Optimization of Nested SQL Queries Revisited

Richard A Ganski
Department of Computer Science
San Francisco State University

Harry K T Wong
Lawrence Berkeley Laboratories

Umniversity of California

Berkeley,

Abstract

Current methods of evaluating nested quenes 1n the SQL language can be
mefficient 1n a vaniety of query and data base contexts Previous research m
the area of nested query optimization which sought methods of reducing
evaluation costs 1s summarized, including a classification scheme for nested
queries, algonthms designed to transform each type of query to a logically
equivalent form which may then be evaluated more efficiently, and a
descniption of a major bug 1n one of these algorithms Further examimation
reveals another bug mn the same algorithm Solutions to these bugs are
proposed and mncorporated into a new transformation algorithm, and exten-
stons are proposed which will allow the transformation algorithms to handle
a larger class of predicates A recursive algorithm for processing a general
nested query 18 presented and the action of this algonthm is demonstrated
This algonthm can be used to transform any nested query

1. Introduction

SQL 1s a block-structured query language for data retneval
and manipulation developed at the IBM Research Laboratory
1n San Jose, Califorma [AST 75] SQL was incorporated mnto
System R, the relational data base management system, also
developed at the IBM San Jose Research Laboratory [AST 76]

One of the most powerful features of SQL 1s the nesung of
query blocks For demonstration purposes, assume the follow-
ng relations

S(SNO,SNAME STATUS CITY) — the Supplers relation
P(PNO,PNAME,COLOR,WEIGHT,CITY) — the Parts relation
SP(SNO,PNO,QTY,ORIGIN) — the Shipment relation

The prnmary keys for these relations are SNO, PNO, and
SNO,PNO respectuvely If we wanted the names of all supphers
who supply part P2 we could say

Permission to copy without fee all or part of this matenal 1s granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of
the publication and 1ts date appear, and notice 1s given that copying
1s by permussion of the Association for Computing Machinery To
copy otherwise, or to republish, requires a fee and/or specfic
permission

© 1987 ACM 0-89791-236-5/87/0005/0023 75¢

23

P I

Lalirornia

SELECT SNAME

FROM S

WHERE SNOIN (SELECT SNO
FROM SP
WHERE NO="'P2’),

0

This 1s an example of a query with a single level of nesting
The basic structure of a SQL query 1s a query block, which
consists pnincipally of a SELECT clause, a FROM clause, and
zero or more WHERE clauses The first query block 1n a nested
query 1s known as the outer query block and the next query
block 1s known as the inner query block The WHERE clause
specifies the predicates which the tuples retrieved must satisfy
One type of predicate which can appear in the WHERE clause
1§ a nested predicate, which 1s of the form [R1 Ck op QJ, where
Q 15 a query block [KIM 82 445] Q wall always be a form of
the SELECT statement The op may be a scalar or set member-
ship operator A relation referred to in the inner query block
shall be designated as an inner relanon, and a relation referred
to 1n the outer query block shall be designated as an outer rela-
non Quenes can be nested to an arbitrary depth

In his 1982 paper “On Opumuzing an SQL-like Nested
Query” [KIM 82], Won Kim showed that the conventional tech-
niques used 1n 1mplementing query nesting, 1 ¢ the techniques
used 1n System R [SEL 79 33], can be very nefficient tables
referenced 1n the inner query block of a nested query may have
to be retneved once for each tuple of the relation referenced in
the outer query block [KIM 82 450] As a solution to this
problem, Kim proposed query transformation algorithms that
would improve the efficiency of nested query evaluation, some-
times by orders of magmtude Hs approach was to transform a
nested query to a logically equivalent single-level query (1e
without nesting) this query could then be examined by a query
optumizer, such as that described n [SEL 79], for alternative
methods of processing, including different methods of perform-
ing jomns To introduce Kim’s results, his system of classifica-
tion for nested queries 1s outhined below

2. Types of Nested Queries

Won Kim developed a classification of nested query types,
four of which are relevant to this paper They are descnibed
here briefly for single-level nested queries, as presented n
[KIM 82]

2.1. Type-A Nesting

A nested predicate 1s type-A if the inner query block Q does
not contain a join predicate that references a relation in the out-
er query block, and if the SELECT clause of Q consists of an
aggregate function over a column in an 1inner relation [KIM
82 446] The following 1s an example of a type-A nested query
of depth one

SELECT SNO
FROM SP
WHERE PNO= (SELECT MAX(PNO)

FROM P),

@

Since the mnner query block of a type-A nested query does
not reference a relation of the outer query block, 1t may be
evaluated independently of the outer query block, and the result
of 1ts evaluation will be a single constant [SEL 79 33}

2.2. Type-N Nesting

A nested predicate 15 type-N 1f the inner query block Q does
not contain a join predicate which references a relation n the
outer block, and the SELECT clause of Q does not contain an
aggregate function [KIM 82 447] The following 1s an example
of a type-N nested query

SELECT SNO
FROM §P
WHERE PNOISIN (SELECT PNO
FROM P
WHERE WEIGHT > 50),

€)}

Evaluation of a Type-N Nested Query. This kind of nested
query would be processed 1 System R by first processing the
mner query block Q, resulting 1n a hst of values X which can
then be substtuted for the inner query block in the nested
predicate, so that PNO IS IN Q becomes PNO IS IN X The
resulting query 1s then evaluated by nested iteration [SEL
79 33]

2.3. Type-J Nesting

A type-J nested predicate results when the WHERE clause of
the inner query block contains a join predicate which referen-
ces the relation of an outer query block, and the relation 1s not
mentioned 1n the inner FROM clause Another conditon 1s that
the SELECT clause of the mner query block does not contamn
an aggregate function [KIM 82 448] The following 1s an ex-
ample of type-J nesting

SELECT SNAME

FROM S
WHERE SNOISIN (SELECT SNO O]
FROM SP
WHERE QTY > 100 AND
SPORIGIN = § CITY),
2.4, Type-JA Nesting

Type-JA nesting 1s present when the WHERE clause of the
mner query block contains a join predicate which references

24

the relation of an outer query block, and the inner SELECT
clause consists of an aggregate function over an inner relation
[KIM 82 449]

Select names of parts which have the highest part number
1n the city from which they are supplied

SELECT PNAME
FROM P
WHERE PNO= (SELECT MAX(PNO)
FROM SP

WHERE SPORIGIN =PCITY),

&)}

Evaluation of Type-J and Type-JA Nested Queries. Type-
J and type-JA nesting are processed in System R by the nested
iteration method the inner query block 1s processed once for
each tuple of the outer relanon which sausfies all simple
predicates on the outer relation [SEL 79 33]) This method has
the obvious disadvantage that the inner relation (SP 1n example
4) may have to be retrieved many times 1n example 4, 1t must
be retrieved once for each tuple of the outer relation S, since
there are no simple predicates 1n the outer query block It s this
mefficiency which motivated Kim to develop alternative algo-
nithms for processing nested quenes

3. Kim’s Algorithms for Processing Nested Queries

Kim observed that for type-N and type-J nested queres, the
nested 1teration method for processing nested quernes 15 equiv-
alent to performing a join between the outer and inner relations
[KIM 82 451] But nested 1teration 1s only one way of perform-
ing a join, for single-level quenes System R also performs
Joins by the merge join method, with the decision as to which
method to use made by the query optimizer {SEL 79 28] Xam
showed that nested queries could be transformed to logically
equivalent single-level queries contamning single-level jomn
predicates explicitly, and that now the query opumizer can
choose a merge join method in implementing the joins, often at
a great reduction of cost over the nested iteration method [KIM
82 461] Kim’s transformation algorithms are summarized n
the present section

3.1. Processing a Type-N or Type-J Nested Query

In his Lemma 1 [KIM 82 451], Kim states that a type-N
nested two-relation query 1s equivalent to a canonical two-rela-
tion query with a join predicate

Let Q1 be

SELECT RiCk
FROM RiRy
WHERE RiCh=R)Cm,

and let Q2 be

SELECT Ri1Ck
FROM R
WHERE RiChISIN (SELECT RjCm
FROM Ry),
[KIM 82 451]

Kim'’s Lemma 1 states that Q1 and Q2 are equivalent, that 1s,

they yield the same result [KIM 82 451] Kim’s proof of
lemma 1 calls attention to the fact that by defimtion the 1nner
block of Q2 can be evaluated independently of the outer block,
resulting 1n a list of values Since this hist contains values from
column Rj Cm, the predicate 1s equivalent to the join predicate
RiCh = RyCm [KIM 82 451-452] From Lemma 1 Kim
develops the following algorithm

Algonrithm NEST-N-J
1 Combine the FROM clauses of all query blocks 1nto one
FROM clause
2 AND together the WHERE clauses of all query blocks,
replacing IS IN by =
3 Retan the SELECT clause of the outermost query block
[KIM 82 452]

The result 1s a canonical query logically equivalent to the
ongnal nested query The algonthm apphes to type-N or type-J
nested queries with one or more levels of nesting

3 2. Processing a Type-JA Nested Query
In his Lemma 2 [KIM 82 455], Kim asserts that a type-JA

nested query can be transformed to a type-J nested query which
references a new temporary relation

Let Q3 be

SELECT Ri1Ck

FROM R

WHERE RiCh= (SELECT AGG(RjCm)
FROM Rj
WHERE RjCn=Ri1Cp),

and let Q4 be

SELECT RiCk

FROM R1

WHERE RiCh= (SELECT RtC2
FROM Rt
WHERE RtCl=R:iCp),

where Rt 15 a temporary table obtained by
RYC1,C2)= (SELECT R;Cn,AGG(R)Cm)
FROM R;
GROUPBY R) Cn),
[KIM 82 454-455)

Kim’s Lemma 2 states that Q3 and Q4 are equivalent [KIM
82 455] His proof postulates that the action of the nested 1tera-
tion processing of a type-JA query can be captured 1n a tem-
porary table formed with a GROUP BY clause, as in Rt for
each tuple of Ri, a tuple 1s retrieved from Rt whose C1 (for-
merly Cn) value matches the Cp value of the Rt tuple The C2
value of the Rt tuple will contain the aggregate value obtained
by the GROUP BY clause, and this can be matched with Ri Ch
[KIM 82 455)

Lemma 2 leads to an algonithm which transforms a type-JA
nested query of depth one to an equivalent type-J nested query
of depth 1 Assume a type-JA nested query as follows

25

SELECT R1Cn+2
FROM RI1

WHERE R1Cn+l= (SELECT AGG(R2Cn+l)

FROM R2

WHERE R2Cl1=R1C1AND
R2C2=R1C2AND
R2Cn=R1Cn),

[KIM 82 455]

Algorithm NEST-JA

1 Generate a temporary relation Rt(C1, ,Cn,Cn+1) from
R2 such that Rt Cn+1 1s the result of applymg the ag-
gregate function AGG on the Cn+1 column of R2 which
have matching values in R1 for C1,C2, etc

2 Transform the 1nner query block of the intial query by
changing all references to R2 columns 1n jomn predicates
which also reference R1 to the corresponding Rt
columns The result 1s a type-J nested query, which can
be passed to algonthm NEST-N-J for transformation to
1ts canonical equivalent,

[KIM 82 455-456]

4. Costs of Kim’s Algorithms: Rationale for
Transformation

Kim’s analyses of his algonthms [KIM 82 461-464] com-
pare the costs of processing N, J, and JA-type nested quenes
using the nested iteranon method and the transformation
method followed by merge joins Kim develops cost functions
for each method and for each type of nesting, using variables
such as the sizes of relations, available memory buffer space,
and selectivity factors He demonstrates the cost reductions at-
tainable by his transformation method with examples of queries
and data base conditions for each type of nesting The follow-
ing table summanzes the results Kim obtained 1n three of his
examples [KIM 82 462-463]

Example Nested Iteration Transformation Followed by
Query (Page LIO's) Merge Join (Page I/O’s)
Type-N 10220 720

Type-J 10,120 550

Type-JA 3,050 615

Figure 1 Page I/0’s Required in Kim’s Examples

The comparative costs will of course vary with different
quenes and data base conditions, but Kim has shown that cost
savings of 80% to 95% are possible with his transformauon
method

5. Bugs in Kim’s Algorithm NEST-JA and their
Solutions

5.1. The COUNT bug

In a 1984 U C Berkeley Memorandum [KIE 84], Werner
Kiesshing revealed a problem with Kim’s algonthm NEST-JA
The problem arises when a type-JA nested query contains the
COUNT function To 1illustrate his arguments, Kiessling defines
two relations

PARTS(PNUM,QOH)
SUPPLY (PNUM,QUAN,SHIPDATE)

The following instantiations of these relations are assumed

PARTS SUPPLY
PNUM QOH PNUM QUAN SHIPDATE
3 6 3 4 7-3-79
10 1 3 2 10-1-78
8 0 10 1 6-8-78
10 2 8-10-81
8 5 5-7-83
[KIE 84 2]

Kiesshing defines Query Q2 as follows

Query Q2:

Find the part numbers of those parts whose quantiies on
hand equal the number of shapments of those parts before
1-1-80

SELECT PNUM

FROM PARTS
WHERE QOH=(SELECT COUNT(SHIPDATE)
FROM SUPPLY
WHERE SUPPLY PNUM = PARTS PNUM AND

SHIPDATE < 1-1-80)
[KIE 84 4]

Given the example tables PARTS and SUPPLY defined
above, query Q2 will give the following result when evaluated
using nested 1teration

Result PARTS PNUM
10
8
[KIE 84 4]

Application of Kim's algonthm NEST-JA to Query Q2
results 1n the following transformation

TEMP’ (SUPPNUM,CT) =
(SELECT PNUM, COUNT(SHIPDATE)
FROM SUPPLY
WHERE SHIPDATE < 1-1-80
GROUP BY PNUM)

SELECT PNUM
FROM PARTS, TEMP
WHERE PARTS QOH = TEMP’ CT AND
PARTS PNUM = TEMP’ SUPPNUM
[KIE 84 4]

TEMP’ evaluates to

TEMP SUPPNUM CT

3 2
10 1
and the final result 1s

26

PARTS PNUM
10

[KIE 84 5]

This result differs from that obtained using nested 1teration
The reason why the transformation fails 1s that in the formation
of the temporary relation, no tuples appear which do not match
the predicates applied to the inner relanon Thus, the COUNT
function will never return zero, since the only groups 1t 1s ap-
plied to are groups of tuples matching the predicates Thus CT
1n the temporary relation will never be zero

Kiesshing explored a tnal correction of the bug which in-
volved ORing a predicate to the WHERE clause of the
transformed query n order to a posterion find where an empty
set occurs to satisfy the predicate, but the tnal correction failed
on a query with more than one level of nesting [KIE 84 5] Kiess-
hng concludes that 1in attemptng to use Kim’s algorithm
NEST-JA for transforming type-JA nested quenes, “ there
seems to be no general way to recover values lost by COUNTs
on a correlation level greater than 1> [KIE 84 7] While this
does seem to be true in the context of the SQL language as
specified in [AST 76], the problem can be solved if the outer
Join operation is available 1n the processing of the query

5 2. Solution to the COUNT bug using outer joins

If either internally or through extensions to the query
language an outer join operation may be specified as the join
operation, the COUNT bug can be solved by performing an
outer join 1n the creation of the temporary relaton The opera-
tion of outer join 1s defined 1n [COD 79 407] the outer join 1n-
cludes all values from columns participating in jowmn, with
NULLSs 1n the opposite column if there 1s no match for a
column value For example, assume the following relations

R X S Y
B
B C
E

An outer join between R and S, which will be designated R X
=+ § Y,will have the following result

X Y
A A
B B
A C
E A

where A 1s the special null value The outer join operation 18
mmplemented 1n at least one commercial data base management
system with which the authors are famhiar [ORA 86]

To solve the COUNT bug an outer join may be used in the
creation of the temporary relation Kiesshing’s query Q2 could
be transformed to give the following

TEMP3 (SUPPNUM,CT) =
(SELECT PARTS.PNUM, COUNT(SUPPLY SHIPDATE)

FROM PARTS SUPPLY
WHERE SUPPLY SHIPDATE < 1-1-80 AND
PARTS.PNUM =+ SUPPLYPNUM

GROUP BY PARTS PNUM),

Query T3

SELECT PNUM

FROM PARTS,TEMP3

WHERE PARTS QOH = TEMP3 CT AND
PARTS.PNUM = TEMP3 SUPPNUM,

Before looking at the result of this new query, let us look at
the result of the outer join between PARTS and SUPPLY with
the conditions given 1n the creaton of the temporary relation

TEMP3

PARTS ENUM PARTS QOH SUPPLY PNUM

3 6 3
3 6 3
10 1 10
8 0 A

SUPPLYQUAN SUPPLY SHIPDATE

4 7-3-19
2 10-1-78
1 6-8-78
A A

Note that the condition which applies to only one relation
(SUPPLY SHIPDATE < 1-1-80) must be applied before the
join 1s performed Otherwise the join would not contain the last
row, and the result would be incorrect This may happen if the
join 1s performed first to take advantage of indices on the jomn
columns To ensure restriction, we can explicitly build a tem-
porary table applying simple predicates This temporary table
will be a restriction and projection of the inner table

(SELECT PNUM
FROM SUPPLY
WHERE SHIPDATE < 1-1-80),

TEMP2 (PNUM) =

and TEMP3 1s changed to

TEMP3 (SUPPNUM,CT) =
(SELECT PARTS.PNUM, COUNT(TEMP2 SHIPDATE)
FROM PARTS,TEMP2
WHERE PARTS.PNUM =+ TEMP2 PNUM
GROUP BY PARTS PNUM),

Thus, TEMP3 will look like this

TEMP3 SUPPNUM T
3 2
10 1
8 0
and the result of query T3 will be

27

10

8

which matches the result obtained by nested iteration This
solution has been tested successfully on quernies with more than
a single level of nesting, including Kiessling’s query Q3 [KIE
34 0]

If the type-JA query with a COUNT function contains a
nested jomn predicate with a scalar comparison operator other
than equality, the correct result 1s obtained if the scalar operator
15 used 1n the outer join operation to create the temporary rela-
tion and the jomn predicate in the onginal query 1s changed to
equality

5.2.1. Query Blocks with COUNT(*)

If the SELECT clause of the inner query block contains
COUNT(*) instead of COUNT(column name) then this ap-
proach must be modified For example, 1f query Q2 contained a
COUNT(*) mnstead of a COUNT(SHIPDATE), then the tem-
porary table would look ke this

TEMP3 SUPPNUM (T
3 2

10 1

8 1

This would be semantically incorrect, and the final result would
be incorrect To avoid this error the SELECT clause used 1n the
creation of the table must contain COUNT(col-name) instead
of COUNT(*), where col-name 1s the name of some column n
the inner relation Since the jom column of the mnner relation
will always be present 1n the onginal query and may be the
only one that 15, let col-name be the name of the join column of
the 1nner relaton In our example 1t would be
COUNT(TEMP2 PNUM)

5 3. Another Bug. Relations other than Equality

For aggregate functions other than COUNT Kim’s algorithm
NEST-JA works correctly for nested join predicates containing
the equality operator However, if we consider other operators,
we discover another bug 1n Kim’s algorithm

Assume the PARTS and SUPPLY tables

PARTS SUPPLY
ENUM QOH PNUM QUAN SHIPDATE
3 0 3 4 7-3-79
10 4 3 2 10-1-78
8 4 10 1 6-8-78
9 5 3.2-719
and the following type-JA query

Query Q5

SELECT PNUM

FROM PARTS
WHERE QOH = (SELECT MAX(QUAN)
FROM SUPPLY
WHERE SUPPLY.PNUM < PARTS PNUM AND

SHIPDATE < 1-1-80),

Thas 1s the same as Kiesshing’s query Q1 [KIE 84 1] except for
the substitution of the “<” operator for “=" operator 1n the join
predicate The result according to nested iteraton semantics,
assuming MAX({}) = NULL, 1s

PARTS PNUM
8

Kim’s algonthm results in the following temporary table and
transformed query

TEMPS (SUPPNUM, MAXQUAN)= SELECT PNUM, MAX(QUAN)

FROM SUPPLY
WHERE SHIPDATE < 1-1-80
GROUP BY PNUM,
Query T5
SELECT PNUM
FROM PARTS, TEMP
WHERE QOH = TEMPMAXQUAN AND
TEMP SUPPNUM < PARTS.PNUM,
and the following results
TEMPS final result
SUPPNUM MAXQUAN PARTS .PNUM
3 4 10
10 1 8
9 5

which does not match the results obtained by nested iteration
The problem 1s that the temporary table created by Kim’s algo-
nithm contains only aggregate information about tuples with the
same join column value, whereas query Q5 asks for aggregate
information about a range of join column values

5.3 1 Solution to the Relations-other-than-Equahity Bug

The solution to this bug 1s similar to the solution to the
COUNT bug perform a join 1n the creation of the temporary
relation, only this time 1t need not be an outer join, unless the
aggregate function 18 COUNT The join in effect causes the
temporary table to include aggregate values over the proper
range of join column values As before, the join predicate in the
onginal query must be changed to equality This implies that
only the equality operator may bethe outer relation and the
temporary relation

If this solution 1s applied to query Q5 and the last SUPPLY
table, the outcome 15

28

TEMPS6 (SUPPNUM, MAXQUAN) =
SELECT PARTS.PNUM, MAX(SUPPLY QUAN)
FROM PARTS, SUPPLY
WHERE SHIPDATE < 1-1-80 AND
SUPPLYPNUM < PARTS PNUM
GROUP BY PARTS PNUM,

and query QS5 1s transformed to

Query T6
SELECT PNUM
FROM PARTS, TEMP
WHERE PARTS QOH = TEMP MAXQUAN AND
PARTS PNUM = TEMP SUPPNUM,
with the following results
TEMP6 final result.
SUPPNUM MAXQUAN PARTS PNUM
10 5 8
8 4

This matches the result obtamed by nested 1teration
5.4. A Problem with Duplicates

The methods outhined above to solve the COUNT bug work
correctly 1f the outer relation of the nested query contains no
duplicates 1n the join column, but a problem anises if 1t does
contain duplhicates Assume the following PARTS and SUPPLY
relations

PARTS SUPPLY
ENUM QOH PNUM QUAN SHIPDATE
3 6 3 4 8/14/177
3 2 3 2 11/11/78
10 1 10 1 6/22/16
10 0
8 0

For this example let us again assume Kiessling’s query Q2 If
we apply query Q2 to the above relations, the result by nested
1teration would be

PARTS PNUM
3
10
8

If we apply our new modified version of Kim’s algorithm, the
results would be

TEMP3 SUPPNUM CT finalresult PARTS PNUM
3 4 8
10 2
8 0

Thas does not match the result obtamned by nested iteration The
problem anses because duphcates 1n the outer relation increase
the COUNT over that column 1n the temporary relanon This

problem does not anse with the MAX and MIN functions, but
1t does anise with the COUNT, AVG and SUM functions

5.4.1. Solution to the Duplicates Problem

In order to match the results obtained by nested iteration
semantics for relations with duplicates 1n the outer join column,
our algonthm must be modified to remove duplicates before
the join in the creation of the temporary table 1s performed
This can be accomplished by projecting the join column of the
outer relation, and using the projection instead of the outer rela-
tion 1n any join required to build a temporary table Ths 1s part
of the procedure followed in INGRES {STO 76] for nested
QUEL quenes [KIE 84 8] The efficiency of the algorithm can
be improved by applying all simple predicates to the outer rela-
tion 1n the creation of the projection In query Q2 this rule wall
have no effect since there are no simple predicates in the outer
query block

Using Kiesshing’s query Q2 as an example agan, let TEMP1
be defined as follows

(SELECT DISTINCT PNUM
FROM PARTS),

TEMP1(PNUM) =

TEMP1 1s the projection of the PNUM column from PARTS
TEMP3 will now be defined as

TEMP3 (SUPPNUM,CT) =
(SELECT TEMP1 PNUM, COUNT(SUPPLY SHIPDATE)
FROM TEMP1,SUPPLY
WHERE SUPPLY SHIPDATE < 1-1-80 AND
TEMP1 PNUM =+ SUPPLY PNUM
GROUP BY TEMP1 PNUM),

and query T3 remains the same The results are

TEMP1 TEMP3 final result
PNUM SUPPNUM T PARTS PNUM
3 3 2 3
10 10 1 10
8 8 0 8

which matches the result obtained by nested iteration
6. Modified algorithm NEST-JA2
6.1 The Algorithm

The solutions to the bugs descnbed 1n the previous section
suggest a modified algonthm for transforming type-JA nested
quenes, which shall be called algorithm NEST-JA2 This algo-
nthm consists of three major parts

Algorithm NEST-JA2

1 Project the join column of the outer relation, and restrict
1t with any simple predicates applying to the outer rela-
ton

2 Create a temporary relation, jomning the inner relation
with the projection of the outer relation If the aggregate
function 1s COUNT, the join must be an outer jomn, and
the 1nner relation must be restricted and projected before

29

the jomn 1s performed If the aggregate function 1s
COUNT(*), compute the COUNT function over the join
column The join predicate must use the same operator as
the jon predicate 1n the onginal query (except that 1t
must be converted to the corresponding outer operator 1n
the case of COUNT), and the join predicate n the
oniginal query must be changed to = In the SELECT
clause, select the join column from the outer table 1n the
Join predicate instead of the inner table The GROUP BY
clause will also contain columns from the outer relation

3 Jomn the outer relation with the temporary relation, ac-
cording to the transformed version of the onginal query

To 1llustrate the action of algonithm NEST-JA2, let us apply
1t to Kaesshing’s query Q2 The three steps are then as follows

DISTINCT PNUM
PARTS,

PNUM

SUPPLY

SHIPDATE < 1-1-80),

1 TEMP1 (PPNUM) = SELECT
FROM

2 TEMP2 (PNUM) = (SELECT
FROM
WHERE

TEMP3 (PNUMCT) =
(SELECT TEMPI1 PNUM, COUNT(TEMP2 SHIPDATE)
FROM TEMP1, TEMP2
WHERE TEMP1 PNUM =+ TEMP2 PNUM
GROUP BY TEMP1 PNUM),

3 SELECT PNUM

FROM PARTS,TEMP3
WHERE PARTS QOH = TEMP3 CT AND
PARTS.PNUM = TEMP3.PNUM,

If these three steps are apphed to the PARTS and SUPPLY
relations with duplicates considered above, the results are

TEMP1 TEMP3 final result
ENUM SUPPNUM CI PARTSPNUM
3 3 2 3
10 10 1 10
8 8 0 8

which matches the result obtained by nested iteration
7. Analysis of Modified Algorithm NEST-JA2

The total cost of processing a type-JA nested query using the
new algorithm NEST-JA2 will consist of three major sub-costs
1 The projection and restricion of the outer table Ru,
resulting 1n temporary table Rt2
2 The creation of temporary relation Rt by projecting and
restricung inner relation Rj, joining this with temporary
table Rt2, and performing a GROUP BY operation on the
result.
3 Jomnng temporary table Rt with outer table Ru
These costs will be examuned 1n detail below For simphcity it
will be assumed that nested quenes are of depth one The
analyses will be presented using Kim’s notation [KIM 82 462]
Ru1 denotes the relation of the outer query block, Ry the relation
in the FROM clause of the mnner query block, and Rt the tem-
porary relation obtained by intermediate processing on Ry Pk

15 the size 1n pages of relation Rk, and Nk 1s the number of
tuples 1n Rk Let (1) denote the fraction of the tuples of Ru that
satisfy all simple predicates on R1 B denotes the size 1n pages
of available main-memory buffer space When 1t 15 necessary
to sort a relation, a (B-1)-way multi-way merge sort 1s used,
which requires 2*P*logg)P page 1/0’s to sort a relation R
[KIM 82 462) The measure of performance 1s the number of
disk page 1/O’s required, and for simplicity relations R1 and R)
are scanned sequentially

7.1. Projection and Restriction of the Outer Table

The cost of creating a projection and restriction Rt2 from Ry,
with duplicates removed, 1s

P1 + PR + 2*P12*logg P2 page I/O’s

where the last term 1s the cost of removing duplicates using a
(B-1)-way merge sort This also sets up Rt2 1n jomn column or-
der for a merge join Pt2 will be some fraction of P1 Since Rt2
contains only tuples satisfying the simple predicates on Ri, Pt2
will be some fraction of f(1)*P1, the fraction depending on the
s1ze of the column compared to the size of a tuple

7.2. Creation of Temporary Table Rt

In the modified algornithm NEST-JA2, a join 1s required m
the creation of the temporary relation from the inner relation If
the aggregate function 1n the nner block 1s COUNTY), this join
will be an outer join The inner relation 1s denoted Rj and Rt3
will designate a temporary relaton created by projecting and
restricting R) Rt3 1s used to perform the join with Re2, fol-
lowed by the GROUP BY operation, to create the temporary
relation Rt

The cost of this join will depend on whether the nested 1tera-
tion or the merge join method 1s used The nested loops method
will be efficient 1f the temporary relation Rt3 can fit into B-1
memory pages, with a cost of

Pj + P12 + P4 page 1/O’s,

where Rt4 1s the result of the join If, however, Rt3 does not fit
mto B-1 pages, Rt3 will have to be retrieved once for each
tuple of Rt2, since Rt2 has already been restricted The cost
will be

P} + P13 + P12 + N12*Pt3 + Pt4 page /O’s,

where the first two terms are the cost of creating Rt3
If the merge join method 1s used, the cost will be

Pj + P13 + 2*Pt3*logp 1 P13 + P12 + Pt3 + P4 page I/O’s,

where the first three terms are the cost of building Rt3, sorting
1t and removing duplicates, and the last three terms are the cost
of merge joming Rt2 with Rt3 and storing the result The cost
of sorting Ri2 1s not included n the merge join cost, since this
cost 1s subsumed by the cost of creating it with duplicates
removed In addition, performing a merge join to create Rt4
obwviates the need to sort 1t for the GROUP BY operation, since
the GROUP BY column is the join column

30

If the aggregate function in the mnner SELECT clause 1s
COUNT(), an outer join must be used 1n the creation of tem-
porary table Rt4 The merge join method of performing an
outer join will have a cost function 1dentical to that for a stan-
dard join, since the two relations are scanned in sorted order,
and no extra cost 1s involved 1n determining which tuples have
no matching tuples 1n the opposite relation Rt4, the result of
the join, may be shghtly larger than if a standard join were
performed, adding a small amount to the cost of the join As in
Kim’s analyses, the joins performed following transformation
will be assumed to be merge joins

7.3. Join of Rt and R1

The cost of joiming temporary table Rt and outer table Ra
will also depend on the kind of join used, but as will be seen
below, a merge join of these relations can be particularly effi-
cient, since Rt 1s already 1n join column order a merge jomn
will cost

2*P1*logp.4P1 + P1 + Pt page fetches,

assumung Ru 15 not reduced 1n size, while a nested 1teration join
would cost

P1 + f(1)*N1*Pt page fetches
7.4, Total Cost

The total cost of processing a single-level type-JA nested
query using the modified algonthm NEST-JA2 will depend on
the type of join used to create temporary relation Rt4 as shown
above, 1t will also depend on the type of join used between the
outer relation Ri1 and the temporary relation Rt Thus there are
four possible total costs for a single-level query, each of which
may be estimated by the opumizer One of these evaluation
methods 1n particular 1s worthy of note the use of two merge
joins 1n the evaluation of the query In evaluating the query by
this method there will be cost savings in the merge joins from
sorting relations earher 1n the process Rt2 1s created 1n join
column order, so 1t does not have to be sorted for the join with
Rt3, Rt4 15 created n GROUP BY column order, so 1t does not
have to be sorted for the GROUP BY operation, and Rt 1s
created 1n join column order, so 1t does not have to be sorted
for the merge join with R1 The total cost for this method 1s

P14+ P2 + 2*Pt2*logp P2 +
Py + P3 + 2*Pt3*logp P13 + P2 + P13 + 2*Pt4 + Pt +
2*Pi*logp.,P1+ P1+ Pt,

assuming Ri 1s not reduced 1n size, and where the first three
terms are the cost of projecting and restricting Ry, resulting in
Rt2, the next eight terms are the cost of creating temporary
table Rt, including the GROUP BY operation, and the last three
terms are the cost of performung the final jorn

The modified algorithm can be compared to the nested itera-
tion method in the following example Let the query to be
evaluated be Kim’s query Q3 [KIM 82 454] where the ag-
gregate function 1s MAX() LetP1=50,P)=30,P2=7,Pt3 =
10,Pt4 =8, Pt = 5, B = 6, and f(1)*N1 = 100 The nested 1tera-
tion method of processing Q3 costs 3050 page fetches in the

worst case The transformation approach, using the modified
algonthm and two merge joins, costs about 475 page fetches

8. Extensions: the Predicates EXISTS, NOT
EXISTS, ANY, and ALL

In presenting his transformation algonthms, Kim considered
nested predicates contaiing scalar and set inclusion operators
If the language 1s extended to include the useful operators
EXISTS, ANY, and ALL, some extensions to the transforma-
tion algonthms must be implemented The extensions proposed
mn this section are transformations of the predicates to
predicates contaimng simple scalar or set contanment
operators The query can then be processed by the transforma-
tion algonthms presented above

8.1 EXISTS and NOT EXISTS
A nested predicate of the form

WHERE EXISTS (SELECT selitems
FROM fromitems

WHERE whereitems)

can be transformed to the semantically equivalent nested

predicate

WHEREO< (SELECT COUNT (sehtems)
FROM fromitems

WHERE whereitems)
Simularly, a nested predicate of the form
WHERE NOT EXISTS (SELECT selitems

FROM fromitems
WHERE whereitems)

1s transformed to the semantically equivalent predicate
WHEREO= (SELECT COUNT (selitems)

FROM fromitems
WHERE whereitems)

The resulting predicate 1s then processed as a type-A or type-JA
predicate, depending on the details of the mner query block

82ANYand ALL
A predicate of the form

<ANY (SELECT selitem
FROM fromitems

WHERE whereitems)

can be transformed to the logically (but not necessarily seman-
tically) equivalent form

< (SELECT MAX(selitem)
FROM fromitems
WHERE whereitems)

3

The same transformation 1s performed when the operator 1s <=
or '> Conversely,

<ALL (SELECT selitem
FROM fromitems
WHERE whereitems)

1s transformed to the logically equivalent predicate

< (SELECT MIN(selitem)
FROM fromitems
WHERE whereitems)

and the same transformation 1s performed when the operator 1s
<= or > If the operator 1s >, >=, or '<, the transformation 1s
the reverse

> ANY (SELECT selitem
15 transformed to

> (SELECT MIN(selitem)
and

> ALL (SELECT selitem
1s transformed to

> (SELECT MAX(selitem)

More simply, a predicate of the form =ANY 1s transformed to
IN, and a predicate of the form !'=ANY 1s transformed to NOT
IN

9. Processing a General Nested Query

Algonthm NEST-JA2 apphes to type-JA queries with a
single level of nesting The extension of the algorithm to type-
JA quenes with more than one level of nesting 1s not as simple
as 1t was for algorithm NEST-N-J the aggregate function and
the join predicate may appear at any level of nesting, and not
necessarily at the same level Kim approaches the problem by
means of query graphs hs algonithm NEST-G for transform-
ing a general nested query gives the correct canomical result by
mspecting and reducing the query graph for the query [KIM
82 465] Rather than going into Kim’s notations and methods,
we will propose an alternative method for processing a general
nested query, a direct postorder recursive algonthm which we
believe 1s conceptually simple and which solves the problem of
processing type-JA queries with greater than a single level of
nesting

9.1. Processing a General Nested Query: a Recursive
Approach

The recursive version of algonithm NEST-G 1s descnbed 1n
the following pseudocode procedure nest g(query_block),
where the parameter query_block 1s a ponter to a SQL query
block, possibly with descendant inner query blocks nested
within 1t The procedure 15 1itially called with a pornter to the
outermost query block (the beginning) of the query

procedure nest_g(query_block)
for each predicate in the WHERE clause of query_block
if predicate 15 a nested predicate (1€ contains nner query block)
nest_g(nner_query_block)
”
* Determune type of nesting, and call appropriate
* transformation procedure
¥/
if SELECT clause of inner_query_block contamns aggregate function
if nner_query_block contains jom predicate referencing a relation
which 1s not 1n its FROM clause
/‘
* pesting 1s type-JA
*/
nest_ja2(inner_query_block)
nest_n_j(query_block,inner_query_block)
else
/&
* nesting 15 type-A
¥/
nest_a(mner_query_block)
else
nest_n_j(query_block,mner_guery_block)
return

Three procedures are called by nest_g() nest_a(), which
evaluates 1nner_query_block, replacing it with the result-
ng constant, nest_ja2(), which executes algorithm NEST-JA2,
and nest_n_j(), which executes Kim’s algorithm NEST-N-J,
combining the two query blocks query_block and
mner_query_block In explaining procedure nest g() 1t 1s
useful to model a nested query with a multi-way tree whose
nodes are query blocks, where the outermost query block (the
beginning of the SQL statement) 1s the root and the innermost
query blocks are the leaves Procedure nest_g() searches down
through the levels of a nested query from the outermost query
block until 1t finds the innermost query blocks (the leaves of
the query tree) It then examines the leaf block to determune the
type of nesting present, and transforms the parent to canonical
form by calling the appropnate transformation procedures
After this 1s done for all nested predicates in query_block, the
recursion then unwinds one level and the query block
mmediately above 1s processed in the same way, continuing
the unwinding until lastly the outermost, or root, query block 1s
transformed

The algonthm represented 1n procedure nest g() solves the
problem of correctly transforming a type-JA query with
multiple levels of nesting To demonstrate this, let us assume
the following query tree

(A)

| A
(B)
/ \Y
© (D)
e
E)

Figure 2 Example Query Tree

32

The edges of the tree are labelled with the kind of nesting
present at that level Query block B contains an aggregate
function 1 1ts SELECT clause, and both C and E contain jomn
predicates referencing tables in query blocks at a ligher level

So far the most important feature with regard to processing the
query has not been mentioned does C or E contatn a reference
to a table in the FROM clause of A? This 1s important because
1t indicates whether there 1s typ-JA nesting present in the query

1f one of the inner blocks, including B, contains a reference to a
table 1n A, then type-JA nesting 1s present In other words, a
Join predicate reference must span a query block containing an
aggregate function for type-JA nesting to be present.

For example, assume the example query tree contains a
reference 1n B, C, or E to a table in the FROM clause of A Let
us assume that E contains this reference, 1n a join predicate
Procedure nest_g() will travel down to E, unwind and apply
algonthm NEST-N-J, combining C and E This moves the
reference to the table 1n A to block C Then blocks C and B are
combined, then blocks D and B Now query block B has
mherited the join predicate in block E, so that 1t contains both
an aggregate function and a join predicate which references a
table not found 1n the FROM clause of B thus 1s the defimtion
of type-JA nesting Thus, procedure nest_ja2() 1s called, which
creates a temporary table with a GROUP BY clause as
specified 1n algorithm NEST-JA2, and removes the aggregate
function, replacing 1t with a reference to the column in the
temporary table which results from the application of the
aggregate function This reduces the type-JA nesting to type-J
nesting, and procedure nest n_j() 1s immediately called to
finish the job of reducing the query to canonical form Thus
type-JA nesting of deeper than one level can be detected by
examning a single query block, which has inhented the “trans-
aggregate” join predicate by the recursive transformation of
mner query blocks, and the type-JA nested query can be
transformed to canomical form by applying the single-level
algonthm NEST-JA2

From this example 1t can be seen that the advantage of the
recursive algorithm presented 1n procedure nest g() 1s
simplicity the information needed to transform a query block
contaiming a nested predicate 1s confined to two levels of the
query the outer level (the level containing the nested
predicate) and the nner

10. Summary

The nested iteraion method of evaluating nested SQL
quenes can be 1nefficient for many quenes a relation referred
to 1 an inner query block may have to be retneved many
tumes, possibly once for each tuple 1n the outer query block
Won Kim classtfied nested quernes and proposed algonthms to
reduce the cost of evaluaung them [KIM 82] The objectve of
s algonthms 1s to reduce the nested query to an equivalent
single-level, or canomical, form The resulting canomcal query
will contain exphicit jomns which capture the nested-iteration
semantics of the onginal query, and can now be passed to a
query optimuzer which will determine an efficient order and
method for the evaluation of the query Kim compared the cost
of evaluating a nested query by nested 1teration and the cost of
evaluating a transformed query using merge joins 1n several
examples The transformatton method resulted in costs
sometimes an order of magmitude smaller than the costs
required by the nested iteraton method However, a bug

Kim’s algonthm NEST-JA was discovered by Werner Kiessling
[KIE 84] Another bug mn the same algorithm has been
demonstrated mn secton 5 These bugs can be solved by
performing a jomn 1n the creation of the temporary table which
contains the aggregate information If the aggregate function 1s
COUNT, the join must be an outer join This solution requires
the join to be performed on a projection of the outer table m
order to avoid an increase in the aggregate values due to
duplicates 1n the outer table The solutions to these bugs are
incorporated into algorithm NEST-JA2, which retains Kim’s
strategy of building a temporary table to capture aggregate
information, and which yields a cost reduction simlar to that
achieved by Kim in his example The transformation
algonthms have been extended to handle a larger class of
predicates, and a recursive algonthm has been presented which
will apply the transformations to a nested query of arbitrary
complexaty

Acknowledgements

The authors would hke to thank Professors Bruce J
McDonald and Marguente C Murphy for their helpful
comments on an earlier version of this paper

References

[AST 75) Astrahan, M M, and Chamberlin, D D Implementation of
a structured English query language Commun ACM 18, 10
(Oct.1975), 580-588

[AST 76] Astrahan, M M, Blasgen, M W, Chamberln, D D,
Eswaran, K P, Gray, J] N, Gnffiths, P P, King, W F,
Lore, R A, McJones, P R, Mehl, J] W, Putzolu, G R,
Traiger, I L, Wade, B W, and Watson, V System R
Relational approach to database management ACM Trans
Database Syst 1,2 (June 1976), 97-137

[COD79] Codd, E F Extending the database relational model to
capture more meaning ACM Trans Database Syst 4, 4
(Dec 1979), 397-434

[KIE 84] Kiessling, W SQL-Like and Quel-like correlation quenes
with aggregates revisited. UCB/ERL Memo 84/75,
Electromics Research Laboratory, Univ California, Berkeley
(Sept. 1984)

[KIM 82] Kim, W On optimizing an SQL-like nested query ACM
Trans Database Syst 7,3 (Sept 1982), 443-469

[ORA 86] Oracle Corporation Private product demonstration (Sept
1986)

[SEL 79] Selinger, PG, Astrahan, M M, Chamberlin, D D, Lone, R
A, and Price, T G Access path selection m a relational
database system In Proc ACM Inter Conf Management of
Data, Boston, Mass (May 1979), 23-34

[STO 76) Stonebraker, M, Wong, E, and Kreps, P The design and
implementation of INGRES ACM Trans Database Syst 1,3
(Sept. 1976), 189-222

33

