
* Copyright © 2005 by the Consortium for Computing Sciences in Colleges. Permission to copy
without fee all or part of this material is granted provided that the copies are not made or
distributed for direct commercial advantage, the CCSC copyright notice and the title of the
publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires a
fee and/or specific permission.

136

ON THE SIZE OF THE SEARCH SPACE OF JOIN

OPTIMIZATION*

Cong-cong Xing
Department of Mathematics

and Computer Science
Nicholls State University
Thibodeaux, LA 70310
cmps-cx@nicholls.edu

Bill P. Buckles
EECS Department
Tulane University

New Orleans, LA 70118
buckles@eecs.tulane.edu

ABSTRACT
A fundamental issue when we deal with the analysis of the join optimization
problem in database systems is: How large is the search space? This paper
presents a complete answer to this question. The result shows that the size of
the search space is far beyond exponential, which poses a great challenge for
finding an e_cient polynomial time algorithm for solving the join
optimization problem. On the other hand, it prompts attempts to prove that
the join optimization problem is NP-complete. Our work is the initial step for
further study on the join optimization problem.

1. INTRODUCTION
Join optimization [3] is a critical issue in distributed database systems, where the

(total) cost of a sequence of join operations over a set of relations depends on the order
in which join operations are carried out, but the cost will not be affected if any two
relations involved in one join operation are exchanged. Formally, let R1, ... ,Rn, n N, n

 1 be a sequence of relations, be the binary join operation over these relations, and
cost(Ri Rj) denote the cost of joining any two relations Ri and Rj . We know that
cost(Ri Rj) = cost(Rj Ri) for any i, j {1, ... , n}, but we do not know whether
cost((Ri Rj) Rk) = cost(Ri (Rj Rk)) for any i, j, k {1, ... , n}. The join
optimization problem can be stated as: find the minimum-cost joining sequence (or
order) of R1, . . . ,Rn among all possible ones. For example, when n = 2, there is only one

CCSC:Mid-South Conference

137

joining sequence R1 R2 (or equivalently R2 R1) which clearly has the minimum
cost. When n = 3, there are 3 possible distinct joining sequences

(R1 R2) R3, (R1 R3) R2, R1 (R2 R3)
in terms of the cost (any other joining sequence has the same cost as one of them due to
the “commutativity” of joining cost). A trivial brute-force comparison can determine the
winner, with a (n) time complexity.

Naturally and necessarily, we wonder the cases when n is (sufficiently) large. Can
brute-force still be effective when n is large? How many different joining sequences are
there for large n? This question leads to the study of the size of the search space and
results in this paper.

2. SEARCH SPACE
To facilitate the formulation of the size of the search space, we represent joining

sequences graphically as binary trees with some constraints.
Definition 1 Let S be a non-empty finite set. An optimization tree over S, denoted by
opt(S), is inductively defined as follows:
 • If S is a singleton set {a}, then opt(S) is a single node labelled by a.
 • Otherwise, opt(S) consists of a root and a set of two sub-optimization trees

opt(S1) and opt(S2), where {S1, S2} is a partition of S.
Note that we intentionally require that the subtrees opt(S1) and opt(S2) form a set so that
the positions (left and right) of the two subtrees in an optimization tree do not matter.
That is, exchanging the two subtrees in an optimization tree does not make any
difference. Note also that normal binary trees do not possess this property. We need this
property in optimization trees so that they can isomorphically represent the joining
sequences.

For small-cardinality finite sets, we can easily enumerate their optimization trees.
Figure 1 lists the optimization trees for finite sets with cardinalities ranging from 1 to 4.
A careful enumeration shows that the number of optimization trees for a 5-element set is
105! These 105 trees are omitted in Figure 1 for obvious reasons.

The 1-1 correspondence between joining sequences and optimization trees is
trivial. For example, the joining sequences (a b) c and a (b c) (where a, b,
and c are regarded as relations) are represented by the first and the third optimization
trees respectively for S = {a, b, c} in Figure 1. It is easy to see that the search space size
for join optimization for relations R1, ... ,Rn is equal to the number of different
optimization trees over a finite set with cardinality n.

It is worth noting that the number we are looking for is not the Catalan number
(e.g., [4, 1]) in the literature. Catalan number cn = can be interpreted, among
other ways, as the number of ways of placing parentheses around a string of n+1
characters to form a multiplication expression. For example, given strings abc and abcd,
Catalan number yields = 2 and = 5 ways to build a multiplication
respectively; but there are 3 and 15 different optimization trees over {a, b, c} and {a, b,
c, d} respectively (Figure 1). It looks like that the number of optimization trees over a

JCSC 20, 6 (June 2005)

138

n-element set is greater than the Catalan number (over a string of length n). But we do
not know how they are exactly related unless the former is resolved.

3. SOLUTION
We now calculate the number of different optimization trees over a finite set. We

first present a recursive solution to the problem and then solve the recursive equation to
obtain a closed form formula.
Lemma 1 Let n be the number of different optimization trees over a finite set S with |S|
= n, n 1. Then

1 = 1 (1)

n = (2)

Proof. Case n = 1 is trivial. For case n > 1, note, by the definition of optimization trees,
that each optimization tree over the set S contains two subtrees. One of the subtrees is an
optimization tree over a non-empty proper subset of S, say S1 S with |S1| = i, 1 i n -
1. The other subtree is an optimization tree over the complement of S1 with respect to S,
S - S1, with |S - S1| = n - i. So the total number of optimization trees over S with one
subtree being over S1 and the other subtree being over S - S1 is i n-i. Since we have

choices to construct the i-element set S1 and i can range from 1 to n - 1, so
 includes all possible optimization trees over S. Finally, note that we do

not distinguish the positions (left and right) of subtrees in optimization trees, so in
, each optimization tree is counted twice. It is first counted in

and then in . and actually denote the number of the same
set of optimization trees. Hence, .

While the recursive solution for on is useful in computing n, it does not directly
tell how large n is. It is desirable to find a straightforward closed form formula for n.
Theorem 1 Equations (1) and (2) are equivalent to

 (3)

Proof. The technique of generating functions [2] is used in this proof. From equation (2),
we have

CCSC:Mid-South Conference

139

That is,

For each i, let , then

Let g be a generating function defined as
 (4)

We have

Thus
g2(x) - 2g(x) + 2x = 0.

Solving this equation, we have roots . We pick the root (The
reason for us to do so will be clear in the next two steps.) Hence

Let . It is easy to compute the n-th (n > 1) derivative h(n)(x) of h(x) at
x = 0,

So, the Taylor expansion of g(x) is

JCSC 20, 6 (June 2005)

140

(We can see, now, that if we pick the root for g(x), then the lowest-order
term of g(x) would be the constant 2, which would contradict the definition of g(x) in
equation (4) where there is no constant term.)

Comparing the coefficients of equations (4) and (5), we see

Therefore,

That is,

Now that n is resolved, from the standpoint of algorithm analysis, we would like to
know its asymptotic order. The following corollary sketches an upper bound and a lower
bound for n.

Corollary 1
n! < n < nn

when n > 7. That is, n = O(nn) and n = (n!).

CCSC:Mid-South Conference

141

Proof. From equation (3), we know

That is

In (6), each term in the bracket is of the form with 2 i n - 1. Note that

Since 2 i n - 1, so 0. Therefore

(7)

for each i. Note also that n > 7, which assures
 (8)

Combining (7) and (8), we have

and n > n! follows from (6).
The proof of n < nn is similar. We briefly describe it. By equation (3), we can

manage to get

JCSC 20, 6 (June 2005)

142

(9)

Note

therefore

and n < nn follows immediately from (9).

4. FINAL REMARKS
The size n of the search space is a fundamental issue of the join optimization

problem in database systems. Theorem 1 provides a complete solution to this issue and
corollary 1 addresses its asymptotic order. n and the Catalan number cn are not on the
same level of magnitude as shown by the fact: nn > n > n! > cn > 2n for large n.
Regarding the join optimization problem, n, because of its prohibitively high order,
eliminates brute-force as a feasible search strategy, poses a great challenge for
discovering a polynomial time search algorithm, and suggests the possibility of
NP-completeness. The solution for n in this paper is the basis for further studies on the
join optimization problem.

REFERENCES

[1] RobertM. Dickau. Catalan Numbers. http://mathforum.org/advanced/robertd
/catalan.html, 1996.

[2] Donald E. Knuth. Fundamental Algorithms, The Art of Computer Programming,
Vol. 1. Addison-Wesley, Reading, MA, 1973.

[3] Dennis Shasha and T. Wang. Optimizing equijoin queries in distributed databases
where relations are hash partitioned. ACM Trans. on Database Systems,
16:279–308, 1991.

[4] Thomas A. Standish. Data Structure Techniques. Addison-Wesley, Reading, MA,
1980.

