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Abstract

Query optimizers of current relational database systems

use several statistics maintained by the system on the

contents of the database to decide on the most efficient

access plan for a given query. These statistics contain

errors that transitively affect many estimates derived by

the optimizer. We present a formal framework based

on which the principles of this error propagation can be

studied. Within this framework, we obtain several ana-

lytic results on how the error propagates in general, as

well as in the extreme and average cases. We also pro-

vide results on guarantees that the database system can

make based on the statistics that it maintains. Finally,

we discuss some promising approaches to controlling the

error propagation and derive several interesting proper-

ties of them.

1 Introduction

Query optimizers of relational database systems decide

on the most efficient plan for a given query based on

a variety of statistics on the contents of the database

relations that the system maintains. These are used

to estimate the values of several parameters of interest

that affect the decision of the optimizer [S+79]. In most

cases, the statistics represent an inaccurate picture of

the actual contents of the database. This is due to two

reasons: first, only aggregate information is maintained
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by the system, e.g., maximum, minimum, and average

value in an attribute, or a histogram with the number of

tuples in a relation for each of several value ranges in an

attribute; second, as the database is updated the infor-

mation becomes obsolete. Hence, the query optimizer

uses erroneous data to accomplish its task.

The above would not be much of a problem if the

desired estimates were derived by applying some simple

functions on the erroneous statistics only once. This is

not the case, however, for many complex queries that

are processed as a sequence of many simpler operations,

e.g., multi-join queries processed as a sequence of 2-

way joins. In that case, the query optimizer must es-

timate various parameters of the intermediate results

of the operations, and then use the obtained values to

estimate the corresponding parameters of the results of

subsequent operations. Even if the original errors in

the statistics maintained by the database system are

small, their transitive effect on estimates derived for

parameters of the complete query can be devastating.

Consequently, the decision of the query optimizer can

be wrong since it is based on data with large errors.

This phenomenon where the errors in the original sys-

tem statistics affect the error in the derived estimates

is called error propagation and is one of the main issues

that challenge current query optimizer technology.

In this paper, we present a formal framework based on

which the principles of error propagation can be studied.

Within this framework, we obtain analytic results on the

problem under different models of the statistics that are

kept by the database system. JVe also obtain results

giving intuition on the methods that could be used to

reduce the magnitude of the error propagation.

There are several parameters whose inaccurate es-

timation can lead a query optimizer in wrong deci-

sions. Moreover, there are several operators that can

be present in a query and each one is affected by errors

in its operands differently. In this paper, we concentrate

on the relation size and the join as the parameter and

the operator of interest respectively. This choice is mo-

tivated by their importance in query optimization and

their sensitivity to error propagation.
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We are aware of no work in the area of error prop-

agation in the context of database query optimization.

There is extensive literature on deriving good estimates

for the parameters of the result of database operations,

which has been surveyed by Mannino, Chu, and Sager

[MCS88]. This is not the case, however, with the effect

of the unavoidable errors in these estimates on the er-

ror of a sequence of such operations. The folklore has

been that errors propagate exponentially, and therefore

beyond a certain point, computed estimates are unreli-

able, but the problem has been essentially ignored. The

primary reason for that has been the low complexity

of the queries that current systems have to face. As

the query complexity increases in future database ap-

plications, this can no longer be the case. Formal tech-

niques are necessary to increase our understanding of

how much query complexity can be tolerated before

the combined errors in the individual relations of the

query become unacceptable. In hindsight, however, it

becomes apparent that such an understanding is needed

even for the currently common, low complexity queries,

where errors can grow enough to cause erroneous deci-

sions by the optimizers [Chr89, hfL86a, ML86b, Se189].

This paper is organized as follows. Section 2 intro-

duces some notation for the study of error propagation

and states the assumptions made in this paper. Section

3 derives precise formulas for the error in the result of

a join query as a function of the errors in the query

relations. Section 4 elaborates on the behavior of the

formulas derived in the previous section as the interac-

tion of the errors in the query relations changes. The

focus of this section is on extreme and expected val-

ues of the result error. Section 5 addresses the case

where the database system maintains some thresholds

for the error in the query relations and derives some up-

per bounds on the error in the query result that can be

guaranteed based on these thresholds. The results of all

three of the last sections are rather pessimistic, showing

that the error propagates exponentially with the num-

ber of joins. Section 6 discusses one form of controlling

the error propagation by maintaining accurate statistics

about certain interesting values in the join attributes of

relations. An example is also shown where, with this

form of correction, not only the error does not increase

exponentially, but in fact beyond a certain point, it de-

creases with the number of joins. Finally, Section 7

summarizes our results and gives directions for future

work.

2 Formulation

Consider a (tree) query of N joins in which relations

Ro, ..., RN participate. To avoid potential confusion

with the multiple use of the term ‘value’, we refer to

the values of the join attributes of these relations as

the join elements. The study of error propagation in

its most general form is rather difficult. Jf’e make the

following assumptions:

(Al) All joins are equality joins.

(A2) Only one attribute from each relation partic-

ipates in joins (independent of the number of

joins it does so).

(A3) The set of elements that appear in the join at-

tribute of a relation is the same for all relations.

This set is the join domatn of the query.

An obvious implication of (A2) is that all join attributes

are of the same type. Also, we assume some arbitrary

ranking of the elements in the join domain, so that re-

ferring to the i-th join element is meaningful. The fol-

lowing database parameters are of interest:

M The size of the join domain, i.e., the number

of unique elements in the join attributes of Rj,

OSjSN.

tij The number of tuples in Rj whose join attribute

contains the i-th element of the join domain,

l<i<Lf, O<j <N.

S The size of the result relation of the query.

For each relation Rj, O < j < N, the set ~j={tijll <
i < M} is called the join element distribution in Rj.

Clearly; the above parameters are related with the fol-

lowing formula:

s=~fpij.
‘i=l j=o

(1)

Most often database systems have inaccurate knowledge

of the join element distributions in the query relations.

Therefore, the estimate that they derive for the size S is

inaccurate as well, and this affects the decisions of their

query optimizers.

Definition 2.1 Suppose that a certain quantity has a

definite value A whereas the database system approxi-

mates it by the value Ae. The difference A – Ae is the

exact error and the fraction (A — Ae)/Ae is the relaiive

error in the approximate value Ae.

For any quantity of interest, the potentially erroneous

value used by the system is denoted by the same sym-

bol as the correct value with an additional superscript

‘e’. For example, the approximation of the join element

distribution is denoted by L; = {f ~j } and the corre-

sponding estimated result size is denoted bY se. In the
sequel, we concentrate on relative errors. If no confu-

sion arises, we occasionally use the term ‘error’ alone,

the intended meaning being that of ‘relative error’.
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For each relation Rj, O<j<N, the set

~j={dijldij = (~ij/~fj) – 1,1 < i < M} is called the

relative error distribution of Rj. The maximum, aver-

age, and minimum values in Ej are called the maximum,

average, and minimum errors in Rj respectively.

For a given set of relative error distributions for the

relations A!j, O < ~ < N, let D = (S/S’) – 1 be the

corresponding relative error in the estimated size of the

query result. Also, let D; be the value in the relative

error distribution of the query result that is associated

with the i-th element of the join domain. We focus our

attention on two issues related to the problem of error

propagation. First, we are interested in identifying the

relationship between D and Di on one hand and {dij }

on the other, which describes the behavior of error. Sec-

ond, we are also interested in identifying the relation-

ship between D and Di and a variety of aggregations

of {dij}. This is because most often database systems

maintain only a handful of characteristic quantities that

summarize the relative error distributions for all rela-

tions. Therefore, it is very important for database sys-

tems to be able to draw useful conclusions about the

errors in the query result from this limited information.

The first problem is primarily discussed in Sections 3

and 4, whereas the second one is discussed in Section

5. Due to the lack of space, all results in this paper are

presented without proofs. For more details, the inter-

ested reader is refered to the full version of the paper

[IC91].

3 Error Behavior

3.1 Arbitrary Join Element Error

We seek to identify the relationship between Di and

{dij }. Such a relationship essentially addresses the error

propagation problem for a join query that is followed by

an equality selection on one of the join attributes.

Theorem 3.1 Under assumptions (A1)-(A3), for all i,

the following holds: 1 + Di = ~~=o(l + dij).

3.2 Average Join Element Error

Let 6 be the average error in the query result, i.e.,

6 = avgl<i<~{Di}. The following theorem provides

a formula for 8.

Theorem 3.2 Under assumptions (A1)-(A3), the fol-

lowing holds:

I+d=+ffi(l+dij). (2)

i=l j=o

3.3 Query Result Size Error

When dealing with the size of the full join result with-

out a selection on the join attribute, it is difficult to

extract a nice general formula as in Theorem (3.1) for

the corresponding relative error D. There is a special

case, however, in which a concise formula is derivable.

This case is captured by the following assumption.

(A4) For all relations, the approximation of the join

element distribution that the database system

uses is uniform, i.e., for all i and j, tfj= t;,

where t; is a constant that depends on the re-

lation Rj only.

Assumption (A4) is made by the query optimizers of

several database systems, so the study of error propa-

gation under uniform distribution is of special interest.

The following theorem derives a formula for the error in

the query result size for that case.

Theorem 3.3 Under assumptions (A1)-(A4), the fol-

lowing holds:

l+ D=~~fi(l+d;J. (3)

i=l j=O

A comparison of equations (2) and (3) yields the fol-

lowing very interesting corollary for the case of uniform

approximation.

Corollary 3,1 Under assumptions (A1)-(A4), the er-

ror in the query result size is equal to the average error

in that result, i.e., D = 6.

The primary implication of Corollary 3.1 is that all

the forthcoming analysis and results for the error in the

query size apply to the average error as well.

3.4 Discussion

Theorems 3.1, 3.2, and 3.3 do not allow for much opti-

mism. All types of error in an N-way join grow expo-

nentially with N. If there are both positive and nega-

tive values in {d~j }, the situation may not be very bad,

since their effect may be mutually canceled. It is very

common, however, that the same join element appears

many (few) times in most query relations, the number

of times it does so is underestimated (overestimated) in

most relations, and therefore, for the same i, most val-

ues in {dij} are positive (negative). In these cases, the

absolute value of the error continuously grows with the

number of joins. This can severely affect the ability of

query optimizers to make correct decisions.
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4 Characteristics of the Error

Behavior

As discussed above, the specific combination of posi-

tive and negative errors associated with the various join

elements in the query relations affects differently the

corresponding errors in the query result. In this sec-

tion, we present results that provide some insight into

the characteristics of the error behavior under different

such combinations. Suppose that the distribution fol-

lowed by the relative error in each relation Rj is given,

without specific information on the specific error value

associated with each join element. We consider all possi-

ble such associations and study the resulting differences

in the error behavior. Being independent of the spe-

cific such association, our results provide relationships

between the errors in the query result and the error in

each query relation independent of all others.

For each relation Rj, let Vj={dj(k) 11< k < J4 and

there exists a unique 1< i < J.f s.t. dj(k) = dij}. From

the preceding discussion, we assume no knowledge of the

specific association of the i’s to the k’s. The following

parameters are used in the coming subsections:

(K)
Pj

6j

d;

d;

4.1

The K-th moment about the origin of V; =

{1 + d~(~)llS ~ s ~} for Rjj i.e., p$K) =

avgl<,<~{(l + dj(k))K}.
--

The average relative error in Rj, i.e., dj =

avg~<~<~{dj(k)} or ~j = P$’) -1

The maximum relative errorl in Rj, i.e., d: =

maxl<k<~{dj(k)}.--

The absolute value

errorz in Rj, i.e., d~

J

of the minimum relative

= –minl<~<~{dj(k)}.--

Maximum Value of the Error

This subsection gives a tight upper bound on the error

in the query result size when Vj is given. The bounds

obtained for individual join elements are the same with

those obtained in Section 5, so they are not presented

here as well.

Based on known inequalities from mathematics, e.g.,

the Power Means inequality and the Holder inequality

[Kaz64], several interesting results can be obtained for

the maximum value of D.

Theorem 4.1 Under assumptions (A1)-(A4), the fol-
l/(N+l)

lowing holds: 1 + D < (~~=0 ~$~+1)) .

1The ~aximum relative error is assumed to be positive.
2The finimum relative error is assumed to be negative

Corollary 4.1 Under assumptions (A1)-(A4), if for all

O<~71<Nj Vj= (~+1) = JN+IJ = ~(N+l),Vj and pj

then the following holds: 1 + D < p(N+l).

The upper bound given in Theorem 4.1 or Corol-

lary 4.1 is tight. D reaches that value when, for all

1< k < M, the k-th largest error is associated with the

same join element in all relations and the relative mag-

nitude of the error among the elements is the same. An

interesting question that arises is how this worst case

behaves as N grows. The following result offers some

insight in that direction.

Proposition 4.1 Suppose that the average error in

at least one relation is nonnegative, i.e., with-

out loss of generality, ~~=1 dN(k) > 0. Then,

(I-I
N (N+l)

)

l/(N+l)

( )

N-1 (N) l/N
j=O Pj > I_Ij=O Pj .

The result of Proposition 4.1 can be interpreted as

follows. If for at least one relation, the approximation

of its join element distribution used by the database

system does not on the average overestimate the ac-

tual distribution, then the worst case error in the query

result size monotonically increases with the number of

joins. This captures as a special case the situation when

an accurate average of the join element distribution is

maintained, i.e., when the average error is zero.

A final comment on the upper bound of D is that it is

always larger than a quantity that grows exponentially

with N. More specifically, one can easily prove the fol-

lowing result. (Recall that d: = rna~l<k<J1{dj(k)} and

that it is assumed positive.)

Proposition 4.2 The following inequality holds:

(I-I
N (N+l)

)

l/(N+l)

j=O P’j > ~~;=o(l +d~).

The main conclusion that can be drawn from the

above results are again rather pessimistic. In the worst

case, the error in the query result grows exponentially

with the number of joins. Except for very small queries,

the error in the query result size becomes too large for

the query optimizer to trust it.

4.2 An Example

The above results on the error propagation problem

hold for arbitrary join element distributions. To ob-

tain a better feeling for their implications, we apply

them to a specific instance of the problem, which will

also be our running example for the entire paper. In

particular, we examine the case where the assumed join

element distribution is uniform whereas the actual join

element distribution is Zipf [Chr84, Zip49]. The main

characteristic of the Zipf distribution is that, it assigns
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Figure 1: Zipf join element distribution.

high values to few join elements and low values to most

join elements. Thus, this example deals with a quite

common special case, since the above is claimed to be a

characteristic of the distribution in many databases.

Assume that all relations in the database are equal

to each other and the join element distribution is Zipf,

i.e., for all j,

I/i’
iii = Tj foralll<i<iM.

~~1 I/i’
(4)

In (4), Tj is the size of Rj in tuples, and we assume

that it is equal to 10000 for all relations. Furthermore,

we assume that the join domain contains M=1OO join

elements. Figure 1 is a graphical representation of (4)

for z = 0.0,0.02 , . . . . 0.1. One can see that the deviation

from the uniform distribution increases with z, but it is

not very dramatic for the range depicted.

Suppose that the database system uses the Zipf dis-

tribution with .2 = O (uniform) as the approximation

to the actual distribution. Figure 2 is a graphical rep-

resentation of equation (3) for that case. Specifically,

the relative error in the query result size is shown as

a function of the number of joins for various values of

z. From the above discussion, the error in this case

is equal to the upper bound given in Theorem 4.1 or

Corollary 4.1, since the k-th largest error has the same

value and is associated with the same join element in all

relations. Hence, the error shown in Figure 2 is equal to

the (N + 1)-st moment of the sums of unity with each

error in the individual relations. The speed with which

R
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E
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Figure 2: Join result size error for Zipf distributions

under uniform approximation.

small errors in the individual relations propagate in the

result is rather discouraging.

4.3 Expected Value of the Error

The following parameters are used to represent the ex-

pected value of errors:

a The expected value of the relative error associ-

ated with some element of the join domain in

the query result.

A The expected value of the relative error in the

query result size.

The following result provides a relationship between

a and {dj}.

Theorem 4.2 Under assumptions (A1)-(A3), the fol-

lowing holds:3 1 + a = ~~=o(l + rfj).

If the approximation of the join element distribution

is uniform, the following result provides a relationship

between A and {/ij }.

Theorem 4.3 Under assumptions (A1)-(A-4), the fol-

lowing holds: 1 + A = ~~=o(l + $j).

3By the definition of 63, this can also be written as 1 + a =

I-I:=o /$)
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Note that the above theorems imply that if for all j,

6i =0, then a = A = O as well. That is, if the average

error in the individual relations is zero, the same is true

for the expected values of the error in the query result

as well. These observations can be quite misleading.

Errors can be both positive and negative. Hence, an

expected error value of zero provides no information on

the actual error in each specific instance, which can have

an arbitrarily high absolute value.

Example 4.1 The Zipf distributions of Section 4.2

serve our purpose well in this case also. Assuming that

the Zipf distribution with .z = O is used as the database

approximation, the average error in each relation is zero.

According to Theorems 4.2 and 4.3, this implies that

the expected value of the error among all associations

of join elements to distribution values is zero. However,

for every specific instance the error can be very signifi-

cant. Such was the case presented in Section 4.2, where

the error grew exponentially (Proposition 4.2) with the

number of relations. ❑

5 Maintaining Thresholds on

the Error

A reasonable mode of operation for database systems is

to maintain a threshold on some aggregate error among

all join elements of each relation, and based on that, pre-

dict a corresponding threshold for the error in the query

result size. It has been proposed in the past that, for in-

dividual join element errors, the average error in each re-

lation is the one on which a threshold should be placed.

However, Theorems 3.1, 3.2, and 4.2 provide clear evi-

dence for the inadequacy of that approach. Thresholds

on the average error only bound the expected value of

the error in the query result, but provide no guarantees

for low errors in any specific case. Hence, we contend

that, for individual join element errors, imposing thresh-

olds on the maximum (and minimum) error is the cor-

rect approach [Chr89]. Similar comments can be made

about the error in the query result as well.

Let t~ (t;) be the maximum (minimum) value in

the join element distribution of Rj. We assume that,

for each relation, the database system maintains both

these extremes together with t; (uniform approxima-

tion). Note that d~ = (tj/tj) – 1 and d: = 1 – (t; /tj),

so essentially the database system maintains the ex-

treme relative errors for each relation as well. We

demonstrate in the following subsections that, given the

above, it is possible to obtain tight upper and lower

bounds on Di and D. These represent the values that

the database system can guarantee not to be exceeded

by the individual join element error in the query result

and the query result size error respectively.

5.1 Join Element Error

Given d; and d; for each relation Rj, the correspond-

ing thresholds on the join element error in the query

result are denoted by D+ and D– respectively. That

is, –D– < Di < D+. The following theorem derives

formulas for these thresholds.

Theorem 5.1 Under assumptions (A1)-(A3), for all i,

the following holds:

l+D+ = fi(l+d;),

j=o

N

(5)

(6)

j=o

Clearly, Di can become equal to D+ (–D- ) when

the same join element is associated with the maximum

(minimum) relative error in all relations. Thus, Theo-

rem 5.1 shows that the upper bound that can be guar-

anteed for the maximum error in the query result grows

exponentially with the query size. The database sys-

tem should enforce very strict thresholds on the error in

the base relations to achieve reasonable errors in multi-

relation join queries.

Example 5.1 Consider again the example introduced

in Section 4.2. Clearly, for this case, the maximum

(minimum) error is associated with the most (least)

common element in the join domain. Applying The-

orem 5.1 to this specific case yields the relative error for

this element, which is graphically shown in Figure 3 for

the Zipf parameter .z=O.2, 0.4, and 0.8. Clearly, if not

accurate enough information is kept about the individ-

ual relations, the maximum error in the result becomes

untrustworthy after very few joins. •1

5.2 Query Result Size Error

Given df and d; for each relation Rj, the corresponding

thresholds on the query result size error are denoted by

IV and 1’- respectively. That is, –r- < D < I’+.

All previous results on D are based on assumption

(A4), which states that the database system uses a uni-

form distribution as an approximation of the join ele-

ment distribution. There is no restriction in (A4), how-

ever, on the characteristics of that uniform distribution,

i.e., all these results hold for arbitrary values of {t;}.

In many systems, the value oft; is equal to the average

number of tuples per join element in Rj at some point
in time. Hence, the previous results hold even in the

case where the assumed average is inaccurate because

updates have been performed on the relation since that

average was obtained.
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result.

Assumption (A4) is not adequate to obtain an accu-

rate threshold for the query result size error when the

database system operates as described in the beginning

of this section. Specifically, we need to make the follow-

ing assumption:

(A5) For each relation Rj, tf = (~~1 t~j)/M.

In other words, we study the problem of error propaga-

tion when the join element distribution assumed by the

database system is uniform and its value is the average

value of the real distribution. In that case, we say that

the approximation of the join element distribution used

by the system is accurate uniform.

For each relation Rj, let

Without loss of generality, we assume that the Mj val-

ues are ordered based on the subscripts of the cor-

responding relation names, i.e., j < 1 implies that

&fj ~ Ml. Based on that, we define Df,l and D;,( as

follows:

1+ Ql =
{

~~=~(1+df) if k s z
otherwise ‘

The following theorem provides the formula for 1’+. Its

proof is based on extensions of known results on ma-

jorization [M079].

Theorem 5.2 Under assumptions (A1)-(A5), the fol-

lowing holds:

j=O

Note that, if D~j _ ~ is replaced by its maximum pos-

sible value, i.e., D~j_l = 1,then 17+ = D~N, Assump-

tion (A3) actually prohibits D~ ~_ ~ from becoming equal

to 1: all join elements must appear at least once in ev-

ery relation. If there are join elements, however, that

appear very few times in each relation, then D~,j _ 1 can

be very close to 1, and therefore 1’+ can be very close to
D;~ For real databases, this is a rather important ob-

servation, since experience shows that quite often data

follow distributions where few elements appear many

times in an attribute and the remaining elements ap-

pear very few times, thus resulting in minimum errors

whose absolute value is very close to 1.

Example 5.2 Given join element distributions that

have the same maximum and minimum values as the

Zipf distributions of Figure 1, we compare the value

of 1’+, as given by Theorem 5.2, with the actual error

when the Zipf distributions are used, as given in Section

4.2. The latter was shown in Figure 3 as a function of

the number of relations in the query. The correspond-

ing curves are drawn in Figure 4 for comparison. It is

clear from the above figure that although the error in

the Zipf join element distribution case was growing very

fast, there can be much worse situations for other dis-

tributions that result in much higher errors. The main

point is that when the database system maintains the

maximum, average, and minimum values of the join el-

ement distribution of relations, the range of the error

in the size of the join of the relations is extremely large

even when relatively few relations are involved. ❑

For 17–, similar formulas can be obtained as the ones

given by Theorem 5.2, although their derivation is a

bit trickier. For two relations R. and RI, however, the

value of r- is given by the following theorem.

Theorem 5.3 Under assumptions (A1)-(A5), the fol-

lowing holds:
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That is, given some threshold for the join element errors

in the relations, the maximum number of joins that can

be performed that would still guarantee that no join ele-

ment error in the result exceeds some other threshold is

roughly the quotient of the logarithms of the thresholds.

Similar statements can be made for D- and for 17+

Y// \..

as well. For the latter, the following formula can be

obtained:
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Figure 4: Maximum threshold on the query result size

error.

5.3 Discussion

Assume that for all j, d; = d- and d: = d+, for some. .
constants d- and d+, i.e., the maximum and minimum

errors are the same in all relations. Then, from (6) we

have that

D+ = (1 + d+)~+l – 1. (8)

The above relates the following three parameters: the

maximum error in the query relations d+, the number

of joins N, and the maximum error in the query re-

sult D+. Given desirable thresholds for any two of the

above three parameters, we can find a threshold for the

third one. Thus, (8) provides answers to three abstract

problems. Given N and d+, finding D+ is the “error

propagation” problem, for which we have that

D+ < (1 + d+)~+l – 1.

One can see immediately that the error is exponential

in the number of joins. Given N and D+, finding d+

is the “required accurac y“ problem, for which we have

that

d+ < “+~- 1.

In other words, the maximum join element error in each

relation must be kept below the (N + 1)-st root of the

maximum allowed join element error in the result. Fi-

nally, given d+ and D+, finding N is the “tolerable

query complexity” problem, for which we have that

log(l +D+) _ ~
N< log(l + d+)

r+ = d_~-d+(l+d+)N+l+
d+

d- +d+(l–d-)N+l –1
(9)

Comparing (8) and (9) yields that I’+ increases expo-

nentially with N, only at a slightly lower rate than D+.

This is captured by the following statement:

Proposition 5.1 Under assumptions (A1)-(A5), if for

all j, d; = d- and d~ = d+, then the following holds:

l+r+
d-

l+ D+2d-+ d+”

In the above proposition, equality is attained only at

the limit, i.e., when N -+ cm.

6 Partial Corrections

Given a set of relative errors {d~j } and a correspond-

ing query result size error D, an interesting question is

how D is affected when some members of the relative

error distribution are corrected. Some current systems

maintain accurate values for a small number of tij’s for

each relation (usually the largest ones) [Se189]. In this

section, we investigate how this particular partial cor-

rection affects D. In its general form, this approach is

captured by the following assumption.

(A6) The approximation of the join element distri-

bution that the database system uses for Rj is

accurate for L elements in the join domain and

accurate uniform for the remaining M – L ele-

ments.

If without loss of generality we assume that

{tlj, t2j,..., tLj } is the set of values that are maintained

accurately for Rj by the database system, then assump-

tion (A6) implies that, for 1< i < L, tfi = tij, and for

L + 1 ~ i ~ AI, t~j = (~~~L+l tij)/(M : L).

We first want to study the case where (A6) is applied

to exactly one relation. Without loss of generality, sup-

pose that I?. is that relation. For all relations except

R., assumption (A4) holds, i.e., the system assumes

uniform join element distribution. The following result

shows the inadequacy of this approach to correcting er-

rors when applied to a single relation.
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Theorem 6.1 Under assumptions (A1)-(A3) and (A6)

for RO and (A1)-(A4) for Rj, 1 S j s N, D has the

same value independent of the value of L.

The above result can be interpreted as follows. When

for all relations Rj, 1 s j s N, the join element dis-

tribution assumed by the database system is uniform,

there is no advantage in maintaining more accurate in-

formation for relation RO. Simply maintaining the av-

erage of the distribution accurately (or equivalently the

size of Ro) results in the same error as maintaining the

full distribution.

Theorem 6.1 does not hold in general: if assumption

(A6) is extended to more relations, simply maintaining

an accurate average for these relations is not equivalent

to maintaining more information about them.

The next result that we want to present is for the case

where the discussed style of correction is applied to all

relations. In particular we want to investigate whether

the highest values in the join element distribution are

the most beneficial to maintaining or not. It is rather

difficult to answer this question for the error D in gen-

eral. The following theorem addresses the case where

for all 1 s k < Al, the k-th largest value in the join

element distribution is associated with the same join el-

ement in all relations. As discussed in Section 4.1, under

assumptions (A1)-(A4), this is a necessary condition for

D to reach the upper bound given in Theorem 4.1. In

that case, it can be shown that the error is given by the

equation

(10)

Theorem 6.2 Under assumptions (A1)-(A3) and (A6)

for R3, O < j < N, D in equation (10) is minimized

when the L values of the join element distribution main-

tained by the system are the L highest such values.

Example 6.1 We show the effect of correcting L values

in all relations of the example introduced in Section 4.2.

That is, we assume that the join elements of the rela-

tions follow a Zipf distribution (Figure 1). We present

the cases for z = 0.02 and z = 0.1, and we show the

effect on the error when L= 1, 5, and 10 elements are

maintained per relation. Figure 5 shows a graphical

representation of equation (10).

The results are rather impressive. We observe that

in both cases, even maintaining a single element has

tremendous impact in reducing the total error. An even

more surprising result is that, in all cases with L > 0,

the error as a function of N has a maximum. That is,
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Figure 5: Query result size error under assumption (A6)

for all relations: (a) z = 0.02 and (b) z = 0.1.
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beyond a certain point, as the query size grows, the er-

ror decreases. This is because with more relations, the

value of the join element distribution for the most com-

mon elements becomes an increasingly larger fraction

of the total size of the query result, thus reducing the

error. As expected, this is more dramatic for the more

skewed distribution (z = O. 1). We must emphasize that,

by Theorem 4.1, the case presented corresponds to an

upper bound on the query result size error. If the Zipf

distributions were associated with the join elements in

a different way, then the error would be even less than

what is shown in Figure 5 for each value of L. Hence,

this example gives much hope for being able to opti-

mize very large queries in some cases, without being

overwhelmed by the errors in the query relations. ❑

7 Summary

An understanding of the error propagation problem in

the context of query optimization is essential in complex

database environments. Nevertheless, to the best of our

knowledge, no previous work exists on the subject. In

this paper, we have presented a formal framework based

on which the principles of error propagation can be stud-

ied. Within this framework, we have obtained precise

formulas for the error in the result of a join query as a

function of the errors in the query relations. The be-

havior of these formulas has been studied with respect

to the extreme and expected values of the error. Ana-

lytic results have also been derived on the maximum er-

ror under various statistics maintained by the database

system. All these results have shown that in general the

error increases exponentially with the number of joins.

Finally, we have studied some promising approaches to

decreasing the effect of the error propagation and have

derived several interesting characteristics of them.

We believe that the results in this paper are only

a first step towards understanding the effects of error

propagation and the appropriate methods to control it.

They can be extended in several directions so that the

restrictions imposed by our model are removed, e.g., as-

sumptions (A1)-(A3), and the usefulness of other types

of maintained statistics is explored, e.g., histograms ap-

proximatingjoin element distributions. In addition, fur-

ther work is necessary to understand how errors affect

the values of other interesting parameters besides size,

e.g., operator cost, as well as how they affect the ranking

of alternative access plans, which determines the final

decision of the optimizer. We hope that the results in

this paper will be helpful in these directions as well.
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