
Join Indices

PATRICK VALDURIEZ
Microelectronics and Computer Technology Corporation

In new application areas of relational database systems, such as artificial intelligence, the join
operator is used more extensively than in conventional applications. In this paper, we propose a
simple data structure, called a join index, for improving the performance of joins in the context of
complex queries. For most of the joins, updates to join indices incur very little overhead. Some
properties of a join index are (i) its efficient use of memory and adaptiveness to parallel execution,
(ii) its compatibility with other operations (including select and union), (iii) its support for abstract
data type join predicates, (iv) its support for multirelation clustering, and (v) its use in representing
directed graphs and in evaluating recursive queries. Finally, the analysis of the join algorithm using
join indices shows its excellent performance.

Categories and Subject Descriptors: E.l [Data]: Data Structures-graphs, trees; E.5 [Data]: Files-
organization/structure; H.2.2 [Database Management]: Physical Design--access methods;
H.2.4 [Database Management]: Systems-query processing; H.3.1 [Information Storage and
Retrieval]: Content Analysis and Indexing--indexing m&o&

General Terms: Algorithms, Performance

Additional Key Words and Phrases: Abstract data types, join, multirelation clustering, recursive
query, relational query, semijoin, updates

1. INTRODUCTION

Relational database technology is widely accepted as a basic support technology
for evolving application areas like artificial intelligence, CAD/CAM, and so forth.
Indeed, relational technology must be extended to fulfill the requirements of
these new applications. Compared to conventional (business) applications, they
tend to consist of large numbers of more complex queries. Efficient query
processing becomes a more difficult problem since complex operations are used
extensively. A first step toward the efficient processing of complex queries is
the optimization of all primitive operations and the compatibility of these
optimizations.

In this paper, we consider the join operation as a paradigm of basic complex
operations. Although many join algorithms have been proposed [3, 4, 5, 10, 211,
they are generally designed independently of the effect on other operations in
the global query optimization. With new database applications, the effect can be
important. For example, a transitive closure operator, which we expect to be a

Author’s address: Microelectronics and Computer Technology Corporation, 3500 West Balcones
Center Drive, Austin, TX 18759.
Permission to copy without fee all or part of this material is granted provided that the copies are not
made or distributed for direct commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by permission of the Association
for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific
permission.
0 1987 ACM 0362~5915/87/0600-0218 $00.75

ACM Transactions on Database Systems, Vol. 12, No. 2, June 1987, Pages 218-246.

Join Indices l 219

primitive operator for knowledge base support, will use joins and unions repeat-
edly. Thus, the join operation must be optimized for repetitive use. Also the
combination of join and union must be efficient.

Join algorithms have been studied in depth in the context of business appli-
cations. With no indices, two basic algorithms based on sorting [4] and hashing
[5, lo] avoid the prohibitive cost of the nested loop method. Parallel versions of
these algorithms can significantly improve join performance [4, 211.

Indices on join attributes can also be employed [4, 111. Clustered indices on
the join attribute (tuples are clustered in the relation according to the join
attribute) yield excellent performance, but at most one clustered index can be
defined on a relation. Inverted indices are efficient only for very selective joins
(producing a small result). An important result of [4] is that the sort merge join
algorithm is almost always better than the join algorithm using inverted indices
on join attributes. Another recent and important result shows that the availability
of large main memories in database systems makes hash-based algorithms much
more efficient than the sort merge join algorithm [lo]. Consequently, we deduce
that hash-based algorithms should be more efficient than algorithms using
inverted indices.

A different concept useful for joins is the link [13, 15, 201. The concept is the
same as the Conference on Data Systems Languages (CODASYL) set notion.
Tsichritzis [20] uses links in a model that allows the coexistence of hierarchical,
network, and relational models. Similarly, [15] employs the so-called indirect
join in the Pascal R environment. These two papers do not specify the data
structure and join algorithms. Haerder [13] also uses the concept of link to
optimize relational joins. He proposes an implementation very similar to that of
CODASYL systems. Links are implemented by chaining tuples using tuples
identifiers (instead of pointers as in CODASYL) mixed with the data. He also
argues for a generalized access path structure that combines links on several
relations and indices (called images). Although a unique access path for different
access patterns can lead to high performance under particular workloads, we
believe that in a highly concurrent environment, it is likely to become a highly
contended resource.

Another way of optimizing joins is to prejoin all relations by storing each
domain separately where each domain value associates the list of identifiers of
matching tuples [171. This storage model favors joins but at the expense of other
operations.

In this paper, we propose a simple solution for optimizing joins in the context
of complex queries. This solution is based on two design principles.

(1) An algorithm’s performance is proportional to the amount of useful infor-
mation. We thus strive to make the size of useful information for query processing
as small as possible.

(2) Future computers will have a parallel processing capability and large
amounts of random-access memory (RAM). We intend to take advantage of the
availability of such hardware when designing our algorithms.

The application of these design principles to the problem of complex query
evaluation led us to the notion of join indices. A join index is a particular

ACM Transactions on Database Systems, Vol. 12, No. 2, June 1987.

220 l Patrick Valduriez

implementation of the concept of link (mentioned above). It is a prejoined
relation, usually much smaller than the joined relation, and is stored separately
from the operand relations. This will be the main reason for performance
improvement. It is intended to improve the performance of complex operations
by using a small and simple data structure. Furthermore, for most of the joins,
updates of join indices incur very little overhead. Some properties of a join
index are (i) its efficient use of memory and adaptiveness to parallel execution,
(ii) its compatibility with other operations (including select, union), (iii) its
support for abstract data type join predicates, (iv) its support for multirelation
clustering, and (v) its use in representing directed graphs and in evaluating
recursive queries.

The contribution of this paper is that it proposes an efficient implementation
of join indices, gives algorithms for joins and updates, shows the compatibility of
join indices with inverted indices and their value in answering complex queries,
and, finally, shows the superior performance of the proposed implementation
through a detailed analysis. We believe that join indices represent a carefully
designed accelerator that can effectively use large RAM to increase performance
and constitute an interesting alternative to hashing. Also, and perhaps more
important, join indices optimize recursive as well as traditional complex queries.

The remainder of this paper is organized as follows. In Section 2, we formally
define join indices and their implementation. In Section 3, we propose algorithms
for supporting relational queries with join indices and managing these indices
during updates. In Section 4, we analyze the performance of the join algorithm
using join indices. We compare our algorithm with the hybrid-hash join algorithm
[lo], since the latter is efficient and makes effective use of the available main
memory, like our algorithm. In Section 5, we summarize some interesting prop-
erties of join indices. Our conclusions and extensions of our ideas are given in
Section 6.

2. CONCEPT OF JOIN INDEX

2.1 Definitions

Let R and S be two relations, not necessarily distinct. We consider the join of R
and S on attributes A from R and B from S, giving a result relation T. Intuitively,
a join index is an abstraction of the join of the two relations. We assume each
tuple of a relation is uniquely identified by a surrogate [6, 141. A surrogate is a
system generated identifier that never changes. The surrogate of R (respectively,
S) is noted r (respectively, s). The surrogate of tuple i of R is noted Fi and the
surrogate of tuple j of S is noted sj. Tuple ri refers to the tuple having ri as
surrogate. More formally, the join index on R and S representing T is the set

JI = ((rip sj)]f(tuple ri.A, tuple Sj.B) is true),

where f is a boolean function that defines the join predicate. The join predicate
can be arbitrary, and thus very general.

Thus, a join index is a relation of arity two. It is created by joining the relations
R and S and projecting the result on (r, s).
ACM Transactions on Database Systems, Vol. 12, No. 2, June 1987.

Join Indices l 221

CUSTOMER

csur mama city we job

1 Smith Boston 21 clerk

2 Collins Austin 26 secretary

3 Ross AU.& 36 manager

4 Jones Paris 29 engineer
JI caur cpstu

12 q 13
3 1

Fig. 1. Join index for relations CUSTOMER and CP on attribute
cname.

In the rest of this paper, we will often base our examples on the following
database:

CUSTOMER (cname, city, age, job)
CP (cname, pname, qty, date)
PART (pname, dept, price, age)

(The age of a part is the number of years since it first appeared on the market.)
Figure 1 gives an example of a join index summarizing the equi-join of the
relations CUSTOMER and CP on attribute cname.

2.2 Implementation of Join Indices

A join index is a binary relation. It only contains pairs of surrogates which makes
(it small. However, for generality, we assume that it does not always fit in RAM.
Therefore, a join index must be clustered. Since we may need fast access to JI
tuples via either r values or s values depending on whether there are selects on
relations R or S, a JI should be clustered on (r, s). A simple and uniform solution
is to maintain two copies of the JI, one clustered on r and the other clustered on
s. Each copy is implemented by a W-tree an efficient variation of the versatile
B-tree [l, 71. Simplicity and uniformity will lead to increased performance. The
JI clustered on r (respectively on s) makes join accesses from R to S (respectively
from S to R) efficient. Note that for limited access patterns, a single copy is
sufficient (e.g., when one always goes from R to 8). Figure 2 illustrates the
implementation of the join index and of the relations of Figure 1, where the copy
clustered on surrogate csur (respectively cpsur) is named JI,,, (respec-
tively JIcpeur). Figure 3 shows the use of the join index on relations R (r, A, B)
and S (s, C, D) with join predicate (R.A = S.D) to process a query for which the
qualification is (R.B = “b” and R.A = S.D). For each tuple of R satisfying the
selection predicate (R.B = “b”), its surrogate ri permits accessing the join index

ACM Transactions on Database Systems, Vol. 12, No. 2, June 1987.

222 l Patrick Valduriez

index a on CstJr

index

a

on cp3ur

CUSTOMER

Fig. 2. Implementation of the join index on CUSTOMER and CP.

S s c D
33

a %l
Fig. 3. Example of use of the join index clustered on r.

clustered on r. The surrogate sj associated with ri is in turn used to access the
matching tuples of S through the index on s.

The way in which joined relations are physically clustered will generally have
an impact on join performance. Surrogates contained in a join index are used for
retrieving attribute values in physical relations. Therefore, a data structure that
associates surrogates with page addresses is necessary. It can be implemented by
either a clustered index or an inverted index (often called secondary index). In
the first case, tuples having adjacent surrogate values will be in the same pages.
Since the join index is clustered on surrogates, clustered access to the physical
relations makes joins efficient. In the second case, tuples having surrogate values
that are close will seldom be physically close. Thus, random access to tuples is
necessary, which makes joins of many tuples less efficient. Effects of a clustered
versus inverted index will be carefully analyzed in this paper.

A join index, like any other index, is an acceleration mechanism and should be
used only for the most important joins. The efficiency of a join index will be
proportional to its size. A tuple in a join index is small. For example, we consider
an impure generation of surrogates in which a surrogate is unique within a
relation and not in the whole database. Impure surrogates are sufficient to insure
uniqueness in a relational database [9]. In the remainder of this paper we will
ACM Transactions on Database Systems, Vol. 12, No. 2, June 1987.

Join Indices l 223

assume that the size of an impure surrogate is four bytes, which allows more
than four billion tuples per relation.

The size of the join index depends on the join selectivity factor. The join
selectivity factor, noted JS, is defined as follows, where 11 X 11 indicates the number
of tuples in relation X.

II R w S II
Js = II R II * II S II ’

The number of tuples in a join index is 11 R w S Il. If the join has good selectivity
(JS is low), the join index is small. This is a frequent case in existing databases
(e.g., join on foreign key). However, a join of poor selectivity, which can be close
to the Cartesian product, can make the index quite large. In this case, we claim
that no good optimization is possible, and a simple nested loop join algorithm is
sufficient. The effect of join selectivity is analyzed in our performance evaluation.

3. ALGORITHMS FOR RELATIONAL QUERIES

In this section, we propose algorithms that use and manage join indices. The
specification of the algorithms is given independently of a machine model,
although particular architectures, like parallel architectures, could improve their
performance. Our only assumption is that a large amount of main memory is
allocated to the operation. We denote the number of pages of main memory
allocated as 1 M 1. The following algorithms take advantage of the available
memory space. We first present solutions for updating the join indices. We next
present algorithms for semijoin and join operations using join indices. Finally,
we point out the impact of join indices on query processing.

3.1 Update

Join indices, like other accelerators, incur an update overhead. A join index
must reflect updates to the base relations. We limit ourselves to a JI with an
equi-join predicate. Updates with more general predicates are discussed in
Section 5.3. We only consider delete and insert operations. We assume that
modify is done by delete followed by insert, which is a nice way of handling
reliable updates, assuming a workspace model of updates.

The deletion algorithm is obvious. The surrogates of deleted tuples are retrieved
when deletion is performed and are removed from the join index. Since one copy
of the join index is clustered on the surrogates of the tuples deleted, this operation
is efficient. For example, let us consider the following deletion in relation CP
(given in Figure 1) expressed in SQL-like language:

delete CP where CP.cname = “Smith”

When performing the deletion, the tuples with cname Smith must be accessed
either using an inverted index on cname if it exists or by the scanning relation
CP. Thus, the set of cpsur {2, 3) would result from the deletion and be used to
update the join index on the basis of the copy clustered on cpsur. In the process
of deleting tuples from the JI copy clustered on cpsur, we can obtain the csur
values and thus efficiently access and update the JI copy clustered on csur. The
cost of deleting a tuple in a JI copy, assuming a two level B+-tree, is an average

ACM Transactions on Database Systems, Vol. 12, No. 2, June 1987.

224 l Patrick Valduriez

of three 10s (two page reads and one page write). If two copies of the join index
are maintained, the average cost becomes six 10s.

We now consider updates of the join index when insertions into base relations
occur. We distinguish between joins on foreign keys versus all other joins. Joins
over foreign keys are the most frequent (probably more than 90 percent of the
cases). In this case, the cost of updating the join index can be shared largely with
the cost of performing referential integrity checks. This update optimization is
done just before actually committing the updates when referential integrity
checking must be applied 1191. For example, let us consider the relations
CUSTOMER and CP where CP.cname is a foreign key. The insertion of
a new customer does not generate any update of the join index, because
referential integrity guarantees that there does not exist a corresponding
CP tuple. The insertion of a new tuple in CP requires a referential integrity
check, that is, that a corresponding cname actually exists. Thus, the tuple of
CUSTOMER is accessed anyway, and its surrogate can be used for updating the
join index. The overhead incurred is only the cost of reading and writing the join
index. The cost of inserting a tuple in a JI copy is thus the same as the cost of
deletion.

Joins not on a foreign key are much less frequently executed. However, in this
case, updating the join index can be more costly. For example, if we want to
propagate the insertion of a tuple ri in relation R of join value A onto the join
index, we need to select all tuples sj in relation S, such that tuple sj.B = A. This
operation is efficient if S has a clustered index or inverted index on attribute B.
Such indices are likely to exist if the join attribute is used for selections or if
updates of a few tuples are frequent. The cost of inserting a tuple in a JI copy,
assuming a three-level inverted index on a join attribute, is six 10s (three page
reads of the inverted index to build the join index tuple and three 10s to update
the JI copy). Inserting the tuple in the other join index copy is cheaper because
the join index tuple has been previously built. Thus, we need just update the join
index copy that incurs three 10s. If we assume the size of the two JI copies to be
roughly equal to the size on an index of a join attribute (surrogates are much
smaller than key values), this discussion indicates that for joins not on foreign
keys, updates of join indices increase the update cost of the joined relations by a
factor of approximately two.

If there is no index on the join attribute, the whole relation S must be scanned.
If many tuple updates occur, the overhead can be significant. We believe that
the use of a JI in this case is not worthwhile because the update overhead is too
high. Join indices would only be useful in this case if the updates are done in a
batch mode. Then, a simple solution can reduce the overhead by using a tebhnique
similar to view updates [181. The update of a join index can be deferred until the
next join is required. The relation updates are kept in a file containing the
surrogates of updated tuples together with the update type. Thus, when the join
is called, a semijoin of the joining relation with the updated relation is used to
update the join indices.

3.2 Semijoin

The algorithm for semijoin, a very frequent operation, is straightforward with a
join index. Consider the semijoin of R by S, denoted R K S. The attribute r of
ACM Transactions on Database Systems, Vol. 12, No. 2, June 1987.

Join Indices l 225

the join index JI indicates which tuples of R are useful. Thus, relation S does not
need to be accessed. For example, with the following semijoin query, where C
stands for CUSTOMER:

select Ccname, C.age where C.cname = CP.cname

The join index in Figure 1 provides the set of surrogates 11, 3) that answer the
query.

The access to tuples of R is based on the access path defined on its surrogate,
that is, clustered index or inverted index. If R has a clustered index on the
surrogate, using a copy of the JI clustered on r minimizes the number of 10s
required to access R.

If R has an inverted index on the surrogate, additional accesses to the index
occur. The inverted index on the surrogate is a set of (sur, page#) tuples sorted
on sur. When accessing the index based on surrogates, the set of useful (sur,
page#) is not ordered by page# and the same page in R can be read several times.
To avoid reading the same page more than once, the set of pages to access is
sorted on page# before reading relevant pages of R.

3.3 Join

The join algorithm accesses matching tuples of R and S using the join index in
order to produce a result relation. For example, the join query

selert C.cname, C.age, CP.pname where C.cname = CP.cname

will be processed by accessing a Customer tuple and a CP tuple and by producing
a result tuple for each tuple in the join index. For instance, the first tuple of the
join index represents the tuple (Smith, 21, jeans).

In this section, we concentrate on the join algorithm itself. However, as we
will see in Section 3.4, since it reads the join index sequentially, this algorithm
is applicable for joins preceded by selection. In this case, the join index used by
the join algorithm is first reduced by the selection.

We suppose that the number of distinct r values in the join index is greater
than the number of distinct s values. We use the join index copy clustered on r.
The reason will be given in the analysis. We call R the external relation and S
the internal relation.

For the sake of clarity, we first present a naive version of the join algorithm
using a JI that we will subsequently improve.

for i := 1 to 1 .JI 1 do {assume 1 JI 1 pages in ,711
begin

read page i of’.11 into JI,
Iassume k distinct surrogates from R and 1 surrogates from S in this page)
read k tuples of R into R,
read I tuples of S into S,
join R, and S,

end

This algorithm has several important shortcomings. First, the memory of) M)
page frames is poorly utilized. It is likely that JI;, R,, and S, require much less
than 1 M) pages. The rest of memory should be used for optimization. Since we
use the join index clustered on r, the access to R is efficient. However, the access

ACM Transactions on Database Systems. Vol. 12, No. 2, June 1987.

226 - Patrick Valduriez

to S can be inefficient. The tuples of S must be randomly accessed via the index
with a worst case of one IO per tuple. Furthermore we can have repeated tuple
accesses to S since a page j can contain surrogates of tuples that were also in a
page i where i < j.

We now propose an improved version of the algorithm that avoids the preceding
drawbacks. The improvement is essentially based on a memory management
strategy adapted to the operation. The main improvements are

(1) read as much of the JI and R K JI into memory as possible,
(2) optimize the accesses to S by sorting the list of surrogates s of the subset of

JI in memory, which leads to clustered accesses to S and minimizes repetitive
accesses to S.

The algorithm sequentially reads the join index JI page by page, composes
R K JI (equal to R DC S), and joins it with S K JI (equal to S K R) obtained page
by page. If R K JI does not fit entirely in memory, the operation is divided into
several passes. At each pass, a subset of R K JI that fits in memory is composed,
and for each (ri, s;) in the join index such that tuple ri is in memory, tuple s; is
accessed and joined with r,. At each pass k, the next subset of pages of the join
index, noted JIk, is processed.

The allocation of 1 M 1 page frames of main memory between operand and
result relations and the join index is an important component of the algorithm.
Relations R and S and the result relation Tare each allocated one page for input
and output data. When a page of T is full, it is written in cache memory (which
can lead to an IO operation). S K JI will be read page by page and thus requires
one page frame. We also reserve some extra working space for internal optimi-
zations that we will define later on. After this static allocation of memory, we
denote by 1 M’ 1 the number of remaining pages that are dynamically allocated
between the join index and R K JI. They are allocated in such a way that we
have in memory as many tuples of R as possible with their corresponding subset
JIk of the join index. Therefore for each tuple of R in the buffer, we know which
tuples of S match with it. Assuming the subset JIk of JI in memory, we denote
as Rk the set:

Rk = {tuple of surrogate ri E R 1 ri E JIk 1.

At each pass, JIk and Rk are such that

I JL I + I Rk I 5 I M’ I,
where 1 X 1 denotes the number of pages of X. The relationship between JIk and
Rk depends on the semijoin selectivity factor for Rk, which can be different for
some 1# k. For example, we can have 11 JIk 11 # 11 JIk-, 11.

The optimized join algorithm is summarized below in the procedure JOINJI
(Figure 4). The algorithm handles the general case in which the semijoin of R by
a page of the join index does not fit in memory.

At each pass of the algorithm, steps (1) through (4) are executed. Step (1)
reads the subsets JIk of JI and Rk of R K JI in memory. Step (2) sorts JIk on s.
The goal of step (2) is to improve the performance of the semijoin of S by JIk by
reducing the number of accesses to S. We use the working space for performing
ACM Transactions on Database Systems, Vol. 12, No. 2, June 1987.

Join Indices l 227

JOINJI (R, S: operand relation; T: result relation; Jhjoin index;
1 M’ 1 :number of memory pages)

begin
k := 0
read first page of Jl into Jlpage
m:=IM’)-1 (current number of pages for 54 and Rk)

(0) while not “end Jl” do
begin

k:=k+l (start a new press)
(1) while m > 0 and not “end Jl” do (produce Jlk and Rk]

begin
while not “new tuples in R K Jlpage” and m # 0 do

begin
perform next R K Jlpage until filling one page
m:=m-1

end
ifm#Othen

begin
read next page of Jl into Jlpage
m:=m-1

end
end WP WI

(2) sort Jib on s
(3) while not “new tuples in S K Jlk” do

begin
read next page of S containing tuples of S K Jlk into Spage
join Spage with R,,

end Istep (3))
(4) if “Jlpage entirely processed” then

begin
m:=IM’l-1
read next page of Jl into Jlpage

end
else m := 1 M’ 1 - 1

end Istep WI
end [JOINJIJ

Fig. 4. Join algorithm using a join index.

the sort internally. The access to S is based on an inverted or clustered index on
s. Thus, the access to the index is in order and minimal. Step (3) performs the
join of relation S with Rk. Step 4 handles the case in which the last page read
from the JI in JIpage has not been entirely processed; that is, there remain tuples
in JIpage whose corresponding tuples in R did not fit in RAM.

As presented, the algorithm minimizes the number of 10s. In order to minimize
the central processing unit (CPU) time, we need to perform the internal join
rapidly. This can be done by adding to each (ri, sj) of JIk the address of tuple Fi

in memory. Therefore, for each tuple sj accessed, the matching tuple Fi is directly
found. In the proposed algorithm, the same page of S may be reread at different
passes. However, in most cases, the useful subset of the JI and R K JI fit in
memory, making the scheduling of page accesses optimal (only useful pages are
read, and only once).

ACM Transactions on Database Systems, Vol. 12, No. 2, June 1987.

228 l Patrick Valduriez

Join indices can be derived from classical indices on join attributes. Most
relational systems use indices on join attributes to speed up joins [3]. We now
give a brief comparison of the performance of a join using join indices and a join
using indices on join attributes as proposed in [4]. In each method, the indices
must be scanned entirely; thus the performance difference is related to the
difference between the index sizes. An index on a join attribute is supposed to be
of the form ((att-value, surrogate)). It has an entry for each different surrogate
value (i.e., for each tuple of the relation), where each entry contains an attribute
value with its surrogate. Assuming that the cardinalities of R and S are respec-
tively]] R]] and]I S]I and that each tuple of S matches with one tuple of R (e.g.,
a hierarchical case like Customer + CP), then the amount of extra data accessed
by the method based on join attribute indices is roughly (I] R II + II S II) *
att-size, which can be quite large. For joins of poorer selectivity, the difference
would be even bigger. Also, a join index can be easily compacted using run length
compression, making it even smaller. Thus, the number of 10s necessary for the
method based on join attribute indices is generally much higher.

3.4 Relational Queries

We now illustrate the use of join indices and other indices for performing
relational queries. For simplicity, we consider queries involving selections, joins,
and projections. We assume that the compiled relational query has been optimized
and thus exhibits the best possible decomposition in relational operations. The
basic idea is to use indices as much as possible and to postpone access to relevant
base data (generally much larger) to the very end.

We consider a first type of relational query involving a selection followed by a
join. We suppose a join index exists for the join. The selection operation will
produce a list of surrogates of tuples that satisfy the selection criteria. There are
basically three possible access paths for selection: inverted index, clustered index,
or sequential scan. An inverted index associates attribute values with surrogates.
Therefore, accessing the inverted index for given attribute values produces the
relevant surrogates. When using the two other access paths, the base data must
be accessed. In this case, the result of the selection is an intermediate relation
containing relevant tuples together with a list of their surrogates. The list of
surrogates is semijoined with the join index to find the relevant surrogates of the
other relation. Since as much of the join index as possible will be kept in RAM,
the best way for performing the semijoin is to probe the join index for each
surrogate value of the list. Remember that a join index is implemented by a B+-
tree and thus provides direct access based on surrogate. If the join index cannot
fit in RAM, sorting the surrogate list first is an interesting alternative. Consider
the following example:

select &name, CP.name, Cjob
where city = “Austin” and C.cname = CP.cname

Figure 5 illustrates the corresponding relational query tree and its operation
tree when there is an inverted index on attribute City in relation C. If the access
path were not an inverted index, the selection would have also produced an
intermediate relation C’. C’ would be stored in a hashed table on the join
attribute and used during the final join instead of C. The City-index provides
ACM Transactions on Database Systems, Vol. 12, No. 2, June 1987.

Join Indices l 229

City-Index

.I1
/

\

city=Austin

/
surrogates

/
csur D<. csur

CP
“\ ?‘.,

I CS”r Cu cpsur
I

Fig. 5. A query tree and its operation tree.

the set of surrogates (2, 3). Thus, the JI’ is ((3, l)]. The final access to
CUSTOMER with csur = 3 and to CP with cpsur = 1 enables the construction
of the tuple {Ross, jacket, manager). The join index JI is thus accessed directly
through its B-tree during the semijoin. JI’, the result of the semijoin, is stored
in a sequential file, since it is accessed sequentially during the final join phase.

If the selection is very strong for this type of query, classical indexing can
outperform join indices. With the classical approach of [4], the example query of
Figure 5 is processed by first accessing the C tuples that satisfy the select
predicate, and, for each tuple selected, the matching CP tuples are accessed
through an index on the join attribute (cname). If the selection is very strong
(e.g., one C tuple is selected), then the indirect access to the join index will incur
one or two additional 10s.

We now consider relational queries with multiple joins possibly combined with
selections. If every join can be processed using a join index, then all the join
indices are first joined. They produce subsets of join indices that store the
surrogates of relevant tuples. Then, the joins on base data are applied at the very
end using join index subsets. Therefore, only useful base data are accessed.

If not every join can be processed using a join index, then we must combine
joins using join indices with more classical join algorithms. Examples of classical
joins in which the base data are accessed are the sort merge join algorithm [4] or
some hash join algorithms [5, lo]. We consider the query whose optimized
decomposition is (R w S) w T, where the second join involves an attribute of S
and an attribute of T. We assume only one join index exists. Two cases can
occur: There is JI(s, t) for (S w T) or JI(r, s) for (R w S). In the first case, the
classical join precedes the join using the join index. Thus, the classical join
produces a result relation U together with a set of surrogates (s) of tuples in U.
A tuple in U is of the form (s, attl, att*, . . .). However, since U is a temporary
relation, its tuples do not have their own surrogates. Therefore, s cannot be
considered a unique surrogate of a tuple in U; that is, there can be several tuples
in U having the same s value. The set of surrogates is then semijoined with
JI(s, t), giving a subset of the join index JI’(s, t) in a sequential file. The join
algorithm using the join index is then applied on T and Uusing JI’. In the second
case, the join using the join index JI precedes the classical join. The join using

ACM Transactions on Database Systems, Vol. 12, No. 2, June 1987.

230 l Patrick Valduriez

Result

\1
Result

Query Tree Join index on S & T Join index on R & S

Fig. 6. Operation trees for different join indices.

the JI is applied giving a result relation U that can be used by the subsequent
join U w T. Figure 6 shows the two different operation trees for the same query
tree where classical joins and joins using join indices are combined.

4. PERFORMANCE ANALYSIS

In this section, we analyze the performance of the join algorithm presented in
Section 3. We first define the analysis parameters and then derive the execution
times of our join algorithm for different clusterings of the operand relations. Our
algorithm is then compared with the hybrid-hash join algorithm [lo]. The latter
is one of the most efficient that we know of and, like our algorithm, makes use
of all the available main memory. We choose it also because it is much more
efficient than the sort merge join algorithm, which in turn is generally better
than join algorithms using secondary indices on join attributes.

As in [4], we do not include the update overhead incurred by join indices for
two reasons. The first reason is that we showed in Section 3.1 that, for the most
frequent joins, the update overhead is very little. It should be acceptable and
conditional upon a significant gain against other efficient algorithms. The second
reason is that an analysis including a cost factor for updates in the join algorithm
cost is not realistic because this factor depends on update/retrieval frequencies.
Such an analysis would be too complex and is beyond the scope of this paper.
Instead, we plan to measure the update cost of join indices through implemen-
tation. Initial results are given in [23].

4.1 Analysis Parameters
4.1.1 Database Dependent Parameters. The following notation will be used to
evaluate algorithms:

IRIS ISI Number of pages in relations R and S, respectively
]I R I], I] S]I Number of tuples in relations R and S, respectively
JS Join selectivity factor defined by JS =]I R w S II/II R II * II S II
SR Semijoin of (R by S) selectivity factor defined by SR =

II R K S II/II R II
ACM Transactions on Database Systems, Vol. 12, No. 2, June 1987.

Join Indices l 231

ss Semijoin of (S by R) selectivity factor defined by SS =
II S K R II/II 5’ II

IJII Number of pages in the join index
II JI II Number of tuples in the join index given by 11 JI 11 = (11 R II * 11 S II)

* JS= IIRw Slj
TR, Ts, TJr Size (in bytes) of a tuple of R, S, and JI, respectively

Join selectivity is related to the semijoin selectivities, since each tuple of the
join is constructed from two tuples, each belonging to a semijoin by the following
inequality,

max(s,fi)sJSaSS*SR.

The lower bound is attained when each tuple in the larger semijoin is matched
exactly once. The upper bound is attained when the two semijoined relations
produce the join using a Cartesian product.

4.1.2 System Dependent Parameters. We use the following parameters to
describe the capabilities of the database system:

1 M 1 Main memory size (in number of pages) allocated to the operation
F Universal fudge factor for hashing
PO Average page occupancy factor
P Page size (in number of bytes)
FO Fan-out of a node in a B-tree
ssur Surrogate size (in number of bytes)

4.1.3 System Performance Dependent Parameters. The following performance
parameters, dependent on computer capabilities, are used in measuring the IO
and CPU times of the algorithms:

IO Time to perform an IO operation
camp Time to compare two keys
hash Time to hash a key
move Time to move a tuple

4.2 Analysis of Join Algorithms

In this section, we analyze the performance of the join algorithm using join
indices when relations are stored separately. We also summarize the performance
of the hybrid-hash join algorithm. We make a number of simplifying assumptions.
The basic assumption is that there is no overlap between IO and CPU. Since we
will compare the algorithms on a conventional architecture, we believe that the
effect of overlap between IO and CPU would be the same for both algorithms
(this may not be true for parallel architectures). We suppose that the operand
relations are stored on magnetic disks. Also, we ignore the cost for writing the
result relation, since it is roughly the same for all algorithms. We assume that
the root page of a B+-tree index is always kept in memory. The small size of a
surrogate implies a high fan-out of B-tree nodes. Assuming that a page# has the
same size as a surrogate and considering that the page occupation factor is high

ACM Transactions on Database Systems, Vol. 12, No. 2, June 1987.

232 l Patrick Valduriez

(we use the classical factor 70 percent), then there are about 400 (sur, page#)
tuples per 4K bytes page. According to the values that we will use for relation
sizes, we assume that- the B-tree of an index based on a surrogate will always
have two levels.

4.2.1 Join Using Join Indices. In this section, we evaluate the execution time
of the join algorithm presented in Section 3. The performance of this algorithm
is greatly influenced by the join and semijoin selectivity factors. To simplify our
evaluation, we assume that the participation in the join is uniformly distributed
among matching tuples; that is, there is no tuple that participates in the join
more times than any other tuple. This implies that each subset JIk of the join
index processed in a pass is of same size. Thus, we have 11 JIi 11 = 11 JIZ 11 =
. . . 11 JIk 11 Relaxing this assumption implies that the proportion of JI and
R K JI that fit in memory would vary from one pass to another. Therefore, the
number of tuples of S K JI accessed would vary over passes. In several experiments
we found that the performance becomes significantly better under the nonuni-
formity assumption only when the variations in the number of tuples accessed
from R K JI are high. Thus, our assumption is pessimistic. Also, we do not take
into account the effect of run-length compression of the join index, although it
would make the algorithm more efficient. Finally, we note that our assumptions
favor the hybrid-hash join algorithm.

We divided the analysis into four steps corresponding to phases in the
algorithm:

(1) read the join index,
(2) perform R K JI,
(3) internally sort the join index JIk on s,
(4) perform S K JI.

4.2.1.1 Number of Passes in the Algorithm. The join algorithm allocates three
memory pages for operand and result relations and one page for reading S K R.
The amount 1 M’ 1 memory dynamically allocated for R K S and the join index
is thus

lM’(= [Ml-4.

If R K S and the join index do not fit in 1 M’ 1 pages of memory, the four steps
of the algorithm must be repeated during several passes. Assuming a uniform
distribution of the semijoin selectivity among tuples of R, the number of passes
is simply the sum of the sizes of R K S and the join index divided by 1 M’ 1. The
size of R K S is

11 R II * SR * Ts/P.

The size of JI is 1 JI 1. We also provide for some amount of working memory
space for internal optimizations (sorting and direct access to tuple by a surrogate).
This amount is proportional to 1 JI l/l M’ 1 an d is measured by a factor denoted
by PR. The size of the working space is thus PR * 1 JI l/l M’ 1. We will need as
much space as the join index in memory to internally sort it. Thus, PR = 1.
Furthermore, for each surrogate ri in memory, we add the internal address
(= size of surrogate) of tuple i. Thus, PR = PR + 0.5 = 1.5. The number of
ACM Transactions on Database Systems, Vol. 12, No. 2, June 1987.

Join Indices l 233

passes, denoted by N, is

N=max
(

]JIl +]JI] * PR + (]]R((* SR * TR)/P

IM’I 1.
4.2.1.2 Basic Formulas. The following basic formulas will be commonly used

in evaluating the different steps of the algorithm.

(1) Number of tuples per page. The number of tuples per page of relation X,
where X will be R, S, or JI is

P * PO
nx = ____

TX *

(2) Number of page accesses. For accessing k records randomly distributed in
a file of n records stored in m pages, a formula for the expected optimal number
of page accesses is given in [24]:

k

Y(k, m, n) = m* 1 - n
n - (n/m) - i + 1

i=l 1 n-i+1 ’

This formula assumes that the scheduling of page accesses is optimal; that is,
the same page is not accessed more than once.

(3) IO time for accessing k tuples. We determine the IO time incurred in
accessing k tuples of relation X based on a surrogate, where X will be R or S.
The access to relation X is based either on a clustered index oran inverted index.
In both cases, the k tuples are supposed to be randomly distributed because the
relation is not clustered on the join attribute (tuples with the same join attribute
value are not physically close). Thus, the number of page accesses to relation X
is given by K = Y(k, m, n), where m =] X] and n = 11 X 11.

In the first case, relation X has a clustered index, denoted by CX, on a
surrogate. We assume that the index is maintained as a two-level B+-tree whose
leaves associate a surrogate with a page# in X. We also assume that the root
resides in cache memory and thus ignore the cost of accessing it. Thus, we need
just evaluate the number of accesses, denoted by nbacx, to the last level of the
clustered index. nbacx is the number of page accesses for locating, for example,
x records randomly distributed in the index. One tuple of the index must be
accessed for each page accessed in relation X. Since there are K pages accessed
in relation X, we have n = K. The total number of pages in the second level of
the index depends on the node fan-out and is m/FO. Since there is one index
tuple per page of relation X, the total number of tuples in the last level of the
index is m. Therefore, the number of page accesses to the index is

nbacx = Y(K,g, m).

Finally, the IO time for accessing k tuples in relation X using a clustered
index is

IO,i(k, m, n, X) = (K + nbacx) * IO.
ACM Transactions on Database Systems, Vol. 12, No. 2, June 1987.

234 l Patrick Valduriez

In the second case, the access to pages of relation X is based on an inverted
index on a surrogate. An inverted index is larger than a clustered index. We
assume that the inverted index is a three-level B+-tree whose leaves associate a
surrogate with a page# in X. Let us first evaluate the number of accesses to
the index on X, noted IX, for retrieving k records. Assuming that the size of
a page# equals the size of a surrogate, the number of pages of the last level of
the index is

,ix, = IIXll * 2 * ssur
P*PO *

For each tuple of X, one tuple of the inverted index must be accessed. The
number of accesses to k records randomly distributed in the last level of the
index, where m ’ = I IX] is

nbaix = Y(k, m’, n).

The number of accesses, noted nba fx, to the second level of the index can be
evaluated similarly to nbacx above. Therefore, we have

nbafx =
I

E
FO’

The IO time using an inverted index is thus

IOii(k, m, n, X) = (K + nbaix + nbafx) * IO.

(4) CPU time for semijoin. We now derive the CPU time incurred in per-
forming the semijoin of relation X by the join index, where X means R or S.
The semijoin is done in N passes where, at each pass, k tuples of X must be
accessed. The number of page accesses to relation X is given by K = Y(k, m, n).
Each tuple of each page of X is compared with the JI, which requires
N + K : nx * camp. The semijoin selectivity factor is noted SX and will be
SR or SS. The I] XI] * SX tuples of the semijoin must be moved in memory
from their input page to the buffer allocated to the semijoin, which needs
I] X]I t SX * move. Thus, the CPU time for the semijoin of relation X by N
passes of K pages is

CPUsj(k, m, n, X) = N * K * nx * camp +]I X]] * SX * move.

(5) Internal sort of n tuples. Sorting internally n tuples [16] requires a time

CPUst (n) = n * logzn * camp + n * move.

4.2.1.3 Analysis of Step 1. Step 1 consists of reading the join index one page
at a time. The execution time of step 1 is

tl =]JI] : IO.

4.2.1.4 Analysis of Step 2. Step 2 consists of accessing relation R on the basis
of surrogate values found in the join index and producing R # JI. The access to
relation R depends on whether R has a clustered index or an inverted index on a
surrogate.
ACM Transactions on Database Systems, Vol. 12, No. 2, June 1987.

Join Indices l 235

(1) R is clustered on a surrogate. At each pass, the number of tuples of the
semijoin to retrieve in R is

k= IIRII *SR
N ’

The tuples are randomly distributed because the relation has a clustered index
on a surrogate (not on a join attribute). Since the JI is clustered on a surrogate
F, and relation R is also clustered on F, then at each pass i, the subset Ri of R
corresponding to the subset JIi of the join index in memory is accessed. Therefore,
we have

For N passes, the IO time of step 2 incurred with a clustered relation is

&IO = N * IO,i(K, m, n, R).

The CPU time consists of doing the semijoin of R by JI, which is

t 2cc~u = CPU,j(nbaz,, R).

The total time of step 2 when R is clustered on F is

t2e = tmo + t2eCPU.

(2) R is indexed on a surrogate. The join index is read by sets JIk of pages,
where for each JIk, the subset Rk of R K S is retrieved. Even in the case of
nonuniform distribution of join selectivity among tuples of R, we are always able
to determine JIk such that Rk fits in memory, since the join index tells us which
tuples of R to retrieve. At each pass, the number of tuples of the semijoin to
retrieve in R is

k= IIRII *SR
N ’

For each semijoin subset, the entire relation R must be accessed because the
tuples are randomly spread over R (R is not clustered on a surrogate); thus

m= IRI and n = II R 11.

The IO time to access R is thus

t2iIO = N * IOii(k, m, n, R).

We now evaluate tzicpue The main difference with the previous case is that the
inverted index provides the relevant tuples (F, page#) sorted on F but not on
page#. In order to optimally schedule the disk accesses to R, the set of couples
(F, page#) is sorted on page#. The number of pages of JIk is in the average
1 JI l/N. Thus, the number of tuples in JIk, nJIk, is

nJIK = nJ1 * I JI I
N ’

ACM Transactions on Database Systems, Vol. 12, No. 2, June 1987.

236 l Patrick Valduriez

The tuples (r, page#) obtained from the index for each JIk must be sorted on
page#, which requires for all passes

N * cpu,thI1Id.

By adding the semijoin time, we obtain

hcpu = N * CPU~(~JIK) + CPUsj(k m, n, RI.

The total time of step 2 when R is indexed on r is

hi = hI0 + tPiCPU-

4.2.1.5 Analysis of Step 3. Step 3 consists of internally sorting each subset JIk
on s. Assuming that all JIk are of the same size (this is consistent with our basic
assumption of uniform distribution of join selectivity among the tuples), we get

For N passes, the time of step 3 is

ts = N * CPU,, .

4.2.1.6 Analysis of Step 4. At each pass of the join algorithm, step 4 accesses
page by page the semijoin of S by JI for tuples of R in memory. The analysis is
similar to that of step 2. The main difference is that the join index is not clustered
on surrogate s. Therefore, for each subset of the semijoin (S by JI), we have to
access the whole relation S. Therefore, we have

k= IISII * ss
N ’ m= ISI, and n = II s II *

(1) S is clustered on s. The time of step 4 is simply the time for reading the
semijoin of S by the JI using the clustered index, and the CPU time for performing
the semijoin, which gives

tk = N * IO,i(lz, m, n, S) + CPUsj(k, m, n, S).

(2) S is indexed on s. The IO time is incurred in reading the semijoin of S by
the JI using the inverted index. The tuples (s, page#) obtained from the index
must be sorted on page#. Thus, the CPU time is the time of sorting at each pass
a set of]] JI]]/N tuples (s, page#) plus the time for performing the semijoin,
which leads to

+ CPUsj(k, m, n, S).

In conclusion, the time of the join algorithm using the join index is as follows,
where] means “exclusive or”:

t (JOINJI) = tl + t%] t2i + t3 + tdc] tdi.

4.2.2 Hybrid-Hash Join Algorithm. The hybrid-hash join algorithm is proposed
and analyzed in [lo]. It makes use of all available memory (] M]). We briefly
ACM Transactions on Database Systems, Vol. 12, No. 2, June 1987.

Join Indices l 237

review the algorithm and its performance. Relations R and S are sequentially
read from disk and partitioned into sets on the basis of the same hash function
applied to the join attributes. Let

f

The algorithm consists of B + 1 steps where R and S are partitioned into
compatible sets Ro, RI, . . . , RB, and So, E&, . . . , SB. Furthermore R. has
IMI - B pages and is processed at the same time that R and S are being
partitioned. The join is then divided into B joins of RI CU S1, R:! w Sz, . . . ,
RB w Se. Let

)R(=I”I-B IRol
0 F

and q = -
IRI ’

The time of the hybrid-hash join algorithm using our model is

t(JOINHH)
= (IRI + IS() *IO

+ (IIRII + IISII) * hash + (IIRII + IlSll) * (1 -9) * move
+(IRl+lSI)*(l-q~*IO+(llRll+llS)l)*U-q)*hash
+ 11 S 11 * F * camp + ll R II * move + (1 R 1 + 1 S I) * (1 - q) * IO.

4.3 Performance Comparisons
This section presents performance comparisons of the join algorithm using join
indices (JOINJI) and the hybrid-hash join algorithm (JOINHH) using the
previous cost formulas. We fix the values of the analysis parameters assuming a
conventional system as in [lo]. Other comparisons have been run with different
parameter settings, and similar results have been found. The parameter values
are set as follows:

F
PO
P
FO
ssur
IO
camp
hash

Universal “fudge” factor for hashing is 1.2
Average page occupancy factor is 0.7
Page size is 4000 bytes
B-tree node fan-out is 400
Surrogate size is 4 bytes
Time of an IO operation is 25 milliseconds
Time to compare two keys is 3 microseconds
Time to hash a key is 9 microseconds
Time to move a tuple is 20 microseconds

From the cost formulas previously derived, we see that the performance of
JOINJI relative to JOINHH is strongly influenced by the join and semijoin
selectivity factors and by the fact the operand relations are clustered or indexed
on a surrogate. Relation sizes and memory size will also significantly affect both
algorithms.

Figure 7 illustrates the performance ratio of JOINJI versus JOINHH for
varying semijoin selectivity factors (with SS = SR). HH denotes the execution
time of JOINHH, whereas JI denotes the execution time of JOINJI. The join

ACM Transactions on Database Systems, Vol. 12, No. 2, June 1987.

238 l Patrick Valduriez

= SR

0.001 0.01 0.1 1

1K 20K 200K 2M result tuples

Fig. 7. Performance ratio of JOINJI vereue JOINHH (1 R 1 = 1 S 1 =
10,000, 11 R II = 1) S 11 = 200,000, I M I = 1,000, JS = 10 = SS/jj R 11).

selectivity factor is proportional to SS. It has been chosen in order to produce a
result-joined relation of realistic size. For example, when SS = 0.1, the result
relation is as big as an operand relation. The graph shows clearly the influence
of join selectivity. The curve clustered (respectively indexed) means that the
operand relations are clustered (respectively indexed) on a surrogate, which
impacts on the performance of JOINJI. The difference between the curves
remains constant on the graph, which means that the performance difference
between JOINJI clustered and JOINJI indexed decreases significantly as SS
increases. JOINHH outperforms JOINJI only in the presence of poor join
selectivity, that is, when producing a very large result relation.

Figure 8 presents the execution times of JOINHH and JOINJI versus the
semijoin selectivity factor. The graph illustrates in a different way the influence
of join selectivity on JOINJI. The two curves of JOINJI correspond to the
minimum and maximum join selectivity factors that can be derived from the
semijoin selectivity factors. For the fixed values of parameters, all possible joins
using join indices would show performance curves between these two extremes.

Figure 9 shows the effect of varying the semijoin selectivity factors on the
performance of JOINJI for relations of equal size clustered on a surrogate. The
X axis represents SS for the curve of SR and SR for the curve of SS. The graph
tells us what we can intuitively guess. The relation that produces the biggest
ACM Transactions on Database Systems, Vol. 12, No. 2, June 1987.

Join Indices l 239

0.001 0.01 0.1 1

Fig. 8. Performance of JOINJI and JOINHH versus join
selectivity (1 R 1 = 1 S 1 = 10,000, (M (= 1,000); R and S are
clustered on surrogate.

Semi-join selectivity factor SS or SR

1 I I

0.001 0.01 0.1 1

Fig. 9. Effect of varying the semijoin selectivity for JOINJI
((R~=~S~=10,OOO,~M~=1,0OO,JS=10*max(SS/~~R~~,
@R/II S II)); R and S are clustered on surrogate.

ACM Transactions on Database Systems, Vol. 12, No. 2, June 1987.

240 l Patrick Valduriez

log (time in seconds)

\

100 1000 10000

Fig. 10. Performance of JOINJI and JOINHH versus mem-
ory size (R 1 = 15’ 1 = 10,000, SR = 0.5, SS = 0.1,20,000 result
tuples).

semijoin should be used as an external relation in the JOINJI algorithm. This
minimizes the number of accesses to the internal relation.

Figure 10 illustrates the behavior of the algorithms versus memory size. Both
algorithms take advantage of the available memory. When the operand relations
are clustered on a surrogate, the performance of JOINJI is linear in] M]. This
is not true when relations are indexed on a surrogate because the performance of
JOINJI degrades significantly as the number of passes of the algorithm increases.
The performance difference between the algorithms versus relation sizes
(Figure 11) remains constant provided that the memory size is proportional to
relation sizes.

In conclusion, the performance comparisons show that except for the high join
selectivity factor JS, the algorithm using the join index outperforms the hybrid-
hash join algorithm. The performance difference between the algorithms in-
creases as the size of the joined result decreases. For some joins of the low-join
selectivity factor (JS) values, JOINJI can be 100 times more efficient than
JOINHH (Figure 7). The cost formula used for JOINHH is independent of JS.
This assumes that JS is low, which is true for most of the joins. However, when
JS is high, hashing becomes inefficient [21], since the number of duplicate join
attribute values is very high and leads to many collisions (the number of useful
buckets becomes very low). Also, when JS is high, the number of duplicate
surrogates in the index is high, making run-length compression very effective.
Taking into account the deficiency of hashing for high JS and considering the
run-length compression of the join index, we predict that the algorithm using the
ACM Transactions on Database Systems, Vol. 12, No. 2, June 1987.

Join Indices l 241

/
2

1000 10000 100000

Fig. 11. Performance of JOINJI and JOINHH versus relation
size (1 M 1 = 1 R 1 * 0.1, SR = 0.5, SS = 0.1, JS = 5 * lo-‘).

join index would always outperform the hybrid-hash join algorithm. However,
note that the hybrid-hash join algorithm does not incur the index update
overhead.

5. PROPERTIES OF JOIN INDICES

This section describes several properties of join indices. All these properties
result from the fact that a join index is stored in a simple and separate data
structure.

5.1 Algorithms Exploiting Hardware Availability

Future computers will have large amounts of RAM and a parallel processing
capability. The join algorithm using the join index presented in Section 3 takes
advantage of all available RAM. As shown in the performance evaluation, the
algorithm’s performance is proportional to the memory size. The adaptation of
the join algorithm to parallel execution is easy. The join index can be divided
into independent subsets, each being carried out by a different processing unit.
The algorithm would guarantee that a page of the external relation is not read
by more than one processor. However, the same page of the internal relation
might be read by several processors.

5.2 Compatibility with Other Operations

The real value of join indices becomes apparent when they are combined with
other indices for processing relational queries. A complex relational query is
divided into two steps. The first step applies the query to indices (join indices,
select indices, and others), producing an abstract of the result (the set of

ACM Transactions on Database Systems, Vol. 12, No. 2, June 1987.

242 l Patrick Valduriez

surrogates of relevant tuples). In the second step, the base data that satisfy the
query are accessed. Therefore, the most complex operations are performed using
data structures smaller than the base relations. To the maximum extent, these
data structures should be kept in memory.

5.3 ADT Join Predicate

The definition of a relational equi-join predicate is restricted to the equality of
the join attributes. We can generalize the notion of conventional joins by defining
the join predicate in terms of abstract data types (ADT) [12]. The motivation is
that functionality as well as performance can be significantly improved if users
are allowed to define join predicates according to the ADT operations that are
most often used.

By storing separately the relationships existing between tuples, join indices
can support ADT join predicates. For example, if a frequent query is to list the
information about customers of Austin and parts, such that the customer was
twenty years old when the part appeared on the market, the following ADT
predicate can be used to specify a join index between CUSTOMER, noted C, and
PART, noted P:

C.City = “Austin” and C.age - 20 = P.age

The ADT operations used for the join predicate must be computed only for
updating the join index according to updates of the joined relations. Therefore,
the update overhead incurred with ADT join predicates is significantly greater
than that of equi-join predicates. On the other hand, the retrieval of tuples
satisfying the ADT join predicate does not require reexecution of the ADT
operation. It uses the join algorithm defined in Section 3.

5.4 Multirelation Clustering

The ideal clustering for improving the performance of joins places matching
tuples of different relations physically close to each other. Below, we propose a
multirelation clustering scheme used in combination with join indices. The
multirelation scheme is similar to the CODASYL set implemented via a pointer
array. A physical multirelation is organized as a B+-tree on the basis of a multikey.
The multikey is defined on surrogates, where the number of keys in the multikey
is equal to the number of joins. The tuples in the leaves of the B+-tree are ordered
according to the tuples of the join index. An example of a multirelation is given
in Figure 12, where the surrogates in leaves are the actual tuples. For a multire-
lation with three relations R, S, and Z’, the multikey might be (r, s).

The classical algorithms for B+-trees must be slightly modified to keep the
tuples of an internal relation sorted on a surrogate. Access (for any purpose) to
only tuples of an internal relation requires access to the join indices defined on
relations external to it for finding the parent tuples. For example, the access to
tuple ss in Figure 12 implies accessing the join index on R and S to find r3, which
is used to locate the correct page in the multirelation. The join of relations
clustered together is obviously performed by a sequential scan of the multi-
relation. Therefore, the join index does not need to be accessed. However, if the
join is preceded by a selection on an internal relation, the access to the join index
ACM Transactions on Database Systems, Vol. 12, No. 2, June 1987.

Join Indices l 243

JI r1 %O

r1 %I
r2 sg

1Il r2 %2

r2 s21

r3 SE

Fig. 12. Multirelation for R and S.

JI

Sl s4

-52 s5

S? %l

S? s,

NI
s3 %

s5 %3

SEi sa

se s9
s s

Fig. 13. Join index coding a directed graph.

is necessary for determining the subset of the multirelation that must be accessed.
Multirelation clustering is clearly the most efficient scheme for particular cases

of joins. For example, the join of tuple r4 (perhaps after selection) with sl, sa, s15
results in an access to a single data page, which is optimal. However, this scheme
presents the shortcomings known in CODASYL systems that preclude its
systematic application. Indeed, this scheme is well suited for hierarchies
(l-m relationship), a very frequent case.

5.5 Coding of Graphs

A join index captures the semantic links that exist between tuples. If we represent
the join of two tuples by an arc connecting those tuple surrogates, the join index
can represent directed graphs in a very compact way. Therefore, it will be very
useful for graph operations such as transitive closure. Figure 13 gives an example
of a graph encoded as a join index. The index is clustered on the first attribute
and depicts the parent-child relationship. Therefore, it is well suited for traversals
in the parent-child direction. A join index clustered on the second attribute
allows efficient traversals that follow the child-parent direction.

Applied to a single relation, a join index can capture its self-join as shown in
Figure 14, where the join predicate is X.advisee = Y.advisor. For example, if we
want to list the genealogy of advisee Ross, we may compute the transitive closure
of relation Ph.D. Applying the operation on the join index that is smaller than
the base relation is shown to be very efficient in [22]. Transitive closure preceded
by select is also handled by our scheme.

ACM Transactiona on Database Systems, Vol. 12, No. 2, June 1987.

244 l Patrick Valduriez

PbD

sur advisee

Doe
Smith
Ross
Hayes
James

Fig. 14. Join index coding a self-join.

6. CONCLUSION

In this paper, we have proposed a simple data structure, called a join index, for
optimizing semijoin and join operations in the context of complex queries. We
presented algorithms for update, semijoin, and join and illustrated the use of join
indices in relational queries. The overhead incurred in updating join indices
appears to be small for the most frequent joins (joins on a foreign key). For all
other joins, updates of join indices can increase the update cost of joined relations
by a factor of approximately two. The join algorithm using a join index takes
advantage of all available memory and is easily adaptable to parallel execution.
The interesting features of join indices derive from the fact that they are stored
separately, usually in a small data structure. Join indices support ADT join
predicates, are independent of the storage model, and are helpful for multirelation
clustering. They also represent directed graphs succinctly and thus can serve as
a basic tool for recursive queries.

The analysis of the join algorithm using a join index shows its excellent
performance. It generally outperforms the hybrid-hash join algorithm. Except
for joins of very poor selectivity in which no optimization seems possible (the
join becomes close to a Cartesian product), or for joins preceded by a strong
selection (in which case classical indexing can be better), we claim that join
indices should be employed. We limited our analysis to the join algorithm itself,
since it is the most critical operation. However, the real value of join indices
increases as queries become complex because the most complex operations are
done on small data structures (select indices, join indices, etc).

For most of the joins, the join index whose size is proportional to the join
selectivity factor will be small. Transitive closure, which appears to be a basic
operator for supporting recursive queries, can be realized using a loop of joins
and unions, two complex operations. In [22], we propose and analyze two
algorithms for the transitive closure. It is shown that, for various values of
parameters, applying either algorithm to a join index rather than the base data
yields better performance. Again, the idea is to apply all complex operations
(join, union) on join indices and to access the data at the very end. Thus, join
indices appear very attractive in the evaluation of relational queries as well as in
recursive queries.

In order to obtain empirical data to verify the analysis in [22] and in this
paper, join indices have been implemented as part of a decomposition storage
model [8] and a complex-object storage model [23]. In the latter paper, the
concept of a join index is extended to capture the structure of complex objects,
ACM Transactions on Database Systems, Vol. 12, No. 2, June 1987.

Join Indices l 245

and initial performance measurements using the Wisconsin benchmark [3] are
given, which so far confirm our analysis. More thorough performance measure-
ments are ongoing.

ACKNOWLEDGMENTS

The author is grateful to Haran Boral, David Dewitt, Ravi Krishnamurthy, and
Marc Smith for their helpful comments and encouragement. The author wishes
also to thank the anonymous referees for excellent comments that have improved
the quality of this paper.

REFERENCES

1. BAYER, R., AND MCCREIGHT, E. Organization and maintenance of large ordered indexes. Acta
Inf. 1, 3, 1972.

2. BISON, D., BORAL, H., DEWI~, D. J., AND WILKINSON, W. K. Parallel algorithms for the
execution of relational database operations. ACM Trans. Database Syst. 8, 3 (Sept. 1983),
324-353.

3. BITCON, D., DEWITT, D. J., AND TURBYFILL, C. Benchmarking database systems: A systematic
approach. In International Conference on Very Large Databases (Florence, Nov. 1983), VLDB
Endowment Ed., 1983, pp. 8-19.

4. BLASCEN, M. W., AND ESWARAN, K. P. Storage and access in relational databases. IBM Syst.
J. 16, 4, (1977).

5. BRATBERGSENGEN, K. Hashing methods and relational algebra operations. In International
Conference on Very Large Databases (Singapore, Aug. 1984), VLDB Endowment Ed., 1984,
pp. 323-333.

6. CODD, E. F. Extending the database relational model to capture more meaning. ACM Trans.
Database Syst. 4,4 (Dec. 1979), 397-434.

‘7. COMER, D. The ubiquitous B-tree. Comput. Surv. 11, 2, (June 1979), 121-137.
8. COPELAND, G. P., AND KHOSHAFIAN, S. A decomposition storage model. In Proceedings of

ACM-SZGMOD International Conference on Management of Data (Austin, Tex., May 28-31,
1985). ACM, New York, 1985, pp. 268-279.

9. DEEN, S. M. An implementation of impure surrogates. In International Conference on Very
Large Databases (Mexico City, Sept. 1982), VLDB Endowment Ed., 1982, pp. 245-256.

10. DEWITT, D. J., KATZ, R. H., OLKEN, F., SHAPIRO, L. D., STONEBRAKER, M. R., AND WOOD,
D. Implementation techniques for main memory database systems. In SZGMOD ‘84: Proceedings
of Annual Meeting (Boston, June 18-21,1984). ACM, New York, 1984, pp. l-8.

11. GOTLIEB, L. R. Computing joins of relations. In ACM-SZGMOD International Conference on
Manugement of Data (San Jose, Calif., May 14-16,1975). ACM, New York, 1975, pp. 55-63.

12. GUTTAG, J. Abstract data types and the development of data structures. Commun. ACM, 20,6
(June 1977), 396-404.

13. HAERDER, T. Implementing a generalized access path structure for a relational database system.
ACM Trans. Database Syst. 3,3, (Sept. 1978), 285-298.

14. HALL, P., OWLS, J., AND TODD, S. J. P. Relations and entities. In Modelling in DBMS,
G. Nijssen, Ed. North-Holland, Amsterdam, 1976, pp. 201-220.

15. JARKE, M., AND SCHMIDT, J. Query processing strategies in the Pascal/R relational database
management system. In ACM SZGMOD Znternationul Conference on Management of Data
(Orlando, Fla., June 2-4,1982). ACM, New York, 1982, pp. 256-264.

16. KNUTH, D. The Art of Computer Programming: Sorting and Searching. Addison-Wesley,
Reading, Mass., 1973.

17. MISSIKOFF, M. A domain based internal schema for relational database machines. In ACM
SZGMOD International Conference on Management of Data (Orlando, Fla., June 2-4, 1982).
ACM, New York, 1982, pp. 215-224.

18. ROUSSOPOULOS, N. View indexing in relational databases. ACM Trans. Database Syst. 7, 2
(June 1982), 258-290.

ACM Transactions on Database Systems, Vol. 12, No. 2, June 1987.

246 l Patrick Valduriez

19. SIMON, E., AND VALDURIEZ, P. Design and implementation of an extendible integrity
subsystem. In SIGMOD 84: Proceedings of Annual Meeting (Boston, June 18-21, 1984). ACM,
New York, 1984, pp. 9-17.

20. TSICHRITZIS, D. LSL: A link and selector language. In ACM SIGMOD International Conference
on Management of Data (Washington, D.C., June 2-4, 1976). ACM, New York, 1976, pp. 123-
134.

21. VALDURIEZ, P., AND GARDARIN, G. Join and semijoin algorithms for a multiprocessor database
machine. ACM Trans. Database Syst. 9, 1 (Mar. 1984), 133-161.

22. VALDURIEZ, P., AND BORAL, H. Evaluation of recursive queries using join indices. In Proceedings
of the 1st Znternutionul Conference on Expert Database Systems (Charleston, S.C., Apr. 1986),
Benjamin/Cummings, Menlo Park, Calif., 1986, pp. 197-208.

23. VALDURIEZ, P., KHOSHAFIAN, S., AND COPELAND, G. Implementation techniques of complex
objects. In International Conference on Very Large Databases (Kyoto, Aug. 1986), VLDB Endow-
ment Ed., 1986, pp. 197-208.

24. YAO, S. B. Approximating block accesses in database organizations. Commun. ACM 20, 4
(Apr. 1977), 260-261.

Received September 1985; revised July 1986; accepted September 1986

ACM Transactions on Database Systems, Vol. 12, No. 2, June 1987.

