
© IBM 2002

The DB2

Universal

Database

Optimizer
Guy M. Lohman

lohman@almaden.ibm.com

IBM Research Division

IBM Almaden Research Center

K55/B1, 650 Harry Road

San Jose, CA 95120

© IBM 2005 DB2 UDB Query Optimizer

Agenda

Overview of Query Processing

� Overview

� Query ReWrite

� Plan Selection Optimization

� Elements of Optimization

� Execution Strategies

� Cost model & plan properties

� Search strategy

� Conclusions and Future

© IBM 2005 DB2 UDB Query Optimizer

Stretching the Boundaries: Query Processing Challenge

� Many platforms, but one codebase!

– Software: Unix/Linux (AIX, HP,Sun, Linux), Windows, Sequent, OS/2

– Hardware: Uni, SMP, MPP, Clusters, NUMA

� Database volume ranges continue to grow: 1GB to >100TB

� Increasing query complexity:

– OLTP DSS OLAP / ROLAP

– SQL generated by query generators, naive users

� Managing complexity

– Fewer skilled administrators available

�distributed systems

�database design can be complex

– Too many knobs !

�configuration parameters

�flavors of optimization

� REFN: Laura M. Haas, Walter Chang, Guy M. Lohman, John McPherson,
Paul F. Wilms, George Lapis, Bruce G. Lindsay, Hamid Pirahesh, Michael J.
Carey, Eugene J. Shekita: Starburst Mid-Flight: As the Dust Clears. IEEE

Trans. Knowl. Data Engr. 2, 1: 143-160 (1990).

Query Compiler Overview

SQL Query Parser

Global Query

Semantics

Query ReWrite

Transform

Plan

OPTimization

Threaded

CodeGen

Plan

Execution

Compile time

Run-time

Query

Graph

Model

Query

Explain

Query

Plan

Plan

Explain

Executable

Plan

© IBM 2005 DB2 UDB Query Optimizer

Elements of Query Compilation

�Parsing
– Analyze "text" of SQL query

– Detect syntax errors

– Create internal query representation

�Semantic Checking
– Validate SQL statement

– View analysis

– Incorporate constraints, triggers, etc.

�Query Optimization
– Modify query to improve performance (Query Rewrite)

– Choose the most efficient "access plan" (Query Optimization)

�Code Generation
– Generate code that is

�executable

�efficient
�re-locatable

© IBM 2005 DB2 UDB Query Optimizer

Query Graph Model (QGM)
� Captures the entire semantics of an SQL query to be compiled

� "Headquarters" for all knowledge about compiling a query

� Represents internally that query's:

�Entities (e.g. tables, columns, predicates,...)

�Relationships (e.g. "ranges-over", "contains", ...)

� Has its own (“meta”-) schema

�Entity-Relationship (ER) model

� Semi-Procedural: Visualized as a high-level Data Flow Model

�Boxes (nodes) represent table operations, e.g., Select-Project-Join

�Rows flow through the graph

� Implemented as a C++ library

�Facilitates construction, use, and destruction of QGM entities

� Designed for flexibility

�Easy extension of SQL Language (i.e. SELECT over IUDs)

�REFN: Hamid Pirahesh, Joseph M. Hellerstein, Waqar Hasan:
"Extensible/Rule Based Query Rewrite Optimization in Starburst",
SIGMOD 1992, pp. 39-48

© IBM 2005 DB2 UDB Query Optimizer

Query Rewrite - An Overview

�What is Query Rewrite?
– Rewriting a given SQL query into a semantically equivalent form that

�may be processed more efficiently

�gives the Optimizer more latitude

�Why?
– Same query may have multiple representations in SQL

– Complex queries often result in redundancy, especially with views

– Query generators

�often produce suboptimal queries that don't perform well

�don't permit "hand optimization"

�Based on Starburst Query Rewrite
– Rule-based query rewrite engine

– Transforms legal QGM into more efficient QGM

– Some transformations aren't always universally applicable

– Has classes of rules

– Terminates when no rules eligible or budget exceded

�REFN: Hamid Pirahesh, T. Y. Cliff Leung, Waqar Hasan, "A Rule
Engine for Query Transformation in Starburst and IBM DB2 C/S
DBMS", ICDE 1997, pp. 391-400.

© IBM 2005 DB2 UDB Query Optimizer

Query Rewrite - A VERY Simple Example

Original Query:

SELECT DISTINCT custkey, name FROM tpcd.customer

After Query Rewrite:

SELECT custkey, name FROM tpcd.customer

Rationale:

custkey is unique, DISTINCT is redundant

© IBM 2005 DB2 UDB Query Optimizer

Query Rewrite: Predicate Pushdown Example

�Original query:

CREATE VIEW lineitem_group(suppkey, partkey, total)
AS SELECT l_suppkey, l_partkey, sum(quantity)

FROM tpcd.lineitem
GROUP BY l_suppkey, l_partkey;

SELECT *
FROM lineitem_group
–WHERE suppkey = 1234567;

�Rewritten query:

CREATE VIEW lineitem_group(suppkey, partkey, total)
AS SELECT l_suppkey, l_partkey, sum(quantity)

FROM tpcd.lineitem
WHERE l_suppkey = 1234567
GROUP BY l_suppkey, l_partkey;

SELECT *
FROM lineitem_group;

© IBM 2005 DB2 UDB Query Optimizer

What does the Query Optimizer Do?
� Generates & Evaluates alternative

– Operation order

�joins

�predicate application

�aggregation

– Implementation to use:

�table scan vs. index scan

�nested-loop join vs. sorted-merge join

– Location (in partitioned environments)

�co-located

�re-direct each row of 1 input stream to appropriate node of the other stream

�re-partition both input streams to a third partitioning

�broadcast one input stream to all nodes of the other stream

� Estimates the execution of that plan
– Number of rows resulting

– CPU, I/O, and memory costs

– Communications costs (in partitioned environments)

� Selects the best plan, i.e. with minimal
– Total resource consumption (normally)

– Elapsed time (in parallel environments, OPTIMIZE FOR N ROWS)

© IBM 2005 DB2 UDB Query Optimizer

Inputs to Optimizer
� System catalogs

–Schema, including constraints

–Statistics on tables, columns, indexes, etc.

� Configuration parameters, e.g.
– Speed of CPU

�determined automatically at database creation time

�runs a timing program

– Storage device characteristics

�used to model random and sequential I/O costs

�set at table-space level

�overhead (seek & average rotational latency)

�transfer_rate

– Communications bandwidth

�to factor communication cost into overall cost, in partitioned environments

� Memory resources
– Buffer pool(s)

– Sort heap

� Concurrency Environment
– Average number of users

– Isolation level / blocking

– Number of available locks

© IBM 2005 DB2 UDB Query Optimizer

Major Aspects of Query Optimization
1. Alternative Execution Strategies (methods)

� Rule-based generation of plan operators

� Creates alternative
ƒ Access paths (e.g. indexes)
ƒ Join orders
ƒ Join methods

2. Cost Model
� Number of rows, based upon
ƒ Statistics for table
ƒ Selectivity estimate for predicates

� Properties & Costs
ƒ Determined per operator type
ƒ Tracked per operator instance (cumulative effect)

� Prunes plans that have
ƒ Same or subsumed properties
ƒ Higher cost

3. Search Strategy
� Dynamic Programming vs. Greedy
� Bushy vs. Deep

�REFN: Peter Gassner, Guy M. Lohman, K. Bernhard
Schiefer, Yun Wang, "Query Optimization in the IBM DB2
Family", Data Engineering Bulletin 16(4): 4-18 (1993).

© IBM 2005 DB2 UDB Query Optimizer

Atomic Object: LOw-LEvel Plan OPerator (LOLEPOP)

� Database operator, interpreted at execution time

� Operates on, and produces, tables

(visualized as in-memory streams of rows)

� Examples:

– Relational algebra (e.g. JOIN, UNION)

– Physical operators (e.g. SCAN, SORT, TEMP)

� May be expressed as a function with parameters, e.g.

FETCH(<input stream>, Emp, {Name, Address}, {"SAL > $100K"})

FETCH

SAL NAME ADDRESS

RID NAME ADDRESS

Arguments of Operator

Columns: {NAME, ADDRESS}

Predicates: {"SAL > $100K"}
Output Stream

RID

Input Stream

Base Table EMP

© IBM 2005 DB2 UDB Query Optimizer

Properties of Plans

� Give cumulative, net result (including cost) of work done
–in one plan instance
–through and including one LOLEPOP

� Initially obtained from statistics in catalogs for stored objects
� Altered by effect of LOLEPOP type (e.g., SORT alters ORDER property)
� Specified in Optimizer by property and cost functions for each LOLEPOP

FETCH

SAL NAME ADDRESS

RID X Y NAME ADDRESS

Arguments of Operator

Columns: {NAME, ADDRESS}

Predicates: {"SAL > $100K"}
Output Stream

RID X Y

Input Stream

EMP

Cols: { X, Y }

Preds: { Z }

Order: X

Site:
San Jose

Cost: $$

Cols: { X, Y, NAME, ADDRESS }

Preds: { Z , "SAL > $100K''}

Order: X

Site: San Jose

Cost: $$ + $

© IBM 2005 DB2 UDB Query Optimizer

Example Properties
� Relational ("What?")

– Tables (quantifiers) accessed
– Columns accessed
– Predicates applied
– Correlation columns referenced
– Keys -- columns on which rows distinct
– Functional dependencies

� Physical ("How?")
– Columns on which rows ordered
– Columns on which rows partitioned (partitioned environment only)
– Physical site (DataJoiner only)

� Derived ("How much?")
– Cardinality (estimated number of rows)
– Maximum provable cardinality
– Estimated cost, including separated:
� Total cost
� CPU (# of instructions)
� I/O
� Re-scan costs
� 1st-row costs (for OPTIMIZE FOR N ROWS)

� Flags, e.g. Pipelined, Halloween, etc.
� REFN: M. K. Lee, J. C. Freytag, G. M. Lohman,"Implementing an Interpreter

for Functional Rules in a Query Optimizer", VLDB 1988, 218-229

© IBM 2005 DB2 UDB Query Optimizer

Generation of Table Access Alternatives

�AccessRoot

SCAN AllIndexScans

RegIndexScan IndexORing IndexANDingListPrefetch

FETCH

IndexScan

FETCH

RIDSCN

SORT

IndexScan

IndexScan

FETCH

RIDSCN

SORT

IndexScan

SORT

IndexScan

IndexScan
IndexSca

n

FETCH

SORT(RID)

IXAND

ISCAN
Existing

Indexes

© IBM 2005 DB2 UDB Query Optimizer

Generation of Join Alternatives
�JoinRoot (S, L)

JoinOrder(S,L) JoinOrder(L,S)

JoinChoices(outer, inner)

NestedLoopJoins MergeJoins HashJoins

HSJOIN

outer

NLJOIN

MGJN (join-pred)

TEMP

inner

outer innerouter inner

NLJOIN

outer inner

Outer

Orders

Join

Preds

REFN: Guy M. Lohman, "Grammar-like Functional Rules for Representing
Query Optimization Alternatives", SIGMOD 1988, pp. 18-27.

© IBM 2005 DB2 UDB Query Optimizer

Optimizer Cost Model

� Differing objectives: Minimize...

– Elapsed time, in parallel environments, OPTIMIZE FOR N ROWS

– Total resources, otherwise

� Combines components of estimated

– CPU (# of instructions)

– I/O (random and sequential)

– Communications (# of IP frames)

�Between nodes, in partitioned environments

�Between sites, in DataJoiner environments

� Detailed modeling of

– Buffer needed vs. available, hit ratios

– Rescan costs vs. build costs

– Prefetching and big-block I/O

– Non-uniformity of data

– Operating environment (via configuration parameters)

– First tuple costs (for OPTIMIZE FOR N ROWS)

© IBM 2005 DB2 UDB Query Optimizer

Catalog Statistics Used by the Optimizer
� Basic Statistics

– Number of rows/pages in table
– For each column in a table, records
�# distinct data values, avg. length of data values, data range information

– For each index on a table,
�# key values, # levels, # leaf pages, etc.

� Non-uniform distribution statistics ("WITH DISTRIBUTION")
– N most frequent values (default 10)
� Good for equality predicates

– M quantiles (default 20)
� Good for range predicates

– N and M set by DBA as DB configuration parameters
– REFN: Viswanath Poosala, Yannis E. Ioannidis, Peter J. Haas, Eugene J. Shekita,
"Improved Histograms for Selectivity Estimation of Range Predicates", SIGMOD 1996.

– N and M can differ per column (New in V8.1!)

� Index clustering (DETAILED index statistics)
– Empirical model: determines curve of I/O vs. buffer size
– Accounts for benefit of large buffers

� User-defined function (UDF) statistics
– Can specify I/O & CPU costs
� per function invocation
�at function initialization
�associated with input parameters

© IBM 2005 DB2 UDB Query Optimizer

Extensible Search Strategy
� Bottom-up generation of plans

� Parameterized search strategy

– Dynamic Programming (breadth-first, provably optimal, but expensive)

Build plans to access base tables

For j = 2 to # of tables:

Build j-way joins from best plans containing j-1, j-2, ... , 2, 1 tables

– Greedy (more efficient for large queries)

� Generate 2 sets of tables to join, and filter "unjoinable" ones

� Parameterized search space

– Composite inners or not (actually, maximum # of quantifiers in smaller set)

– Cartesian products (no join predicate) or not

– Disable/enable individual rules generating strategies (e.g. hash joins)

� Interfaces to add/replace entire search strategy

� Controlled by "levels of optimization" (1 – 9)

� REFN: Kiyoshi Ono, Guy M. Lohman, "Measuring the Complexity of

Join Enumeration in Query Optimization", VLDB 1990, pp. 314-325.

© IBM 2005 DB2 UDB Query Optimizer

Summary & Future

� Industry-Leading Optimization

� Extensible

� Optimizes for Parallel

� I/O accesses
� Within a node (SMP)
� Between nodes (MPP)

� Powerful for complex OLAP & BI queries

� Industry-Strength Engineering

� Portable

� Across HW & SW platforms
� Databases of 1 GB to > 100 TB

� Continuing "technology pump" of improvements from Research

© IBM 2002

Appendix:

Backup Foils

© IBM 2005 DB2 UDB Query Optimizer

Example QGM for a Query

SELECT DISTINCT q1.partno, q1.descr, q2.suppno

FROM inventory q1, quotations q2

WHERE q1.partno = q2.partno

AND q1.descr = 'engine'

AND q2.price <= ALL

(SELECT q3.price

FROM quotations q3

WHERE q2.partno = q3.partno

);

© IBM 2005 DB2 UDB Query Optimizer

QGM Graph (after Semantics)

inventory quotations

(1) (2)

partno desc suppno

=q1.partno
=q1.desc

=q2.suppno

price
=q3.price

quantifier

partno, desc
partno, price

quantifer columns

q1.desc

='engine'

q1.partno=

q2.partno

q2.price<=

q4.price

q2.partno=

q3.partno
SELECT Box

SELECT Box
distinct=ENFORCE

distinct=PERMIT

distinct=true

subquery

query

head

body (4)

(3)

© IBM 2005 DB2 UDB Query Optimizer

�Goal: give Optimizer maximum latitude in its decisions

�Techniques:

– View merge
� makes additional join orders possible
� can eliminate redundant joins

– Subquery-to-join transformation
� removes restrictions on join method/order
� improves efficiency

– Redundant join elimination
� satisfies multiple references to the same table with a single scan

Query Rewrite - Operation Merge

© IBM 2005 DB2 UDB Query Optimizer

Query Rewrite: Subquery-to-Join Example:

�Original Query:

SELECT ps.*

FROM tpcd.partsupp ps

WHERE ps.ps_partkey IN

(SELECT p_partkey

FROM tpcd.parts

WHERE p_name LIKE 'forest%');

�Rewritten Query:

SELECT ps.*

FROM parts, partsupp ps

WHERE ps.ps_partkey = p_partkey AND

p_name LIKE `forest%';

NOTE: Unlike Oracle, DB2 can do this transform,

even if p_partkey is NOT a key!

© IBM 2005 DB2 UDB Query Optimizer

Query Rewrite - Operation Movement

�Goal: minimum cost / predicate

�Techniques:

– Distinct Pushdown
� Allow optimizer to eliminate duplicates early, or not

– Distinct Pullup
� To avoid duplicate elimination

– Predicate Pushdown
� Apply more selective and cheaper predicates early on;
� e.g., push into UNION, GROUP BY

© IBM 2005 DB2 UDB Query Optimizer

Query Rewrite - Shared Aggregation Example

�Original Query:

SELECT SUM(O_TOTAL_PRICE) AS OSUM,
AVG(O_TOTAL_PRICE) AS OAVG
FROM ORDERS;

�Rewritten Query:

SELECT OSUM, OSUM/OCOUNT AS OAVG
FROM (SELECT SUM(O_TOTAL_PRICE) AS OSUM,

COUNT(O_TOTAL_PRICE) AS OCOUNT
FROM ORDERS) AS SHARED_AGG;

�Reduces query from 2 sums and 1 count to 1 sum and 1 count!

© IBM 2005 DB2 UDB Query Optimizer

Query Rewrite - Predicate Translation

�GOAL: optimal predicates

�Examples:
– Distribute NOT

�... WHERE NOT(COL1 = 10 OR COL2 > 3)

becomes

�... WHERE COL1 <> 10 AND COL2 <= 3

– Constant expression transformation:

�...WHERE COL = YEAR(`1994-09-08')

becomes

�... WHERE COL = 1994

– Predicate transitive closure, e.g., given predicates:

�T1.C1 = T2.C2, T2.C2 = T3.C3, T1.C1 > 5

add these predicates...

�T1.C1 = T3.C3 AND T2.C2 > 5 AND T3.C3 > 5

– IN-to-OR conversion for Index ORing

– and many more...

© IBM 2005 DB2 UDB Query Optimizer

Query Rewrite - Correlated Subqueries Example

�Original Query:

SELECT PS_SUPPLYCOST FROM PARTSUPP
WHERE PS_PARTKEY <> ALL

(SELECT L_PARTKEY FROM LINEITEM
WHERE PS_SUPPKEY = L_SUPPKEY)

�Rewritten Query:

SELECT PS_SUPPLYCOST FROM PARTSUPP
WHERE NOT EXISTS

(SELECT 1 FROM LINEITEM
WHERE PS_SUPPKEY = L_SUPPKEY

AND PS_PARTKEY = L_PARTKEY)

�Pushes down predicate to enhance chances of binding partitioning key for
each correlation value (here, from PARTSUPP)

© IBM 2005 DB2 UDB Query Optimizer

Query Rewrite - Decorrelation Example

�Original Query:

SELECT SUM(L_EXTENDEDPRICE)/7.0

FROM LINEITEM, PART P
WHERE P_PARTKEY = L_PARTKEY AND

P_BRAND = 'Brand#23' AND
P_CONTAINER = 'MED BOX' AND
L_QUANTITY < (SELECT 0.2 * AVG(L1.L_QUANTITY)

FROM TPCD.LINEITEM L1
WHERE L1.L_PARTKEY = P.P_PARTKEY)

�Rewritten Query:

WITH GBMAGIC AS (SELECT DISTINCT P_PARTKEY FROM PART P
WHERE P_BRAND = 'Brand#23' AND P_CONTAINER = 'MED BOX'),

CTE AS (SELECT 0.2*SUM(L1.L_QUANTITY)/COUNT(L1.L_QUANTITY) AS AVGL_LQUANTITY,
P.PARTKEY FROMLINEITEM L1, GBMAGIC P

WHERE L1.L_PARTKEY = P.P_PARTKEY GROUP BYP.P_PARTKEY)
SELECT SUM(L_EXTENDEDPRICE)/7.0 AS AVG_YEARLY
FROM LINEITEM, PART P WHERE P_PART_KEY = L_PARTKEY

AND P_BRAND = 'Brand#23' AND P_CONTAINER = 'MED_BOX'
AND L_QUANTITY < (SELECT AVGL_QUANTITY FROM CTE

WHERE P_PARTKEY = CTE.P_PARTKEY);

�This SQL computes the avg_quantity per unique part and can then broadcast
the result to all nodes containing the lineitem table.

© IBM 2005 DB2 UDB Query Optimizer

Optimizer -- Key Objectives
�Extensible (technology from Starburst)

– Clean separation of execution "repertoire", cost eqns., search algorithm
– Cost & properties modularized per operator
� easier to add new operators, strategies
– Adjustable search space
– Object-relational features (user-defined types, methods)

�Parallel (intra-query)

– CPU and I/O (e.g., prefetching)
– (multi-arm) I/O (i.e., striping)
– Shared-memory (i.e., SMP)
– Shared-nothing (i.e. MPP with pre-partitioned data)

�Powerful / Sophisticated

– OLAP support
� Star join
� ROLLUP
� CUBE

– Recursive queries
– Statistical functions (rank, linear recursion, etc.)
– and many more...

© IBM 2005 DB2 UDB Query Optimizer

Explaining Access Plans

�Visual Explain

–accessible through DB2 Control Center
–graphical display of query plan
–uses optimization information captured by the optimizer
–invoke with either:
�SET CURRENT EXPLAIN SNAPSHOT
�EXPLSNAP bind option
�EXPLAIN statement with snapshot option

�Explain tables

–EXPLAIN statement / bind option
–superset of DB2 for MVS/ESA
–SET CURRENT EXPLAIN MODE
–optionally, generate report with DB2EXFMT tool

�EXPLAIN utility (DB2EXPLN)

–explains bound packages into a flat file report
–similar to Version 1 but with many enhancements to usability
–less detailed information than EXPLAIN or Visual Explain

© IBM 2005 DB2 UDB Query Optimizer

Query Optimization Level

� Optimization requires

– Processing time

– Memory

� Users can control resources applied to query optimization

– Similar to the -O flag in a C compiler

– Special register, for dynamic SQL

�set current query optimization = 1

– Bind option, for static SQL

�bind tpcc.bnd queryopt 1

– Database configuration parameter, for default

�update db cfg for <db> using dft_queryopt <n>

� Static & dynamic SQL may use different values

© IBM 2005 DB2 UDB Query Optimizer

Query Optimization Level Meaning

� Use greedy join enumeration
–0 - minimal optimization for OLTP
� use index scan and nested-loop join
� avoid some Query Rewrite

–1 - low optimization
� rough approximation of Version 1 of DB2

–2 - full optimization, limit space/time
� use same query transforms & join strategies as class 7

� Use dynamic programming join enumeration
–3 - moderate optimization
�rough approximation of DB2 for MVS/ESA

–5 - self-adjusting full optimization (default -- Autonomic!)
�uses all techniques with heuristics

–7 - full optimization
�similar to 5, without heuristics

–9 - maximal optimization
�spare no effort/expense
�considers all possible join orders, including Cartesian products!

� REFN: Ihab F. Ilyas, Jun Rao, Guy M. Lohman, Dengfeng Gao,
Eileen Lin, "Estimating Compilation Time of a Query Optimizer",
SIGMOD 2003, pp. 373-384

© IBM 2005 DB2 UDB Query Optimizer

Modifying Catalog Statistics

�Statistics values are...

– Readable in the system catalogs

� e.g., HIGH2KEY, LOW2KEY

– Updateable, e.g.

UPDATE SYSSTAT.TABLES

SET CARD = 1000000

WHERE TABNAME = `NATION'

�Implications:

– Can simulate a non-existent database

– Can "clone" a production database (in a test environment)

�Tools

– DB2LOOK captures the table DDL and statistics to replicate an environment

© IBM 2005 DB2 UDB Query Optimizer

Intra-partition Parallelism - How?

�Data parallelism

– Partition data
– Assign partition to query task
– Easier to load balance
–User not required to partition data
� e.g. range, hash, etc

– Data dynamically assigned to query tasks
� Assign range of pages or rows
� Assign new range when range is consumed
� Provides dynamic load balancing
� Support table and index scans

� Functional parallelism

– divide query task by function
– assign functional task to different execution units
– requires data partitioning
– harder to load balance
� ensure execution units are equally busy

–Single co-ordinator process services application requests
–Multiple sub-ordinator processes return data through local table queue

© IBM 2005 DB2 UDB Query Optimizer

10.50 a1 q1 r1

12.00 a1 q1 r3

12.00 a1 q2 r2

11.99 b12 q1 r2

10.50 a1 q2 r2

15.75 cc2 q2 r3

14.50 a2 q3 r1

12.95 b12 q1 r4

price product_id quarter_id region_id

E2E1

PrefetchersDB2

I/O Parallelism (multiple arms)

query read
4pgsre

a
d

 2
p

g
s

re
a

d
 2

p
g

s

� Parallelism achieved by

�DB2 breaking table into "extents"

�DB2 breaking prefetch I/O request

into multiple I/O requests

�User defining tablespace over
multiple "containers" (disks)

© IBM 2005 DB2 UDB Query Optimizer

Inter-Partition Parallelism

12.00 a1 q2 r2

11.99 b12 q1 r2

10.50 a1 q2 r2

12.95 b12 q1 r4

price

E2E1

product_id quarter_id region_id

E2E1

Prefetchers

DB2

10.50 a1 q1 r1

12.00 a1 q1 r3

15.75 cc2 q2 r3

14.50 a2 q3 r1

price

E2E1

product_id quarter_id region_id

E2E1

Prefetchers

DB2

subsection1

re
a

d
 2

p
g
s

re
a

d
 2

p
g
s

re
a

d
 2

p
g
s

re
a

d
 2

p
g
s

query subsection2

�Tables partitioned among nodes via "partitioning key" column(s)

�System configured with autonomous DB2 instances called "nodes"

�typically with own CPU, memory, disks

�connected by high-speed switch

�can use logical nodes as well

© IBM 2005 DB2 UDB Query Optimizer

Optimizing Inter-Partition Parallelism

�Query (section) divided into parts (subsections) based upon...
�How data is partitioned

�Query's semantics

�Goal of query optimization:

�Dynamic repartitioning

might be required

�Function is shipped to data

�Minimize elapsed time

10.50 a1 q1 r1

12.00 a1 q1 r3

15.75 cc2 q2 r3

14.50 a2 q3 r1

price prod_id quarter_id region_id

12.00 a1 q2 r2

11.99 b12 q1 r2

10.50 a1 q2 r2

12.95 b12 q1 r4

r3 Northeast

r1 Mideast

r5 SouthEast

region_id rname

r6 Southwest

r2 Midwest

r4 Nthwest

region_id rname

salesregion

join

ixscanixscan

grby

join

ixscanixscan

grby

TQ

region sales

TQ

select rname, sum(price),

from sales s, region r

where r.region_id = s.region_id

group by rname, r.region_id

price prod_id quarter_id region_id

�All nodes assumed equal

© IBM 2005 DB2 UDB Query Optimizer

Intra-Partition Parallelism

12.00 a1 q2 r2

11.99 b12 q1 r2

10.50 a1 q2 r2

12.95 b12 q1 r4

price product_id quarter_id region_id

E2E1

product_id quarter_id region_id

E2E1

Prefetchers

DB2

10.50 a1 q1 r1

12.00 a1 q1 r3

15.75 cc2 q2 r3

14.50 a2 q3 r1

price product_id quarter_id region_id

E2E1

product_id quarter_id region_id

E2E1

Prefetchers

DB2

subsection1

re
a
d
 2

p
g
s

re
a
d
 2

p
g
s

re
a
d
 2

p
g
s

re
a
d
 2

p
g
s

query

subtask1

subtask2

subtask3

subsection2

subtask1

subtask2
subtask3

� Exploits multiple processors of a symmetric multiprocessor (SMP)

� Multiple agents work on a single plan fragment

� Workload is dynamically balanced at run-time

� Post-optimizer parallelizes best serial/partitioned plan

� Degree of parallelism determined by compiler and run-time, bounded by config. parm.

An OLAP Query to a Star Schema:An OLAP Query to a Star Schema:

SELECT SUM (f.price), t.quarter,s.name, p.size

FROM sales f, store s, period t, product p

WHERE f.store_id = s.store_id AND

f.period_desc = t.period_desc AND

s.city IN ('San Jose', 'Fremont') AND

t.month IN ('June', 'December') AND

p.brand IN ('Levis Dockers', 'Guess')

GROUP BY t.quarter, s.name, p.size

Period

(Dimension)

dsdddesSalessSales

Store
(Dimension)

Product

(Dimension)
product_idstore_id

Sales

(Fact)

period_desc

_

Why are Special Strategies Needed?Why are Special Strategies Needed?

� Optimizer avoids Cartesian joins (since no join predicates)

� Typically there are no join predicates between dimension tables

� So some table must join with Fact table

� Predicates on any one dimension insufficient to limit # of rows

� Large intermediate result (millions to 100s of millions) for next join!

� Therefore, intersection of limits on many dimensions are needed!

_

Why are Special Strategies Needed?Why are Special Strategies Needed?

� EXAMPLE:

1 City = 'San Jose': 10s of millions of sales in San Jose stores!

2 Month = 'December': 100s of millions of sales in December!

3 Brand = 'Levi Dockers': millions of Levi's Dockers!

� TOGETHER: only thousands of Levi Dockers sold in San Jose
stores in December!!

store_id

name

city

region

zip_code

period_desc

descript

year

quarter

month

day

Store Dimension Table

Period Dimension Table

brand

size

producer

caselot

product_id

Product Dimension Table

store_id

product_id

period_desc

dollars

units

price

sales

Sales Fact Table

-

Special Strategy 1: Special Strategy 1:

CartesianCartesian--Join of DimensionsJoin of Dimensions

Store
Dimension

Period
Dimension

Product

Dimension

Cartesian
Join

Cartesian
Join

Nested-
Loop Join

FACT TABLE

M
u

l t
i -

C
o

l u
m

n

I n
d

e
x

-

Special Strategy 2: Special Strategy 2: Star Join Star Join (semi(semi--join ANDing)join ANDing)

Store
Dimension

Period
Dimension

Product

Dimension

Nested-
Loop Join

Fact Table

Index on
STORE_ID

Nested-
Loop Join

Fact Table

Index on
PRODUCT_ID

Nested-
Loop Join

Fact Table

Index on
PERIOD_ID

IXAND

Fact Table RIDs Fact Table RIDs

Fact Table RIDs

Fact Table RIDs

-

IXAND

Fact Table RIDs

Fact Table RIDs

Store Semi-Join Product Semi-Join Period Semi-Join

FETCHFACT

TABLE

JOIN

JOIN

JOIN

Store
Dimension

Product
Dimension

Period
Dimension

Special Strategy 2: Special Strategy 2:

Star Join Star Join (Fetch & Re(Fetch & Re--Joining)Joining)

-

© IBM 1997 db2v3opt / 97-06-05© IBM 2003 db2v3opt / 97-06-05

DB2 UDB ROLAP optimization: ROLLUP

Star-Join
Plan

UNION

SORT

GROUP BY

GROUP BY

GROUP BY

GROUP BY

Query Rewrite: stacks
GROUP BY operations

Plan generator: combines sort
requirements

Plan generator: pushes
aggregation into sort

sum(x) as y

product, state

sum (sales) as x
product,state,name

sum(y) as z

product

sum(z)

© IBM 2005 DB2 UDB Query Optimizer

Dynamic Bitmap Index ANDing

�Takes advantage of indexes to apply "AND" predicates

�Selection is cost based, competing with:

–Table scans
–Index ORing
–List prefetch

�Works by:

–Hashing Row IDentifier (RID) values for qualifying rows of each index scan
–Dynamically build bitmap using hashed RIDs
–"AND" together bitmaps in a build-and-probe fashion
–Last index scan probes bitmap and returns qualifying RID
–Fetch qualifying rows

�Advantages:

–Can apply multiple ANDed predicates to different indexes, and get speed of
index scanning

© IBM 2005 DB2 UDB Query Optimizer

Dynamic Bitmap Index ANDing

�Count All products with price > $2500 and units > 10

Probe 1st dynamic bitmap

index
price

index
units

Hash RID

Hash RID

> $2500?

> 10?

Fetch and return qualifying rows

1000100110000010000

0000100010000010000

© IBM 2005 DB2 UDB Query Optimizer

Top-Down vs. Bottom-Up Conundrum

� Bottom-up (System R, DB2, Oracle, Informix)
– Plans MUST be costed bottom-up (need input costs)

– Dynamic programming REQUIRES breadth-first enumeration to pick best

– Can't pick best plan until it's costed

� Top-down (Volcano, Cascades, Tandem, SQL Server)
– Operators may REQUIRE certain properties (e.g. order or partitioning)

– Limit strategies based upon context of use

� Solution in DB2:
– Plans built bottom-up, BUT...

– Pre-processing amasses candidate future requirements:

� "Interesting" orders, e.g. for joins, GROUP BY, ORDER BY

� "Interesting" partitions, in partitioned environment

� Used to lump together "un-interesting" properties for pruning

– Operators requiring certain properties:

• Call "get-best-plan" to find a plan with those properties

• If none found, augment all plans with "glue" to get desired properties,

e.g. add SORT to get desired Order, and pick cheapest

– Hence, could build a top-down (demand-driven) enumerator,

using get-best-plan!

© IBM 2005 DB2 UDB Query Optimizer

Product-Quality Query Optimizers Must:

Support ALL of SQL

� Subqueries, including expressions of subqueries

� Correlation (very complex!)

� IN lists

� LIKE predicates, with wildcard characters (*,%)

� Cursors and WHERE CURRENT OF CURSOR statements

� IS NULL and IS NOT NULL

� Enforcement of constraints (column, referential integrity)

� EXCEPT, INTERSECT, UNION

� ALL
� DISTINCT

� Lots more...

© IBM 2005 DB2 UDB Query Optimizer

Product-Quality Query Optimizers Must:

Address High-Performance Aspects

� No limits on number of tables, columns, predicates, ...

� Efficient utilization of space

� representation of sets of objects using bit-vectors
� location and sharing of sub-plans
� garbage collection

� Multi-column indexes, each with start and/or stop key values

� Ascending/Descending sort orders (by column)

� Implied predicates (T.a = U.b AND U.b = V.c ==> T.a = V.c)

� Clustering and "density" of rows for page FETCH costing

� Optional TEMPs and SORTs to improve performance

� Non-uniform distribution of values

� Sequential prefetching of pages

� Random vs. sequential I/Os

� OPTIMIZE FOR N ROWS

� Pipelining and "dams"

© IBM 2005 DB2 UDB Query Optimizer

Product-Quality Query Optimizers Must:

Deal with Details

� "Halloween problem" on UPDATE/INSERT/DELETE, e.g.

UPDATE Emp SET salary = salary *1.1

WHERE salary > 120K

If an ascending index on salary is used, and no TEMP,

� Everyone gets an infinite raise!

� UPDATE never completes!

� Differing code pages (e.g., Kanji, Arabic, ...), esp. in indexes

� Isolation levels

� Lock intents

