
Optimization of Nested SQL Queries Revisited

lZlchardA Ganti
Department of Computer Science

San Francisco State Umverslty

Harry K T Wong
Lawrence Berkeley Laboratones

University of Cabfomia
Berkeley, Cahfomla

Abstract

Current methods of evaluatmg nested quenes m the SQL language can be
mefficlent m a variety of query and data base. contexts F’revlous research m
the area of nested queay opumlzatlon which sought methods of reducmg
evaluation costs 18 summanzed, mcludmg a classuicatmn scheme for nested
queries. elgonthms &sgned to transform each type of query tn a logically
equ&ent form which may then be. evaluated more efficzntly, and a
descnphon of a maps bug m one of these. algomhms Fmtber exanunation
reveals another bug m the same algorithm Soluuons to these bugs are
pmposed and mcorporated mto a new transfonnauon algontbm, and exten-
son.3 are pmposed wluch wdl albw the hmaformat~cm algonthms to handle
a larger class of mcates A recursive algorithm for pmcessmg a geneml
nested query IS presented and the actmn of ttus algorithm 1s demonstrated
llus algorithm can be used to transform any nested quq

1. Introduction

SQL 1s a block-structured query language for data remeval
and mampulanon developed at the IBM Research Laboratory
m San Jose, Cahfomia [AST 751 SQL was mcorporated mto
System R, the relational data base management system, also
developed at the IBM San Jose Research Laboratory [AST 761

One of the most powerful features of SQL 1s the nesnng of
query blocks For demonstration purposes, assume the follow-
mg relahons

S(SNO,SNAME,STATUS,CllY) - tbe Suppbers relauon
P(PNO,PNAME,COLOR.WEIGHTCITY) - tbe Parts relauon
SP(SNO,PNO.QTY,ORIGIN) -the. Shipment relauon

The pnmary keys for these relattons are SNO, PNO, and
SNO,PNO respecttvely If we wanted the names of all suppliers
who supply part P2 we could say

PermIssIon to copy wlthout fee all or part of this mate& 1s granted
provided that the copies are not made or dlstrlbuted for direct
commercml advantage, the ACM copyright notice and the title of
the pubhcatlon and Its date appear, and notlce IS given that copymg
IS by permissIon of the Assoclatlon for Computmg Machmery To
copy otherwise, or to republish, requires a fee and/or specfic
permlssion

0 1987 ACM 0-89791-236-5/87/ooO5/0023 756

(1)
SELECT SNAME
FROM s
WHERE SNOIN (SELECT SNO

FROM SP
WHERE NO= ‘pz’),

This 1s an example of a query with a smgle level of nestmg
The basic structure of a SQL query 1s a query block, which
consists pnnclpally of a SELECT clause, a FROM clause, and
zero or more WHERE clauses The first query block m a nested
query 1s known as the outer query block and the next query
block 1s known as the Inner query block The WHERE clause
specifies the pdcates which the tuples remeved must sattsfy
One type of predicate whzh can appear m the WHERE clause
1s a nesredpre&zfe, which 1s of the form [rzl Ck op QJ, where
Q 1s a query block [KIM 82 4451 Q will always be a form of
the SELECT statement The op may be a scalar or set member-
ship operator A relation referred to in the mner query block
shall be designated as an tnner relanon, and a relauon referred
to m the outer query block shall be designated as an outer relu-
non Quenes can be nested to an arbitrary depth

In his 1982 paper “On Optmuzmg an SQL-hke Nested
Query” [KIM 821, Won IGm showed that the conventional tech-
mques used in implementing query nestmg, 1 e the techniques
used in System R [SEL 79 333, can be very inefficient tables
referenced m the inner query block of a nested query may have
to be remeved once for each tuple of the relation referenced m
the outer query block [KIM 82 4501 As a soluaon to this
problem, Ktm proposed query transformation algonthms that
would improve the efficiency of nested query evaluation, some-
times by orders of magmtude I-Its approach was to transform a
nested query to a lo@cally equivalent smgle-level query (1 e
wthout nestmg) this query could then be exammed by a query
opttrmzer. such as that described m [SEL 791. for alternative
methods of processing, mcludmg &fferent methods of perform-
mg Joins To mtroduce am’s results. his system of classifica-
tion for nested quenes is outlmed below

2. ljpes of Nested Queries

Won Ktm developed a classlficatton of nested query types,
four of which are relevant to this paper They are described
here bnefly for smgle-level nested quenes, as presented m
[KIM 821

23

2.1. Type-A Nesting

A nested predicate 1s type-A If the mner query block Q does
not contam a Join prticate that references a relation in the out-
er query block, and If the SELECT clause of Q consists of an
aggregate function over a column in an mner relafion [KIM
82 4461 The followmg 1s an example of a type-A nested query
of depth one

SELECT SNO
FROM SP
WHJSE PNo= (SELECT MAX(PN0) (2)

PROM P).

Smce the inner query block of a type-A nested query does
not reference a relation of the outer query block, It may be
evaluated mdependently of the outer query block, and the result
of its evaluation wtll be a single constant [SEL 79 331

2.2. Type-N Nesting

A nested pdcate 1s type-N if the inner query block Q does
not contam a Jam predicate which references a relation m the
outer block, and the SELECT clause of Q does not contam an
aggregate funcaon [KIM 82 4471 The followmg 1s an example
of a type-N nested query

SELFCT SNO
FROM SP
WHERE PNOIS lN (SELECT PNO

FROM P
WHERE WEIGHT> 50).

(3)

Evaluation of a Type-N Nested Query. This kmd of nested
query would be processed m System R by first processmg the
mner query block Q, resultmg m a hst of values X which can
then be subsmuted for the mner query block m the nested
prezbcate, so that PNO IS IN Q becomes PNO IS IN X The
resultmg query IS then evaluated by nested iteration [SEL
79 333

2.3. Type-J Nesting

A type-J nested pre&cate results when the WHERE clause of
the inner query block contams a JOUI prticate which referen-
ces the relation of an outer query block, and the relation 1s not
menttoned m the inner PROM clause Another con&non 1s that
the SELECT clause of the inner query block does not contam
an aggregate function [KIM 82 4481 The followmg 1s an ex-
ample of type-J nestmg

SELECT SNAME
PROM S
WHERE SNOISIN (SELECT SNO

PROM SP
WHERE QTY> 100AND

SPORIGIN = S CITY).

(4)

2.4. Type-JA Nestmg

Type-JA nestmg 1s present when the WHERE clause of the
mner query block contams a Jam predicate which references

the relation of an outer query block, and the IMIX SELECT
clause consists of an aggregate function over an inner relauon
[KIM 82 4491

Select names of parts which have the highest part number
m the city from which they are supphed
SEL.ECT PNAMFi
PROM P
WHERE PNO= (SELECT MAX(PN0) (5)

PROM SP
WHERE SPORlGlN z PCITY),

Evaluation of Type-J and Type-JA Nested Queries. ‘l)qhz-
J and type-JA nesting are processed m System R by the nested
Iteration method the inner query block 1s processed once for
each tuple of the outer relanon which saasfies all snnple
preduzates on the outer relation [SEL 79 331 This method has
the obvious hsadvantage that the inner relation (SP m example
4) may have to be remeved many umes m example 4, It must
be retneved once for each tuple of the outer relauon S, smce
there are no simple pticates m the outer query block It 1s thts
mefficlency whnzh moavated Kun to develop altemahve algo-
nthms for pmcessmg nested quenes

3. Kim’s Algorithms for Processing Nested Queries

Km observed that for type-N and type-J nested queries, the
nested iteraaon method for processmg nested quenes is equiv-
alent to pcrformmg a JOIII between the outer and mner relations
[KIM 82 4511 But nested lteraaon 1s only one way of perform-
mg a Join, for single-level quenes System R also performs
Joms by the merge /out method, ~tb the decision as to which
method to use made by the query opmzer [SEL 79 281 I(lm
showed that nested quenes could be transformed to logically
eqmvalent single-level quenes contaming smgle-level join
predicates expktly, and that now the query optnmzer can
choose. a merge Jam method m lmplementmg the Joins, often at
a great reduction of cost over the nested itemDon method IXlM
82 4611 Cm’s transformation algonthms are summarized m
the present secaon

3.1. Processing a Type-N or ppe-J Nested Query

In his Lemma 1 [KIM 82 4511, fim states that a type-N
nested two-relaaon query is equivalent to a canonical two-rela-
tion query with a Join pticate

LetQlbe

SELECT I(ICk
FROM RLRJ
WHERE RlCh=RJCm.

and let 42 be

SELJZCT RlCk
PROM RI
WHERE RIC~IS IN (SELECT RJC~

PROM RJh
[KIM 82 4511

Kun’s Lemma 1 states that Ql and 42 are equivalent, that IS,

24

they yield the same result [KIM 82 4511 &m’s proof of
lemma 1 calls attentton to the fact that by deiimhon the inner
block of 42 can be evaluated mdependently of the outer block,
resultmg m a ltst of values Stttce this hst contams values from
column RJ Cm, the pxz&cate 1s equivalent to the JOUI prticate
&Ch = RJ Cm [KIM 82451-4521 From Lemma 1 IClm
develops the followmg algonthm

Algorithm NEST-N-J
1 Combme the FROM clauses of all query blocks into one

FROM clause
2 AND together the WHERE clauses of all query blocks,

replacmg IS IN by =
3 Retam the SELECT clause of the outermost query block

&I.M 82 4521

The result 1s a canonical query logtcally eqmvalent to the
ongmal nested query The algonthm apphes to type-N or type-J
nested quenes wtth one or more levels of nestmg

3 2. Processing a Type-JA Nested Query

In hts Lemma 2 [KIM 82 4551, Ktm asserts that a type-JA
nested query can be transformed to a type-J nested query which
references a new temporary relahon

LetQ3be

SELECT ICk
FROM RI
WHERE Rich= (SELECT AGG(RJ Cm)

FROM RJ
WHERE RJCn=hCp).

and let Q4 be

SELECT RlCk
FROM RI
WHERE RICh= (SELECT RtC2

FROM Rt
WHERB RtClrRrCp),

where Rt IS a temporary table obtamed by

Rt(Cl,CZ) = (SELECT RJ Cn, AGG(RJ Cm)
FROM RJ
GROUP BY RJ Cn).

[KIM 82 4544551

Kun’s Lemma 2 states that Q3 and Q4 are equrvalent [KIM
82 4551 I-hs proof postulates that the acnon of the nested itera-
non processing of a type-JA query can be captured in a tem-
porary table formed with a GROUP BY clause, as in Rt for
each tuple of Rt. a tuple 1s remeved from Rt whose Cl (for-
merly Cn) value matches the Cp value of the Rt tuple The C2
value of the Rt tuple wtll contam the aggregate value obtamed
by the GROUP BY clause, and this can be matched with h Ch
mM 82 4553

Lemma 2 leads to an algonthm which transforms a type-JA
nested query of depth one to an equivalent type-J nested query
of depth 1 Assume a type-JA nested query as follows

SELECT RlCn+2
FROM Rl
WHERJZ Rl Cn+l = (SELECT AGG(RZCn+l)

PROM R2
WHBRE R2Cl=RlClAND

R2C2=RlC2AND

R2 Cn = Rl Cn),
KlM 82 4551

Algorithm NEST-JA
1 Generate a temporary relation Rt(C1, ,Cn,Cn+l) from

R2 such that Rt Cn+l 1s the result of applymg the ag-
gregate function AGG on the Cn+l column of R2 which
have matching values m RI for Cl,C2, etc

2 Transform the inner query block of the meal query by
changmg all references to R2 columns m Jam pticates
which also reference Rl to the correspondmg Rt
columns The result 1s a type-J nested query, which can
be passed to algonthm NEST-N-J for transformatton to
its canonical equivalent.

[KIM 82 455-4561

4. Costs of Kim’s Algorithms: Rationale for
lkansformation

Kun’s analyses of his algonthms [KIM 82 461-4641 com-
pare the costs of processing N. J, and JA-type nested quenes
usmg the nested tterahon method and the transfotmafion
method followed by merge Joins Ktm develops cost functions
for each method and for each type of nestmg, using vanables
such as the sizes of relations, avatlable memory buffer space,
and selecttvtty factors He demonstrates the cost reducnons at-
tamable by hts transformanon method with examples of quenes
and data base condmons for each type of nestmg The follow-
mg table summarizes the results Ktm obtamed m three of his
examples [KIM 82 462-4631

Example Nested Iterstm Transfom~st~on Followed by

G!asIMIs) bfiaEIQlR~~
WN 10220 720

m-J 10,120 550
Type-JA 3,050 615

Figure 1 Page I/O’s Requued III Kun’s Examples

The comparative costs will of course vary mth &fferent
quenes and data base condmons, but Im has shown that cost
savmgs of 80% to 95% are possible with his transfonnaaon
method

5. Bugs in Kim’s Algorithm NEST-JA and their
Solutions

5.1. The COUNT bug

In a 1984 U C Berkeley Memorandum [KIE 841, Werner
I<lesshng revealed a problem with Ktm’s algonthm NEST-JA
The problem arises when a type-JA nested query contams the
COUNT function To illustrate his arguments, Ktesslmg defines
two relanons

25

P~WP~,QoH)
SUPPLY(lWUM,QUAN,SHIPDATE)

The following instanoanons of these relauons are assumed

PARTS

E!wMQQfI
3 6

10 1
8 0

SUPPLY
Fm.!M~sHIpDATE

3 4 7-3-79
3 2 lo-l-78

10 1 6-8-78
10 2 8-10-81
8 5 5-7-83

[I=8421

tiesshng defines Query 42 as follows

Query Q2:

Fmd the part numbers of those parts whose quantmes on
hand equal the number of shpments of those parts before
l-l-80

SELECT PNUM
PROM PARTS
WHERE QOH= (SELBCT

FROM
COUNT(SHlPDATE)
SUPPLY
SUPPLY PNUM = PARTS.PNUM AND
SHIPDATE < l-l-80)

WE8441

Gwen the example tables PARTS and SUPPLY defined
above, query 42 ~111 give the followmg result when evaluated
using nested iteration

Result EBBTsl!NLlM
10
8

[KIE 84 41

Apphcanon of &m’s algonthm NEST-JA to Query 42 __
results m the followmg minskumahon

TEMP (SUPPNUM,cT) =
(SELECT PNUh% COUN’VSHlPDATE)
FROM SUPPLY
WHERJI SHlPDATB c l-l-80
GROUP BY PNUM)

SELECT PNUM
PROM PARTS, TEh4P’
WHERE PARTS QOH = TEMP’CTAND

PARTS PNUM = TEMP’ SUPPNUM

TEMP’ evaluates to

TEMF+ suppNuM CI
3 2

10 1

and the final result IS

WE 84 41

EBBTsm
10

lKIEw 51

This result Qffers from that obtamed usmg nested Iteration
The reason why the transformation fads IS that m the formation
of the temporary relatron, no tuples appear wtuch do not match
the precllcates apphed to the mner relanon Thus, the COUNT
function will never return zero, since the only groups It 1s ap-
phed to are groups of tuples matchmg the precllcates Thus CT
m the temporary relation ~11 never be zero

I(lesshng explored a mal correction of the bug which m-
volved ORmg a predicate to the WHERE clause of the
transformed query m order to a postemm fmd where an empty
set occurs to satisfy the pticate, but the mal correction fiuled
on a query with more than one level of nestmg [KE 84 51 I(less-
hng concludes that m attemptmg to use K~I’s algorithm
NEST-JA for transformmg type-JA nested quenes, “ there
seems to be no general way to recover values lost by COUNTS
on a correlanon level greater than 1” [KIE 84 71 While thus
does seem to be true m the context of the SQL language as
specified m [AST 761, the problem can be solved If the outer
Jam operation IS avadable m the processmg of the query

5 2. Solutron to the COUNT bug usmg outer Joms

If either internally or through extensions to the query
language an outer Jorn operation may be spectied as the JOT
operahon, the COUNT bug can be solved by performmg an
outer Join m the creation of the temporary relation The opera-
hon of outerJoin IS defined in [COD 79 4071 the outerJoin m-
eludes all values from columns parhcipatmg m JOI& ullth
NULLS m the opposite column if there IS no match for a
column value For example, assume the followmg relations

R X S Y
A B
B C

E

An outer JOIII between R and S. which wdl be designated R X
=+ S Y,wdl have the followmg result

8 Y
A A
B B
A C
E A

where * is the special null value The outer Jam operaaon 1s
unplemented m at least one commercial data base management
system with which the authors are farmliar [ORA 861

To solve the COUNT bug an outer Join may be used in the
creation of the temporary relation lesslmg’s query 42 could
be mmsforme4l to gve the followmg

26

TEMP3 (SuPPNuM,CT) =
(SELECT PARTSPNUM, COUNT(SUPPLY SHJPDATB)
PROM PART&SUPPLY
WHERB SUPPLY SHIPDATB < l-l-80 AND

PARmPNuM =+ SuPPLYmuM
GROUP BY PARTS PNUM),

Query ~3

SELECT PNUM
PROM PARwrBMP3
WHERB PARTSQOH=TBMP3CTAND

PARTSmuM-TEMP3SuPP~

Before lookmg at the result of this new query, let us look at
the result of the outer Join between PARTS and SUPPLY ~th
the condmons gwen m the creahon of the temporary relation
TEMP3

EBBTSPMLM EBBTsQpI1 sIIpEI;ypIyuM
3 6 3
3 6 3

10 1 10
8 0 A

sIIpEL;yu SIlEELy-
4 l-3-79
2 lo-l-78
1 6-8-78
A A

Note that the condmon which apphes to only one relation
(SUPPLYSHIPDATE c l-l-80) must be apphed before the
horn 1s performed Otherwise the Join would not contam the last
row, and the result would be mcorrect This may happen If the
JOT 1s performed first to take advantage of m&ces on the JOT
columns To ensure resmcuon. we can exphcltly bmld a tem-
porary table applymg stmple predicates This temporary table
wdl be a resmctlon and proJection of the mner table

TEMF?lpNUM)= (SELECT PNUM
FROM SUPPLY
WHERE SHlPDATB c l-l-80).

and TEh4P3 is changed to

-l-mm (SuPFTwM.cl9 =
(SELECT PARTSI’NLJM, COUNT(Tl3lP2 SHIPDATE)
FROM PARTSJEMP2
WHERE PARTS.PNuM=+~PNuM
GROUP BY PARTS PNUM),

EBBTsm
10
8

which matches the result obtained by nested iteration This
solution has been tested successfully on quenes wtth more than
a single level of nestmg. mcludmg lesslmg’s query 43 [KIE
84 63

If the type-JA query with a COUNT funcnon contams a
nested Jam pre&ate with a scalar compartson operator other
than equality, the correct result is obtamed If the scalar operator
1s used 111 the outer Jam operauon to create the temporary rela-
tton and the Mom pred%ate in the ongmal query is changed to
equahty

5.2.1. Query Blocks wth COUNT(*)

If the SELECT clause of the mncr query block contams
COUNT(*) instead of COUNT(column name) then tlus ap-
proach must be modified For example, if query Q2 contamed a
COUNT(*) mstead of a COUNT(SHIPDATE), then the tem-
porary table would look hke this

TEMP3 -a
3 2

10 1
8 1

This would be semantically incorrect. and the final result would
be mcorrcct To avoid this error the SELECT clause used m the
creauon of the table must contam COUNT(col-name) Instead
of COUNT(*), where col-name 1s the name of some column 111
the inner relation Since the JOT column of the mner rekitIon
wdl always be present m the ongmal query and may be the
only one that IS, let co&name bc the name of the Join column of
the inner relation In our example It would be
COUNT(TEMP2 PNUM)

5 3. Another Bug. Relatrons other than Equalrty

For aggregate functions other than COUNT Kun’s algorithm
NEST-JA works correctly for nested JOT prdcates contammg
the equality operator However, If we consider other operators,
we Qscover another bug m &m’s algonthm

Assume the PARTS and SUPPLY tables

PARTS SUPPLY

l!IaMQpfI F!NYbiQLmsHIpDATE
3 0 3 4 l-3-19

10 4 3 2 lo-l-78
8 4 10 1 6-8-78

9 5 3-2-79
Thus, TEMP3 will look hke tis

and the followmg type-JA query
TEMP3 -a

3 2
10 1
8 0

and the result of query T3 wtll be

27

Query QS

SELECT PNUM
FROM PARTS
WHERB QOH= (SELECT MAX(QUAN)

PROM SUPPLY
WHERE sUPPLY.PNUM<PARTSPNUMAND

SHIPDATE < l-l-80).

This IS the same as &esslmg’s query Ql [KIE 84 l] except for
the substltunon of the “<” operator for “=” operator m the jam

pre&cate The result acconhng to nested lteranon semanacs,
assuming MAx((1) = NULL, 1s

E%KrslmlM
8

Kun’s algonthm results in the followmg temporary table and
lransformed query

TBMPS (SUPPNUM, MAXQUAN) = SELECT PNUM, MAX(QUAN)
PROM SUPPLY
WHBRE SHIPDATB < l-l-80
GROUP BY PNUM,

Query TS

SELECT PNUM
PROM PARTS. TEMP
WHERE QOH = TEMPMAXQUAN AND

TEMPSUPPNUM<PARTS.PNUM.

and the followmg results

TEMP5 final result

SuppNuM MBXW EBBTsm
3 4 10

10 1 8
9 5

which does not match the results obtamed by nested iteranon
The problem IS that the temporary table created by Kun’s algo-
nthm contams only aggregate mformatton about tuples wnh the
same join column value, whereas query QS asks for aggregate
mformauon about a range of Jam column values

5.3 1 Solutron to the Relations&her-than-Equalrty Bug

The solution to dus bug IS slrmlar to the solunon to the
COUNT bug perform a Join in the creauon of the temporary
relahon, only this time it need not be an outer Jam, unless the
aggregate funcuon is COUNT The J~UI m effect causes the
temporary table to include aggregate values over the proper
range of Join column values As before, the JOUI predicate m the
ongmal query must be changed to equality This lmphes that

only the equality operator may bethe outer relation and the
temporary relation

If this solution IS applied to query QS and the last SUPPLY
table, the outcome IS

TEMP6 (SUPPNUM, MAXQUAN) =
SELECT PARTSJ’NUM, MAX(SUPPLY QUAN)
FROM PARTS, SUPPLY
WHERE SHIPDATE c l-l-80 AND

SUPPLYJNUM < PARTS PNUM
GROUP BY PARTS PNUM.

and query QS IS transformed to

Query T6

SELECT PNUM
PROM PARTS.TBMP
WHERE PARTS QOH = TBMPMAXQUAN AND

PARTs.PNUM=TBMPsUPPNuM,

wnh the followmg results

final resulL
SuppNuM bllwuAN B!4KmmM

10 5 8
8 4

Tzus matches the result obtamed by nested iteration

5.4. A Problem with Duplicates

The methods outlmed above to solve the COUNT bug work
correctly If the outer relation of the nested query contams no
duphcates m the Join column, but a problem artses If It does
contam duphcates Assume the followmg PARTS and SUPPLY
relattons

PARTS SUPPLY

I!wMw F!lm!d~sHIpDATE
3 6 3 4 atl4m
3 2 3 2 lllllfl8

10 1 10 1 61-22176
10 0
8 0

For this example let us agam assume Qesslmg’s query 42 If
we apply query Q2 to the above xelahons, the result by nested
lteratlon would be

EBBTsm
3

10
8

If we apply our new mod&d version of Kun’s algorithm,, the
results would be

TEMp3 SuppNuM LT 6nalnxllt E!irmw
3 4 8

10 2
8 0

Thus does not match the result obtamed by nested lteraoon The
problem arises because duphcates m the outer relatton mcrease
the COUNT over that column in the temporary relanon Thus

28

problem does not anse with the MAX and MIN functions, but
tt does anse with the COUNT, AVG and SUM functions

5.4.1. Solutlon to the Duplicates Problem

In order to match the results obtamed by nested iteration
semanttcs for relations wtth duphcates in the outer JOUI column,
our algonthm must be mod&d to remove dupbcates before
the JOUI in the creauon of the temporary table 1s performed
This can be accomphshed by projecting the ~0x1 column of the
outer relation, and using the projechon instead of the outer rela-
non m any Jam requtred to build a temporary table This 1s part
of the procedure followed m INGRES [ST0 761 for nested
QUEL quenes &IE 84 81 The efficiency of the algorithm can
be improved by applymg all sunple prerllcates to the outer rela-
tlon m the creation of the projection In query 42 this rule wtll
have no effect smce there are no snnple pticates m the outer
query block

Using Gesshng’s query 42 as an example agam, let TEMPl
be defined as follows

TEMPl(PNUM) = (SELECT DISTINCT PNUM
PROM PARTS),

TEMPl 1s the projection of the PNUM column from PARTS
TEMP3 wdl now be defined as

lmlP3 (suPPNuM,CT) =
(SELECT TBMPl PNUM, COUNT(SUPPLY SHIPDATE)
FROM TBMPl,SuPPLY
WHERB SUPPLY SHIPDATB < l-l-80 AND

TBMPl PNUM =+ SUPPLY PNUM
GROUP BY TEMPl PNUM),

and query T3 remams the same The results are

TBMPl final result
mm SWPNUM LT EBBTsa

3 3 2 3
10 10 1 10
8 8 0 8

which matches the result obtamed by nested iteration

6. Modified algorithm NEST-JA2

6.1 The Algorithm

The soluuons to the bugs described 111 the previous section
suggest a modtfied algonthm for transformmg type-JA nested
quenes, which shall be called algorithm NEST-JA2 Thus algo-
nthm consists of three major parts

Algorithm NEST-JA2
1 Project the Join column of the outer relation, and restnct

it with any simple predtcates applymg to the outer rela-
tion

2 Create. a temporary relahon, Joimng the inner relaaon
wtth the proJecaon of the outer relation If the aggregate
function IS COUNT, the Join must be an outer JOUI, and
the mner relation must be resmcted and proJected before

the JOT 1s performed If the aggregate function is
COUNT(*), compute the COUNT function over the JOT
column The Join predtcate must use the same operator as
the Mom predtcate in the ongmal query (except that it
must be converted to the corxespondmg outer operator 111
the case of COUNT), and the Join predicate m the
ongmal query must be changed to = In the SELECT
clause, select the JOIII column from the outer table m the
JOUI @cate instead of the inner table The GROUP BY
clause wtll also contam columns from the outer relauon

3 Jom the outer relation with the temporary relation, ac-
cordmg to the transformed version of the ongmal query

To illustrate the action of algonthm NEST-JA2, let us apply
lt to Ktesslmg’s query 42 The three steps are then as follows

1 TEMPl (PPNUM) = SELECT DISTINCT PNUM
PROM PARTS,

2 TEIW2(PNuM)= (SELECT FwlJM
FROM SUFFLY
WHERE SHIPDATE c l-1-80),

TEMP3 (PNuM.cT) =
(SELECT TBMPl PNUM, COUNT(TEMF72 SHJPDATE)
FROM TBMPl,TEMF2
WHERE TEMPlPNLJM=+TEmPNuM
GROUP BY TBMPl PNUM).

3 SELECT PNUM
PROM PARTSJEMF3
WHERE PARTSQOH=TBMP3CTAND

PART&PNuM=TEMP39NlJM.

If these three steps are applied to the PARTS and SUPPLY
relaaons with duphcates considered above, the results are

TEMPl TEMP3 End result
SuppNuM LT l!Almm

3 3 2 3
10 10 1 10
8 8 0 8

which matches the result obtamed by nested Iteration

7. Analysis of Modified Algorithm NEST-JA2

The total cost of pmcessmg a type-JA nested query using the
new algonthm NEST-JA2 will consist of three major sub-costs

1 The proJectton and resmcaon of the outer table h,
resulhng m temporary table Rt2

2 The creation of temporary relauon Rt by projectmg and
restnctmg inner relation RJ, Joming this Hrlth temporary
table Rt2, and performmg a GROUP BY operation on the
result.

3 Jommg temporary table Rt urlth outer table fi
These costs wti be exammed m detiul below For simplicity it
will be assumed that nested quenes are of depth one The
analyses Hrlll be presented usmg Ktm’s notation [KIM 82 4621
Rt denotes the relation of the outer query block, RJ the relamn
m the FROM clause of the inner query block, and Rt the tem-
porary relation obtained by mtermdate processing on RJ Pk

29

IS the size m pages of relation Rk, and Nk IS the number of
tuples m Rk Let f(l) denote the fracuon of the tuples of RI that
sansfy all simple predicates on h B denotes the size. m pages
of avrulable mam-memory buffer space When It IS necessary
to sort a relation, a (B-1)-way multi-way merge sort 1s used,
which requues 2*P*logB.1P page I/O’s to sort a relation R
[KIM 82 4621 The measure of performance IS the number of
Fisk page I/O’s reqmred, and for sunphclty relations RI and RJ
are scanned sequentially

7.1. ProJectIon and Restnction of the Outer Table

The cost of creatmg a projecnon and resmctlon Rt2 from RI,
with duphcates removed, IS

PI + Pt2 + 2*Pt2*loga IPt2 page I/o’s

where the last term IS the cost of removmg duplicates using a
(B-1)-way merge sort This also sets up Rt2 m Jam column or-
der for a merge JOIII Pt2 will be some fraction of PI Since Rt2
contams only tuples satlsfymg the simple prdcates on RI, Pt2
will be some fraction of f(l)*p1, the fraction dependmg on the
me of the column compared to the size of a tuple

7.2. Creation of Temporary Table Rt

In the m&lied algorithm NEST-JA2, a Jam IS required m
the creauon of the temporary relation from the mner relation If
the aggregate function in the inner block IS COUNT(), this JOUI

will be an outer Join The inner relation 1s denoted RJ and Rt3
wdl designate a temporary relanon created by pmJecMg and
resmctmg RJ Rt3 IS used to perform the Join with Rt2. fol-
lowed by the GROUP BY operafion, to create the temporary
relation Rt

The cost of this Join wfl depend on whether the nested Itera-
hon or the merge Join method IS used The nested loops method
will be efficient If the temporary relation Rt3 can fit mto B-l
memory pages, with a cost of

FQ + Pt2 + p14 page I/o’s,

where Rt4 IS the result of the Join If, however, Rt3 does not fit
mto B-l pages, Rt3 w111 have to be remeved once for each
tuple of Rt2, since Rt2 has already been resmcted The cost
wlil be

P~+Pfl+FX2+Nti*t%+Pt4 pagef/O’S,

where the first two terms are the cost of creatmg Rt3
If the merge Join method IS used, the cost will be

PJ + F7.3 + 2*Pt3*logB pt3 + Pt2 + PC3 + P&4 page I/o’s,

where the first three terms are the cost of buddmg Rt3, sortmg
it and removing duplicates, and the last three terms are the cost
of merge Joming Rt2 with Rt3 and stormg the result The cost
of sortmg Rt2 IS not included m the merge Jam cost, smce thus
cost IS subsumed by the cost of creatmg it with duphcates
removed In addition, performmg a merge Jam to create Rt4
obviates the need to sort It for the GROUP BY operation, since
the GROUP BY column IS the Join column

If the aggregate funcnon m the mner SELECT clause IS
COUNT@ an outer jam must be used in the creation of tem-
porary table Rt4 The merge jam method of performmg an
outer Join will have a cost function ldenhcal to that for a stan-
dard Jam, since the two relations are scanned m sorted order,
and no extra cost is involved m determmmg which tuples have
no matching tuples m the opposite relation Rt4, the result of
the Join, may t!e slightly larger than if a standard JOIII were
performed, addmg a small amount to the cost of the JOT AS m
Kun’s analyses, the Joins performed followmg transformation
will be assumed to be merge JOTS

7.3. Jom of Rt and RI

The cost of Joming temporary table Rt and outer table RI
til also depend on the kmd of Join used, but as will be seen
below, a merge jam of these relauons can be parhcularly effi-
cient, since Rt IS already in Join column order a merge Jam
will cost

2*R*logB1PI + PI + Pt page fetches.

assummg & is not reduced m sze, while a nested iteraaon JO~I
would cost

R + f(l)*Nl*R page fetches

7.4. Total Cost

The total cost of processing a single-level type-JA nested
query using the mod&d algonthm NEST-JA2 wdl depend on
the type of Jam used to create temporary relation Rt4 as shown
above, it will also depend on the type of Jam used between the
outer relation RI and the temporary relation Rt Thus there are
four possible total costs for a single-level query, each of which
may be estunated by the opmmzer One of these evaluation
methods m particular IS worthy of note the use of two merge
Jams in the evaluation of the query In evaluatmg the query by
this method there will be cost savings in the merge Joins from
somng relations earher in the process Rt2 is created in JO~I
column order, so it does not have to be sorted for the Jam with
Rt3, Rt4 IS created m GROUP BY column order, so it does not
have to be sorted for the GROUP BY operation, and Rt IS
created m Join column order, so It does not have to be sorted
for the merge Join with RI The total cost for this method IS

Pl + Pt2 + 2*Pt2*logB lPt2 +
PJ+Pt3+2*Pt3*log~~Pt3+Pr2+Pl3+2*Pt4+Pt+
2*Pl*log&~Pl+ PI + h,

ammung RI IS not reduced m size, and where the fmt three
terms are the cost of projectmg and resmctmg RI, resultmg 111
Rt2, the next eight terms are the cost of creatmg temporary
table Rt, mcludmg the GROUP BY operation, and the last three
terms are the cost of performmg the final Jam

The modrfied algoruhm can be compared to the nested Itera-
tion method in the followmg example Let the query to be
evaluated be am’s query 43 [KIM 82 4541 where the ag-
gregate funcnon is MAX0 Let PI = 50. PJ = 30, Pt2 = 7, Pt3 =
10, Pt4 = 8, Pt = 5, B = 6. and f(l)*Nl = 100 The nested ltera-
uon method of processmg 43 costs 3050 page fetches m the

30

worst case The transformation approach, usmg the maed The same transformation 1s performed when the operator 1s c=
algonthm and two merge Joins, costs about 475 page fetches or I> Conversely,

8. Extensions: the Predicates EXISTS, NOT
EXISTS, ANY, and ALL

In presentmg his aansfotmanon algonthms, I(lm considered
nested predtcates conmmng scalar and set mcluslon operators
If the language 1s extended to mclude the useful operators
EXISTS, ANY, and ALL, some extensions to the transfoxma-
aon algonthms must be implemented The extensions proposed
m tis section are transformaaons of the precllcates to
pnzdtcates contaming simple scalar or set contamment
operators The query can then be processed by the transfotma-
non algonthms presented above

8.1 EXISTS and NOT EXISTS

<ALL (SELECT &tern
FROM fromaems
WHERE whenxtems)

1s transformed to the lo@cally eqmvalent pre&cate

< (SELJXX MIN(sehtem)
FROM fmmltems
WHEFtE whereams)

and the same transformation 1s performed when the operator 1s
<= or I> If the operator is >, >=, or I<, the transformation 1s
the reverse

> ANY (SELECT sehtem
A nested pxe&cate of the form

1s transformed to
WHERE EXISTS (SELECT SelllemS

FROM frormtems
WHERE whenztems)

can be transformed to the semantically eqmvalent nested
mcate

WHERE 0 c (SELECT COUNT (sehtems)
FROM fromltems
WHERE where&m@

Slrmlarly, a nested pre&cate of the form

WHERE NOT EXISTS (SELECT selaems
FROM fromaems
WHEFtE WhereItems)

is transformed to the semantically equivalent predicate

wHERF,o= (SELECT COUNT (selltealS)
FROM fromltems
WHERE whereaems)

The resultmg predicate 1s then processed as a type-A or type-JA
predicate. dependmg on the detiuls of the mner query block

82ANYandALL

A prticate of the form

<ANY (SELECT sehtem
FROM fromaems
WHERE WhereItems)

can be transformed to the logcally (but not necessanly seman-
tically) equivalent form

< (SELEcr MAx(sehem)
FROM fromltems
WHERE whereaems)

> (SELECT MlN(selttem)

and

> ALL (SELECT sehtem

ls transformed to

> (SELECT MAX(xhtem)

More simply, a pre&cate of the form =ANY is transformed to
IN, and a predtcate of the form I=ANY is transformed to NOT
IN

9. Processing a General Nested Query

Algonthm NEST-JA2 applies to type-JA queues with a
single level of neshng The extension of the algonthm to type-
JA quenes with more than one level of nestmg IS not as sunple
as tt was for algonthm NEST-N-J the aggregate function and
the Jam predicate may appear at any level of nestmg, and not
necessanly at the same level I(lm approaches the problem by
means of query graph his algonthm NEST-G for transform-
mg a general nested query gves the correct canonical result by
InspeGMg and reducmg the query graph for the query [KIM
82 4651 Rather than going into am’s notaaons and methods,
we wfl propose an alternative method for processmg a general
nested query, a direct postorder recursive algonthm which we
believe 1s conceptually simple and which solves the problem of
processing type-JA quenes W&I greater than a smgle level of
nestmg

9.1. Processmg a General Nested Query: a Recursrve
Approach

The recursive version of algonthm NEST-G 1s described 111
the following pseudocode procedure nest_g(query-block),
where the parameter query_block 1s a pointer to a SQL query
block, possibly ~th descendant mer query blocks nested
wlthm it The procedure 1s mmally called with a pointer to the
outermost query block (the begmmng) of the query

31

procedure nesrJ(query-blcck)
for each predicate III the WHERE clause of query-block

d predxate IS a nested predxate (le contams mner query block)
ne~r~(mna~-query-block)

P
* Dcternme ty-pe of nesung, and call appropriate
* tfansfonnauon praxdure
*I
d SELECT clause of mnex~quexy~block contams aggregate funcuon

II mner-query-block contams pm predxate referencmg a relation
which IS not m its FROM clause

P
* neswlg IS typeJA
+I
nesr_loz(mner_suery_block)
nesr_nJ(qu~-blocli,mner_query_block)

else
P
* nesmg IS type-A
+I
nesr_a(mner_puery_block)

else
nesr_n_l(query~block,mner~query~block)
return

Three procedures are called by nest-go nesr_o(j, which
evaluates mner-query-block, replacing it with the xesult-
mg constant, nest_ra2(), which executes algonthm NEST-JA2,
and nesr_n_l(), whtch executes &m’s algonthm NEST-N-J,
combmmg the two query blocks query-block and
mner-query-block In exphumng procedure nest_g(j It 1s
useful to model a nested query with a multi-way tree whose
nodes are query blocks, where the outermost query block (the
begmnmg of the SQL statement) 1s the root and the innermost
query blocks are the leaves Procedure nesf,g(J searches down
through the levels of a nested query from the outermost query
block until tt finds the innermost query blocks (the leaves of
the query tree) It then exammes the leaf block to determme the
type of nestmg present, and transforms the parent to canonical
form by calling the appropnate transformauon procedures
After this 1s done for all nested prdcates in query-block, the
recurston then unwmds one level and the query block
unmhately above 1s processed m the same way, contmmng
the unwmdmg unhl lastly the outermost, or root, query block 1s
transformed

The algonthm represented m procedure nesr~() solves the
problem of correctly transformmg a type-JA query ~rlth
multiple levels of nestmg To demonstrate this. let us assume
the followmg query tree

(4

Figure 2 Example Query Tree

The edges of the tree are labelled with the kmd of nestmg
present at that level Query block B contams an aggregate
fun&on m Its SELECT clause. and both C and E contam JOUI
pticates referencing tables m query blocks at a hgher level
So far the most important feature with regard to processing the
query has not been mentioned does C or E contam a reference
to a table in the FROM clause of A? This 1s important because
tt mdtcates whether there 1s typ-JA nestmg present m the query
If one of the mner blocks, mcludmg B, contams a reference to a
table m A, then type-JA nestmg 1s present In other words, a
Join pticate reference must span a query block contammg an
aggregate funcuon for type-JA nestmg to be present.

For example, assume the example query tree contams a
reference m B, C, or E to a table m the FROM clause of A Let
us assume that E contams this reference, in a Jam pre&cate
Procedure nest_g() Hnll travel down to E, unwmd and apply
algorithm NEST-N-J, combmmg C and E This moves the
reference to the table m A to block C Then blocks C and B are
combmed, then blocks D and B Now query block B has
mhented the Jam predicate m block E, so that it contams both
an aggregate function and a JOT pdcate which references a
table not found in the FROM clause of B this 1s the defimtlon
of type-JA nestmg Thus, procedure nest_ra2() 1s called, which
creates a temporary table ~rlth a GROUP BY clause as
specified m algonthm NEST-JA2, and removes the aggregate
function, replacing it with a reference to the column 111 the
temporary table which results from the apphcaaon of the
aggregate function This reduces the type-JA nestmg to type-J
nestmg, and procedure nesr_n_r() is immdately called to
finish the Job of reducmg the query to canomcal form Thus
type-JA nestmg of deeper than one level can be detected by
exanumng a single query block, which has mhented the ‘?rans-
aggregate” JOUI pr&cate by the recursive transformation of
mner query blocks, and the type-JA nested query can be
transformed to canonical form by applymg the single-level
algonthm NEST-JA2

From this example It can be seen that the advantage of the
recursive algonthm presented m procedure nest_g(J 1s
sunphcity the information needed to transform a query block
contaming a nested predtcate is confined to two levels of the
query the outer level (the level contrumng the nested
predtcate) and the mner

10. Summary

The nested lterauon method of evaluatmg nested SQL
quenes can be inefficient for many quenes a relaaon referred
to in an mner query block may have to be retneved many
times, possibly once for each tuple m the outer query block
Won Rrn classified nested quenes and proposed algonthms to
reduce the cost of evaluatmg them [KIM 821 The objective of
his algonthms is to reduce the nested query to an eqmvalent
smgle-level, or canomcal, form The resultmg canomcal query
will contain exphclt ~0x1s which capture the nested-iteration
semanacs of the ongmal query, and can now be passed to a
query optmuzer wluch wdl determme an efficient order and
method for the evaluanon of the query km compared the cost
of evaluatmg a nested query by nested Itemnon and the cost of
evaluatmg a transformed query usmg merge Jams 111 several
examples The tfansformauon method resulted in costs
sometunes an order of magmtude smaller than the costs
requred by the nested lteranon method However, a bug m

32

Kun’s algonthm NEST-JA was Qscovered by Werner E(lesslmg
[KIE 841 Another bug m the same algonthm has been
demonstrated m secaon 5 These bugs can be solved by
perfomung a JOUI III the creation of the temporary table which
contams the aggregate mformauon If the aggregate function is
COUNT, the Jam must be an outer Jam This solution reqmres
the Jam to be performed on a proJection of the outer table m
order to avoid an increase in the aggregate values due to
duphcates in the outer table The solutions to these bugs are
mcorporated mto algonthm NEST-JA2, which retams Rm’s
strategy of bmldmg a temporary table to capture aggregate
mfoxmauon, and which yields a cost reducuon sun&u to that
achieved by IGm in hts example The transformanon
algonthms have been extended to handle a larger class of
wcates, and a recursive algonthm has been presented which
wdl apply the transformanons to a nested query of arbitrary
complexity

Acknowledgements

The authors would hke to thank Professors Bruce J
McDonald and Marguente C Murphy for ther helpful
comments on an earher version of this paper

References

[AST 153

[AST 761

[COD 791

[KIM 821

[ORA 861

[SEL 191

[ST0 761

Astrahan, M M , and Chamberlm, D D Implementauon of
a structmd Enghsh query language Commun ACM 18.10
(Oct.1975), 580-588

Astrahm, M M, Blasgen. M W, Chsmberlm, D D,
Eswsran, K P, Gray, J N, Gnftiths. P P, Kmg. W F,
Lone.RA,McJones,PR.Mehl.J W,Putzolu.G R,
Tratgex.1 L,Wade,B W,andWatscit.V SystemR
Relational approach to database management ACM Trans
Datahse Syst 1.2 (June 1976). 97-137

Codd, E F Extendmg the database relatmnal model to
capture more meanmg ACM Trans Database Syst 4, 4
(Dee 1979). 397-434

Kmsslmg, W SQL-L&e and Quel-l&e correlahon quenes
wnh aggregates revwted. UCB/BRL Memo 84b’5,
Blectromcs Resesrch Laboratory, Umv Cahforma, Berkeley
(Sept. 1984)

Kun. W On mrnlzmg an SQL-l&e nested query ACM
Tram Database Syst 7,3 (Sept 1982). 443-469

Oracle Corporauon Pnvate pmduct demonstranon (Sept
1986)

Selmger, PG. Astrahan, M M , Chamberlm, D D , Lone, R
A, and Price, T G Access path selection m a relaaonal
dstsbasc system In Pm ACM Inter Conf Management of
Data, Boston, Mass (May 1979). 23-34

Stonebraker, M , Wang, E , and Kreps, P The design and
lmplementauon of INGRES ACM Trans Datubase Syst 1.3
(Sept. 1976). 189-222

33

