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Abstract

Many real-world applications contain time-constrained access to data as
well as access to data that has temporal validity. For example, consider
a telephone switching system, network management, navigation systems,
stock trading, and command and control systems. These applications re-
quire gathering data from the environment, processing information in the
context of information obtained in the past, and contributing timely re-
sponse. Hence, these applications need a real-time database system, i.e.
database system where transactions are associated with deadlines on their
completion times.

Concurrency control is one of the main issues in the studies of real-time
database systems. Many real-time concurrency control methods consid-
ered in the literature are based on pessimistic two-phase locking (2PL),
where transaction acquires a lock before database operation and waits for
the lock if it cannot be granted. However, 2PL has some inherent problems
such as the possibility of deadlocks and unpredictable blocking time. These
problems appear to be serious in real-time systems since real-time trans-
actions need to meet their timing constraints, in addition to consistency
requirements.

Optimistic concurrency control methods have the attractive properties of
being non-blocking and deadlock-free. These properties make them espe-
cially attractive for real-time database systems. Because conflict resolution
between the transactions is delayed until a transaction is near to its com-



pletion, there will be more information available on making the conflict res-
olution. Optimistic methods have the problem of unnecessary restarts and
heavy restart overhead because some near-to-complete transactions have to
be restarted. Therefore, the major concern in designing optimistic concur-
rency control methods is to design methods that minimize the number of
transactions to be restarted.

This thesis shows that some of the well-known previous methods include un-
necessary restart problems. A method to reduce these unnecessary restarts
is proposed. This method is based on selecting a commit timestamp as near
to the validation time as possible and a new method to resolve conflicts by
adjusting the serialization order dynamically amongst the conflicting trans-
actions after the validation is successful. This method maintains serializ-
ability or, more precisely, strict serializability. We show that many unnec-
essary restarts can be avoided efficiently and avoiding unnecessary restarts
is an efficient approach for improving the performance and predictability of
concurrency control methods for main-memory database systems beyond
the current state-of-the-art.

Additionally, methods to incorporate information about the timing con-
straints of transactions in the conflict resolution is proposed. We show
that priority cognizance is not a viable approach for improving the per-
formance and predictability of real-time concurrency control methods for
main-memory real-time database systems. The results show that the pro-
posed methods offer better chances for critical transactions to complete
before their deadlines.

Finally, the work identifies a need for adaptive and integrated concurrency
control methods in real-time database systems. Therefore, a new optimistic
concurrency control method is presented where conflict resolution is based
on adaptation to the current workload. This method is shown to produce
correct results and was experimentally tested. The performance of the
proposed method is shown to be superior to previous approaches.

The feasibility of the proposed methods have been experimentally tested
using a prototype of a main-memory real-time database system for telecom-
munications with a telecommunication service workload. The results show
that optimistic methods can be used in this kind of environment.
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Chapter 1

Introduction

Real-time computing is one of the most difficult and challenging areas in
computing. It is also of great importance, since real-time software is essen-
tial to all ultra-reliable and safety critical applications. Real-time systems
play a critical role in modern life, ranging from domestic appliances to in-
dustrial robots, from industrial process control to advanced avionics and
from computer games to telecommunication systems. These applications
involve real-time tasks, which often carry significant penalties in terms of
cost and loss of life in the event of failure. Every day these systems provide
us with important services. When we drive, they control the engine and
brakes of our car and control traffic lights. When we fly, they schedule and
monitor the takeoff and landing of our plane, make it fly, maintain its flight
path.

In recent years, a lot of research work has been devoted to the design of
database systems for real-time applications. Databases are useful in real-
time applications because they combine several features that facilitate (1)
the description of data, (2) the maintenance of correctness and integrity of
the data, (3) efficient access to the data, and (4) the correct executions of
query and transactions in spite of concurrency and failures [81].

A real-time database system (RTDBS) is usually defined as a database
system where transactions are associated with deadlines on their comple-
tion times. In addition, some of the data items in a real-time database are
associated with temporal constraints on their validity. In order to com-
mit a real-time transaction, the transaction has to be completed before its
deadline, and all of its accessed data items must be valid up to its commit
time. Otherwise, the benefits of the results will be seriously decreased. In
many cases, any deadline violation of a critical real-time transaction may
cause disaster.

Traditional databases, hereafter referred to as databases, deal with per-



2 1 INTRODUCTION

sistent data. Transactions access this data while preserving its consistency.
The goal of transaction and query processing methods chosen in databases
is to get a good throughput or response time. In contrast, real-time database
systems can also deal with temporal data, i.e., data that becomes outdated
after a certain time. The important difference is that the goal of real-time
database systems is to meet the time constraints of the transactions.

One of the most important points to remember here is that real-time
does not only mean fast [97]. Furthermore, real-time does not mean timing
constraints that are in nanoseconds or microseconds. Real-time means the
need to manage explicit time constraints in a predictable manner, that is, to
use time-cognizant methods to deal with deadlines or periodicity constraints
associated with tasks and transactions [98].

As a sample application let us consider a database system for telecom-
munication applications called Telecommunication Database System in
more detail [6]. Recent developments in networking and switching technolo-
gies have increased the data intensity of telecommunications systems and
services. This can be seen in many areas of telecommunications including
network management, service management, and service provisioning. For
example, in the area of network management the complexity of modern
networks leads to a large amount of data on network topology, configura-
tion, equipment settings, and so on. In the area of service management
there are customer subscriptions, the registration of customers, and service
usage (e.g. call detail records) that lead to large databases.

The integration of network control, management, and administration
also leads to a situation where database technology becomes an integral
part of the core network. The combination of vast amounts of data, real-
time constraints, and the necessity of high availability creates challenges
for many aspects of database technology including distributed databases,
database transaction processing, storage and query optimization. The per-
formance, reliability, and availability requirements of data access operations
are demanding. Thousands of retrievals must be executed in a second and
the allowed down time is only a few seconds per year.

A telecommunication database system must offer real-time access to
data [41, 42]. This is due to the fact that most read requests are for
service programs that have exact time limits. If the database cannot give a
response within a specific time limit, it is better not to waste resources and
hence abort the request. As a result of this, the request management policy
should favor predictable response times instead of high throughput. The
best alternative is that the database can guarantee that all requests are
replied to within a specific time interval. In telecommunications a typical



time limit for a read request is around 50ms. Most of read requests must
be served in that time [42]. For updates, the time limits are not as strict. It
is better to finish an update even at a later time than to abort the request.
In this work strict consistency and atomicity is required in updates.

Telecommunication database system services consist of two very dif-
ferent kind of semantics: service control and service management. Ser-
vice control denote services for customers [39]. Service control transactions
have quite strict deadlines and their arrival rate can be high (about 7000
transactions/second/call-area), but most service control transactions have
read-only semantics. In transaction scheduling, service control transac-
tions can be expressed as firm deadline transactions. Service management
denote possible management services for customer and network administra-
tion [39]. Service management transactions have opposite characteristics.
They are long updates which write many objects. A strict consistency
and atomicity is required for service management transactions. However,
they do not have explicit deadline requirements. Thus, service management
transactions can be expressed as soft real-time transactions (i.e. transac-
tions which have some value even after deadline) or non-realtime transac-
tions (i.e. transactions without deadlines). In this thesis we will concentrate
to service control transactions.

The requirements of the telecommunications database architectures
originate in the following areas [48]: real-time access to data, fault tol-
erance, distribution, object orientation, efficiency, flexibility, multiple in-
terfaces, security and compatibility [6, 82, 100]. In summary, Telecom-
munication Databases are real-time systems that contain rich data and
transaction semantics, which can be used to design better methods for con-
currency control, recovery, and scheduling. They have data with varying
consistency criteria, recovery criteria, access patterns, and durability needs.
This can potentially lead to development of various consistency and cor-
rectness criteria that will improve the performance and predictability of
such systems.

Concurrency control is one of the main issues in the studies of real-
time database systems. With a strict consistency requirement defined by
serializability [7], most real-time concurrency control schemes considered
in the literature are based on two-phase locking (2PL) [18]. Two-phase
locking has been studied extensively in traditional database systems and is
being widely used in commercial databases. In recent years, various real-
time concurrency control methods have been proposed for the single-site
RTDBS by modifying 2PL (e.g. [4, 5, 34, 37, 58, 78, 95]). However, 2PL has
some inherent problems such as the possibility of deadlocks as well as long
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and unpredictable blocking times. These problems appear to be serious in
real-time transaction processing since real-time transactions need to meet
their timing constraints, in addition to consistency requirements [83].

Optimistic concurrency control methods [26, 50] are especially attrac-
tive for real-time database systems because they are non-blocking and
deadlock-free. Therefore, in recent years, numerous optimistic concur-
rency control methods have been proposed for real-time databases (e.g.
[15, 17, 33, 53, 54, 63]). Although optimistic approaches have been shown
to be better than locking methods for real-time database systems [28, 29],
they have the problem of unnecessary restarts and heavy restart overhead.
Unnecessary restart occurs when a transaction fails it’s validation phase
and is restarted even when history is serializable. Transaction is restarted
only if it has enough time remaining for meeting its deadline. Otherwise,
all transactions changes are rolled back. Heavy restart overhead is due to
the late conflict detection that increases the restart overhead since some
near-to-complete transactions have to be restarted because of failed vali-
dation. However, because the conflict resolution between the transactions
is delayed until a transaction is near its completion, there will be more
information available in making the conflict resolution.

This thesis examines optimistic concurrency control methods in the
real-time database systems. An optimistic concurrency control method
for real-time database systems should be predictable and respect timing
constraints as well as maintain database consistency. Therefore, optimistic
concurrency control methods should not restart unnecessary transactions,
because transaction restart causes waste of resources and unpredictability.

Priority cognizant concurrency control methods based on the optimistic
methods have not been widely studied. Because priority cognizance is im-
portant to offer better support for transaction timing constraints as well
as predictability, the major concern in designing real-time optimistic con-
currency control methods is not only to incorporate information about the
timing constraints of transactions for conflict resolution but also to de-
sign methods that minimize the number of transactions to be restarted.
Therefore, in this thesis we focus on two research questions: how to avoid
many unnecessary restarts and how to integrate priority cognizance in the
optimistic concurrency control method. Our theses are following:

e Many unnecessary restarts should and can be avoided efficiently.

e Our hypothesis is that priority cognizance is not a viable approach
for improving the performance and predictability of real-time concur-
rency control methods for main-memory real-time database systems



beyond the current state-of-the-art. If they would be, some of the
previous attempts at designing priority cognizant methods for disk-
based real-time database systems would have shown better results.

e Our hypothesis is that integrated and adaptive conflict resolution is
a viable approach for improving the performance and predictability
of real-time concurrency control methods for main-memory real-time
database systems beyond the current state-of-the-art.

This thesis is based on work done in the following original publications
[71, 72, 70, 76, 75, 73, 74]. In the following the main contributions of this
work are listed:

e We have developed a prototype real-time database system for
telecommunications [73]. Author’s contribution to this system is fo-
cused on design and implementation of the transaction processing and
concurrency control. All the experiments have been done using this
prototype system. The prototype presented in Section 7.2 is based
on this publication.

e We have developed a benchmark for a distributed real-time database
system in telecommunications [72]. The author’s contribution focuses
to design and implementation of the database schema and transac-
tions. All the experiments have been done using modified version
of this workload. The author has done all experiments presented in
this thesis. The workload presented in Section 7.3 is based on this
publication.

e The work identifies the problem of unnecessary restarts in some of the
previous proposals of the optimistic concurrency control methods for
real-time database systems [74]. Therefore, a new optimistic concur-
rency control method is presented. This method is shown to produce
correct results and avoids the problem of unnecessary restarts found
in many previous methods. The proposed method is experimentally
tested and shown that its performance is superior to previous meth-
ods. The author is main contributor in this publication. Chapter 5 is
based on this publication with extended experiment tests and a new
workload compared to original publication.

e The work extends the previous work on optimistic concurrency con-
trol methods using transaction priorities in conflict resolution [70].
The extended method is shown to produce correct results and exper-
imentally tested. The performance of the proposed method is shown
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to be superior to previous approaches. Section 6.1 is based on this
publication with extended experiment tests and a new workload com-
pared to original publication.

e The work identifies a need for use deadline-driven priority in the con-
flict resolution and presents two different methods to use deadline-
driven priority in the conflict resolution [76, 75]. The proposed meth-
ods are experimentally tested. The author is main contributor in
both publications. Section 5.2 is based on [75] and Section 5.3 on
[76]. This work presents extended experiment tests with a new work-
load compared to original publications.

e The work identifies a need for adaptive and integrated concurrency
control methods in real-time database systems [71]. Therefore, a new
optimistic concurrency control method is presented where conflict res-
olution is based on adaptation to the current workload. This method
is shown to produce correct results and experimentally tested. The
performance of the proposed method is shown to be superior to pre-
vious approaches. Section 6 is based on this publication.

This thesis is organized as follows. Chapter 2 presents basic concepts in
real-time systems and databases. Chapter 3 presents concurrency control
in real-time databases. Chapter 4 presents a new optimistic concurrency
control method to reduce unnecessary restarts. Chapter 5 presents a new
optimistic concurrency control methods which uses transaction attributes
in conflict resolution. Chapter 6 presents a new optimistic concurrency con-
trol method which uses adaptive and integrated conflict resolution method.
Chapter 7 presents research using real-time databases on telecommunica-
tion applications and experiment results. Chapter 8 draws the conclusions
of this thesis.



Chapter 2

Real-Time Systems and Databases

In 1981, a software error was the reason why a stationary robot moved to
the edge of its operational area. A nearby worker was crushed to death
[11]. This is only one example of the dangers of real-time systems.

In this chapter we will define the concept of real-time system, give
some examples of real-time systems, and list some characteristics of real-
time systems. Additionally, we will define the concept of real-time database
system, give some examples of real-time database systems and some recent
research, and list some characteristics of real-time database systems.

2.1 Real-Time Systems

The Ozford Dictionary of Computing gives the following definition for real-
time system:

Any system in which the time at which output is produced is significant.
This is usually because the input corresponds to some movement in the
physical word, and the output has to relate to that same movement. The
lag from input time to output time must be sufficiently small for acceptable
timeliness.

Here the timeliness is taken in the context of the total system. In [11]
the following definition of real-time system is used:

A Real-time system is any information processing activity or system
which has to respond to externally generated input stimuli within a finite
and specified delay.

A real-time system consists of a controlling system and a controlled
system [83]. The controlled system is the environment with which the com-
puter and its software interacts. The controlling system interacts with its
environment based on the data read from various sensors, e.g., distance

7



8 2 REAL-TIME SYSTEMS AND DATABASES

and speed sensors. It is crucial that the state of the environment, as ob-
served by the controlling system, is consistent with the actual state of the
environment to a high degree of accuracy. Otherwise, the actions of the
controlling systems may be catastrophic. Hence, timely monitoring of the
environment as well as timely processing of the information from the envi-
ronment is necessary. In many cases the read data is processed to derive
new data [19]. Therefore, the correctness of a real-time system depends
not only on the logical result of the computation, but also on the time at
which the results are produced.

The release time of a task is the instant of time at which the task
becomes available for execution. The task can be scheduled and executed
at any time at or after its release time. The deadline of a task is the instant
of time by which its execution is required to be completed. The response
time of a task is the length of time from the release time of the job to the
instant when it completes. A relative deadline is the maximum allowable
response time of the task. The deadline of a task, sometimes called its
absolute deadline, is equal to its release time plus its relative deadline. A
timing constraint is a constraint enforced on the timing behavior of a task.

It is common to divide timing constraints into three types: hard, firm
and soft (see Figure 2.1).

e Hard deadline tasks are those which may result in a catastrophe if the
deadline is missed. One can say that a large negative value is imparted
to the system if a hard deadline is missed. These are typically safety-
critical activities, such as those that respond to life or environment-
threatening emergency situations (e.g. [77, 55]).

e Soft deadline tasks have some value even after their deadlines. Typi-
cally, the value drops to zero at a certain point past the deadline (e.g.
[35, 46]).

e Firm deadline tasks impart no value to the system once their dead-
lines expire, i.e., the value drops to zero at the deadline (e.g. [14, 30]).

Several scheduling paradigms emerge, depending on a) whether a system
performs a schedulability analysis, b) if it does, whether it is done statically
or dynamically, and c) whether the result of the analysis itself produces a
schedule or plan according to which tasks are dispatched at run-time. Based
on this the following classes of algorithms can be identified [84]:

e Static table-driven approaches: These perform a static schedulability
analysis and the resulting schedule is used at run time to decide when
a task must begin execution.



2.1 Real-Time Systems 9
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Figure 2.1: The deadline types.

e Static priority-driven preemptive approaches: These perform a static
schedulability analysis but unlike the previous approach, no explicit
schedule is constructed. At run time, tasks are executed using a
highest priority first policy.

e Dynamic planning-based approaches: The feasibility is checked at run
time, i.e., a dynamically arriving task is accepted for execution only
if it is found feasible.

e Dynamic best effort approaches: The system tries to do its best to
meet deadlines.

In the following we refer to a few well known scheduling algorithms.

In the earliest deadline first (EDF) [77] policy, the task with the earliest
deadline has the highest priority. Other tasks will receive their priorities in
descending deadline order. In the least slack first (LSF) [1] policy, the task
with the shortest slack time is executed first. The slack time is an estimate
of how long the execution of a task can be delayed and still meet its deadline.
In the highest value (HV) [27] policy, task priorities are assigned according
to the task value attribute. A survey of scheduling policies can be found in
[1].

In a real-time system environment resource control may interfere with
CPU scheduling [3]. When blocking is used to resolve a resource allocation,
a priority inversion [2] event can occur if a higher priority task gets blocked
by a lower priority task.
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deadline of T1
T1 —] |
A s ‘
: v
T2 : } {
T3
Time

F—  Start of task execution [ ] Lock resource and continue
—  Completion of task D Try to lock resource and wait
y  Context switch

Figure 2.2: Priority inversion example.

Figure 2.2 illustrates an execution sequence, where a priority inversion
occurs. Let us assume that priority of a task T3 is 10, T5 is 20, and T} is 30.
The task T3 executes and reserves a resource. The higher priority task 7}
pre-empts the task 75 and tries to allocate a resource reserved by the task
T5. Then, the task 75 becomes eligible and blocks T3. Because T3 cannot
be executed the resource remains reserved suppressing 77. Thus, 77 misses
its deadline due to the resource conflict.

In [88], a priority inheritance approach was proposed to address this
problem. The basic idea of priority inheritance protocols is that when a
task blocks one or more higher priority task the lower priority task inherits
the highest priority among conflicting tasks.

Figure 2.3 illustrates how a priority inversion problem presented in fig-
ure 2.2 can be solved with the priority inheritance protocol. Again, task
T3 executes and reserves a resource, and a higher priority task 77 tries to
allocate the same resource. In the priority inheritance protocol task T3 in-
herits the priority of T} and executes. Thus, task 75 cannot pre-empt task
T5. When T3 releases the resource, the priority of 75 returns to the original
level. Now T} can acquire the resource and complete before its deadline.
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Figure 2.3: Priority inheritance example.

2.2 Real-Time Databases

A database system holds a set of named data items. Each data item has a
value [7]. The values of the data items at any one time form the state of the
database. In practice, a data item could be a word of the main memory, a
page of a disk, etc. The size of the data contained in a data item is called
a granularity of the data item. In this work we assume that data items
are atomic i.e. a whole data item is accessed as one unit. Therefore, the
granularity of the data item in this work is an object which has an identity
(object identity, OID). A discussion of subobjects is out of the scope of this
work.

A database system (DBS) is a collection of hardware and software com-
ponents that support commands to access the database, called database
operations. The most important operations we will consider are read (de-
noted as r) and write (denoted as w). r[z] returns the value stored in data
item = without changing the state of the x. In this thesis « is an atomic
instance of the object. w[z] changes the value of x overwriting the old
value. In this thesis the whole object is overwritten even in case when a
small portion of the z is changed.

We will use the abbreviation DBS, instead of the more conventional
DBMS, to point that a DBS in our sense may be much less than an inte-
grated database management system. For example, it may only be a simple
main-memory system with transaction management capabilities. The DBS
executes each operation atomically. This means that the DBS behaves as
if executing operations sequentially i.e. one at a time.

The DBS also supports transaction operations: begin, commit, and
abort (denoted as b,c, and a). A transaction program reports to the DBS
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that it is about to begin executing a new transaction by issuing the oper-
ation begin. It marks the termination of the transaction by issuing either
the operation commit or the operation abort. By issuing a commit, the
transaction program reports to the DBS that the transaction has termi-
nated normally and all of its effects should be made permanent. By issuing
an abort the transaction program marks the DBS that the transaction has
terminated abnormally and all of its effects should be destroyed.

To reason about transactions and about the correctness of the manage-
ment algorithms, it is necessary to define the concept formally. For the
simplicity of the exposition, it is assumed that each transaction reads and
writes a data item at most once. From now on the abbreviations r, w, a,
and c are used for the read, write, abort, and commit operations, respec-
tively. For simplicity of exposition, we assume that each transaction reads
and writes a data item once at the most.

Definition 2.1 A transaction T; is partial order with an ordering relation
<; where [7]:

1. T; C {ri[z], w;[z] | x is a data item } U {a;,¢;};
2. a; € T; if and only if ¢; ¢ T5;
3. if t is ¢; or a;, for any other operation p € T;, p <; t; and
4. if ri[z], wi[z] € T;, then either r;[x] <; w;[z] or w;[x] <; ri[z].
O

Informally, (1) a transaction is a subset of read, write and abort or
commit operations. (2) If the transaction executes an abort operation,
then the transaction is not executing a commit operation. (3) If a certain
operation t is abort or commit then the ordering relation defines that for all
other operations, precede operation ¢ in the execution of the transaction.
(4) If both read and write operations are executed to the same data item,
then the ordering relation defines the order between these operations. In
this thesis we do not consider other operations to the database system.
Consideration how to transform SQL or other data management languages
to these operations or directly use them as implementation method is out
of the scope of this thesis. The interested reader can consult [105].

After the DBS executes a transaction’s commit (or abort) operation,
the transaction is said to be committed (or aborted). A transaction that
has issued its begin operation but is not yet committed or aborted is called
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active. A transaction is uncommitted if it is aborted or active. If a transac-
tion is aborted, the transaction can be restarted. In this thesis a restarted
transaction starts its execution from the first command in the transaction
program and reissues all database operations as new operations. We as-
sume that each transaction is self-contained, meaning that it performs its
computation without any direct communication with other transactions or
users [7].

A major aim in developing a database system is to allow several users
to access shared data concurrently [7]. Concurrent access is easy if all users
are only reading data, because there is no way for them to interfere with
one another. However, when two or more users are accessing the database
concurrently and at least one is updating data, there may be interference
that can cause inconsistencies [79].

Although two transactions may be correct in themselves, the interleav-
ing of operations may produce an incorrect result, thus risking the integrity
and consistency of the database [7, 22, 79]. The ACID properties of a
transaction that all transactions should have are [22]:

e Atomicity: A transaction’s changes to the state are atomic: either
all happen or none happen.

e Consistency: A transaction is a correct transformation of the state.
The actions taken as a group do not violate any of the integrity con-
straints associated with the state. The formal transaction maintains
the consistency.

e Isolation: Even though transactions execute concurrently, it appears
to each transaction, T', that others executed either before T' or after
T, but not both.

e Durability: Results of the committed transaction are persistent until
other committed transaction possibly changes them.

The aim of concurrency control methods are to schedule transactions
in such a way as to avoid any interference [7]. One obvious solution would
be to allow only one transaction to execute at a time. However, the goal of
a multiuser database system is also to maximize the degree of concurrency
or parallelism in the system, so that transactions that can execute without
interfering with one another can run parallelly [79].

When two or more transactions execute concurrently, their database
operations execute in an interleaved way [7]. Therefore, operations from
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one transaction may execute between two operations from another transac-
tion. This interleaving can cause transactions to behave incorrectly. There-
fore, interleaved transaction execution can lead to an inconsistent database
state. To avoid this and other problems the interleaving between trans-
actions must be controlled [7]. We say that there is a conflict between
two transactions if both transactions operate on the same data item and at
least one of the operations is write. Execution interleaving can be modelled
using a history. Formally, let T = {1}, T, ...,T,,} be a set of transactions.

Definition 2.2 A complete history H over T is a partial order with order-
ing relation <g where

n
1. H=UT;
=1

1=

n
2. <g2 U <i; and
~

)

3. for any two conflicting operations p,q € H, then either p <z ¢ or
q <H P

O

Condition (1) says that the execution represented by H involves pre-
cisely the operations submitted by T4,7T5,...,T,,. Condition (2) says that
the execution honors all operation orderings specified within each transac-
tion. Finally, condition (3) says that the ordering is determined by every
pair of conflicting operations. A history is simply a prefix of a complete
history.

One method to avoid interference problems is not to allow transactions
to be interleaved at all. An execution in which no two transactions are
interleaved is called serial [7]. A complete history H is serial if, for every two
transactions 7; and T that appear in H, either all operations of T; appear
before all operations of T); or vice versa. Thus, a serial history represents
an execution in which there is no interleaving of the operations of different
transactions. A history H is serializable if its committed projection, C'(H),
is equivalent to a serial history H. C(H) is a complete history and it is
not an arbitrarily chosen complete history. If H represents the execution
so far, it is really only the committed transactions whose execution the
database management system has unconditionally guaranteed. All other
transactions may be aborted.

We can extend the class of correct executions to include executions that
have the same effect as serial executions [7]. Such executions are called
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serializable. Execution is serializable [7] if it produces the same output
and has the same effect on the database state as some serial execution
of the same transactions. Because serial executions are correct and each
serializable execution has the same effect as a serial execution, serializable
executions are correct, too [79].

We can determine whether a history is serializable by analyzing a graph
derived from the history called a serialization graph. The serialization graph
for H, denoted SG(H), is a directed graph whose edges are all T; — T (i #
j) such that one of T}’s operations precedes and conflicts with one of T}’s
operations in H. Therefore, a history H is serializable if and only if SG(H)
is acyclic.

To ensure correctness in the presence of failures, the execution of trans-
actions should be not only serializable but also recoverable, avoid cascading
aborts, and be strict [7]. An execution is recoverable if each transaction com-
mits after the commitment of all other transactions from which it read. An
execution avoids cascading aborts if the transaction read only those values
that are written by committed transactions or by the transaction itself. An
execution is strict if the transaction reads or overwrites a data item after
the transaction that previously wrote into it terminates either by aborting
or by committing [7].

In our study of concurrency control, we need a model of the internal
structure of a DBS [7]. In our model, a DBS consists of three modules
(see 2.4). In this thesis we do not need the cache manager described in the
[7] model, because we assume main-memory database system to be used.
Therefore, we have integrated the recovery manager and cache manager
found in [7] to one data manager module (DM). A transaction manager
performs any required preprocessing of database and transaction opera-
tions it receives from the transactions (see Definition 2.1). A scheduler
controls the relative order in which database and transaction operations
are executed and transaction commitment and abortion. A data manager
operates directly on the database.
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Figure 2.4: Centralized Database System.

In this thesis we concentrate on activities of the scheduler. A scheduler
is a program or collection of programs that controls the concurrent execu-
tion of transactions. It makes use of this control by restricting the order in
which the data manager executes the reads, writes, commits, and aborts of
different transactions. The goal of the scheduler is to order these operations
so that the resulting execution is serializable and recoverable. It may also
ensure that the execution avoids cascading aborts or is strict. To execute
a database operation, a transaction passes that operation to the scheduler.
After receiving the operation, the scheduler can take one of three actions

[7]:

e Execute: It can pass the operation to DM and wait for a result.
When DM finishes executing the operation, it informs the scheduler.
Additionally, if the operation is a read, the DM returns the value(s)
it read, which the scheduler relays back to the transaction. In this
thesis, the transaction waits until the scheduler peports the result of
the operation.

e Reject: It can refuse to precess the operation, in which case it tells
the transaction that its operation has been rejected. This causes the
transaction to abort.

e Delay: It can delay the operation by placing it in a queue internal to
the scheduler. Later, it can remove the operation from the queue and
either execute it or reject it. While the operation is being delayed,
the scheduler is free to schedule other operations.
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There are many ways in which the schedulers can be classified [7]. One
obvious classification criterion is the mode of database distribution. Some
schedulers that have been proposed require a fully replicated database,
while others can operate on partially replicated or partitioned databases.
The schedulers can also be classified according to network topology. The
most common classification criterion however is the synchronization prim-
itive, i.e. those methods that are based on mutually exclusive access to
shared data and those that attempt to order the execution of the trans-
actions according to a set of rules [111]. There are two possible views:
the pessimistic view that many transactions will conflict with each other,
or the optimistic view that not too many transactions will conflict with
each other. Pessimistic methods synchronize the concurrent execution of
transactions early in their execution and optimistic methods delay the syn-
chronization of transactions until their terminations [105]. Therefore, the
basic classification is as follows:

o Pessimistic Methods

— Timestamp Ordering Methods [78, 104]
— Serialization Graph Testing [7]
— Locking Methods [89, 34, 5, 57, 32, 58]

e Optimistic Methods

— Backward Validation Methods [26]

— Forward Validation Methods [28, 53, 54, 107, 64]
— Serialization Graph Testing [7, 78, 66]

— Hybrid Methods [65]

e Hybrid Methods [33, 94, 108, 21, 56]

In the locking-based methods, the synchronization of transactions is
acquired by using physical or logical locks on some portion or granule of
the database. The timestamp ordering method involves organizing the
execution order of transactions so that they maintain mutual and internal
consistency. This ordering is maintained by assigning timestamps to both
the transactions and the data that are stored in the database [111].

The state of a conventional non-versioning database represent the state
of a system at a single moment of time. Although the contents of the
database change as new information is added, these changes are viewed
as modification to the state. The current contents of the database may
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be viewed as a snapshot of the system. Additionally, conventional DBSs
provide no guarantee of transaction completion times.

In this thesis we consider the database research area real-time data-
base systems for completing database operations within time constraints.
Another research area where time is an important part of the database is
temporal databases. A good survey of temporal databases can be found
e.g. in [96, 49, 110]. In this thesis we do not discuss temporal databases.

A real-time database is a database in which transactions have deadlines
or timing constraints. Real-time databases are commonly used in real-time
computing applications that require timely access to data. And, usually,
the definition of timeliness is not quantified; for some applications it is
milliseconds, and for others it is minutes [97, 98]. There are several surveys
on real-time databases [63, 83, 109, 110].

In the past two decades, the research in real-time database systems
(RTDBS) has received a lot of attention [52, 47, 81, 83, 90]. It consists of
two different important areas in computer science: real-time systems and
database systems. As tasks in conventional real-time systems, transactions
in RTDBS are usually associated with time constraints, e.g. deadlines. On
the other hand, RTDBS must maintain a database for useful information,
support the manipulation of the database, and process transactions. Typ-
ically, these application systems need predictable response times, and they
often have to process various kinds of queries in a timely manner. Contrary
to traditional database systems, RTDBS must not only maintain database
integrity but also meet the urgency of transaction executions [98].

In addition to the timing constraints that originate from the need to
continuously track the environment, timing correctness requirements in a
real-time database system also appear because of the need to make data
available to the controlling system for its decision-making activities [20].
The need to maintain a consistency between the actual state of the envi-
ronment and the state as returned by the contents of the database leads to
the concept of temporal consistency. Temporal consistency has two com-
ponents [92]:

e Absolute consistency: Data is only valid between absolute points in
time. This is due to the need to keep the database consistent with
the environment.

o Relative consistency: among the data used to derive other data. This
arises from the need to produce the derived data from sources close
to each other. This requires that a set of data items used to derive a
new data item form a relative consistency set R.
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Data item d is temporally consistent if and only if d is absolutely consis-
tent and relatively consistent [83]. Every data item in the real-time data-
base consists of the current state of the object (i.e. current value stored
in that data item), and two timestamps. These timestamps represent the
time when this data item was last accessed by the committed transaction.
Formally,

Definition 2.3 a Data item in the real-time database is denoted by d :
(value, RT'S,WTS, avi), where dy,que denotes the current state of d, drrs
denotes when the last committed transaction has read the current state of
d, dwrs denotes when the last committed transaction has written d, i.e.,
when the observation relating to d was made, and dg,; denotes d’s absolute
validity interval, i.e., the length of the time interval following Ry 1s during
which d is considered to have absolute validity. O

A set of data items used to derive a new data item forms a relative
consistency set R. Each such set R is associated with a relative validity
interval denoted R,,;. Assume that d € R. d has a correct state if and only
if [83]:

1. dyaiue is logically consistent, i.e., satisfies all integrity constraints.

2. d is temporally consistent:

e Data item d € R is absolutely consistent if and only if
(current_time — dwrs) < dgyi.

e Data items are relatively consistent if and only if
Vd € R|dwrs — dWTS| < Ry

In this thesis we do not consider temporal data or temporal constraints.
A good book on temporal databases can be found in [101]. A discussion on
integration of temporal and real-time database systems can be found from
[85]. Finally, temporal consistency maintainance is discussed in [106].

Several research angles emerge from real-time databases: real-time con-
currency control (e.g. [51, 16, 61]), buffer management (e.g. [13]), disk
scheduling (e.g. [45, 12]), system failure and recovery (e.g. [91]), overload
management (e.g. [25, 14]), security (e.g. [44, 24, 93], and distibuted real-
time database systems (e.g. [31, 59, 58, 57, 67, 23, 68]). In this thesis we
will focus on concurrency control because it is one of the main research
areas in the real-time database systems.

Transactions can be characterized along three dimensions; the fashion
in which data is used by transactions, the nature of time constraints, and
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the significance of executing a transaction by its deadline, or more precisely,
the consequence of missing specified time constraints [1].

A real-time transaction is a transaction (see Definition 2.1) with ad-
ditional real-time attributes. These attributes are used by the real-time
scheduling algorithms and concurrency control methods. Consider the ab-
stract database model presented in Figure 2.4. Additional real-time at-
tributes can be used at all levels and these attributes are passed as a pa-
rameters in operations. Additional attributes are the following:

e The deadline is a timing constraint associated with the transaction
denoted by deadline(T;). The developer assigns a value for the dead-
line based on an estimate or experimentally measured value of worst
case execution time.

e The priority is a scheduling priority for the transactions calculated
by a scheduling algorithm (EDF in this thesis) and is based on the
deadline and arrival time. This attribute is denoted by priority(T;).

e The criticality of the transaction attribute is denoted by
criticality(T;). The criticality attribute is assigned by the developer
and is static and the same for all instances of the same transaction
class.

e The deadline-driven conflict priority denoted by cpriority(T;) is cal-
culated from the deadline and the criticality of the transaction. This
value is calculated when the transaction enters the system and re-
mains the same in the execution of the transaction. The following
values coded to numbers are used:

1. Normal: The transaction is not essential but should be com-
pleted if the execution history is serializable.

2. Medium: The transaction is critical and should not be restarted
if there is data conflict with the transaction with lower conflict
priority.

3. Critical: The transaction is very critical and a transaction with
lower conflict priority is always restarted if there is conflict with
the transaction with critical conflict priority.

This model is correct in real-time databases covered in this thesis, be-
cause additional real-time transaction attributes do not affect the definition
of the history or serializability. Real-time databases might restrict possible
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serializable histories so that higher priority transactions have preference
over other transactions. But this does not affect correctness.

Real-time information can be used to tailor the appropriate concurrency
control methods [47]. Some transaction-time constraints come from tem-
poral consistency requirements and some come from requirements imposed
on system reaction time. The former typically take the form of periodicity
requirements. Transactions can also be distinguished based on the effect of
missing a transaction’s deadline.

Transaction processing and concurrency control in a real-time database
system should be based on priority and criticalness of the transactions
[99]. Traditional methods for transaction processing and concurrency con-
trol used in a real-time environment would cause some unwanted behavior.
Below, the four typified problems are characterized and priority is used to
denote either scheduling priority or criticality of the transaction:

e wasted restart: A wasted restart occurs if a higher priority transac-
tion aborts a lower priority transaction and later the higher priority
transaction is discarded when it misses its deadline.

e wasted wait: A wasted wait occurs if a lower priority transaction
waits for the commit of a higher priority transaction and later the
higher priority transaction is discarded when it misses its deadline.

e wasted execution: A wasted execution occurs when a lower priority
transaction in the validation phase is restarted due to a conflicting
higher priority transaction which has not finished yet.

e unnecessary restart: An unnecessary restart occurs when a trans-
action in the validation phase is restarted even when history would
be serializable.

Traditional pessimistic two-phase locking methods suffer from the prob-
lem of wasted restart and wasted wait. Optimistic methods suffer the prob-
lems of wasted execution and unnecessary restart [62].
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Chapter 3

Concurrency Control in Real-Time
Databases

A Real-Time Database System (RTDBS) processes transactions with timing
constraints such as deadlines [83]. Its primary performance criterion is time-
liness, not average response time or throughput. The scheduling of trans-
actions is driven by priority order. Given these challenges, considerable re-
search has recently been devoted to designing concurrency control methods
for RTDBSs and to evaluating their performance (e.g. [2, 29, 33, 36, 56, 53]
Most of these methods are based on one of the two basic concurrency control
mechanisms: locking [18] or optimistic concurrency control (OCC) [50].

In real-time database systems transactions are scheduled according to
their timing constraints. Task scheduler assigns a priority for a task based
on its timing constraints or criticality or both [83]. Therefore, high priority
transactions are executed before lower priority transactions. This is true
only if a high priority transaction has some database operation ready for
execution. If no operation from a higher priority transaction is ready for
execution, then an operation from a lower priority transaction is allowed
to execute its database operation. Therefore, the operation of the higher
priority transaction may conflict with the already executed operation of the
lower priority transaction. In non-pre-emptive methods a higher priority
transaction must wait for the release of the resource. This is the priority
inversion problem presented earlier. Therefore, data conflicts in concur-
rency control should also be based on transaction priorities or criticalness
or both. Hence, numerous traditional concurrency control methods have
been extended to the real-time database systems.

In the following sections recent related work on locking and optimistic
methods for real-time databases are presented. Of optimistic methods two
well-known methods are presented in detail. These methods are used as

23
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reference methods when comparing the proposed methods. Finally, an
evaluation of the optimistic methods is presented.

3.1 Locking Methods in Real-Time Databases

In this section we present some well known pessimistic concurrency control
methods. Most of these methods are based on 2PL.

2PL High Priority In the 2PL-HP (2PL High Priority) concurrency
control method [2, 4, 34| conflicts are resolved in favor of the higher priority
transactions. If the priority of the lock requester is higher than the priority
of the lock holder, the lock holder is aborted, rolled back and restarted.
The lock is granted to this requester and the requester can continue its
execution. If the priority of the lock requester is lower than that of the lock
holder, the requesting transaction blocks to wait for the lock holder to finish
and release its locks. High Priority concurrency control may lead to the
cascading blocking problem, a deadlock situation, and priority inversion.

2PL Wait Promote In 2PL-WP (2PL Wait Promote) [3, 34] the anal-
ysis of concurrency control method is developed from [2]. The mechanism
presented uses shared and exclusive locks. Shared locks permit multiple
concurrent readers. A new definition is made - the priority of a data object,
which is defined to be the highest priority of all the transactions holding
a lock on the data object. If the data object is not locked, its priority is
undefined.

A transaction can join in the read group of an object if and only if
its priority is higher than the maximum priority of all transactions in the
write group of an object. Thus, conflicts arise from incompatibility of lock-
ing modes as usual. Particular attention is given to conflicts that lead
to priority inversions. A priority inversion occurs when a transaction of
high priority requests and blocks for an object which has lesser priority.
This means that all the lock holders have lesser priority than the request-
ing transaction. This same method is also called 2PL-PI (2PL Priority
Inheritance) [34].

2PL Conditional Priority Inheritance Sometimes High Priority may
be too strict policy. If the lock holding transaction T} can finish in the time
that the lock requesting transaction 7). can afford to wait, that is within
the slack time of T}, and let T}, proceed to execution and 7, wait for the
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completion of T}. This policy is called 2PL-CR (2PL Conditional Restart)
or 2PL-CPI (2PL Conditional Priority Inheritance) [34].

Priority Ceiling Protocol [87, 88] the focus is to minimize the duration
of blocking to at most one lower priority task and prevent the formation
of deadlocks. A real-time database can often be decomposed into sets of
database objects that can be modeled as atomic data sets. For example,
two radar stations track an aircraft representing the local view in data
objects O; and Os. These objects might include e.g. the current location,
velocity, etc. Each of these objects forms an atomic data set, because the
consistency constraints can be checked and validated locally. The notion
of atomic data sets is especially useful for tracking multiple targets.

A simple locking method for elementary transactions is the two-phase
locking method; a transaction cannot release any lock on any atomic data
set unless it has obtained all the locks on that atomic data set. Once it
has released its locks it cannot obtain new locks on the same atomic data
set, however, it can obtain new locks on different data sets. The theory
of modular concurrency control permits an elementary transaction to hold
locks across atomic data sets. This increases the duration of locking and
decreases preemptibility. In this study transactions do not hold locks across
atomic data sets.

Priority Ceiling Protocol minimizes the duration of blocking to at most
one elementary lower priority task and prevents the formation of deadlocks
[87, 88]. The idea is that when a new higher priority transaction preempts a
running transaction its priority must exceed the priorities of all preempted
transactions, taking the priority inheritance protocol into consideration.
If this condition cannot be met, the new transaction is suspended and
the blocking transaction inherits the priority of the highest transaction it
blocks.

The priority ceiling of a data object is the priority of the highest pri-
ority transaction that may lock this object [87, 88]. A new transaction
can preempt a lock-holding transaction if and only if its priority is higher
than the priority ceilings of all the data objects locked by the lock-holding
transaction. If this condition is not satisfied, the new transaction will wait
and the lock-holding transaction inherits the priority of the highest trans-
action that it blocks. The lock-holder continues its execution, and when it
releases the locks, its original priority is resumed. All blocked transactions
are awaked, and the one with the highest priority will start its execution.

The fact that the priority of the new lock-requesting transaction must
be higher than the priority ceiling of all the data objects that it accesses,
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prevents the formation of a potential deadlock. The fact that the lock-
requesting transaction is blocked only at most the execution time of one
lower priority transaction guarantees, the formation of blocking chains is
not possible [87, 88].

Read/Write Priority Ceiling The Priority Ceiling Protocol is further
advanced in [89], where the Read/Write Priority Ceiling Protocol is intro-
duced. It contains two basic ideas. The first idea is the notion of priority
inheritance. The second idea is a total priority ordering of active transac-
tions. A transaction is said to be active if it has started but not completed
its execution. Thus, a transaction can execute or wait caused by a pre-
emption in the middle of its execution. Total priority ordering requires
that each active transaction execute at a higher priority level than the ac-
tive lower priority transaction, taking priority inheritance and read/write
semantics into consideration.

3.2 Optimistic Methods in Real-Time Databases

Optimistic Concurrency Control (OCC) [26, 50], is based on the assumption
that conflict is rare, and that it is more efficient to allow transactions to
proceed without delays. When a transaction desires to commit, a check is
performed to determine whether a conflict has occurred. Therefore, there
are three phases to an optimistic concurrency control method:

e Read phase: The transaction reads the values of all data items it needs
from the database and stores them in local variables. Concurrency
control scheduler stores identity of these data items to a read set.
However, writes are applied only to local copies of the data items
kept in the transaction workspace. Concurrency control scheduler
stores identity of all written data items to a write set.

e Validation phase: The validation phase ensures that all the committed
transactions have executed in a serializable fashion. For a read-only
transaction, this consists of checking that the data values read are still
the current values for the corresponding data items. For a transaction
that has writes, the validation consists of determining whether the
current transaction has executed serializable way.

e Write phase: This follows the successful validation phase for transac-
tions including write operations. During the write phase, all changes
made by the transaction are permanently stored into the database.



3.2 Optimistic Methods in Real-Time Databases 27

In the following we introduce some well known optimistic methods for
real-time database systems.

Broadcast Commit For RTDBSs, a variant of the classical concurrency
control method is needed. In Broadcast Commit, OPT-BC [29], when a
transaction commits, it notifies other running transactions that conflict
with it. These transactions are restarted immediately. There is no need to
check a conflict with committed transactions since the committing trans-
action would have been restarted in the event of a conflict. Therefore,
a validating transaction is always guaranteed to commit. The broadcast
commit method detects the conflicts earlier than the conventional concur-
rency control mechanism, resulting in earlier restarts, which increases the
possibility of meeting the transaction deadlines [29].

The main reason for the good performance of locking in a conventional
DBMS is that the blocking-based conflict resolution policy results in con-
servation of resources, while the optimistic method with its restart-based
conflict resolution policy wastes more resources [29]. But in a RTDBS en-
vironment, where conflict resolution is based on transaction priorities, the
OPT-BC policy effectively prevents the execution of a low priority trans-
action that conflicts with a higher priority transaction, thus decreasing the
possibility of further conflicts and the waste of resources is reduced. Con-
versely, 2PL-HP loses some of the basic 2PL blocking factor due to the
partially restart-based nature of the High Priority scheme.

The delayed conflict resolution of optimistic methods aids in making
better decisions since more information about the conflicting transactions
is available at this stage [29]. Compared to 2PL-HP, a transaction could be
restarted by, or wait for, another transaction which is later discarded. Such
restarts or waits are useless and cause performance degradation. OPT-BC
guarantees the commit and thus the completion of each transaction that
reaches the validation stage. Only validating transactions can cause the
restart of other transactions, thus, all restarts generated by the OPT-BC
method are useful.

First of all, OPT-BC has a bias against long transactions (i.e. long
transactions are more likely to be aborted if there is conflicts), like in the
conventional optimistic methods [29]. Second, as the priority information
is not used in the conflict resolution, a committing lower priority transac-
tion can restart a higher priority transaction very close to its validation
stage, which will cause missing the deadline of the restarted higher priority
transaction [28].
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OPT-SACRIFICE In the OPT-SACRIFICE [28] method, when a
transaction reaches its validation phase, it checks for conflicts with other
concurrently running transactions. If conflicts are detected and at least
one of the conflicting transactions has a higher priority, then the validat-
ing transaction is restarted, i.e. sacrificed in favor of the higher priority
transaction. Although this method prefers high priority transactions, it
has two potential problems. Firstly, if a higher priority transaction causes
a lower priority transaction to be restarted, but fails in meeting its dead-
line, the restart was useless. This degrades the performance. Secondly, if
priority fluctuations are allowed, there may be the mutual restarts problem
between a pair of transactions (i.e. both transactions are aborted). These
two drawbacks are analogous to those in the 2PL-HP method [28].

OPT-WAIT and WAIT-X When a transaction reaches its validation
phase, it checks if any of the concurrently running other transactions have
a higher priority. In the OPT-WAIT [28] case the validating transaction
is made to wait, giving the higher priority transactions a chance to make
their deadlines first. While a transaction is waiting, it is possible that it will
be restarted due to the commit of one of the higher priority transactions.
Note that the waiting transaction does not necessarily have to be restarted.
Under the broadcast commit scheme a validating transaction is said to
conflict with another transaction, if the intersection of the write set of the
validating transaction and the read set of the conflicting transaction is not
empty. This result does not imply that the intersection of the write set of
the conflicting transaction and the read set of the validating transaction is
not empty either [28].

The WAIT-50 [28] method is an extension of the OPT-WAIT - it con-
tains the priority wait mechanism from the OPT-WAIT method and a wait
control mechanism. This mechanism monitors transaction conflict states
and dynamically decides when and for how long a low priority transaction
should be made to wait for the higher priority transactions. In WAIT-
50, a simple 50 percent rule is used - a validating transaction is made to
wait while half or more of its conflict set is composed of transactions with
higher priority. The aim of the wait control mechanism is to detect when
the beneficial effects of waiting are outweighed by its drawbacks [28].

We can view OPT-BC, OPT-WAIT and WAIT-50 as being special cases
of a general WAIT-X method, where X is the cutoff percentage of the
conflict set composed of higher priority transactions. For these methods X
takes the values infinite, 0 and 50 respectively.
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3.3 Validation Methods

The validation phase ensures that all the committed transactions have exe-
cuted in a serializable fashion [50]. Most of the validation methods use the
following principles to ensure serializability. If a transaction T; is before
transaction Tj in the serialization graph( i.e. T; < Tj), the following two
conditions must be satisfied [62]:

1. No overwriting. The writes of T; should not overwrite the writes of
T;.
j

2. No read dependency. The writes of T; should not affect the read
phase of T;.

Generally, condition 1 is automatically ensured in most optimistic meth-
ods because I/O operations in the write phase are required to be done
sequentially in the critical section [62]. Thus most validation schemes con-
sider only condition 2. During the write phase, all changes made by the
transaction are permanently installed into the database. To design an effi-
cient real-time optimistic concurrency control method, three issues have to
be considered [62]:

1. which validation scheme should be used to detect conflicts between
transactions;

2. how to minimize the number of transaction restarts; and

3. how to select a transaction or transactions to restart when a nonse-
rializable execution is detected.

In Backward Validation [26], the validating transaction is checked for
conflicts against (recently) committed transactions. Conflicts are detected
by comparing the read set of the validating transaction and the write sets
of the committed transactions. If the validating transaction has a data
conflict with any committed transactions, it will be restarted. The classical
optimistic method in [50] is based on this validation process.

In Forward Validation [26], the validating transaction is checked for
conflicts against other active transactions. Data conflicts are detected by
comparing the write set of the validating transaction and the read set of
the active transactions. If an active transaction has read an object that has
been concurrently written by the validating transaction, the values of the
object used by the transactions are not consistent. Such a data conflict can
be resolved by restarting either the validating transaction or the conflicting
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transactions in the read phase. Optimistic methods based on this validation
process are studied in [26]. Most of the proposed optimistic methods are
based on Forward Validation.

Forward Validation is preferable for the real-time database systems be-
cause Forward Validation provides flexibility for conflict resolution [26].
Either the validating transaction or the conflicting active transactions may
be chosen to restart. In addition to this flexibility, Forward Validation
has the advantage of early detection and resolution of data conflicts. In
recent years, the use of optimistic methods for concurrency control in real-
time databases has received more and more attention. Different real-time
optimistic methods have been proposed.

Forward Validation (OCC-FV) [26] is based on the assumption that the
serialization order of transactions is determined by the arriving order of
the transactions at the validation phase. Thus the validating transaction,
if not restarted, always precedes concurrently running active transactions
in the serialization order. A validation process based on this assumption
can cause restarts that are not necessary to ensure data consistency. These
restarts should be avoided.

The major performance problem with optimistic concurrency control
methods is the late restart [62]. Sometimes the validation process using
the read sets and write sets erroneously concludes that a nonserializable
execution has occurred, even though it has not done so in actual execution
[94] (see Example 3.1). Therefore, one important mechanism to improve
the performance of an optimistic concurrency control method is to reduce
the number of restarted transactions.

Example 3.1 Consider the following transactions 77, 7> and history Hi:
Ty: r[z]er

Ty: wolz]ca

Hy: ri[z]wa[z]co

Based on the OCC-FV method [26], T} has to be restarted. However,
this is not necessary, because when 77 is allowed to commit such as:
Hj : ri[z]ws[z]cac,
then the schedule of Hy is equivalent to the serialization order Ty — Tb
as the actual write of T5 is performed after its validation and after the read
of T7. There is no cycle in their serialization graph and Hj is serializable.
o

One way to reduce the number of transaction restarts is to dynamically
adjust the serialization order of the conflicting transactions [62]. Such meth-
ods are called dynamic adjustment of the serialization order [62]. When
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data conflicts between the validating transaction and active transactions
are detected in the validation phase, there is no need to restart conflict-
ing active transactions immediately. Instead, a serialization order of these
transactions can be dynamically defined.

Definition 3.2 Suppose there is a validating transaction T, and a set of
active transactions Tj(j = 1,2, ...,n). There are three possible types of data
conflicts which can cause a serialization order between T}, and Tj [62, 69, 94]:

1. RS(T,) "W S(Tj) # 0 (read-write conflict)
A read-write conflict between T; and T} can be resolved by adjusting
the serialization order between T, and T} as T, — T} so that the
read of T, cannot be affected by T;’s write. This type of serialization
adjustment is called forward ordering or forward adjustment.

2. WS(T,) N RS(Tj) # 0 (write-read conflict)
A write-read conflict between T, and T; can be resolved by adjusting
the serialization order between T, and T; as T; — T,. It means
that the read phase of Tj is placed before the write of T;,. This type
of serialization adjustment is called backward ordering or backward
adjustment.

3. WS(T,) N WS(Tj) # 0 (write-write conflict)
A write-write conflict between T, and 7T} can be resolved by adjusting
the serialization order between T, and T} as T, — T} such that the
write of T, cannot overwrite T}’s write (forward ordering).

3.4 OCC-TI

This section presents perhaps the most well-known optimistic method Op-
timistic Concurrency Control with Timestamp Intervals (OCC-TI).

The OCC-TI [62, 60] method resolves conflicts using the timestamp
intervals of the transactions. Every transaction must be executed within a
specific time slot. When an access conflict occurs, it is resolved using the
read and write sets of the transaction together with the allocated time slot.
Time slots are adjusted when a transaction commits.

In this method, every transaction in the read phase is assigned a times-
tamp interval (TTI). This timestamp interval is used to record a temporary
serialization order during the execution of the transaction. At the start
of the execution, the timestamp interval of the transaction is initialized as
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read(T;, D;)

{
TI(T;) = TI(T:) N [WTS(D;),00[ ;
if TI(T;) = [] then
restart(T;);
read(D;);
}
pre-write(T;, D;)
{
TI(T;) = TI(T;) N [WTS(D;),o] N [RTS(D;),o0] ;
if TI(T;) = [] then
restart(T;);
}

Algorithm 3.1: Read algorithm and pre-write algorithm for the OCC-TI.

[0, 00], i.e., the entire range of timestamp space. Whenever the serialization
order of the transaction is changed by its data operation or the validation
of other transactions, its timestamp interval is adjusted to represent the
dependencies.

In the read phase when a read operation is executed, the write times-
tamp (WTS) of the object accessed is verified against the timestamp in-
terval allocated to the transaction. If another transaction has written the
object outside the timestamp interval, the transaction must be restarted.
In the read algorithm (Algorithm 3.1) D; is the object to be read, T; is the
transaction reading the object, T'I(T;) is the timestamp interval allocated
to the transaction, WT'S(D;) is the write timestamp of the object, and
RTS(D;) is the read timestamp of the object. This algorithm is executed
for all objects read in the transaction.

In the read phase when a write operation is executed, the modification
is made to a local copy of the object. A pre-write operation is used to ver-
ify read and write timestamps of the written object against the timestamp
interval allocated to the transaction (Algorithm 3.1). If another transac-
tion has read or written the object outside the timestamp interval, the
transaction must be restarted.

The noticeable point of OCC-TI is that unlike other optimistic meth-
ods, it does not depend on the assumption of the serialization order of
transactions as being the same as the arriving order in the validation phase
[62].
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However, as we can see OCC-T1 is not exactly optimistic, because some
conflict checking is already done in the read phase. The idea behind this is
to detect nonserializable executions as soon as possible and restart nonse-
rializable transaction early. This will prevent unnecessary execution of the
nonserializable transaction to its validation phase, thus avoiding resource
wasting.

At the validation phase (Algorithm 3.2), the final timestamp of the val-
idated transaction is determined from the timestamp interval allocated to
the transaction. In this method, the minimum value of T'I(T},) is selected as
the timestamp T'S(T,) [62, 60]. The timestamp intervals of all active con-
currently running and conflicting transactions must be adjusted to reflect
the serialization order. Any transaction whose timestamp interval becomes
empty must be restarted. The adjustment of timestamp intervals of active
transactions iterates through the readset and the writeset. When access
has been made to the same objects both in the validating transaction T,
and in the active transaction Ty, the timestamp interval of the TI(T,) is
adjusted.

3.5 OCC-DA

In this section we present another well known optimistic concurrency con-
trol method Optimistic Concurrency Control with Dynamic Adjustment
(OCC-DA).

OCC-DA [53] is based on the Forward Validation scheme [26]. The
number of transaction restarts is reduced by using dynamic adjustment of
the serialization order. This is supported with the use of a dynamic times-
tamp assignment scheme. Conflict checking is performed at the validation
phase of a transaction. No adjustment of the timestamps is necessary in
case of data conflicts in the read phase. In OCC-DA the serialization order
of committed transactions may be different from their commit order.

In OCC-DA for each transaction, T;, there is a timestamp called serial-
ization order timestamp SOT(T;) to indicate its serialization order relative
to other transactions. Initially, the value of SOT(T;) is set to be oco. If
the value of SOT(T;) is other than oo, it means that T; has been backward
adjusted before a committed transaction.

If T; has been backward adjusted, SOT(T;) will also be used to detect
whether T; has accessed any invalid data item. This is done by comparing
its timestamp with the timestamps of the committed transactions which
have read or written the same data item. A data item in its read set
and write set is invalidated if the data item has been updated by other
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occti_validate (T})

{
TS(Ty) = min(TI(Ty));
for VD; € ( RS(Ty) U WS(Ty) )
{
for V T, € active_conflicting_transactions()
{
if D; € (WS(T.,) n RS(T,) ) then
TI(T.,) = TI(Ta) N [TS(Ty),o0[ ;
if D; € ( RS(T.) N WS(T,) ) then
TI(T,) = TI(T,) N [0,TS(T,) —1];
if D, € (WS(T.,) n WS(T,) ) then
TI(T,) = TI(T,) N [TS(Ty),00] ;
if TI(T,) = [] then
restart(7y,);
}
if D; € RS(T,) then RTS(D;) = maz(RTS(D;), TS(Ty));
if D; € WS(T,) then WTS(D;) = maz(WTS(D;), TS(Ty));
}
commit WS(T,) to database;
}

Algorithm 3.2: Validation algorithm for the OCC-TI.

committed transactions which have been defined after the transaction in
the serialization order.

When the validating transaction T, comes to the validation, the set of
active transactions, T;j, whose serialization order timestamp, SOT(T,) >
SOT(T;) are collected to set AT'S(T,). The set of active transactions, T},
whose serialization order timestamp, SOT(T;) < SOT(T,) are collected to
set BT'S(Ty). In read phase TR(T), D,) is set to be WT'S(D,) of the read
data item D).

The first part of the validation phase is used only for those validating
transactions which have been backward adjusted (Algorithm 3.3). It is to
check whether:

1. all the read operations of T, have been read from the committed
transactions T, whose SOT(T,) < SOT(T,), and
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part_one(T,)

{
if SOT(T,) # oo then

{
for V D, € RS(T,)

{
if TR(T,,D,) > SOT(T,) then
restart(T,);

for V D, € WS(T,)

if SOT(T,) < RTS(Dy,) or SOT(T,) < WTS(D,) then
restart(T,);

Algorithm 3.3: The first part of the validation algorithm for OCC-DA.

2. whether T,’s write is invalidated. This is done by comparing SOT(T;,)
with WT'S(Dp) and RT'S(D,) of the data item D, in T),’s write set
or read set.

The purpose of part two of the validation phase is to detect read-write
conflicts between the active transactions and the validating transactions
(Algorithm 3.4). The write set of the validating transaction 7}, is compared
with the read set of the active transaction T;. The identity of the conflicting
active transactions T; are added to BTlist(T,) to indicate that T} needs to
be backward adjusted before T,.

The third part of the validation phase is to detect whether a backward-
adjusted transaction T; also needs forward adjustment with respect to T,
(Algorithm 3.5). It compares the write set of T; which is in BT'S(T;,) or
in BTlist(T,) with the read set of T,, and the write set of T, with the
write sets of T}. If either one of them is not empty, T} is in serious conflict
with T,. In conflict resolution, transactions for restart are selected based
on priorities i.e. a lower priority transactions is restarted or an active
transaction is restarted.

When the validating transaction reaches part four of the validation
phase, it is guaranteed to commit. The purpose is to assign a final commit-
ment timestamp to the validating transaction and to update the necessary
timestamps of the data items (Algorithm 3.6).
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part_two(7},)

{
BTlist(T,) = 0 ;
for V T; € ATS(Ty,)
{
for V D, € WS(T,)
{
if D, € RS(Tj) then
BTlist(T,) = BTlist(T,) U Tj ;
}
}
}

Algorithm 3.4: The second part of the validation algorithm for OCC-DA.

part_tree(T),)

{
for VvV T; € BTS(T,) U BTlist(T,)
{
for V D, € RS(Ty,)
{
if D, € WS(T;) then
conflict_resolution(Ty,,T});
}
for V D, € WS(T,)
{
if D, € WS(T;) then
conflict_resolution(T,,T});
}
}
}

Algorithm 3.5: The third part of the validation algorithm for OCC-DA.

3.6 Evaluation of Methods

As presented earlier ( see Example 3.1), the major performance problem
with optimistic concurrency control methods are the heavy restart over-
head, wasting a large amount of resources [62]. Sometimes the validation
process using the read sets and write sets erroneously concludes that a
nonserializable execution has occurred, even though it has not in actual
execution [94].

OCC-BC restarts all active conflicting transactions. OPT-SACRIFICE
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part_four(T,)

{
if SOT(T,) = oo then
SOT(T,) = wvalidation_time ;
for V T; € BTlist(Ty)
SOT(T;) = SOT(Tw) — € ; //infinitesimal quantity
for V D, € RS(T,)
for VvV D, € WS(Ty)
commit WS(T,) to database;
}

Algorithm 3.6: The fourth part of the validation algorithm for OCC-DA.

restarts the validating transaction if at least one of the conflicting trans-
actions has a higher priority. The OPT-WAIT-X family restarts the ac-
tive conflicting transactions. Therefore, the OCC-BC, OPT-SACRIFICE,
OPR-WAIT, and OPT-WAIT-X methods all unnecessary restarts trans-
actions. Hence, a new validation method was proposed for the OCC-TI
method in [62] which was presented in Section 3.4. The same validation
method but different implementation is used in the OCC-DA method [53].
These methods are selected as compare methods because they are well
known and shown to work very well in real-time database systems.

Performance studies in [62] have shown that under the policy that dis-
cards tardy transactions from the system, the optimistic methods outper-
form 2PL-HP [2]. OCC-TI does better than OPT-BC among the optimistic
methods [62]. The performance difference between OPT-BC and OCC-TI
becomes large especially when the probability of a data object read being
updated is low, which is true in most actual database systems.

Performance studies in [53] have shown that OCC-DA outperforms
OCC-TI. OCC-DA can be extended to use Thomas’s write rule [102] and
this extension is presented in [54].

However, the algorithms provided for OCC-TI in [62, 60] do not seem
to fully resolve the unnecessary restart problem. The problem with the
existing algorithm is best described by the example given below.

Example 3.3 Let RT'S(z) and WTS(z) be initialized as 100. Consider
transactions 71, 75, and history Hi:
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Ty: ri[z|w[z]e
Ty: rofz|waly]es
Hy: ri[z]re[z]|w: [z]ciwa[y]es.

Transaction 77 executes 71[z], which causes the timestamp interval of
the transaction to be forward adjusted to TI(7y) = [0,00[ N [100,00[ =
[100,00[. T then executes a read operation on the same object, which
causes the timestamp interval of the transaction to be forward adjusted sim-
ilarly. T7 then executes wj[z]. This operation is executed inside the OCC-
TT scheduler using pre-write operation and no operation is generated in the
output history. Write operation is delayed until the transaction is success-
fully validated. This is similar as in pessimistic 2PL using delayed writes.
Pre-write operation causes the timestamp interval of the transaction to be
forward adjusted to T'I(T}) = [100, oo[ N [100, co] N [100,00] = [100, col.
T starts the validation, and the final (commit) timestamp is selected to
be T'S(T1) = min([100,00[) = 100. Because there is one read-write con-
flict between the validating transaction T; and the active transaction 75,
the timestamp interval of the active transaction must be adjusted. Thus
TI(T>) = [100,00[ N [0,99] = []. The timestamp interval is shut out, and
T> must be restarted. However this restart is unnecessary, because serial-
ization graph SG(H;) is acyclic, that is, history H; is serializable. Taking
the minimum as the commit timestamp (7°S(7}1)) was not a good choice
here.

O

Similarly, OCC-DA also unnecessarily restarts transactions. The prob-
lem with the existing algorithm is best described by the example given
below.

Example 3.4 Let all objects timestamp be initialized as 100. Consider
transactions T3, Ty, 1%, and history Ha:

T3: r3[x] ws[z] c3

Ty: ra[z] waly] ca

Ts: r5]y] wslz] cs

Hsy: r3lz] ralz] rs[y] ws|x] waly] ws[z] e3¢5 ca

——— —

All operations before the first commit operation are executed success-
fully. Let us consider the execution of the c3 operation. Assume that
transaction T3 arrives to its validation phase at time 600. In this case
the set BT'S(T3) is empty and the set ATS(T3) = {T4,T5}. Because
z € WS(T3) N RS(T5), the active conflicting transaction Ty is added to
the backward set, i.e. BTlist(T3) = {T4}. In part three of the OCC-DA
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validation algorithm there are no detectable conflicts. In part four of the
OCC-DA validation algorithm SOT(T3) = 600 and SOT(Ty) = 599 are
set. The validation of the transaction T3 is completed and the write set of
the validating transaction (i.e. W S(T3)) is committed to the database.
Let us consider then the execution of the cs5 operation. Assume that
transaction T5 arrives at its validation phase at time 700. In this case the set
BTS(Ts) = {Tu} and the set ATS(T5) = 0. In part three of the OCC-DA
validation algorithm a conflict is detected, because y € RS(T5) N W S(Ty).
Therefore, the transaction 73 or the transaction 75 must be restarted.
However this restart is unnecessary, because serialization graph SG(Ha)
is acyclic, that is, history Hj is serializable. O

As the conflict resolution between the transactions is delayed until a
transaction is near completion, there will be more information available for
making the choice in resolving the conflict. However, the problem with
optimistic concurrency control methods is the late conflict detection, which
makes the restart overhead heavy as some near-to-complete transactions
have to be restarted. Therefore, the major concern in the design of real-
time optimistic concurrency control methods is not only to incorporate
priority information for the conflict resolution but also to design methods
to minimize the number of transaction restarts. Hence, unnecessary restart
problems found in OCC-TI is not desirable. Unnecessary restart found in
OCC-DA is not so important because situation explained in the example
is not very common.

3.7 Priority Cognizance

Priority cognizant concurrency control methods based on the optimistic
methods have not been widely studied. Researchers have speculated that
priority cognizant optimistic concurrency control methods, if designed well,
could outperform priority insensitive ones in real-time database systems. In
this section we survey the work done in this research question. The original
OCC-TI method has no real-time properties and is not priority cognizant.
However, already in [61], priority cognizant versions of the OCC-TI method
was presented. In the proposed methods, if a nonserializable history is
found then several different priority-based conflict resolution schemes were
proposed:

e Priority abort [33]: When a transaction reaches its validation phase,
it is aborted if its priority is less than that of all the conflicting trans-
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action; otherwise, it commits and all the conflicting transactions are
restarted.

e Priority sacrifice [28]: When a transaction reaches its validation
phase, it is aborted if there exists one or more conflicting transac-
tion with higher priority; otherwise it commits and all the conflicting
transactions are restarted. This is the same as the OPT-SACRIFICE
[28] method presented earlier.

e Priority wait [28]: When a transaction reaches its validation phase, if
there exist one or more conflicting transactions with higher priority,
it waits for those transactions to complete. This is the same as the
OPT-WAIT [28] method presented earlier.

e Wait-50 [28]: A validating transaction is made to wait as long as
more than half of the conflicting transactions have higher priorities;
otherwise it commits and all the conflicting transactions are restarted.
This is the same as the WAIT-50 [28] method presented earlier.

Also it was noted that the final timestamp T'S (7)) is determined so that
the order induced by the final timestamp should not destroy the serializa-
tion order constructed by the already committed transactions [61]. But no
methods to select the final timestamp were proposed. Finally, the paper
did not present any performance results.

Very similar work is later done in [16]. They also extend OCC-TI with
OPT-SACRIFICE [28], OPT-WAIT [28], WAIT-50 [28], and a new conser-
vative sacrifice method. In conservative sacrifice, the validating transaction
is restarted only if all transactions in the conflict set have a higher priority.

Additionally, a new optimistic concurrency control method OCC-APR
(Optimistic Concurrency Control - Adaptive PRiority) was presented.
OCC-APR is an extension to the original OCC-TI method. OCC-APR
identifies how much time a validating transaction has left to its deadline
and restarts it only if sufficient time is left. This is done by storing the
number of data accesses, average CPU time, and service time and com-
paring these with the deadline. Restart is done only if a nonserializable
history is found. Again, no methods to select the final timestamp is pre-
sented. Therefore, the unnecessary restart problem in the original OCC-TI
can affect the results presented in [16].

In [16] is postulated that critical condition that validating transaction
should have large number of transactions in conflict set to make priority
cognizant conflict resolution to work. Surprisingly, it turns out that it is
very difficult for priority cognizance to work as the above condition does
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not, usually, hold. This is because restarting a validating transaction would
only make a difference if there were significant numbers of transactions that
were likely to commit in the conflict set. This condition will not usually
hold. Performance of several concurrency control methods were analyzed
across a wide range of resource contention and system loading parameters
[16]. All results show that in disk-based real-time database systems, pri-
ority cognizance does not seem to be a good approach for improving the
performance of real-time concurrency control methods beyond the current
state-of-the-art.

Clearly, it takes too much resources to store and maintain the number
of data accesses, average CPU time, and service time and comparing the
required restart time to the deadline. Other extensions in [16] to OCC-TI
are too conservative, i.e. too eagerly restarting conflicting transactions.
Additionally, the unnecessary restart problem found in the original OCC-
TI can have a significant affect on the results. Finally, is the priority
cognizance viable approach for main-memory real-time database systems is
still an open research question. We will study this open research question
later in this thesis.
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Chapter 4

OCC-DATI

As we have seen, one of the main problems with the optimistic methods is
unnecessary restarts. This is due to the late conflict detection that increases
the restart overhead since some near-to-completed transactions have to be
restarted. Therefore, this chapter proposes a new optimistic concurrency
control method which tries to avoid unnecessary restarts. This work is
based on earlier work presented in [74].

This chapter presents an optimistic concurrency control method named
Optimistic Concurrency Control with Dynamic Adjustment using Times-
tamp Intervals (OCC-DATI) [74]. OCC-DATI is based on forward vali-
dation [26]. The number of transaction restarts is reduced by dynamic
adjustment of the serialization order which is supported by similar times-
tamp intervals as in OCC-TI [63]. Unlike the OCC-TI method, all checking
is performed at the validation phase of each transaction. There is no need
to check for conflicts while a transaction is still in its read phase. As the
conflict resolution between the transactions in OCC-DATT is delayed until
a transaction is near completion, there will be more information available
for making the choice in resolving the conflict. OCC-DATI also has a new
final timestamp selection method compared to OCC-TI.

OCC-DATI differs from OCC-DA [53] in several ways. Timestamp in-
tervals have been adopted as the method to implement dynamic adjustment
of the serialization order instead of dynamic timestamp assignment as used
in OCC-DA. Timestamp intervals allow transactions to be both forward and
backward adjusted. As presented earlier, the dynamic timestamp method
used in OCC-DA does not allow the transaction to be both forward and
backward adjusted. Therefore, the validation method used in OCC-DATI
allows more concurrency than the validation method used in OCC-DA.

Additionally, a new dynamic adjustment of the serialization method
is proposed, called deferred dynamic adjustment of serialization order. In
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the deferred dynamic adjustment of serialization order all adjustments of a
timestamp interval are done to temporal variables. The timestamp inter-
vals of all conflicting active transactions are adjusted after the validating
transaction is guaranteed to commit. If a validating transaction is aborted
no adjustments are done. Adjustment of the conflicting transaction would
be unnecessary since no conflict is present in the history after the abortion
of the validating transaction. Unnecessary adjustments may later cause
unnecessary restarts. Because the database contains only values from com-
mitted transactions, no other transaction can see changes made by the
aborted transaction. Therefore, this method avoids cascading aborts and
is recoverable.

The OCC-DATI method resolves conflicts using the timestamp inter-
vals [62] of the transactions. Every transaction must be executed within a
specific time interval. When an access conflict occurs, it is resolved using
the read and write sets of the conflicting transactions together with the
allocated time interval. The timestamp interval is adjusted when a trans-
action validates. In OCC-DATT every transaction is assigned a timestamp
interval (TI). At the start of the transaction, the timestamp interval of the
transaction is initialized as [0, 0o, i.e., the entire range of timestamp space.
This timestamp interval is used to record a temporary serialization order
during the validation of the transaction.

At the beginning of the validation (Algorithm 4.1), the final timestamp
of the validating transaction T'S(T,) is determined from the timestamp
interval allocated to the transaction 7;,. The timestamp intervals of all
other concurrently running and conflicting transactions must be adjusted
to reflect the serialization order. The final validation timestamp T'S(T))
of the validating transaction T, is set to be the current timestamp, if it
belongs to the timestamp interval T'I(T),), otherwise T'S(T,) is set to be
the maximum value of TI(T,).

The adjustment of timestamp intervals iterates through the read set
(RS) and write set (WS) of the validating transaction. First it is checked
that the validating transaction has read from the committed transactions.
This is done by checking the object’s read and write timestamp. These val-
ues are fetched when the first read and write to the current object is made.
Then the set of active conflicting transactions is iterated. When access has
been made to the same objects both in the validating transaction and in
the active transaction, the temporal time interval of the active transaction
is adjusted. Thus, the deferred dynamic adjustment of the serialization
order is used.
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occdati_validate(T,)
{
// Select final timestamp for the transaction
TS(T,) = min(validation_time, maz(TI(Ty)));
// Iterate for all objects read/written
for (V D; € (RS(Tv) U WS(Tv) ))
{
if (D; € RS(Ty)) // read from committed transactions
TI(T,) = TI(T,) N [WTS(D;i),o0] ;
if (D; € WS(T,)) // write after committed transactions
TI(T,) = TI(T,) N [WTS(D;),c0[ N [RTS(D;),00[ ;
// if timestamp interval is empty, then restart the validating transaction

if (TI(T,) == []) restart(Ty,);

// Conflict checking and timestamp interval calculation
for ( V T, € active_conflicting-transactions() )

if (D; € (RS(Tv,) N WS(Tw)))
forward_adjustment (T,,T,, adjusted) ;

if (D; € (WS(T,) N RS(Tw)))
backward_adjustment (T, ,T,,adjusted) ;

if (D; € (WS(Ty) N WS(T.)))
forward_adjustment (T,,T,, adjusted) ;
}
}

// Adjust conflicting transactions

for ( V T, € adjusted)
{

TI(T,) = adjusted.pop(Ts);

if (TI(T,) == []) restart(Ty);
}

// Update object timestamps
for (V D; € (RS(Ty) U WS(Ty) ))
{
if (D; € RS(Tv))
RTS(D;) = maxz(RTS(D;), TS(Tyv));
if (D; € WS(Tv))
WTS(D;) = maz(WTS(D;), TS(Ty));
}

commit 73, to database;

Algorithm 4.1: Validation algorithm for the OCC-DATT.
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Identities of adjusted transactions are inserted to adjusted data struc-
ture. Time intervals of all conflicting active transactions are adjusted after
the validating transaction is guaranteed to commit. If the validating trans-
action is aborted no adjustments are done. Non-serializable execution is
detected when the timestamp interval of an active transaction becomes
empty. If the timestamp interval is empty the transaction is restarted.

Finally, the current read and write timestamps of the accessed objects
are updated and changes to the database are committed. This process is
in the critical section.

Algorithm 4.2 shows a implementation of the dynamic adjustment of
serialization order using timestamp intervals.

forward_adjustment (Ty, T, adjusted)

{

// Find the current value of the timestamp interval
if (T, € adjusted)

TI = adjusted.pop(Ta);
else

TI = TI(T,);

// Forward adjustment
TI = TI n [TS(Ty)+1,00[ ;
// Store the current value of the timestamp interval

} adjusted.push({(Ta,TI)});

backward_adjustment (T}, ,T,, adjusted)

{

// Find the current value of the timestamp interval
if (T, € adjusted)

TI = adjusted.pop(Ts);
else

TI = TI(T.);

// Backward adjustment
TI = TI N [O,TS(T,,)—l] H
// Store the current value of the timestamp interval

adjusted.push({(Ta,TI)});

Algorithm 4.2: Backward and Forward adjustment algorithms for the OCC-
DATI.

OCC-DATT offers greater changes to successfully validate transactions
resulting in both less waste of resources and a smaller number of restarts.
This is because OCC-TI and OCC-DA both use dynamic adjustment but
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they make unnecessary adjustments when the validating transaction is
aborted. All of these are important to the performance of RTDBSs and
contribute to greater chances of meeting transaction deadlines.

With the new method, the number of transaction restarts is smaller
than with OCC-BC, OPT-WAIT, or WAIT-50 [28, 29, 33], because the
serialization order of the conflicting transactions is adjusted dynamically.
The read and write set of the validating transaction is iterated only twice
in the OCC-DATI. In contrast, the read set is iterated three times and the
write set four times in OCC-DA in the worst case. Therefore, the overhead
for supporting dynamic adjustment is much smaller in OCC-DATT than the
one in OCC-DA [53].

Firstly, let us consider Example 3.3 as in Section 3.6, which was used
to show unnecessary restart problem in the OCC-TL

Example 4.1 Consider transactions 77, 715, and history Hi:
Ty: r[z|wi[z]er

Ty: ro[x|waly]es

Hy: rilz|re[z|wi[z]er.

In this example Tj reaches the validation phase first and has a write-read
conflict with T5. Therefore, T5 must precede 77 in the serialization history
in order to avoid an unnecessary restart. Let RT'S(z), WT'S(z), RTS(y),
and WT'S(y) be initialized as 100. Assume that transaction T; arrives at its
validation phase at time 1000. The OCC-DATT algorithm sets T'S(7}) as
1000. The validating transaction Tj is first forward adjusted to [1000, col.
Transaction 75 has read object x. Therefore T’s time interval is adjusted
to [0,999] using backward adjustment. Transaction 7 updates object x
timestamps and commits. Thus, the OCC-DATI algorithm produces a
serializable history as well as avoiding the unnecessary restart problem
found in OCC-TI. O

Secondly, let us consider Example 3.1 as in Section 3.2, which was used
to show unnecessary restart problem in the OCC-FV.

Example 4.2 Consider the following transactions Ty, 77 and history Hj:
Ts: rglz] cg

T7: wrlz] 7

Hy: rglz] wr[z] c7 cg

All operations before the first commit operation are executed suc-
cessfully. Let RT'S(z), WT'S(z) be initialized as 100. Let us consider
the execution of the c; operation. Assume that transaction 7% arrives
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to its validation phase at time 600. Therefore, T'S(77) = 600. Be-
cause X € WS(T7), the validating transaction 77 is forward adjusted
to be TI(Ty) = TI(T2) N [WTS(xz),00[N = [100,00[. Because z €
WS(T7) N RS(Ts), the active transaction Ty is backward adjusted to be
TI(Ts) = TI(Tg) N [0,TS(T7) — 1] = [0,599]. The validation of the
transaction 7% is completed and the write set of the validating transac-
tion (i.e. WS(Ty)) is committed to the database. Let us consider the
execution of the cg operation. Assume that transaction Ty arrives to
its validation phase at time 700. Therefore, T'S(T}) = 599. Because
X € RS(Ts), the validating transaction Tg is forward adjusted to be
TI(Ts) = TI(Tg) N [WTS(z),o00[N[RTS(z),c0[= [100,599]. No other con-
flicts are detected and the validation of the transaction Tg is completed and
the write set of the validating transaction (i.e. W S(Tg)) is committed to
the database. O

Previous examples show that the OCC-DATI method avoids the unnec-
essary restart problems found in OCC-TI and OCC-FV. But these examples
do not demonstrate that the proposed OCC-DATI method produces only
serializable histories. Having described the basic concepts and the algo-
rithm, now the correctness of the algorithm is proven. To prove that a
history H produced by OCC-DATTI is serializable, it must be proven that
the serialization graph for H, denoted by SG(H), is acyclic [7]. Therefore,
the following Lemma demonstrates that if there is conflict between the val-
idating transaction and the active transaction then there is a total order
between these transactions. This total order is set to the final timestamp
of the transactions, i.e. T'S(T;).

Lemma 4.3 Let T; and T5 be transactions in a history H produced by the
OCC-DATI algorithm and SG(H) serialization graph. If there is an edge
Ty —T5 in SG(H), then TS(Tl) < TS(TQ)

Proof: If there is an edge, 77 — T in SG(H), there must be one or
more conflicting operations whose type is one of the following three:

1. r[z] — wg[z]: This case means that 7 reads old value of the
data item x since ri[z] is not affected by ws[z]. If the transac-
tion T; arrives to the validation before the transaction 75, OCC-
DATI adjusts 7% by the forward adjustment. Thus,7'S(Th) =
min(maz([TS(Ty) + 1,00[), current time) > TS(Ty). If the trans-
action Th arrives to the validation before the transaction 77, OCC-
DATI adjust 77 by the backward adjustment. Thus, T'S(Ty) =
min(maz([0,TS(Ts) — 1]),current time) = T'S(Tz) — 1 < TS(T»).
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Therefore, T'S(T1) < T'S(T2). Both transactions can not enter to the
validation in the same time, because the validation is in the critical
section.

2. wi[z] — r2lz]: This case means that the write phase of T; finishes
before ro[x] executes in T5’s read phase. This is because, T» has seen
the new value of the data item z and the write phase is in the critical
section and done in a atomic way. For re[z], OCC-DATI adjusts
TI(T») to follow WTS(z), which is equal to or greater than T'S(T}).
Thus, TS(Ty) < WT'S(z) < TS(Ts). Therefore, T'S(Ty) < T'S(Ts).

3. wi[z] — wa[z]: This case means that the write phase of T} finishes
before ws[x] executes in Tb’s write phase. This is because the write
phase is in the critical section and done in a atomic way. For wa[z],
OCC-DATTI adjusts TI(T3) to follow WT'S(z), which is equal to or
greater than T'S(Ty). Thus, TS(T1) < WTS(z) < TS(T»). There-
fore, TS(T1) < TS(T%).

O

To show that every history generated by the OCC-DATI algorithm is
serializable, it is assumed that the algorithm will produce a cycle in the se-
rialization graph. This case is shown to cause contradiction in the following
theorem.

Theorem 4.4 Every history generated by the OCC-DATI algorithm is
serializable.

Proof: Let H denote any history generated by the OCC-DATT algo-
rithm and SG(H) its serialization graph. Suppose, by way of contradiction,
that SG(H) contains a cycle Ty — Ty — ... — T}, — T3, where n > 1. By
Lemma 4.3 TS(Ty) < TS(T») < ... < TS(T,) < TS(Ty). By simple in-
duction this leads to T'S(T1) < T'S(T3). This is a contradiction. Therefore
no cycle can exist in SG(H) and thus the OCC-DATI algorithm produces
only serializable histories. O
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4 OCC-DATI



Chapter 5

Attributes in Conflict Resolution

Priority-cognizant concurrency control methods based on the optimistic
methods have not been widely studied. Because time cognizance is impor-
tant to offer better support for timing constraints as well as predictabil-
ity, the major concern in designing real-time optimistic concurrency con-
trol methods is to incorporate information about the timing constraints of
transactions for conflict resolution.

Firstly, this chapter extends the original OCC-TI conflict resolution
method with transaction deadline-driven priority information. In conflict
resolution higher priority transactions are favored. This work is based on
earlier work presented in [70].

Secondly, this chapter extends the OCC-DATI conflict resolution
method with deadline-driven priority information. In conflict resolution
higher deadline-driven priority transactions are favored. This work is based
on earlier work presented in [75].

Thirdly, this chapter further extends the OCC-DATTI conflict resolu-
tion method with an even more pessimistic view. In conflict resolution a
lower deadline-driven priority transaction is always restarted if it conflicts
with the higher deadline-driven priority transaction. This work is based on
earlier work presented in [76].

The idea behind these extensions is to see whether priority or criticality
of the transaction can be used in conflict resolution and what kind of effects
it has on overall performance and performance when only high priority or
critical transactions are examined.

51
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5.1 Revised OCC-TI

Firstly, as showed in section 3.4 the original OCC-TI does not fully solve
the unnecessary restart problem. Therefore, in this section a solution to
this problem is proposed.

Secondly, there are no real-time properties in the original OCC-T1I algo-
rithm. An extension to the OCC-TI algorithm is proposed in this section
to solve these problems. This thesis includes the following extensions to
the OCC-TTI:

1. Rollbackable Dynamic Adjustment of Serialization Order

2. Prioritized Dynamic Adjustment of Serialization Order

In the first extension the undoing of dynamic adjustments done to an
active transaction when the adjustment was unnecessary will be attempted.
For example, if the validating transaction aborts then all dynamic adjust-
ment to other conflicting active transactions were unnecessary. In the sec-
ond extension priorities are taken into account before using dynamic ad-
justment.

5.1.1 Rollbackable Dynamic Adjustment

Let TI(T;) denote the timestamp interval for transaction 7; and let
RTI,(T;),n = 1,..k,k € N denote the n:th removed timestamp interval
from transaction 7;. One modification to the timestamp interval can be
rollbacked if the current timestamp interval and the removed timestamp
interval are adjacent. Formally,

Definition 5.1 The timestamp interval TI(T;) of the transaction T;
is rollbackable with the removed timestamp interval RTI,(T;),n =
k,..,1,k € N if and only if:

VaVy((x € TI(T;) Ny € RTL,(T;))A
P2(2 € ([0,00[\(TI(T;) URTIL,(T})) AN (x<z<y) V(iy<z<wz))). O

~

Example 5.2 Let TI(T}) = [100,1000, RTIL(Ti) = [0,100], and
RTI5(T1) = [1002,2000]. Using definition 5.1, the first removed timestamp
interval to be checked for rollbacking is RTI>(Ty). If it is set # = 1000
and y = 1002 then clearly 3z(z € [0,00] A (1000 < z < 1002)) e.g.
z = 1001. Thus the removed timestamp interval RT'I5(T}) cannot be roll-
backed. When checking RT'I;(T}) for rollbacking we can see that definition
5.1 holds and we can rollback the removed timestamp interval. O
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The next definition 5.3 shows how dynamically adjusted timestamp in-
tervals can be rollbacked.

Definition 5.3 The timestamp interval T'I(T;) of transaction T; is roll-
backed with removed timestamp interval RTI,(T;),n € N calculating the
new timestamp interval :

TI(T}) = TI(T}) U RTI(T;).
O

Example 5.4 Let TI(T;) = [100,1000] and RTI;(T1) = [0,100]. Then
rollbacking is done with

TI(Ty) = [100,1000] U [0,100] = [0,1000] .
O

Removed timestamp intervals should be rollbacked in descending order
thus Vn(n = k,..,1,k € N). This ensures that the resulting timestamp
interval is as big as possible. The following example shows what happens
if rollbacking is not done in descending order.

Example 5.5 Let TI(T;) = [200,1000, RTI;(T;) = [0,100], and
RTI(Ty) = [100,200]. These removed timestamp intervals are rollback-
able using definition 5.1. Using definition 5.3 in ascending order, the result
would be:

TI(T}) = [200,1000] U [0,100] = [200,1000] U [100,200] = [100, 1000].

But if rollbacking is done in descending order the result would be a larger
timestamp interval:

TI(Ty) = [200,1000] U [100, 200] = [100,1000] U [0, 100] = [0, 1000].
O

This method, while important, needs additional data structure to store
removed timestamp intervals and in case of rollbacking quite expensive
iteration of the data structure holding the removed timestamp intervals.
Therefore, only two timestamp intervals are actually stored. The current
timestamp interval value of the active transaction and temporal timestamp
interval value of the active transaction during the validation phase of an-
other transaction. The temporal timestamp interval value is copied to
the actual value when the validating transaction is guaranteed to commit.
Thus, no unnecessary rollbacking is done.
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5.1.2 Prioritized Dynamic Adjustment

In this section a priority-dependent extension to dynamic adjustment of the
serialization order is presented. In real-time database systems, the conflict
resolution should take into account the priority of the transactions. This is
especially true in the case of heterogeneous transactions (i.e. transactions
with different importance). Some transactions are more important or valu-
able than others. The dynamic adjustment in the validation phase should
be done in favor of a higher priority transaction. Here, a method will be
presented that tries to make more room for the higher priority transaction
to commit in its timestamp interval. This offers the high priority trans-
action better chances to commit before its deadline and meeting timing
constraints.

A Prioritized Dynamic Adjustment of the Serialization Order (PDASO)
implemented with timestamp intervals creates partial order between trans-
actions based on conflicts and priorities.

If a validating transaction has higher priority than an active conflicting
transaction, forward adjustment is correct. If the validating transaction
has lower priority than the active conflicting transaction, the higher priority
transaction should be favored. This is supported by reducing the timestamp
interval of the validating transaction and selecting a new final timestamp
earlier in the timestamp interval. Normally the current time or maximum
value from the timestamp interval is selected. But now the middle point
is selected. This offers greater changes for a higher priority transaction to
commit in its timestamp interval. If the middle point cannot be selected,
the validating transaction is restarted. This is wasted execution, but it is
required to ensure the execution of the transaction of higher priority.

If a validating transaction has higher priority than an active conflicting
transaction, backward adjustment is correct. If the validating transaction
has lower priority than the active conflicting transaction, then backward
adjustment is done if the active transaction is not aborted in the backward
adjustment. Otherwise, the validating transaction is restarted. This is
wasted execution, but it is required to ensure the execution of the transac-
tion of higher priority.

However, in backward adjustment the validating transaction cannot be
moved to the future to obtain more space for the higher priority transac-
tion. One can only check if the timestamp interval of the lower priority
transaction would become empty. In the forward ordering the final times-
tamp can be moved backward if there is space in the timestamp interval
of the validating transaction. Again, it is checked whether the timestamp
interval of the higher priority transaction would shut out. Aborting the
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validating transaction when the timestamp interval of the higher priority
transaction shuts out has been chosen. Thus, this algorithm favors the
higher priority transactions and might waste resources aborting near to
complete transactions.

Example 5.6 Let TI(T}) = [100,1000], T'S(T1) = 1000, and TI(T>) =
[0,00[. Let pri(Ty) < pri(T>). Assume that there is a read-write conflict
between the transactions in the history. Dynamic adjustment solves this
conflict by forward adjusting the active transaction T5:

TS(T1) = (100 + 1000)/2 = 550
TI(Ty) = [0,00[ N [650, 00] = [550, cole.

Example 5.7 Let TI(Ty) = [100,1000], T'S(T1) = 1000, and TI(T>) =
[1200, co[. Let pri(Th) < pri(T2). Assume that there is a write-read con-
flict between the transactions. Using the backward adjustment validating
transaction must be aborted because:

TI(Ty) = [1200,00[ N [0,1000] = 0.

5.1.3 Revised OCC-TI Algorithm

In this section the validation algorithm for extended OCC-TI is presented.
We will call this method OCC-PTI (Optimistic Concurrency Control with
Prioritized Timestamp Intervals). OCC-TI is extended with a new final
timestamp selection method and priority-dependent conflict resolution. Fi-
nal (commit) timestamp 7'S(7},) should be selected in such a way that room
is left for backward adjustment. A new validation algorithm is proposed
where the commit timestamp is selected differently. In the revised valida-
tion algorithm for OCC-TI (Algorithm 5.1) the final timestamp 7'S(T5,) is
set as the validation time if it belongs to the time interval of T}, or maximum
value from the time interval otherwise. Additionally, the original OCC-TI
is extended to use prioritized dynamic adjustment of the serialization order.
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occti_validate(T,) {
/* Select final (commit) timestamp */
if (validation_time € TI(T,))
TS(T,) = walidation_time;
else TS(T,) = maz(TI(Ty));

/* Iterate read and write sets of the validating transaction */

for V D; € ( RS(T,) U WS(T,)){

/* Iterate conflicting active transactions */
for V T, € active_conflicting_transactions() {
if (D; € (RS(Tw) N WS(Tw)))
forward_adjustment(7,,T,,adjusted);

if (D; € (WS(Ty) N RS(T.)))
backward_adjustment(7y, Ty, adjusted);

if (D; € (WS(Ty) N WS(Ta)))
forward_adjustment (T,,T,, adjusted) ;

, if (TI(Ta) = []) restart(Ts);

// Adjust conflicting transactions
for (VY T, € adjusted)

{
TI(T,) = adjusted.pop(Ta);
if (T,.backward == true )
TI(T.) = TI(T.) N [0,TS(Ty)—1];
if (TI(T,) == []) restart(T,);
}

/* Update RTS and WTS timestamps */
if (D; € RS(Tv))
RTS(D;) = maz(RTS(D;), TS(Ty));

if (D; € WS(Tv))
WTS(D;) = maz(WTS(D;), TS(Ty));
}

commit WS(T,) to database;

Algorithm 5.1: Validation algorithm for the OCC-PTI.

The adjustment of timestamp intervals (T'I) iterates through the read
set (RS) and write set (WS) of the validating transaction (7,). First we
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check that the validating transaction has read from the committed trans-
actions. This is done by checking the object’s read timestamp (RT'S) and
write timestamp (WT'S). These values are fetched when the first access
to the current object is made. Then the algorithm iterates the set of ac-
tive conflicting transactions. When access has been made to the same ob-
jects both in the validating transaction and in the active transaction (7),
the timestamp interval (T'I) of the active transaction is adjusted. Non-
serializable execution is detected when the timestamp interval of an active
transaction becomes empty. If the timestamp interval is empty the transac-
tion is restarted. Finally, current read timestamps and write timestamps of
accessed objects are updated and changes to the database are committed.

Algorithm 5.2 presents forward and backward adjustment algorithms
for dynamic adjustment of the serialization order using timestamp intervals
and priorities.

Backward and Forward adjustment algorithms create order between
conflicting transaction timestamp intervals. The final (commit) timestamp
is selected from the remaining timestamp interval of the validating trans-
action. Therefore, the final timestamps of the transactions create partial
order between transactions.

Compared to method presented in [16], OCC-PTI uses an different fi-
nal timestamp selection method and priorities are used in every conflict
resolution case.
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forward_adjustment(Ts, Ty, adjusted) {
if (T, € adjusted)
TI = adjusted.pop(Ta);
else
TI = TI(T,);

if ( priority(T,) >= priority(T.))
TI = TI n [TS(Ty),o0);
else {
if (((min(TI(T,)) + TS(Tv)) / v
TS(Ty) = (min(TI(Ty,)) + TS(Ty)) / 2;

if ( TS(Ty) > maz(TI)) restart(Ty);

TI = TI n [TS(T,),c0l;

}
el ii ( TS(T,) > maz(TI)) restart(T,);
TI = TI n [TS(Ty),c0];
} }
adjusted.push({(Ta,TI)});

}

backward_adjustment(7,,T,, adjusted) {
if (T, € adjusted)
TI = adjusted.pop(Ta);

else

TI = TI(T.);

if ( priority(T,) >= priority(T,))
T, .backward = true ;

else {

if ( TS(Ty) —1 < min(TI)) restart(Ty);

T, .backward = true ;

}

adjusted.push({(Ta,TI)});

Algorithm 5.2: Backward and Forward adjustment for the OCC-PTI.

Let us consider the same example history as in Example 3.3 in Section
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3.6, which caused unnecessary restart in the original OCC-TI. Using the
same example, it is shown here how the OCC-PTI produces a serializable
history and avoids unnecessary restart.

Example 5.8 Let RT'S(z) and WTS(z) be initialized as 100. Consider
transactions 77, Ts, and history Hy, where pri(Ty) = pri(Ts):

Ty: r[z|wi[z]er

Ty: ro[x|waly]ea

Hy: ri[z]re[z]pwi|z]e;.

Transaction 77 executes 71[z], which causes the timestamp interval of

the transaction to be forward adjusted to TI(71) = [0,00[ N [100,00[ =
[100, co[. Transaction T then executes a read operation on the same ob-
ject, which causes the timestamp interval of the transaction to be for-
ward adjusted similarly. Transaction 77 then executes pwi[z], which
causes the timestamp interval of the transaction to be forward adjusted
to TI(Ty) = [100,00[ N [100,00[ N [100,00[ = [100,00[. Transaction
T starts the validation at time 1000, and the final (commit) timestamp
is selected to be T'S(T1) = validation_time = 1000. Because there is one
read-write conflict between the validating transaction 77 and the active
transaction T5, the timestamp interval of the active transaction must be
adjusted: T'I(Ty) = [100,00[ N [0,999] = [100,999]. Thus the timestamp
interval is not empty, and revised OCC-TI has avoided unnecessary restart.
Both transactions commit successfully. History H; is acyclic, that is, seri-
alizable. Therefore, the proposed OCC-PTI produces serializable histories
(this can be proven with similar construct as was used in the OCC-DATI
method) and avoids the unnecessary restart problem found in the original
OCC-TT algorithm O

5.2 OCC-PDATI

In real-time database systems, the conflict resolution should take into ac-
count the criticality of the transactions. This is especially true in the case
of heterogeneous transactions. Some transactions are more critical or valu-
able than others. Therefore, the goal of any real-time system should be to
maximize the value or criticalness of the completed transactions. In most
of the previous approaches the value or the criticalness of a transaction has
been equalled to the scheduling priority of a transaction. Unfortunately,
that is a very serious restriction if the target is to maximize the value or
the criticalness of the completed transactions.

In this section we will use deadline-driven conflict priority. As men-
tioned in Section 2.2 deadline-driven conflict priority is based on the dead-
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line and the criticality of the transaction. We will call this deadline-driven
conflict priority as conflict priority in this section.

When data conflicts between the validating transaction and active
transaction are detected in the validation phase, there is no need to restart
conflicting active transactions immediately. Instead, a serialization order
can be dynamically defined. However, if a higher conflict priority transac-
tion is to be aborted because of conflict to lower conflict priority transaction,
then the transaction of lower conflict priority should be restarted.

This section proposes an optimistic concurrency control method called
OCC-PDATI (Optimistic Concurrency Control using Priority of the Trans-
action and Dynamic Adjustment of Serialization Order). OCC-PDATI is
based on forward validation [26] and the earlier optimistic method OCC-
DATT [74]. The difference is in the conflict resolution. The conflict resolu-
tion of OCC-PDATT uses conflict priority of the transaction found in trans-
action object attributes. This section outlines new parts of OCC-PDATI
when compared to OCC-DATT.

A higher conflict priority transaction should not be restarted because
of conflict with a transaction of lower conflict priority. Greater changes for
a transaction to complete before its deadline should be offered. Therefore,
if dynamic adjustment of the serialization order would cause the higher
conflict priority transaction to be restarted, a conflicting active transaction
of lower conflict priority is restarted. This is a wasted execution, but it is
required to ensure the execution of the critical transactions.

The method must ensure serializable (or another correct order of) execu-
tion. Database operations of an active transaction is not known beforehand.
These future reads or writes may lead to an empty timestamp interval if
backward adjustment is used. Therefore, critical transactions should not
be backward adjusted, but conflicting active transactions having lower con-
flict priority should be restarted. This is wasted execution and unnecessary
restart, which must be acceptable when critical transactions are favored.
Backward adjustment of a critical transaction is possible if the transaction
is not to be restarted due to an empty timestamp. This, however, implies
that the critical transaction should not be allowed to read or write new data
objects that belong to a new database state after a backward adjustment.
In other words, future read or write operations could reduce the timestamp
interval of the transaction to empty.

Algorithm 5.3 depicts an implementation of a deferred dynamic adjust-
ment of the serialization order using timestamp intervals and information
about the criticality of the transactions.

Because the OCC-PDATT uses the same conflict detection method as
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the OCC-DATI, the same conflicts are found. Conflict resolution in the
OCC-PDATI is based on same principles as in the OCC-DATI but OCC-
PDATT restricts possible histories so that higher conflict priority trans-
actions are favored in case of conflict. Therefore, OCC-PDATTI produces
serializable histories which youd be prooven with very similar proof as in
the OCC-DATT’s case. Because transactions see only values from commit-
ted transactions, OCC-PDATT avoids cascading aborts and is recoverable.
Therefore, OCC-PDATT produces only strict serializable histories.

forward_adjustment (7,,T,, adjusted)

if (T, € adjusted)

TI = adjusted.pop(Ts);
else

TI = TI(T,);

TI = TI(T.,) N [TS(T,) +1,00[;

if ( epriority(T,) < cpriority(Ta) )
if (TI == 0)
restart(Ty); /* Validation ends here /*

, adjusted.push({(Ta, T1)});

backward_adjustment (T, ,T,, adjusted)

{
if (T, € adjusted)
TI = adjusted.pop(Ty);
else

TI = TI(T.);
TI = TI(T.) n [0,TS(T,)—1]

if ( cpriority(T,) < cpriority(T,) )
restart(Ty); /* Validation ends here /*

, adjusted.push({(Ta, T1)});

Algorithm 5.3: Backward and Forward adjustment for the OCC-PDATT.
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5.3 OCC-RTDATI

This section is based on earlier results presented in [76]. In real-time data-
base systems, the conflict resolution of the transactions should be based on
the timing constraints of the transactions. Therefore, an optimistic concur-
rency control method has been developed where the decision about which
transaction is to be restarted is based on the transaction priority.

In this section we will use deadline-driven conflict priority. As men-
tioned in Section 2.2 deadline-driven conflict priority is based on the dead-
line and the criticality of the transaction. We will call this deadline-driven
conflict priority as conflict priority in this section.

This section proposes an optimistic concurrency control method called
OCC-RTDATI. OCC-RTDATI is based on forward validation [26] and the
earlier optimistic method OCC-DATT [74]. The validation protocol is the
same in OCC-DATT and OCC-RTDATTI. The difference is in the conflict res-
olution. This section outlines new parts of OCC-RTDATI when compared
to OCC-DATTI.

The order of the conflicting transactions should be based on the conflict
priority of the transaction. A higher conflict priority transaction should
precede a transaction of lower conflict priority in the history. Therefore,
the higher conflict priority transaction should not be forward adjusted after
a transaction of lower conflict priority. Thus, if this is the case a transaction
of lower conflict priority is restarted. This is a wasted execution, but it is
required to ensure the execution of the critical transaction.

Critical transactions should not be backward adjusted; instead, conflict-
ing transactions having lower conflict priority should be restarted. This is
wasted execution and unnecessary restart, which must be acceptable when
critical transactions are favored.

Algorithm 5.4 depicts an implementation outline of the conflict resolu-
tion for the OCC-RTDATT.

Because the OCC-RTDATT uses the same conflict detection method as
the OCC-DATI, the same conflicts are found. Conflict resolution in the
OCC-RTDATTI is based on same principles as in the OCC-DATI but OCC-
RTDATT restricts possible histories so that higher conflict priority trans-
actions are favored in case of conflict. Therefore, OCC-RTDATI produces
serializable histories which youd be prooven with very similar proof as in
the OCC-DATT’s case. Because transactions see only values from commit-
ted transactions, OCC-RTDATI avoids cascading aborts and is recoverable.
Therefore, OCC-RTDATT produces only strict serializable histories.
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forward_adjustment (7,,T,, adjusted)
{
if ( epriority(T,) < cpriority(Ta) )
restart(Ty,); /* Validation ends here /*

if (T, € adjusted)
TI = adjusted.pop(Ty);
else

TI = TI(T.);

TI = TI(T.,) N [TS(T,) +1,00[;
, adjusted.push({(T., TI)});

backward_adjustment (T, , T, adjusted)
{
if ( cpriority(T,) < cpriority(T,) )
restart(Ty,); /* Validation ends here /*
if ( cpriority(T,) > cpriority(T,) )
restart(T,); return; /* Restart conflicting */

if (T, € adjusted)
TI = adjusted.pop(Ty);
else TI = TI(T.);

TI = TI(T,) n [0,T8(T,) — 1]
, adjusted.push({(T.,TI)});

Algorithm 5.4: Backward and Forward adjustment algorithms for the OCC-
RTDATI.
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Chapter 6

Adaptive Conflict Resolution

Many methods proposed earlier do not include any real-time properties.
Therefore, these methods are too ”fair”. A characteristic of most real-
time scheduling algorithms is the use of priority-based scheduling [1]. Here
transactions are assigned ’priorities’, which are implicit or explicit functions
of their deadlines or criticality or both. The criticality of a transaction is
an indication of its level of importance. However, these two requirements
sometimes conflict with each other. That is, transactions with very short
deadlines might not be very critical, and vice versa [8].

In real-time systems transactions are scheduled according to their pri-
orities [83]. Therefore, high priority transactions are executed before lower
priority transactions. This is true only if the high priority transaction has
some database operation ready for execution. If no operation from the
higher priority transaction is ready for execution, then the operation from
the lower priority transaction is allowed to execute its database operation.
Therefore, the operation of the higher priority transaction may conflict with
the already executed operation of the lower priority transaction. In tradi-
tional methods the higher priority transaction must wait for the release of
resources. This is the priority inversion problem. Therefore, data conflicts
in the concurrency control should also be based on transaction priorities or
criticality or both.

Therefore, the conflict priority of the transaction is used in place of
the deadline in choosing the appropriate conflict resolution method. This
avoids the dilemma of the priority-based conflict resolution, yet integrates
criticality and deadline so that, not only do the more critical transactions
meet their deadlines, but the overall goal is to maximize the net worth
(critical transactions worth more to system) of the executed transactions
to the system. This work is based on work presented in [71].

Each instance of the transaction object has the attributes priority, dead-
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line, criticality, and conflict priority. The developer assigns a value for the
deadline based on the estimate or value measured through experiments of
worst case execution time. The priority attribute is assigned by the real-
time scheduler (EDF) and is based on the deadline and arrival time. The
criticality attribute is assigned by the developer and is static and the same
goes for all instances of the same transaction class. From criticality and
deadline an deadline driven conflict priority is calculated. We have used
the following values coded as numbers:

e Normal: The transaction is not essential but should be completed if
the execution history is serializable. For this transaction class we use
basic conflict resolution. This method is same as in OCC-DATT (See
Chapter 4).

e Medium: The transaction is important and should not be restarted
if there is a data conflict with the transaction with normal conflict
priority. For this transaction class we use conflict resolution where a
lower conflict priority transaction is restarted if an active conflicting
higher conflict priority transaction would be restarted because of a
data conflict. This method is same as in OCC-PDATTI (See Section
5.2).

e Critical: The transaction is critical and should not be restarted even
if there is data conflict with the transaction with normal or medium
conflict priority. For this transaction class we use conflict resolu-
tion where a lower conflict priority transaction is always restarted if
there is an active conflicting higher conflict priority transaction. This
method is same as in OCC-RTDATT (See Section 5.3).

Let us assume that the conflict detection algorithm (see Algorithm 4.1)
has found that a validating transaction T, and active transaction 7} are
conflicting. Assume that the validating transaction has read the data item
X and the active transaction has written the data item X. Assume that
cpriority(T,) = cpriority(Ty) = normal. In this case the conflict is re-
solved using normal forward adjustment.

Assume that the conflict detection algorithm finds another conflict be-
tween the validating transaction and an active transaction 75. Assume
that the validating transaction has read the data item X and the active
transaction has written the data item X. Assume that cpriority(T,) =
normal < cpriority(T>) = medium. In this case the conflict is resolved
according to the medium forward adjustment. Therefore, the conflict reso-
lution method is selected according to the criticality of the higher conflict
priority transaction (see Figure 6.1).
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Figure 6.1: Integrated Optimistic Concurrency Control Method.

Assume that the conflict detection algorithm finds another conflict be-
tween the validating transaction and an active transaction T3. Assume that
the validating transaction has read the data item X and the active transac-
tion has written the data item X. Assume that cpriority(T,) = normal <
cpriority(T3) = critical. In this case the conflict is resolved according to
the critical forward adjustment.

Therefore, the proposed method dynamically adapts to different load
situations. This is because the conflict resolution method dynamically se-
lects a resolution method based on the conflict priority of the conflicting
transactions. The proposed method offers three different conflict resolution
methods. However, inside all the methods the conflict priority of the con-
flicting transactions are still taken into account. Therefore, the proposed
method can offer better changes for the more critical transaction even if
both conflicting transactions belong to the same conflict priority level. This
is because one conflict priority level can be constructed from a large interval
(i.e. the conflict priority boundaries can be any positive integer values).

This method is possible because all integrated methods use precisely the



68 6 ADAPTIVE CONFLICT RESOLUTION

same conflict detection method (i.e. same method as in the OCC-DATI,
see Chapter 4). Additionally, all integrated methods basically use the same
conflict resolution method. The only difference between different conflict
resolution methods is that the medium method and the critical method
restart the conflicting lower conflict priority transaction if the validating
transaction is more critical.

Finally, we present an integrated and adaptive method for conflict res-
olution. We will call this method OCC-IDATI. Below we present forward
and backward adjustment algorithms, i.e. the conflict resolution method in
the OCC-IDATTL. In implementation, three different forward and backward
adjustment algorithms are integrated to one forward and one backward
adjustment algorithm. Similarly, conflict resolution method selection is
integrated inside both algorithms (see Algorithm 6.1).

It is easy to show that OCC-IDATT produces serializable histories with
similar proof as in the OCC-DATT’s case. Because transactions see only
values from committed transactions, OCC-IDATI avoids cascading aborts
and is recoverable.
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forward_adjustment (7,,T,, adjusted)

{

cpriority = max(cpriority(T.), cpriority(Ty)) ;

if (T, € adjusted)

TI = adjusted.pop(Ts);
else

TI = TI(T,);

if ( cpriority >= NORMAL_MIN && cpriority <= NORMAL_MAX )
continue;
if ( cpriority >= MEDIUM_MIN && cpriority <= MEDIUM_MAX ) {
if ( cpriority(T,) < cpriority(T,) )
if (TI == 0)
restart(Ty,); /* Validation ends here /*
}
if ( cpriority >= CRITICAL_MIN && cpriority <= CRITICAL_MAX ) {
if ( cpriority(Ty) < cpriority(T.) )
restart(Ty); /* Validation ends here /*

}

TI = TI n [TS(T,)+1,00] ;
, adjusted.push({(Ta, T1)});

backward_adjustment (T, ,T,, adjusted)

{

cpriority = max(cpriority(T,),cpriority(Ty));

if (T, € adjusted)
TI = adjusted.pop(Ty);
else

TI = TI(T.);

if ( cpriority >= NORMAL_MIN && cpriority <= NORMAL_MAX )
continue;
if ( cpriority >= MEDIUM_MIN && cpriority <= MEDIUM_MAX ) {
if ( cpriority(T,) < cpriority(T,) )
restart(Ty,); /* Validation ends here /*

}
if ( cpriority >= CRITICAL_MIN && cpriority <= CRITICAL_MAX ) {
if ( cpriority(T,) < cpriority(Ta) )
restart(Ty); /* Validation ends here /*
if ( cpriority(T,) > cpriority(T,) )
restart(T,); return;
}

TI = TI n [0,TS(T,) - 1] ;
, adjusted.push({(Ta, T1)});

Algorithm 6.1: Backward and Forward adjustment for the OCC-IDATI
method.
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Chapter 7

Experiments Using RTDB for
Telecommunications

In this section we present requirements of telecommunication system and
show that real-time databases can answer these requirements. This work is
based on earlier work presented in [73]. From these requirements we have
developed a real-time database system for telecommunications, the archi-
tecture of which is presented. This system is used for evaluating methods
presented in this thesis. Additionally, we present a benchmark used in
evaluating the proposed methods and the system. This benchmark will be
workload used in the experiments. Finally, we present experiments done
using proposed optimistic methods presented earlier.

7.1 Requirements

The telecommunication field has different services, which have different
database needs. The intelligent network (IN) concept models its services in
a traditional fixed-line network. The GSM services are wireless. Telecom-
munication Management Network (TMN) has its own requirements for the
databases. This section concentrates on the requirements for distributed
databases. Requirements for these databases are listed in [81, 86, 100].
The Intelligent Network (IN) [40] services do not necessarily require
the support from a distributed database. A centralized database is enough
to support them. The caller and called profiles can be fetched separately
from their own databases at both ends of the call. Even the dialed number
services (800 Service) does not require co-operation of multiple database
nodes [43, 9]. According to [81], the intelligent network has databases for
traffic data, service data and customer data. The requirements analysis
shows that transactions in the IN system are commonly small (only a few
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operations per transaction) and require short response time. This creates
problems for most commercial database systems.

The best-known IN architecture is probably the Datacycle architecture
by AT&T [10]. It is based on special hardware that allows fast data access.
A regular type IN database has been presented by Norwegian Telecom
Research [38, 103]. Their architecture is a shared-nothing parallel database
where parallel relational database nodes communicate with each other via
an ATM network. The traditional IN services can be implemented without
transactions accessing multiple databases.

Previous work has proposed that the consistency of some subsets of the
telecommunication transactions can be relaxed [81]. However, we recom-
mend using full consistency on all transactions in the telecommunication
database because it is easier to support the full consistency with all transac-
tions than the full consistency with a subset of transactions and a relaxed
consistency with another subset. Relaxed consistency would require ad-
ditional semantic information of the transactions. This information can
originate only from the application developer. The application developer
would need to include additional code in applications to maintain database
consistency when integrity constraints are present. This would complicate
and lengthen the development time.

7.2 RODAIN Architecture

The Real-Time Object-Oriented Database Architecture for Intelligent Net-
works (RODAIN) [73] is a real-time, highly-available, main-memory data-
base server. RODAIN supports concurrently running real-time transactions
using an optimistic concurrency control protocol with deferred write pol-
icy. Real-time transactions are scheduled according to their type, priority,
mission criticality, or time criticality. In this section only those parts of
RODAIN are discussed which are essential to this thesis and which were
used in the experiments.

RODAIN is further divided into a set of subsystems (Figure 7.1) that
perform the needed function. The database resides in the subsystem called
HOT (Hot Object Storage). Subsystem OCC (Optimistic Concurrency
Control Scheduler) takes care of the concurrency control, while subsys-
tem ORD (Object Request Dispatcher) is simply a common entrance point
to the core database system. TRP (Transaction processing) executes all
transactions.
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Figure 7.1: Subsystem Interfaces.

The threads in the TRP execute the transactions according to the re-
quests and given parameters. The precoded real-time transactions get all
their parameters in the requests and give their answers in the replies. Pre-
coded real-time transactions are executed in the RODAIN server. A trans-
action starts when the TRP receives a transaction number and arguments
to the transaction. TRP makes a feasibility test and if the transaction is
found eligible for execution, the TRP assigns a priority to the transaction
process. TRP implements the EDF scheduling policy and allocates the
transaction process to execute the code of the transaction.

TRP is responsible for checking that transactions are scheduled in a fea-
sible schedule. TRP controls, at the operation level, during the execution
to the effect that all constraints are satisfied. TRP terminates success-
fully executed transactions or terminates rejected, aborted, and restarted
transactions if some of the constraints are violated.

When the transaction requires database services, the TRP performs
subroutine calls for these services. Complete structures of all accessed
objects are known in this level, thus the transaction has free access to all
properties of the object. When a transaction process needs access to an
object in a database, it sends a request to an Object Request Dispatcher
(ORD).

This request is forwarded to Optimistic Concurrency Control Sched-
uler (OCC). OCC maintains appropriate markings in the readset or in the
writeset of the transaction.

At this point of the transaction flow the request can be either a read
request or a write request of an object in the Hot Object Storage (HOT).
When the request is a read request, the data is fetched from the main
memory database (HOT). In the case of a write request no data is accessed.
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When a transaction is going to commit, the transaction process is moved
into the process group of committing transactions. The difference between
a transaction process and a committing transaction is that each committing
transaction always has a higher priority than any transaction process has.

The first step in the commit is validation, that is to certify whether
or not concurrency conflicts have occurred. The validation is done by an
Optimistic Concurrency Control Scheduler (OCC) that receives a validate
request. During the validation process the OCC checks whether or not read-
write or write-write conflicts exist. If a conflict exists, the conflict is solved
either by adjusting the serialization order or by aborting the committing
transaction or the conflicting transaction.

After a successful validation, the commit procedure continues. The next
step in the commit procedure is to send a write request to the ORD in order
to store the written objects permanently into the database. The communi-
cation between the Committing Transaction and the ORD is synchronous.
The commit ends when all write requests have been processed successfully.
The Transaction Process is returned into the pool of free Transaction Pro-
cesses, and the result sent to the application.

The client requests arrive via TCP/IP over a network directly to the
TRP, which contains threads to serve the clients. Each client may use
the same connection for multiple transaction requests. No communication
during the transaction execution is allowed between the transaction and
the calling client. All transactions arrive at the RODAIN through a specific
user subsystem. In these tests we have used a special user subsystem that
receives the arriving transactions from an off-line generated test file (see
Figure 7.2).

Test file test RODAIN
generator Test - database
client execution
test test
result Test
file file analysis

Figure 7.2: Architecture of the RODAIN Database Evaluation System.

Consider now the abstract database model presented in Chapter 2 Sec-
tion 2.2 and especially modules presented in Figure 2.4. In RODAIN, TRP
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Figure 7.3: Schema of the benchmark database.

implements the transaction manager, OCC is the scheduler, ORD is the
data manager, and HOT is the database. Therefore, RODAIN fully imple-
ments the abstract model presented earlier.

7.3 Benchmark Database

This benchmark models a hypothetical telecommunication operator. The
network has multiple service providers. The service providers may belong
to one operator or they may belong to multiple operators. Each service
provider has its own database, but for this benchmark the databases are
similar. The service provider has many customers, each with one or more
subscriptions for different available services. The database represents the
telecommunication services and billing information of each entity (service
provider and service).

The components of the database are defined as consisting of five sep-
arate and individual classes: ServiceProvider, HomeProfile, VisitorProfile,
Servicelnfo, and Subscriptions. The relationships among these classes are
defined in the following UML-diagram (Figure 7.3). This diagram is a
logical description of the classes.

Although the entity names in the model are collected from the wireless
world, they can be used to model the IN services as well. The Virtual
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Private Network as described in [43] maps to our model by simply changing
the names of the entities. The simple read and write transactions are also
similar in both worlds. In order for the transactions to represent a similar
amount of work to all the systems, it is important that the records handled
by the database servers, file systems, etc. are of the same size. Therefore,
the records/rows must be stored in an uncompressed format.

The size of each item in the ServiceProvider class must be at least
100 bytes. The actual attributes of the class are not important for the
benchmark itself. However, one of the attributes, called ProviderId, must
uniquely identify the service provider and the information attached to it. In
this benchmark we assume the ServiceProvider class (Table 7.1) to contain
in any order or representation the attributes ProviderId, ProviderName and
ProviderInfo.

Table 7.1: ServiceProvider class.

Data Attribute | Description

Providerld unique identifier across the ServiceProviders
ProviderName | Name of the ServiceProvider

ProviderInfo Additional information of the provider

The Servicelnfo class contains the information of the available service
at each service provider. In this benchmark the services must be uniquely
identified over all services on all service providers. The benchmark concen-
trates only on the service price and its usage in the service. The size of each
item in the Servicelnfo class must be at least 100 bytes. For the bench-
mark it must have the attributes (see Table 7.2) Serviceld, ServicePrice
and ServiceName. The actual order of these attributes is not described.

Table 7.2: Servicelnfo class.

Data Attribute | Description

Serviceld unique identifier across the range of Service
ServicePrice Price of the service

ServiceName Service name in uncompressed format

Each client of the system has one home service provider. The client
information is located in the HomeProfile of that service provider. The
size of the data item in the HomeProfile must be at least 100 bytes. The
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HomeProfile (see Table 7.3) contains the client’s subscriber identity (Sub-
sId), which identifies the client over all clients in the whole system. The
clients also have a local identity (ClientId), which usually is much smaller
than the Subsld. This id is used to connect the client with her local sub-
scribed services. The home profile must also contain the client’s true phone
number, the current roaming position as the service provider id, and the
client address as the connection information to the client.

Table 7.3: HomeProfile class.

Data Attribute Description

Subsld unique identifier across the range of HomeProfiles
ClientId Client identifier

PhoneNumber Subscriber real phone number

CurPosition Current position, i.e., provider identification
SubscriberAddress | Subscribers address

SubscriberInfo Additional information of the subscriber

The service provider keeps information about current roaming users in
VisitorProfile (see Table 7.4). The class must at the minimum contain the
identification of the roaming user and the identification of the user’s own
service provider. The size of each item in the VisitorProfile is assumed to
be small, only 16 bytes. To map the visitors with the services, the visitors
are also attached with a temporary Clientld for the mapping.

Table 7.4: VisitorProfile class.

Data Attribute | Description

Subsld Visitor identification, the same as in HomeProfile
ClientId Client identification

HomeLocation | service providers Providerld

The class Subscriptions (see Table 7.5) connects the subscribers and
services together. It must have the identification to the user and the ser-
vice. These identifications together identify each data item in this class.
The size of the data item must be at least 50 bytes. In addition to the
identification attributes SubServiceld and SubClientld, the class contains
information specific to this subscription. The information is stored in Sub-
Type, SubValue, and SubName attributes.
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Table 7.5: Subscriptions class.

Data Attribute | Description

SubClientId Identification of the subscriber
SubServiceld Identification of the service
SubType Subscription type

SubValue Connection information
SubName Subscription name

The data item identifiers of the ServiceProvider, Servicelnfo, Subscrip-
tions, HomeProfile, and VisitorProfile must not directly represent the phys-
ical disk addresses of the items or any offsets thereof. The applications may
not reference records using relative record numbers since they are simply
offsets from the beginning of a file. For each nominal configuration, the
test must use the minimum database size given in Table 7.6.

Table 7.6: Database size.

Table/Class Number of rows
ServiceProvider | 2
Services 10

Subscriptions 50000
HomeProfile 30000
VisitorProfile 10000

The classes presented above are necessary in the databases of each
service provider. The transactions represent the work performed when
a customer uses some telecommunication services. The transactions are
performed in the database of some service provider(s). This set of transac-
tions presents the minimum that can be used for evaluating a database for
telecommunication. Each transaction has its own purpose in the test set.

7.4 Local workload

In this section transactions and the workload used in the local database
experiments is presented. These transactions and workload are used in the
experiments presented in this thesis. The workload used in the experiments
is presented using the model presented in Definition 2.1 (see Chapter 2).
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Error checking is ommitted from this presentation to make transactions
more readable. In RODAIN these transactions are implemented using pre-
coded low-level interface transactions. Implementation is based on begin,
read, write, commit, and abort operations.

The GetSubscriber transaction (see Algorithm 7.1) is used to search a
specific subscriber in the database. It is mainly a simple local read-only
transaction. These transactions require subscriber identification, i.e. a Sid
attribute as an input variable.

int Transaction::GetSubscriber(0ID sid)

{

begin();

HomeProfile = read(sid);

commit () ;

return Homeprofile.getPhoneNumber() ;
}

Algorithm 7.1: GetSubscriber transaction.

The UpdateSubscriber transaction (see Algorithm 7.2) is used to mod-
ify some of the subscriber data. This simple update transaction represents
a large set of update transactions that access data in one class. The cho-
sen update transaction updates the subscriber’s name and number. It is
actually the same as the Modify Subscriber Number service. This query
also represents the Customer Management service in Intelligent Network
Capability Set 1 (IN CS-1) [39].

void Transaction::UpdateSubscriber (0ID sid,datal,data2)

{
begin();
HomeProfile = read(sid);
HomeProfile.setSubscriberAddress(datal);
HomeProfile.setSubscriberAddInfo(data2);
write(sid,HomeProfile);
commit () ;

Algorithm 7.2: UpdateSubscriber transaction.

The GetAccessData transaction (see Algorithm 7.3) can be used in three
different scenarios. In the first scenario, the query is used to fetch the new
destination number from the database in case the number given in the
parameter is an abbreviated number (e.g. this query implements the Ab-
breviated Dialing service in IN). The query returns the destination number,
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which is active when the query is executed. The second scenario for the
GetAccessData is to fetch the new destination number from the database
in case the number given in the parameter is forwarded to another number
(e.g. this query implements the Call Forwarding service). The query re-
turns the destination number, which is active when the query is executed.
Finally, the third possible scenario for the GetAccessData query is to fetch
the new destination number from the database in case the number given in
the parameter is a group number (e.g. this query implements the Univer-
sal Access Number service). When executed the query returns the current
active destination number. All of these three scenarios in this database
map to the same transaction. The actual phone number is fetched from
the Subscription table.

int Transaction::GetAccessData(0ID sid)

{
begin();
HomeProfile = read(sid);
if ( HomeProfile == NULL )
{
VisitorProfile = read(sid);
ClientId = VisitorProfile.getClientId();
}
else
ClientId = HomeProfile.getClientId();
Subscription = read(ClientId);
commit () ;
return Subscription.getSubValue();
}

Algorithm 7.3: GetAccessData transaction.

The SetAccessData transaction (see Algorithm 7.4) is used to insert
a service subscription which can be an abbreviated number, a forwarded
number or a universal access number.

In order for the transactions to represent a similar amount of work to
all the systems, it is important that the fractions of different transactions
are specified. Table 7.7 shows the fraction of the different transactions in
the test load, their conflict priority and relative deadlines.

The actual workload depends on the write fraction used in the experi-
ments. For example if the write fraction is 20%, then the work load contains
40% of FindSubscriber transactions, 40% of GetAccessData transactions,
10% of UpdateSubscriber transactions, and 10% SetAccessData transac-
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int Transaction::SetAccessData(0ID sid,id,type,value,name)
{
begin();
Subscription = new Subscription(sid,id,type,value,name);
write(sid,Subscription);
commit () ;
}
Algorithm 7.4: SetAccessData transaction.
Table 7.7: Transaction mix.
Transaction name | Fraction of all transactions | Conflict priority | Deadline
FindSubscriber 0..50% Critical 50ms
UpdateSubscriber | 0..50% Normal 150ms
GetAccessData 0..50% Medium 50ms
SetAccessData 0..100% Normal 150ms
tions.

The workload in a test session consists of a variable mix of transactions.
Fractions of each transaction type is a test parameter. Other test parame-
ters include the arrival rate, assumed to be exponentially distributed (Table

7.8).
Table 7.8: Transaction test parameters
Parameter Unit Value Description
ArrRate trans/s | 100-500 | Average arrival rate of transactions
Deadline type firm All transactions are firm transactions
DbSize num 90012 Number of objects in the database
NumTRP num 20 Number of Transaction Processes

7.5 Experimental Setup

All experiments were executed in the RODAIN (See Section 7.2) prototype
database running on a machine with one processor Pentium Pro 200MHz
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and 64 MB of main memory with the Chorus/ClassiX real-time operating
system [80].

Every test session contains 10000 transactions and is repeated at least
20 times. The reported values are the means of the repetitions. The exper-
iments are based on the benchmark that models a hypothetical telecommu-
nication operator. The network has multiple service providers. The service
providers may belong to one operator or they may belong to multiple oper-
ators. Each service provider has its own database, but for this benchmark
the databases are similar. The service provider has many customers, each
with one or more subscriptions for different available services. The data-
base represents the telecommunication services and billing information of
each entity (service provider and service). The transactions represent the
work performed when a customer uses some telecommunication services.
The transactions are performed in the database of some service provider(s).
This set of transactions presents the minimum that can be used for evaluat-
ing a database for telecommunication. Only firm real-time transactions are
used in experiments. The database used in the experiments was presented
in Section 7.3 and transactions and workload was presented in Section 7.4.

7.6 Experiments Using OCC-DATI

In this section we examine how well our OCC-DATT algorithm (see Chapter
4) performs when compared to the OCC-TI [62] and OCC-DA [53] algo-
rithms. In the test the fraction of transactions which missed their deadline
is measured, i.e. the miss ratio of the transactions is measured (see Defini-
tion 7.1).

Definition 7.1

Number of transactions that missed their deadline

Miss ratio = -
Number of transactions

O

In the first experiments a fixed fraction of write transactions has been
used, varying the arrival rate of the transactions from 100 to 500 transac-
tions per second (Figure 7.4). From the experimental results one can find
that the experimental system starts to become overloaded when the arrival
rate of the transactions is 333 transactions per second.

From the experiments one can see that system becomes overloaded at
500 transactions per second. There is quite few missed transactions because
of the concurrency control. This is because we have used very old and slow
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Pentium Pro 200MHz processor machines. Additionally, Chorus/ClassiX
real-time operating system did not very well work on overloading situations.
This is clearly characteristic of the used environment.
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Figure 7.4: Miss ratio of the OCC-DATI, OCC-TI, and OCC-DA methods
compared when the arrival rate of the transactions is varied from 100 to 300

transactions per second and the fraction of write transactions is between
10% and 40%.

In the second experiments a fixed arrival rate of transactions has been
used and the fraction of write transactions has been varied from 10% to
100%. The rest are read-only transactions. In Figure 7.5(a) the arrival
rate of the transactions is 200 transactions per second, in Figure 7.5(b) the
arrival rate of the transactions is 250 transactions per second, in Figure
7.5(c) the arrival rate of the transactions is 333 transactions per second,
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and in Figure 7.5(d) the arrival rate of the transactions is 500 transactions
per second.
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Figure 7.5: Miss ratio of the OCC-DATI, OCC-TI, and OCC-DA methods
compared when the fraction of the write transactions is varied from 10%
to 100% and the arrival rate of the transactions is between 200 and 500
transactions per second.

OCC-DATI clearly offers the best performance in all tests. This con-
firms that the overhead for supporting dynamic adjustment in OCC-DATI
is smaller than the one in OCC-DA. This also confirms that the number
of transaction restarts is smaller in OCC-DATTI than OCC-TI or OCC-DA.
The results clearly show how unnecessary restarts affect the performance of
the OCC-TI. The results also confirm the conclusion in [53] that OCC-DA
outperforms OCC-TI. The results [62] have already confirmed that OCC-TI
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outperforms the OCC-BC, OPT-WAIT and WAIT-50 algorithms. These
results confirm that OCC-DATT also outperforms OCC-DA and OCC-TI
when the arrival rate of the transactions is increased.

7.7 Experiments Using OCC-PTI

This section presents experiment results when the original OCC-TI (see
Section 3.4) and the OCC-PTI (see Section 5.1.3) are compared. Perfor-
mance is measured using Miss ratio measuring the fraction of transactions
that missed their deadlines (see Definition 7.1) and a new Critmiss ratio is
used. Critmiss ratio measures the fraction of FindSubscriber transactions
that missed their deadlines.

Definition 7.2

Number of FindSubscriber trans. that missed their deadlines

Critmiss ratio =
Number of FindSubscriber transactions

In the first experiments, the arrival rate of the transactions is varied
from 100 to 500 transactions per second. In Figure 7.6(a) the fraction of
write transactions is 10%. In Figure 7.6(c) the fraction of write transactions
is 20%. In Figure 7.6(a) the fraction of write transactions is 30%. In Figure
7.6(c) the fraction of write transactions is 40%. Figure 7.6 shows that the
OCC-PTT performs better than OCC-TI, especially when the fraction of
the write transactions increases. This is because the OCC-PTI does not
suffer from the unnecessary restart problem. Figure 7.6 also clearly shows
that the experimental system becomes overloaded when the arrival rate of
the transactions is more than 333 transactions per second.
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Figure 7.6: Miss ratio of the OCC-TI and OCC-PTI compared when the
arrival rate of the transactions is varied from 100 to 500 transactions per
second and the fraction of write transactions is between 10% and 40%.

Figures 7.7(a) to 7.6(d) show the critmiss ratio of transactions. This

demonstrates how the OCC-PTI favors transactions of high priority. The
OCC-PTT clearly offers better chances for high priority transactions to
complete according to their deadlines. The results clearly indicate that the
OCC-PTI meets the goal of favoring transactions of high priority.
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Figure 7.7: Critmiss ratio of the OCC-TI and OCC-PTI compared when
the arrival rate of the transactions is varied from 100 to 500 transactions
per second and the fraction of write transactions is between 10% and 40%.

In the next experiments, the arrival rate of the transactions is fixed and
the write fraction of the transactions is varied from 10% to 100%. Figure
7.8 shows that the OCC-PTI performs better than the original OCC-TI,
especially when the write fraction rate is high. This is because the OCC-
PTI does not suffer from the unnecessary restart problem.
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Figure 7.8: Miss ratio of the OCC-TI and OCC-PTI compared when the
fraction of the write transactions is varied from 10% to 100% and the arrival
rate of the transactions is 250 and 333 transactions per second.

In the next experiments, the arrival rate of the transactions is fixed and
the write fraction of the transactions is varied from 10% to 100% and the
critmiss ratio is measured. Figure 7.9 shows that the OCC-PTI performs
better than the original OCC-TI, especially when the write fraction rate is
high. This is because the OCC-PTI does not suffer from the unnecessary
restart problem. Again, OCC-PTI clearly offers better chances for high
priority transactions to complete according to their deadlines.

In the final experiments, results from the OCC-DATI method are in-
cluded. The arrival rate of the transactions is varied from 100 to 500
transactions per second. The performance of the OCC-PTI is similar to
OCC-DATL. Figure 7.10 shows miss ratio measurements and Figure 7.11
shows critmiss ratio measurements. Experiments clearly show that prior-
ity cognizance is not a feasible approach for improving the performance of
real-time concurrency control methods beyond the current state of the art
as noted also in [16].
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Figure 7.9: Critmiss ratio of the OCC-TI and OCC-PTI compared when
the fraction of the write transactions is varied from 10% to 100% and the
arrival rate of the transactions is 250 and 333 transactions per second.
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Figure 7.10: Miss ratio of the OCC-DATI and OCC-PTI compared when
the arrival rate of the transactions is varied from 100 to 500 transactions
per second and the fraction of write transactions is between 10% and 40%.
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Figure 7.11: Critmiss ratio of the OCC-DATI and OCC-PTI compared
when the arrival rate of the transactions is varied from 100 to 500 transac-
tions per second and the fraction of write transactions is between 10% and
40%.

7.8 Experiments Using OCC-PDATI and OCC-
RTDATI

In this section results from experiments with OCC-DATTI (see Chapter 4),
OCC-PDATI (see Section 5.2) and OCC-RTDATI (see Section 5.3) meth-
ods are presented. Performance is measured using the Miss ratio measur-
ing the fraction of transactions that missed their deadlines (see Definition
7.1) and the Critmiss ratio, which measures the fraction of FindSubscriber
transactions that missed their deadlines (see Definition 7.2).
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Figure 7.12: Miss ratio of the OCC-DATI, OCC-RTDATI, and OCC-
PDATI compared when the arrival rate of the transactions is varied from
100 to 300 transactions per second and the fraction of write transactions is
between 10% and 40%.

In the first experiments a fixed fraction of write transactions has been
used and the arrival rate of the transactions have been varied from 100 to
500 transactions per second (Figure 7.12).

As expected, there is some overhead when information about the impor-
tance of the transaction is used in dynamic adjustment of the serialization
order. As Figure 7.12 indicates, the overhead using additional information
from the transactions is quite low. The miss ratio of the transactions when
using the OCC-PDATI or OCC-RTDATI algorithm is only slightly higher
than in the OCC-DATT.
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Finally, Figure 7.13 shows the miss ratio of transactions of high impor-
tance. Figure 7.13 demonstrates how the OCC-PDATT and OCC-RTDATI
favor transactions of high importance. OCC-PDATI and OCC-RTDATI
clearly offer better chances for high priority transactions to complete ac-
cording to their deadlines. The results clearly indicate that OCC-PDATI
and OCC-RTDATI meet the goal of favoring transactions of high impor-
tance.
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Figure 7.13: Critmiss ratio of the OCC-DATI, OCC-RTDATI, and OCC-
PDATI compared with transactions of high importance when the arrival
rate of the transactions is varied from 100 to 300 transactions per second
and the fraction of write transactions is between 10% and 40%.
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7.9 Experiments Using OCC-IDATI

In the experiments, we examined how well our OCC-IDATT (see Chapter 6)
method performs when compared to the OCC-DATI method [74] and to the
OCC-TI method [62]. The performance is measured using Miss ratio mea-
suring fraction of transactions that missed their deadlines (see Definition
7.1) and the Critmiss ratio, which measures the fraction of FindSubscriber
transactions that missed their deadlines (see Definition 7.2).

In the first set of experiments, a fixed fraction of write transactions was
used. The arrival rate of transactions was the varying parameter. OCC-
IDATT clearly offers the best performance in all tests (see Figure 7.14).
This confirms that the overhead for supporting dynamic adjustment in
OCC-IDATT is smaller than the one in OCC-TTI and in OCC-DATT.
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Figure 7.14: Miss ratio of the OCC-IDATI, OCC-DATI and OCC-TI com-
pared when the arrival rate of the transactions is varied from 100 to 500
and the fraction of the write transactions is 10% and 30%.

Figure 7.15 shows the miss-ratio transactions when the transaction’s
write fraction is varied. Figure 7.15 demonstrates how the OCC-IDATI
favors critical transactions (i.e. transactions with high conflict priority).
OCC-IDATT clearly offers better chances for critical transactions to com-
plete according to their deadlines. The results clearly indicate that OCC-
IDATT meets the goal of favoring critical transactions.
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Figure 7.15: Miss ratio of the OCC-IDATI, OCC-DATTI and OCC-TI com-
pared when the fraction of the write transactions is varied from 10% to
40% and the arrival rate of the transactions is 333 and 500 transactions per
second.

7.10 Summary

Firstly, experiment results show that the unnecessary restart problem found
in OCC-TI greatly decreases the performance of OCC-TI. OCC-DATT is
clearly superior to OCC-TI in all tests. This is because OCC-DATT avoids
unnecessary restart problem found in OCC-TI. Additionally, OCC-DATI
outperforms OCC-DA because it makes validation tests more efficiently
than OCC-DA. This is also confirmed by the performance tests. Therefore,
many unnecessary restarts should and can be avoided efficiently.

Secondly, from the analysis and experiments, we conclude that priority
cognizance is not a viable approach for improving the performance and
predictability of real-time concurrency control methods for main-memory
real-time database systems beyond the current state-of-the-art.

Priority cognizance is a viable approach for main-memory real-time
database systems if critical transactions (i.e. transactions with high conflict
priority) should be favored against less critical transactions. In this case
the overall performance of the real-time system does not significantly suffer
or improve but the predictability of critical transactions clearly improve.
Using priority cognizance in conflict resolution can offer better changes for
high priority transactions to complete according to their deadlines.

Finally, from the analysis and experiments, we conclude that it is possi-
ble to use integrated and dynamic adaptation in conflict resolution. Thus,
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developer can affect conflict resolution in the optimistic concurrency control
method for main-memory real-time database systems. Therefore, adapta-
tion is a viable approach for improving the performance and predictability
of real-time concurrency control methods for main-memory real-time data-
base systems.
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Chapter 8

Conclusions

Database performance is an important aspect of database usability. The
performance of a database system depends not only on the database archi-
tecture and algorithms, but also on the platform the database is running
on.

Real-time databases are needed when the database requests must be
served within given time limits. The database is then designed to support
the timely execution on all levels of the database architecture. Especially, it
provides transaction scheduling based on priorities, deadlines, or criticality
of the transactions. Telecommunication is an example of an application
area that has database requirements that require a real-time database or
at least time-cognizant database.

Several advantages can be gained when real-time and object orientation
are combined. Data objects can have attributes that specify the correctness
criteria. Operations can have attributes that tell the resource consump-
tions of the operations. Transactions are also either transient or persistent
objects. They can have attributes that specify the priority, deadline, criti-
cality, and correctness criterion, among other things.

Although the optimistic approach has been shown to be better than
locking methods for RTDBSs, it has the problems of unnecessary restarts
and heavy restart overhead. This thesis has proposed an optimistic con-
currency control method called OCC-DATTI. It has several advantages over
the other concurrency control methods. The method maintains all the nice
properties with forward validation, a high degree of concurrency, freedom
from deadlock, and early detection and resolution of conflicts, resulting in
both less wasted resources and a smaller number of restarts. All of these
are important to the performance of RTDBSs and contribute to greater
chances of meeting transaction deadlines.

An efficient method was designed to adjust the serialization order dy-

97
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namically amongst the conflicting transactions to reduce the number of
transaction restarts. Compared with other optimistic concurrency control
methods that use dynamic serialization order adjustment, the method pre-
sented in this thesis is much more efficient and its overhead is smaller.
There is no need to check for conflicts while a transaction is still in its
read phase. All the checking is performed in the validation phase. As the
conflict resolution between the transactions in OCC-DATTI is delayed until
a transaction is near completion, there will be more information available
for making the choice in resolving the conflict.

This thesis also proposes two different methods to take transaction con-
flict priority into account in the conflict resolution of the validation phase.
These methods are called OCC-PDATI and OCC-RTDATI. When com-
pared with the OCC-DATI method that uses dynamic serialization order
adjustment, the OCC-PDATI method offers the same efficiency and the
overhead is only slightly larger. The most important feature of the OCC-
PDATI is that it clearly offers better chances for the transactions of higher
conflict priority to complete before their deadlines when compared to the
OCC-DATI. The results clearly indicate that OCC-PDATI meets the goal
of favoring transactions of high criticality. Similar results were obtained
when OCC-RTDATI was compared to OCC-DATTI.

Finally, this thesis also proposes the integrated and adaptive optimistic
concurrency control method OCC-IDATT. This method dynamically adapts
to different load situations, because the conflict resolution method dynam-
ically selects a resolution method based on the conflict priority of the con-
flicting transactions. The proposed method offers three different conflict
resolution methods. Performance tests show that OCC-IDATT is a viable
approach for improving the performance and predictability of real-time
concurrency control methods for main-memory real-time database systems
beyond the current state-of-the-art.

These ideas have been implemented as a part of the prototype version
of the RODAIN real-time database system. The most important feature in
the future versions of the RODAIN architecture is real-time. A real-time
transaction that has an explicit deadline is suitable for telecommunications
use. The writer wants to support two kinds of real-time transactions: soft
transactions, which may continue execution after the deadline at lower
priority; and firm transactions that are terminated when the deadline is
not met. How these different timing constraints are integrated to real-time
concurrency control is still an open question.

The experiments are based on the benchmark that models a hypo-
thetical telecommunication operator. The network has multiple service
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providers. The service providers may belong to one operator or they may
belong to multiple operators. Each service provider has its own database,
but for this benchmark the databases are similar. The service provider has
many customers, each with one or more subscriptions for different avail-
able services. The database represents the telecommunication services and
billing information of each entity (service provider and service). The trans-
actions represent the work performed when a customer uses some telecom-
munication services. The transactions are performed in the database of
some service provider(s). This set of transactions presents the minimum
that can be used for evaluating a database for telecommunication. Only
firm real-time transactions are used in experiments.

From the experiments one can see that the system becomes overloaded
at 500 transactions per second. There is quite a few missed transactions
because of the concurrency control. This is because we have used very
old and slow Pention Pro 200MHz processor machines. Additionally, Cho-
rus/ClassiX real-time operating system did not work very well in over-
loading situations. This is clearly characteristic of the environment used.
We are currently working on porting the prototype system to the Linux
operating system.

The experiments indicated that the validation time of the transactions
becomes crucial. To increase database throughput on high-arrival rate lev-
els, the validation time must be shortened. Another possibility is to in-
crease concurrency in the validation process. The third possibility is to
use temporal object versioning. This is induced from the semantics of the
telecommunication services. An object can be inserted into the database
to become valid at the later time. Insertion causes no conflict and thus the
validation of inserted objects is a short process.
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