases as used in this study is
omitted here due to space constraints, but can be found
in [Brown 96].

The TPC-C benchmark represents an order-entry ap-
plication for a wholesale distribution company. A key
characteristic of the TPC benchmark files is that over
half of the references are directed at only three of 17
files and indexes in the benchmark (i.e. the benchmark
exhibits a relatively high degree of locality). In addi-
tion, within each file or index there are a range of access
pat terns, including uniform distributions, append-only
access, 90/10 skewed distributions, and special “uniform
with hot spots” and “uniform with cold spots” distribu-
tions (see [TPC 94] for a detailed description).

All the database files are fully declustered over the
eight disks in the configuration (except for those files
with fewer than eight pages).

4.3 Workload Model

The simulated workloads used in the experiments of Sec-
tion 5 are composed of different combinations of a TPC-
C-based workload together with several DBMIN query
classes. Because we are primarily interested in the page
reference patterns of these classes, all of the workload
classes are read-only. The specific behavior of the classes
is described in the following paragraphs.

TP C-C: This simulated workload class faithfully du-
plicates the reference patterns of the TPC-C benchmark
as specified in [TPC 94]. TPC-C models an order-entry
business and is composed of a mix of five different trans-
action types. These queries are mostly index scans of
varying selectivities that produce a range of reference
patterns that are summarized in [Brown 96]. As stated
earlier, TPC-C exhibits a high degree of locality. A small
number of files receive a large portion of the references,
and accesses to these files are highly skewed, giving this
workload a relatively high hit rate at low cost in mem-
ory. As a result, its response times can only be varied
over a relatively narrow range without a huge investment
in memory. Note that because of its skewed references
within database fragments, TPC-C violates Fragment
Fencing’s uniform reference assumption and therefore its
performance cannot be controlled by Fragment Fencing.

DBMIN Query 2 (Q2): The Q2 class is a non-
clustered index scan of an 18MB file with a l% selectivity
[Chou 85]. Because the Q2 query’s file and B+ tree index
can fit entirely in memory, this class is very sensitive to
its buffer hit rate and is therefore more easily controlled
than TPC-C,

DBMIN Query 3 (Q3): The Q3 class is an index
nested loops join of two distinct 18MB files [Chou 85].
One file is scanned using a clustered index with a 2%
selectivity, and the other file is scanned directly. When
Q2 and Q3 are running together in the same workload,
they share one 18MB file, causing their performance is
somewhat linked. The total number of database pages
referenced by a Q3 query is about 50$10larger than the
buffer pool, so Q3’s performance is shght ly less sensitive
to its buffer hit rates than Q2.

4.4 Parameter Summary

The important simulation parameters for this study
are listed in Table 1. The 30 MIP CPU results in CPU
utilizations of 50-7570. The number of disks, number of
terminals, and think times were chosen to ensure that
disk utilizations lie in the 50 to 60’%0range. Additional
software-related parameters (instruction counts) used for
the simulation are omitted here due to space constraints
and can be found in [Brown 96].

5 Experiments and Results

In this section, we use our simulation model to examine
how well Class Fencing can achieve a variety of goals for
several different multiclass workloads. In order to ob-
tain statistically meaningful simulation results, we exe-
cute the simulations for 90 simulated minutes. We collect

360

Parameter I Value

TPC-C terminals 50
Mean TPC-C think time 5 sec
Q2 terminals 10
Mean Q2 think time 10 sec
Q3 terminals 10
Mean Q3 think time 10 sec
Number of CPUS 1
CPU speed 30 MIPS
Number of disks 8
Page size 8 KB
Memory size 24 MB (3072 pages)
Disk cylinder size 83 pages
Disk seek factor 0.617
Disk rotation time 16.667 msec
Disk settle time 2.0 msec
Disk transfer rate 3.1 MB/see

Table 1: Simulation parameter settings

res~onse time statistics ordv for the last hour of the sim-. .
ulation in order to factor out the solution searching time
from the averages, as the averages are meant to indicate
steady-state behavior.

The performance metrics that we will use for judg-
ing Class Fencing’s behavior are the performance index
of each goal class and the number of knob adjustments

(i.e. different memory allocations) that it takes to reach
a point where the class’s goal is achieved for three con-
secutive observation intervals. The performance index
of a class is defined as the average response time of the
class (over the hour-long statistics collection period) di-
vided by its response time goal, as described in Section
1.2, and is a measure of accuracy. The number of knob
turns is a measure of responsiveness. VVe also show the
response times of any no-goal class in order to roughly
indicate the amount of “excess” resources left over after
the goal classes have been given what they need to meet
their goals; the larger the amount of left-over resources,
the lower the no-goal response times.

5.1 TPC-C and DBMIN Q2

Our first set of experiments pairs the TPC-C and DB-
MIN Q2 classes together. We experiment with three
variants of this workload: goals set for Q2 only, goals
for TPC-C only, and goals for both classes.

5.1.1 Goals for Q2 Only

The first TPC-C/Q2 experiment sets a range of goals for
the Q2 class, allowing the TPC-C class’s response time
to “float” as a no-goal class. Table 2 shows the results
of this experiment. Each row in Table 2 represents a
separate simulation run using a different goal for the Q2
class. The columns show the input goal, the resulting
average response time for the Q2 class, its performance
index, the average TPC-C (no-goal) class response time,
the number of knob adjustments (intervals) that it took
to achieve the goal, and the resulting memory allocation
for the Q2 goal class (out of a total of 3072 8K buffer
frames). The interval length used for the Q2 class is 100

completions, which (depending upon the goal and result-
ing throughput for the class) translates to anywhere from
about 150 to 225 seconds.

Q2
Goal
(see)

0.150
0.250
0.500
0.700
1.000
2.000
5.000

10.000

Q2
Resp
(see)

0.153
0.259
0.494
0.705
0.981
1.957
4.820
5.770

Epq!qYE
1.01 0.436 7 2336
1.04 0.426 4 2293
0.99 0.421 3 2249
1.01 0.425 5 2220
0.98 0.421 4 2193
0.98 0.423 3 2102
0.96 0.437 6 1919
0.58 0.436 0 0

Table 2: TPC-C/Q2, with goals for Q2

The performance indexes in Table 2 show that Class
Fencing can achieve the goals fairly accurately for the Q2
class – to within four percent at most. The last row in the
table represents a goal that is satisfied “naturally” by the
system’s buffer manager. An interesting aspect of this
workload is how insensitive the TPC-C response times
are to the different levels of Q2 performance (and mem-
ory allocation). Because TPC-C has such high locality,
large changes in memory allocation have a minimal effect
on its performance.

Note that Table 2‘s tightest achievable goal, 150 msecs,
takes more knob turns to achieve than do the other goals
(7 knob turns versus an average of 4). The reason for this
is that when hit rates are very high, very small changes
in memory allocation can bring about large relative dif-
ferences in miss rates (since so few 1/0s are occurring).
When hit rates are very high, Class Fencing is forced to
take smaller steps in order to prevent an overshoot, and
this is why very tight goals may require more knob turns
than looser ones. From a responsiveness standpoint, the
“number of knob turns” measure is imperfect since it
does not recognize the magnitude of each knob adjust-
ment. In this case, the goal was reached for the most
part after four adjustments, with the remainder provid-
ing additional fine tuning.

Additional analysis of Class Fencing’s transient behav-
ior in [Brown 96] (omitted here due to space constraints)
shows that Class Fencing behaves in a very stable manner
for this workload - once a solution is found, the memory
knob is left untouched.

5.1.2 Goals for TPC-C Only

Our second experiment in this set uses the same work-
load as the previous experiment, but reverses the roles of
the two classes. Here, goals are set for the TPC-C class,
while the Q2 acts as a no-goal class. The observation
interval for the TPC-C class is set to 1000 completions,
which translates to about 160 seconds at the through-
put exhibited in these experiments. Table 3 shows the
results of a series of simulations for this workload. As
before, each row represents a simulation run with a dif-
ferent goal for the TPC-C class. Because of its high

361

TPCC TPCC TPCC Q2 # of TPCC
Goal Resp PI Resp Adj Mem
(see) (see) (see) (pages)

~

Table 3: TPC-C/Q2, with goals for TPC-C

locality, TPC-C has a much narrower range of possible
response times, so there are fewer rows in this table. As
before, Class Fencing achieves the goals to within a few
percent using only a few knob adjustments. In contrast
with the TPC-C class behavior of the previous example,
Table 3 shows that the Q2 no-goal class response time
is extremely sensitive to the TPC-C memory allocation.
As the TPC-C class’s goals are loosened, the Q2 class is
able to achieve better performance using the additional
leftover buffer memory.

An analysis of Class Fencing’s transient behavior for
this workload can be found m [Brown 96]. Like the previ-
ous workload, Class Fencing behaves in a stable manner
here as well, even in the face of significant response time
variance from the TPC-C class (both in transactions’
service demands and arrival rates).

5.1.3 Goals for Both Q2 and TPC-C

The last experiment with this workload provides goals for
both the TPC-C and Q2 classes. A third class is added
as a no-goal class to consume any left-over resources in
the case where both classes have a loose goal. This is
necessary because otherwise the goals would have to be
set such that all of memory is exactly consumed by both
TPC-C and Q2; if some memory was left over, then one
class would always naturally exceed its goal and the ex-
periment would behave as if there only one class with a
goal. The no-goal class for this experiment is another Q2-
like class that references a distinct file from the Q2 goal
class. To maintain the same aggregate system load, the
original ten Q2 class terminals are split in to two groups:
four belong to the Q2 goal class, and six are assigned to
the Q2-like no-goal class. More terminals are assigned
to the no-goal class to make it a slightly more aggres-
sive competitor for buffer frames. One consequence of
the reduced number of Q2 goal class terminals is a lower
throughput for the Q2 goal class (O.2 versus O.6 queries
per second for a 700 msec goal). A lower throughput
increases the time required to gather statistically valid
measurements, and therefore implies a longer time inter-
val between knob turns; the longer the interval between
knob turns, the more critical it is to find a solution in as
few turns as possible.

Table 4 shows the results of this experiment, including
columns for both the TPC-C and Q2 class response time
goals, their resulting performance indexes, the number
of knob adjustments it took to find the solutions, and
the resulting no-goal class response time (NG Resp).

TPCC Q2 TPCC Q2 # # NG
Goal Goal PI PI TPC Q2 Resp
(see) (see) Adj Adj (see)

* 0.300 20.0 1.03 1.10 4 1 27.1
0.300 25.0 1.03 0.97 4 0 214
0.400 20.0 1.00 1.04 3 1 172

* 0.400 15.0 1.05 0.99 5 2 29.2
0.500 10.0 1.01 1.02 2 3 23.2

* 0.500 5.0 1.06 0.99 4 3 27.6
0.700 5.0 0.99 1.01 0 3 22.8
0.700 2.0 1.03 0.96 1 5 23.5

Table 4: TPC-C/Q2, with goals for both

The performances indexes for this workload are mostly
within a few percent of the goals for this workload as
well, indicating that Class Fencing is successfully doing
its job. Three exceptions are the tightest goal combi-
nations marked that are starred in Table 4: 0, 300/20.0,
0.400/15.0, and 0.500/5.0. These three goal pairs to-

gether consume most of the available memory, leaving
very little for the no-goal class (as can be seen by the
poor no-goal performance in these cases). The perfor-
mance indexes for these tight goal combinations show
some goals being violated by as much as ten percent be-
cause of the shortage of buffer memory. Class Fencing is
not designed to make any attempt to reallocate memory
in order to minimize the maximum performance index in
cases like these where the goals are likely too aggressive
for the system as configured. This situation is called
deg~aded mode [Nikolaou 92]. Like Fragment Fencing,
Class Fencing assumes that the system will not be re-
quired to operate in degraded mode except during short
transient periods, (Otherwise, if the specified goals are
truly important, the system configuration must be up-
graded to provide the capacity required to meet the goals
in steady-state.)

5.2 DBMIN Q2 and DBMIN Q3

Our second group of experiments pairs the Q2 and Q3
DBMIN classes together. These two classes share a com-
mon file, so their performance is somewhat linked. As a
result, this workload is more challenging than the TPC-
C/Q2 workload because Class Fencing must use a thzrd
estimate when there is sharing between classes. In addi-
tion to the response time and hit rate estimates, it must
now estimate the total memory utilized per class for a
given fence size, as pages used by a class may reside in-
side or outside of its local buffer pool. This estimate was
described in Section 3.4. We experiment with two vari-
ants of this workload: goals for Q2 only, and goals for
both Q2 and Q3, An additional experiment with goals
for Q3 only is discussed in [Brown 96], and is omitted
here due to space constraints (it behaves similarly to the
experiment with goals for the Q2 class only).

5.2.1 Goals for Q2 Only

Table 5 shows the steady-state results for this work-
load when goals are set only for the Q2 class, with the

362

W
0.110 0.110
0.300
0.500
1.000
2.500

5.000

0.296
0.496
1.000
2.498
4.982

Table 5:

ZEq!q2q
1.00 I 34.689 4 2342
0.97 33.108 8 2268
0.99 32.497 5 2224
1.00 32.256 10 2135
1.00 31.151 13 1935
1.05 31.202 6 1667
0.96 27.604 3 1138
0.96 8.393 0 0

Q2/Q3, with goals for Q2

Q3 class acting as a no-goal class. Class Fencing is fairly
accurate for this workload as well, holding the Q2 class
to within five percent of its goal, with at most a five per-
cent error. However, Class Fencing is not as responsive
for this workload as it was for the TPC-C/Q2 workload;
it takes as many as 13 knob turns to find a solution for
the 2..5 second goal.

The reason that Class Fencing took so long to find a
solution is that the memory allocation initially overshot
the final solution by about 12’ZO,and it then took 12 more
knob adjustments to correct it. The over-allocation was
not due to any lack of concavity in the hit rate func-
tion, but simply a combination of errors from all three
of Class Fencing’s estimates. The long correction time
is due to a phenomenon discussed earlier: in the region
where hit rates are very high (> 9370 in this case), Class
Fencing tends to make very small adjustments because
its estimators assume (correctly so) that small memory
allocation changes may cause very large fluctuations in
hit rate and response time at high hit rates. The 13 knob
adjustment measure sounds much worse than it is; after
only the fourth knob adjustment, the class is within five
percent of the final solution. (Additional graphs of Class
Fencing’s transient behavior for this and other workloads
appears in [Brown 96], and are omitted here due to space
constraints.)

5.2.2 Goals for Q2 and Q3

E
Q2

Goal
(see)

[

1.0
* 5.0

5.0
* 10.0

10.0
15.0
15.0
20.0
20.0
20.0

Q3
Goal
(see)

50.0
30.0
40.0
30.0
40.0
25.0
20.0

5.0
10.0
20.0

I
Q2 Q3
PI PI

I

1.00 0.94
1.21 1.17
0.98 0.85
1.10 1.12
0.99 1.00
1.08 1.00
1.06 1.08
1.04 1.01
1.06 1.11
1.03 0.99

#
Adj

4

2

2

3
3
3
3
1
2
2

#
Adj

o
3
0
2
0
4
7
6
2
2

NG

Resp
(see)

23.4
28.3
23.8
26.5
24.2
25.7
30.2
23.9
22.7
20.7

Table 6: Q2/Q3, with goals for both

Table 6 shows the results of our final experiment,

where goals are set for both the Q2 and Q3 classes. As
before, we add another Q2-like class as a no-goal class
in order to consume any resources left over when the
combined goals for the Q2 and Q3 classes do not require
the entire buffer pool. Instead of ten Q2 and ten Q3
terminals, there are six Q2, six Q3, and seven no-goal
terminals for this experiment (which lowers the Q2 and
Q3 class throughputs and makes them more difficult to
control). Except for the starred unachievable goal pairs,
Class Fencing is reasonably accurate for this workload.
The biggest error is that the 10 second goal for the Q3
class is violated for the 20/10 goal pair by 1170 while,

-,. ,-. . . .
surprisingly, the tighter ZU/ h goal pair was achieved to
within 190 for the Q3 class. The reason for this violation
is as follows: A solution is first found (slowly) for the Q2
class’s 20 second goal. Initially the ten second Q3 goal is
loose enough to be satisfied without any fence. Once the
Q3 class is affected by the increase in Q2’s memory allo-
cation, it too begins to search for its solution. Although
it only took two knob turns to (slowly) find Q3’s solu-
tion, the search for its solution was started late enough
that it did not complete before the steady-state statistics
collection period had begun. On the other hand, the five
second Q3 goal (of the 20/5 goal pair) was sufficiently
tight that the search for its solution began simultane-
ously with that for Q2; a five second goal also increased
the throughput of the Q3 class, so it moved much more
quickly (even though it required six knob turns to find
its solution).

6 Summary and Future Work

In this paper, we described the problem of goal-oriented
DBMS buffer management and defined a set of criteria
with which to evaluate solutions to this problem. We re-
viewed two existing solutions, Dynamic Tuning and our
own Fragment Fencing scheme, and described a new al-
gorithm called Class Fencing that attempts to overcome
the limitations of these prior solutions. Class Fencing is
based on the notion of hat rate concawty, which allows
a simple straight line approximation to predict a class’s
buffer hit rate as a function of memory while at the same
time guaranteeing a conservative memory estimate. Us-
ing a detailed simulation model, we explored the steady-
state and transient performance of Class Fencing for a
various multiclass workloads and goal combinations.

Our experiments have shown that Class Fencing is
stable and as accurate (like Fragment Fencing), hold-
ing most classes to within a few percent of their goals
without excessive knob twiddling. Class Fencing was
also shown to be very responsive (much more so than
Fragment Fencing) because its hit rate estimator does
not have to be restricted to allocating memory in small
chunks. Responsiveness is a key advantage of Class Fenc-
ing, allowing it to find solutions with very few knob
turns. In addition, Class Fencing eliminates the primary
overhead of Fragment Fencing (unnecessarily examining
fenced frames for replacement) as well as some of its
other, smaller overheads (e.g. tracking the hit rates and
memory residency of each database fragment for each
class). While the best test of overhead lies in an imple-

363

mentation, Class Fencing’s favorable overheads relative

to Fragment Fencing gives us cause for optimism on this

point. Class Fencing is also fairly robust because its pri-

mary assumption, hit rate concavity, applies to a wide

range of workloads. It can handle arbitrary skew and can

also detect unachievable hit rates, both of which were

stumbling blocks for Fragment Fencing.

In the future, we need to experiment with a wider

range of workloads to determine the outer limits of Class

Fencing’s applicability. We also plan on enhancing Class

Fencing’s behavior when the system is operating in de-

graded mode (i.e., when the goals are too aggressive for

the configuration). It is not uncommon for a system’s

workload demands to increase slowly over a period of

weeks or months, and it would be would be nice for the

algorithm to degrade gracefully and warn the adminis-

trator when this has occurred (or appears likely).

Acknowledgments

The authors would like to thank Praveen Seshadri and

Mark McAuliffe for valuable comments on previous ver-

sions of this paper. Mary Tork Roth Implemented our

simulator’s index nested loops join algorithm. John

McPherson and Pat Selinger from IBM Almaden pro-

vided generous support for our Fragment Fencing pro-

tot ype, and the entire DB2/6000 team provided tireless

and patient assistance with endless technical questions.

References

[Belady 66] L, Belady, “A Study of Replacement Algorithms

for a Virtual-Storage Computer,” IBM Systems Journal,
5(2), July 1966.

[Bitten 83] D. Bitton, D. DeWitt, C. Turbyfill, “Benchmark-
ing Database Systems – A Systematic Approach, ” F%oc.
9th Int’1 VLDB Conf, Florence, Italy, October 1983.

[Brown 93] K. Brown, M. Carey, M. Livny, “Managing Mem-
ory to Meet Multiclass Workload Response Time Goals, ”
Proc. 19th Int’1 VLDB Conf, Dublin, Ireland, August
1993.

[Brown 94] K. Brown, M. Mehta, M. Carey, M. Livny, “To-
wards Automated Performance Tuning for Complex

Workloads,” Proc. 20th Int’1 VLDB Conf, Santiago,

Chile, September 1994.

[Brown 95] K. Brown, “Goal- Ortented Memory Allocat~on
m Database Management Systems, ” Ph.D. dissertation,
Dept. of Computer Sciences, U. of Wisconsin, Madison,
September 1995 (Technical Report # CS-TR-95-1288 at
http://www.cs.wisc.eclu).

[Brown 96] K. Brown, M. Carey, M. Livny, “Goal-Oriented
Buffer Management Revisited,” Technical Report # CS-
TR-96-1306, Dept. of Computer Sciences, U of Wiscon-
sin, Madison, Feb. 1996 (http: //www. cs. wise. edu).

[Chen 93] C. Chen, N. Roussopoulos, ‘[Adaptive Database
Bufl’er Allocation Using Query Feedback,” Proc. 19th
Int’1 VLDB Conf, Dublin, Ireland, August 1993.

[Cheng 84] J. Cheng et al, “IBM Database 2 Performance:
Design, Implementation, and Tuning,” IBM Systems

Journal, 23(2), 1984.

[Chou 85] H. Chou and D. DeWitt, “An Evaluation of BuHer
Management Strategies for Relational Database Sys-
tems,” Proc. Iith Int’1 VLDB Conf., Stockholm, Swe-
den, August. 1985.

[Chung 94] J. Chung, D. Ferguson, G Wang, C. Nikolaou, J.
Teng, “Goal Oriented Dynamic BuiTer Pool Management
for Database Systems,” IBM Research Report RC1 9807,

October, 1994.

[Copeland 88] G. Copeland, W. Alexander, E. Boughter, T.
Keller, “Data Placement in Bubba,” Proc. ACM SIG-
MOD ’88 Conf., Chicago, IL, June 1988

[Dan 95] A. Dan, P.S. Yu, J.-Y. Chung, “Characterization
of Database Access Pattern for Analytic Prediction of

Buffer Hit Probability y,” VLDB Journal, 4(1), January
1995.

[Ferg 93] D. Ferguson, C. Nikolaou, L. Geargiadis, K. Davies,
“Goal Oriented, Adaptive Transaction Routing for High

Performance Transaction Processing Systems,” Proc.

%d Int ’1Conf. on Parallel and Dzstrzbuted Systems, San

Diego CA, January 1993.

[Haas 90] L. Haas et al, “Starburst Mid-Flight: As the Dust
Clears, ” IEEE Trans. on Knowledge and Data Eng.,
2(l), March 1990.

[IBM 93a] IBM Corporation, IBM Database 2 Version 3 Per-
formance Monitoring and Tum.ng 5’C26-~888, IBM Cor-
poration, San Jose CA, December 1993.

[IBM 93b] IBM Corporation, Database 2 AIX/6000 Admzn-

istratzon Guide SC09-~ 571, IBM Corporation, North
York, Ontario, Canada, October 1993.

[Johnson 94] T. Johnson, D. Shasha, “2Q: A Low Overhead
High Performance Btier Management Replacement Al-
gorithm,” Proc. 20th Int’1 VLDB Conf, Santiago, Chile,
September 1994.

[Ng 91] R. Ng, C. Faloutsos, T. Sellis, “Flexible Buffer Allo-
cation Based on Marginal Gains, ” Proc. ACM SIGMOD
’91 Conf., Denver, CO, May 1991.

[Nikolaou 92] C. Nikolaou, D. Ferguson, P. Constantopoulos,
‘[Towards Goal Oriented Resource Management, ” IBM
Research Report RCI 7919, April 1992.

[0’Neil 93] E. O’Neil, P. O’Neil, G. Weikum, “The LRU-K

Page Replacement Algorithm For Database Disk Buffer-
ing,” PTOC. ACM SIGiWOD ’93 Conf., Washington D. C.,
May 1993.

[Pierce 83] B. Pierce, “The Most Misunderstood Parts of the

SRM,” Proc. SHARE 61 (IBM users group), New York
NY, August 1983.

[Stonebraker 81] M. Stonebraker, ‘iOperating System Sup-
port for Database Management ,“ CA CM, 24(7), July,

1981.

[Teng 84] J. Teng and R. Gumaer, “Managing IBM Database

2 Buffers to Maximize Performance, ” IBM Systems
Journalj 23(2), 1984.

[TPC 94] Transaction Processing Performance Council, TPC
Benchmark C, Revision 2.0, 20 October 1993, and TPC
Benchmark D, Working Draft 7.0, 6 May 199~, C/O
Shanley Public Relations, 777 N. First St, San Jose, CA.

[van den Berg 93] J. van den Berg, D, Towsley, “Properties
of the Miss Ratio for a 2-Level Storage Model with LRU

or FIFO Replacement Strategy and Independent Refer-
ence,” IEEE Trans. on Computers, 42(4), April 1993,

364

