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Abstract

We present a new family of join algorithms, called ripple joins,
for online processing of multi-table aggregation queries in a rela-
tional database management system (dbms). Such queries arise
naturally in interactive exploratory decision-support applications.

Traditional o�ine join algorithms are designed to minimize
the time to completion of the query. In contrast, ripple joins are
designed to minimize the time until an acceptably precise esti-
mate of the query result is available, as measured by the length
of a con�dence interval. Ripple joins are adaptive, adjusting
their behavior during processing in accordance with the statis-
tical properties of the data. Ripple joins also permit the user
to dynamically trade o� the two key performance factors of on-
line aggregation: the time between successive updates of the run-
ning aggregate, and the amount by which the con�dence-interval
length decreases at each update. We show how ripple joins can be
implemented in an existing dbms using iterators, and we give an
overview of the methods used to compute con�dence intervals and
to adaptively optimize the ripple join \aspect-ratio" parameters.
In experiments with an initial implementation of our algorithms
in the postgres dbms, the time required to produce reasonably
precise online estimates was up to two orders of magnitude smaller
than the time required for the best o�ine join algorithms to pro-
duce exact answers.

1 Introduction

Current relational database management systems do not
handle ad hoc decision-support queries well, even though
such queries are important in applications. Many decision-
support queries consist of a complex sequence of joins and
selections over extremely large tables, followed by grouping
of the result and computation of aggregates over the groups.
Current systems process ad hoc queries in what amounts to
batch mode: users are forced to wait for a long time without
any feedback until a precise answer is returned.

Since large-scale aggregation queries typically are used to
get a \big picture" of a data set, a more attractive approach
is to perform online aggregation, in which progressively-
re�ned running estimates of the �nal aggregate values are
continuously displayed to the user. The estimated proxim-
ity of a running estimate to the �nal result is indicated by

means of an associated con�dence interval. An online aggre-
gation system must be optimized to provide useful informa-
tion quickly, rather than to minimize the time to query com-
pletion. This new performance goal requires fundamental
changes to many traditional algorithms for query process-
ing. In prior work [HHW97] we provided initial motivation,
statistical techniques and algorithms for supporting online
aggregation queries in a relational dbms. In this paper we
extend those results with a new family of join algorithms
called ripple joins, which are designed to meet the perfor-
mance needs of an online query processing system.

Ripple joins generalize traditional block nested-loops and
hash joins and are non-blocking, thereby permitting the run-
ning estimates to be updated in a smooth and continuous
fashion. The user can control the rate at which the updates
occur; for a given updating rate the ripple join adaptively
modi�es its behavior based on the data in order to maximize
the amount by which the con�dence interval shrinks at each
update.

Ripple joins appear to be among the �rst database al-
gorithms to use statistical information about the data not
just to estimate selectivities and processing costs, but to es-
timate the quality of the result currently being displayed
to the user and to dynamically adjust algorithm behavior
accordingly. We believe that such a synthesis of statistical
estimation methods and query processing algorithms will be
integral to the online decision support systems of the future.

2 Background

2.1 Online Aggregation

We illustrate online aggregation by means of an example.
Consider the following query for determining the grade-point
average of various types of honors students (honors code
NOT NULL) and non-honors students (honors code IS NULL):

SELECT ONLINE student.honors code,AVG(enroll.grade)
FROM enroll,student
WHERE enroll.sid = student.sid
GROUP BY student.honors code;

A prototype of an online aggregation interface for this query
is displayed in Figure 1. There is a row corresponding
to each student group, that is, to each distinct value of
honors code that appears in the table. The user does not
need to specify the groups in advance|they are automati-
cally detected by the system. For each group, the running
estimate of the �nal query result is simply the average of
all of the grades for the group found so far. These running



Figure 1: An online aggregation interface.

estimates (after less than 1% of the records in the Cartesian
product have been scanned) are displayed in the column en-
titled avg. The \stop-sign" buttons can be used to pause
the query processing for one or more groups, while allowing
query processing to continue for the remaining groups. The
arrow buttons in the column entitled Speed permit control
of the relative rates at which the running averages for the
di�erent groups are updated. Implementation of the Speed
control is described further in [HHW97, RRH99].

The rows in the table are processed in random order.
Such processing is the same as simply scanning the table
when it is clustered in random order on disk. Such ran-
dom clustering (with respect to the attributes involved in
the aggregation query) can be veri�ed a priori by statisti-
cal testing; if the initial clustering is unsatisfactory then the
rows can be randomly permuted prior to query processing.
Of course, one cannot always cluster a table in random or-
der, e.g., if one desires it to be clustered on a particular
column. In such cases, a secondary random index (an index
on the random() function) can be constructed to support
a random ordering; see [HAR99] for a further discussion of
issues in physical database design for online aggregation.
Alternatively, it may be desirable to either sample during
query processing using techniques as in [Olk93] or to mate-
rialize/cache a small random sample of each base relation
during an initialization step and then subsequently scan the
sample base relations during online processing. In this pa-
per we assume that any one of these random-order access
methods is available.

Since tuples are processed in random order, we can bring
to bear the tools of statistical estimation theory. In partic-
ular, we can indicate the proximity of a running estimate to
the �nal query result by means of an associated running con-
�dence interval . For example, the running average of about
2.95 for the �rst group in Figure 1 is within �0:15 of the
�nal average with probability 95%. Using the running con-
�dence intervals as a guide, the user can abort the current
query as soon as the displayed answer is su�ciently precise.
The user can then proceed to the next query and continue
the process of data exploration [OJ93]. In general, online
algorithms are designed to support this mode of interaction
between the user and the dbms.

2.2 Join Algorithms for Online Processing

Our goal is to provide join algorithms that will support on-
line processing for multi-table queries of the form

SELECT op(expression) FROM R1; R2; : : : ; RK

WHERE predicate

GROUP BY columns;

where K � 2, op is an aggregation operator such as COUNT,

SUM, AVG, VARIANCE, or STDEV, expression is an arithmetic ex-
pression involving the attributes of the base relations R1; R2;
: : : ; RK , and predicate is a conjunction of join and selection
predicates involving these attributes.

In general, there is a tradeo� between the rate at which
the running con�dence intervals are updated and the degree
to which the interval length decreases at each update; this
tradeo� gives rise to a spectrum of possible join algorithms.
Classical o�ine join algorithms can be viewed as lying at
one end of this spectrum: after processing all of the data,
the \running" con�dence interval is updated exactly once,
at which time the length of the interval decreases to zero.
Algorithms that block during processing, such as hash join
and sort-merge join, fall into this category. The performance
of the classical algorithms often is unacceptable in the online
setting, since the time until the \update" occurs can be very
long.

Prior to the current work, the only classical algorithm
lying elsewhere along the spectrum was the nested-loops
join as proposed for use in the setting of online aggrega-
tion in [HHW97]. This algorithm (in its simplest form)
works roughly as follows for a two-table aggregation query
over relations R and S with jRj < jSj. At each sampling
step, a random tuple s is retrieved from S1. Then R is
scanned; for each tuple r that joins with s, an argument of
the aggregation function is produced from r and s. At the
end of the sampling step the running estimate and con�-
dence interval are updated according to formulas as given in
[HHW97, Haa97].

Using nested-loops join in an online fashion is certainly
more attractive than waiting until the nested-loops join has
completed before returning an answer to the user. The ab-
solute performance of the online nested-loops join is fre-
quently unacceptable, however, for two reasons. First, a
complete scan of R is required at each sampling step; if R
is of nontrivial size (as is often the case for decision-support
queries), then the amount of time between successive up-
dates to the running estimate and con�dence interval can
be excessive. Second, depending upon the statistical prop-
erties of the data, the length of the con�dence interval may
not decrease su�ciently at each sampling step. As an ex-
treme example of this latter phenomenon, suppose that the
join of R and S is in fact the Cartesian product R� S, and
the input to the aggregation function is relatively insensi-
tive to the values in the columns of R, e.g., as in the query
SELECT AVG(S:a + R:b/10000000) FROM R, S. Also sup-
pose that we have retrieved a random tuple s 2 S, retrieved
the �rst tuple r 2 R, and produced an argument of the ag-
gregation function from r and s. Then the rest of the scan
of R yields essentially no new information about the value
of the aggregation query, statistically speaking, even though
a large I/O cost is incurred by performing the scan. While
this is an arti�cial and extreme example, in Section 6 we
will see quite reasonable scenarios where nested-loops join
does a poor job at shrinking con�dence intervals.

Ripple joins are designed to avoid complete relation scans
and maximize the ow of statistical information during join
processing. The user can explicitly trade o� the time be-
tween successive updates of the running estimate with the
amount by which the con�dence-interval length decreases at
each update. This tradeo� is e�ected using the animation
speed slider shown in Figure 1 and discussed in detail in

1For traditional batch processing of this nested-loop join, R would
be chosen as the outer relation since it is smaller. For online pro-
cessing the opposite choice is preferable, since the running estimate
is updated after each scan of the inner relation.



Figure 2: The elements of R� S that have been seen after
n sampling steps of a \square" ripple join.

Figure 3: The elements of R� S that have been seen after
n sampling steps of a \rectangular" ripple join (�1 = 3,
�2 = 2.)

Section 5.3. By adjusting the animation setting, we obtain
a family of join algorithms that covers the entire spectrum
of possibilities.

2.3 Related Work

The idea of sampling from base relations in order to quickly
estimate the answer to a COUNT query goes back to the work
of Hou, et al. [HOT88, HOT89]; see [HHW97] for further
references. Techniques that are applicable to other types
of aggregation queries follow from results in [Olk93] and
[ODT+91]; the \acceptance/rejection" sampling techniques
described in these references do not appear directly applica-
ble to online aggregation.

Algorithmically, ripple join generalizes and extends prior
work on pipelining join algorithms. The simplest mem-
bers of this class are the classical naive-, block-, and index-
nested loops joins. Ripple join also bears a resemblance
to the semi-naive evaluation technique used for recursive
query processing (see, e.g., [RSS94]): both algorithms han-
dle newly-arrived tuples in one operand by joining them with
all previously-seen tuples of the other operand. Another
similar idea is used in the more recent pipelining hash join
of [WA91], which was proposed for use in online aggregation
previously [HHW97]. None of the prior work considers ei-
ther the relative rates of the two operands, or the connection
to con�dence-interval estimation|these issues are critical in
the setting of online aggregation.

3 Overview of Ripple Join

In the simplest version of the two-table ripple join, one
previously-unseen random tuple is retrieved from each of
R and S at each sampling step; these new tuples are joined
with the previously-seen tuples and with each other. Thus,
the Cartesian product R�S is swept out as depicted in the
\animation" of Figure 2. In each matrix in the �gure, the
R axis represents tuples of R, the S axis represents tuples
of S, each position (r; s) in each matrix represents a cor-
responding tuple in R � S, and each \x" inside the matrix
corresponds to an element of R�S that has been seen so far.
In the �gure, the tuples in each of R and S are displayed in
retrieval order; this order is assumed to be random.

Figure 4: The elements of R � S that have been seen after
n sampling steps of an online nested-loops join (n = 1; 2; 3)
and a worst-case scenario for online nested-loops join.

The \square" version of the ripple join described above
draws samples from R and S at the same rate. As discussed
in Section 5.3 below, it is often necessary to sample one rela-
tion (the \more variable" one) at a higher rate than another
in order to provide the shortest possible con�dence intervals
for a given animation speed. This requirement leads to the
general \rectangular" version of the ripple join2 depicted in
Figure 3. The general algorithm with K (� 2) base relations
R1; R2; : : : ; RK retrieves �k previously-unseen random tu-
ples from Rk at each sampling step for 1 � k � K. (Figure 3
corresponds to the special case in which K = 2, �1 = 3, and
�2 = 2.) Note the tradeo� between the sampling rate and
the con�dence-interval length. For example, when �1 = 1
and �2 = 2, more I/O's are required per sampling step than
when �1 = 1 and �2 = 1, so that the time between up-
dates is longer; on the other hand, after each sampling step
the con�dence interval typically is shorter when �1 = 1 and
�2 = 2.

The ripple join reduces to an online nested-loops join
when the aspect ratio is de�ned by �K = 1 and �K�1 =
jRK�1j; : : : ; �1 = jR1j; see Figures 4(a){4(c) for K = 2. In
Figure 4(d), each point (r; s) 2 R� S is represented by the
argument of the aggregation function produced from r and
s; the values displayed in this �gure correspond to the most
extreme form of the problematical case discussed in the Sec-
tion 2.2|here the input to the aggregation function is com-
pletely insensitive to the attribute values in R. In choosing
an online nested-loops join, a query optimizer would take S
to be the outer relation in this case, since jSj > jRj in Fig-
ure 4(d). If R is at all large, this decision is incorrect for the
purposes of online aggregation; the optimizer's mistake is
in not explicitly taking the statistical characteristics of the
data into consideration. We will see how ripple join avoids
this error by adapting dynamically to the data's statistical
properties.

4 Ripple Join Algorithms

Ripple join can be viewed as a generalization of nested-loops
join in which the traditional roles of \inner" and \outer"
relation are continually interchanged during processing. In
the simple pseudocode for a square two-table ripple join dis-
played in Figure 5, each full outermost loop corresponds to a
sampling step. Within the nth sampling step, the cursor into
S is �rst �xed at the value max = n while the cursor into R
loops from 1 to n�1. Then, when the cursor into R reaches
the value n, the cursor into S loops from 1 to n. Unlike

2The name \ripple join" has two sources. One is shown in the
pictures in Figures 2 and 3|the algorithm sweeps out the plane like
ripples in a pond. The other source is the rectangular version of
the algorithm, which produces \Rectangles of Increasing Perimeter
Length".



for (max = 1 to infinity) {
for (i = 1 to max-1)
if (predicate(R[i],S[max]))

output(R[i],S[max]);
for (i = 1 to max)
if (predicate(R[max],S[i]))

output(R[max],S[i]);
}

Figure 5: A simple square ripple join. The tuples within
each relation are referred to in array notation.

Figure 6: Three phases of a sampling step, square ripple
join.

nested-loops join, square ripple join is essentially symmet-
ric: during a sampling step, each input relation participates
in a tight \innermost" loop from position 1 to either posi-
tion n or position n � 1. The manner in which a sampling
step sweeps out R� S is depicted graphically in Figure 6.

In this simple form, ripple join is quite easy to express.
We have, however, ignored a number of issues, which we pro-
ceed to address in the remainder of this section. First, since
most dbms's use a \pull" or iterator model for relational
operators [Gra93], we show how to represent ripple joins in
iterator form, starting with the simplest binary square ripple
join. Then we show how to augment this simple iterator to
handle non-unitary aspect ratios and permit incorporation
into a pipeline of multiple ripple joins. Finally, we describe
variants of the basic algorithm that exploit blocking, index-
ing, and hashing techniques to enhance performance.

4.1 A Square Binary Ripple Join Iterator

An iterator-based dbms invokes an iterator's next() method
each time an output tuple is needed. A ripple join itera-
tor must maintain enough internal state variables to allow
production of tuples in the same sequence as would be pro-
duced by the algorithm of Figure 5. A simpli�ed ripple
join iterator \object class" is shown in Figure 7, in a C++
or Java-style pseudocode. The iterator needs to store the
next position to be fetched from each of its inputs R and S
(R.pos, S.pos), along with the current sampling step being
produced (curstep), and the relation currently acting as the
\inner" (currel). The code in Figure 7 does not handle the
case in which the last tuple of R or S has been retrieved,
and it assumes that the query plan consists of a single square
ripple join; these assumptions will be relaxed below.

A slight asymmetry arises in this iterator: only the cur-
sor into S loops all the way to curstep, and curstep is
advanced after completing a loop through S but not after
completing a loop through R. This asymmetry corresponds
to the asymmetry in Figure 5, in which only the cursor into
S loops to max, and max is advanced only after completing
a loop through S. The same asymmetry also appears in
the way that the tuple \layers" are mitred together in the
lower right corner in Figure 6. When the situation is as
depicted in Figure 6, we call S the \starter" relation since

class simple_RIPL {
int curstep; // sampling step
relation R, S; // operands
relation currel; // the current inner
bool ilooping; // in midst of inner loop?
init() {

R.pos = 1; // cursor positions in R and S
S.pos = 0;
curstep = 1;
currel = S;
ilooping = true;

}
next() {

do { // loop until return() is called
if (ilooping) { // scanning side of a rectangle

while(currel.pos < curstep) {
if (currel.pos < curstep-1 || currel==S) {

currel.pos++;
if (predicate(R[R.pos],S[S.pos]))

return(R[R.pos], S[S.pos])
} }

ilooping = false; // finished a side
}
else { // done with one side of a rectangle

if (currel == S)
curstep++; // finished a step

currel.pos++; // sets currel to new curstep
toggle(currel);
currel.pos = 0;
ilooping = true;

} } } }

Figure 7: A simple iterator for square ripple join.

each sampling step starts with the retrieval of a new tuple
from S.

4.2 An Enhanced Ripple Join Iterator

For clarity of exposition, the previous section ignored com-
plications arising from non-unitary aspect ratios and inte-
gration of a ripple join iterator into a query plan tree. In
this section we address these remaining issues. Full pseu-
docode for the resulting ripple join iterator is presented in
[HH98, Appendix A].

4.2.1 Non-Unitary Aspect Ratios

As mentioned previously, it is often bene�cial to retrieve tu-
ples from the two inputs of a ripple join at uneven rates,
resulting in \ripples" of non-unit aspect ratio. This requires
three details to be handled by the iterator. First, the aspect
ratio must be stored as a local variable beta for each rela-
tion. Second, the iterator loops through R until it reaches
a limit of curstep*R.beta-1, and loops through S until it
reaches a limit of curstep*S.beta.

The third detail requires some care: R.beta and S.beta
may not equal 1, and may not be equal to each other, so sim-
ply \wrapping" the entire old rectangle with a �xed number
of new layers will not expand the sides of the next ripple
by R.beta and S.beta respectively. In a single sampling
step we must join S.beta \new" (previously-unseen) S tu-
ples with all \old" (previously-seen) R tuples, join R.beta
new R tuples with all old S tuples, and join all new R and
S tuples. To do this, we enhance the iterator so that the
�rst time it sees a tuple from a given relation, it considers
it to be a \new" tuple, and combines it with all tuples seen
so far from the previous relation. The resulting traversal of
R � S is illustrated in Figure 8.



Figure 8: Four phases of a sampling step for a rectangular
ripple join with �1 = 3 and �2 = 2.

Figure 9: Three phases of a sampling step for a rectangular
block ripple join with �1 = 2, �2 = 1, and block size = 3
tuples.

4.2.2 Pipelining Multiple Ripple Joins

The ripple join algorithm requires each of its input iterators
to be restartable, and to deliver the same set of tuples each
time it is restarted; beyond that it has no special prerequi-
sites. Multiple binary ripple joins can therefore be pipelined
in a join tree, or even intermingled with other query process-
ing operators, including special online iterators like index
stride [HHW97] and online reordering [RRH99].

Although in principle one could combine ripple joins with
other join techniques, the typical K-table query plan in an
online scenario will consist of a left-deep tree of binary ripple
joins, which in combination are supposed to correctly sweep
out a sequence of K-dimensional hyper-rectangles with the
appropriate aspect ratios. To accomplish this, the operating
parameters for each iterator in the tree must take into ac-
count the position of the iterator in the tree. A three-table
cubic ripple join, for example, cannot simply be treated as a
pipeline of two (binary) square ripple joins, each operating
in isolation. In order to get a full n-dimensional \wrapper"
of the hyper-rectangle from the previous step, the following
modi�cations must be made:

� Aspect ratios must be set and maintained cor-
rectly. For an iterator with two query subtrees, where
subtree R contains relations R1; : : : ; Rj and subtree S
contains relations S1; : : : ; Sk, the aspect-ratio parame-
ters must be set to the values R:beta = �R1�R2 � � � �Rj
and S:beta = �S1�S2 � � � �Sk .

� The appropriate number of retrievals must be
made from each operand. In particular, an iterator
should retrieve R:beta � nj tuples from R in step n,
where j is the number of leaves in subtree R.

� Only one relation in the plan can be the starter.
At the beginning of processing, the right (i.e., the base)
relation of the highest join node in the plan tree is
designated as the starter relation. When the cursor
of a non-starter relation R exceeds n�R for the nth
sampling step, it returns a signal as if it had reached
end-of-�le. When the cursor of the starter relation,
say S, exceeds n�S , it increments the sampling step to
n+ 1.

These three modi�cations ensure that ever-larger hyper-rec-
tangles are swept out correctly.

4.3 Ripple Join Variants

It is well known that nested-loops join can be improved by
blocking I/Os from the outer relation. The idea is to read
this relation not merely a tuple at a time or even a disk
page at a time, but rather in large \blocks" of pages. A block
ripple join can be derived along the same lines. When a new
block of one relation (say R) is read from disk, each tuple
in that block is compared with all old tuples of the other
relation, S. Then the block of R is evicted from memory
and a new block of pages from S is read in, followed by a
scan of the old tuples of R. The graphical representation of
the way in which block ripple join sweeps out R�S is similar
to that of standard ripple join in Figure 8, but with \thick"
arrows consisting of multiple tuples at once; see Figure 9.
Blocking amortizes the cost of rescanning one relation (e.g.
S) across multiple tuples of the other (R), resulting in an
I/O savings factor proportional to the block size.

The performance of ripple join also can be improved by
the use of indexes. When there are two input relations R and
S and there is an index on the join attributes of R, the index
ripple join uses the index to identify the tuples in R that join
with a given random tuple s 2 S selected during a sampling
step. The relevant tuples from R can then be retrieved using
fewer I/O's than would be required by a full scan of R as in
nested-loops join. Note that the roles of outer and inner do
not alternate in an index ripple join, and there is no choice of
aspect ratio|each sampling step corresponds to a complete
probe of the index on R, which sweeps out an entire row
of S �R. Thus while naive and block ripple join generalize
their nested-loops counterparts, the index-enhanced ripple
join is identical to an index-enhanced nested-loops join.

Finally, it is natural to consider a hash ripple join variant
that can be used for equijoin queries. For such queries, use
of hashing can drastically reduce I/O costs by avoiding the
ine�cient reading and re-reading of each tuple many times
from disk that occurs during a simple ripple join. (This re-
reading problem is worse even than for nested-loops join!)
The basic idea is as follows. When a new tuple is fetched
from one relation (say, R) in a ripple join, it must be com-
bined with all old tuples from the other relation (S). Only
some of these combinations will satisfy the join predicates.
If the old tuples of S are kept in memory, and hashed on
the join column, it is then possible to �nd the old matches
for the new tuple very e�ciently. Since ripple join is sym-
metric, an analogous situation arises with new tuples from
S and old tuples from R. Thus, it is bene�cial to materialize
two hash tables in memory|one for R and one for S. Each
contains the tuples seen so far. When a new tuple of R (S)



is fetched from disk, it is joined with all matches in the hash
table for S (R), then inserted into the hash table for R (S).
In the case of a square aspect ratio, this scheme reduces
to the pipelining hash join of [WA91]. The hashing scheme
breaks down, of course, when the hash tables no longer �t in
memory. At that point, the hash ripple algorithm can grace-
fully fall back to block ripple join3. This memory-overow
scenario should not cause much concern in practice|very
tight con�dence intervals often can be achieved long before
memory is �lled (see, e.g., Section 6).

5 Statistical Considerations for Algorithm Performance

The performance goal of ripple join is to provide e�cient, ac-
curate, interactive estimation. It should deliver join results
in such a way that estimates of the aggregates are updated
regularly and the corresponding con�dence intervals shrink
rapidly. Performance in this online regime depends critically
on the statistical methods used to compute con�dence inter-
vals and on the way in which these methods interact with
retrieval of tuples from the join's input relations.

To highlight the key issues, we give a brief overview of es-
timators for some common multi-table aggregation queries.
We then present con�dence-interval formulas that charac-
terize the precision of these estimators. To keep the presen-
tation simple, we focus on the simplest types of aggregation
queries. Complete details of currently available formulas and
their derivations are given in [HH98]. We conclude the sec-
tion by discussing our approach to the dynamic optimization
of aspect-ratio parameters.

5.1 Estimators for SUM, COUNT and AVG

Our running estimators for standard sql aggregates SUM,
COUNT and AVG are little more than running sums, counts
and averages, scaled as appropriate. Speci�cally, consider a
simple two-table query of the form

SELECT op(expression) FROM R; S
WHERE predicate;

where op is one of SUM, COUNT or AVG. (All of our formulas
extend naturally to the case of multiple tables. When op
is equal to COUNT, we assume that expression reduces to the
sql \*" identi�er.) The predicate in the query can in gen-
eral consist of conjunctions and/or disjunctions of boolean
expressions involving multiple attributes from both R and
S; we make no simplifying assumptions about the joint dis-
tributions of the attributes in either of these relations. At
the end of the nth sampling step, a natural estimator for
SUM(expression) is

jRj � jSj
jRnj � jSnj

X
(r;s)2Rn�Sn

expressionp(r; s); (5.1)

where Rn and Sn are the sets of tuples that have been read
from R and S by the end of the nth sampling step, and
expressionp(r; s) equals expression(r; s) if (r; s) satis�es the
WHERE clause, and 0 otherwise. This estimator is simply the
running sum scaled up by a ratio of the total input size to

3It is tempting in this context to utilize the ideas of hybrid hash
join [DKO+84] as extended in [HN96] and spool tuples to disk after
memory �lls. Unfortunately, the resulting statistical properties of the
running estimator are unsuitable for con�dence-interval estimation;
see [HH98]. Such a \symmetric hybrid hash" join algorithm could,
however, be used for traditional query processing.

the current input size. The estimator is unbiased: if the sam-
pling and estimation process were repeated over and over,
then the estimator would be equal on average to the true
query result. The estimator is also consistent in that it con-
verges to the correct result as the number of sampling steps
increases. Similarly, an unbiased and consistent estimator
for COUNT(*) is given by (5.1), but with expressionp(r; s)
replaced by onep(r; s), where onep(r; s) equals 1 if (r; s) sat-
is�es the WHERE clause, and equals 0 otherwise. Finally,
an estimator for AVG(expression) is found by dividing the
sum estimator by the count estimator. This ratio|after
factoring|is simply the running average. Like all ratio es-
timators, the estimator for AVG(expression) is biased, but
the bias converges to 0 as the number of sampling steps in-
creases. Moreover, the estimator is consistent. Although
each of the SUM, COUNT, and AVG estimators is a running ag-
gregate (suitably scaled), running estimators of more com-
plicated aggregates need not be exactly of this form; see, for
example, the discussion of the VARIANCE and STDEV aggre-
gates in [Haa97], in which the running aggregate is multi-
plied by a correction factor to remove bias.

5.2 Con�dence Intervals

We need to develop tight con�dence intervals in order to
characterize the accuracy of the estimators in Section 5.1;
this is a nontrivial task. In this section we give an overview
of our methodology for obtaining \large-sample" con�dence
intervals based on central limit theorems (clt's)4.

5.2.1 The CLT and Con�dence Intervals

To motivate our approach, we briey review the classical
clt for averages of independent and identically distributed
(iid) random variables and the way in which this clt is used
to develop con�dence intervals for estimators of the popula-
tion average. Consider an arbitrary but �xed set of distinct
numbers A = f v1; v2; : : : ; vjAj g. (The assumption that the
numbers are distinct is convenient but not essential.) Let �
and �2 be the average and variance of these values:

� =
1

jAj
jAjX
i=1

vi and �2 =
1

jAj
jAjX
i=1

(vi � �)2: (5.2)

Suppose that we wish to estimate the average �, and that
a sample B = fX1; X2; : : : ; Xn g of size n > 1 is drawn
randomly and uniformly (with replacement) from A. Under
this sampling scheme, each Xi is equal to v1 with proba-
bility 1=jAj, to v2 with probability 1=jAj, and so forth, and
knowledge of the value of Xi yields no information about
the value of Xj for j 6= i. Thus the random observations
X1; X2; : : : ; Xn are iid.

The natural estimator of � is the average of the n values
in the sample, denoted by b�n. Of course, b�n is a random
quantity since the sample is random. The clt for iid ran-
dom variables asserts that for large n the random variableb�n has approximately a normal distribution with mean �
and variance �2=n. \Large" can mean as few as 20 to 40
samples when �2 is small relative to �. The normal approxi-
mation is accurate even when samples are obtained without
replacement, as long as n� jAj.

To obtain a con�dence interval for �, we consider a \stan-
dardized" random variable Z that is obtained by shifting

4See [Haa97, HHW97] for a discussion of other possible types of
con�dence intervals, as well as methods for dealing with GROUP BY and
DISTINCT clauses.



and scaling b�n: Z = (b�n � �)=(�=
p
n). It follows from an

elementary property of the normal distribution that Z has
approximately a standard (mean 0 and variance 1) normal
distribution. For p 2 (0; 1), denote by zp the unique number
such that the area under the standard normal curve between
�zp and zp is equal to p; see [AS72, Sec. 26] for a discussion
of methods for computing zp. It follows from the foregoing
discussion that P f�zp � Z � zp g � p, and straightforward
calculations then show that P f b�n � �n � � � b�n + �n g �
p, where �n = zp�=

p
n. Thus the true value � lies within

��n of the estimator b�n with probability approximately p.
Equivalently, the random interval In = [b�n��n; b�n+�n] con-
tains � with probability � p and hence is an approximate
100p% con�dence interval for �. Since �, like �, is unknown,
we replace � with an estimator b�n in the �nal formula for
�n. A natural choice for b�n is the standard deviation of the
n numbers in the sample; b�n is close to � when n is large,
and the con�dence interval remains valid.

5.2.2 Con�dence Intervals for the Aggregates

In this section we derive con�dence intervals for the SUM,
COUNT, and AVG estimators of Section 5.1. One might hope
to do this by directly applying the results in Section 5.2.1.
Indeed, each of the SUM and COUNT aggregates is actually an
average like � in (5.2), but in disguise: SUM is the average
value of jRj � jSj � expressionp(r; s) over (r; s) 2 R � S and
COUNT is the average value of jRj � jSj � onep(r; s).

Unfortunately, several complicating factors preclude ap-
plication of the classical clt for averages of iid random vari-
ables. One obvious di�culty is that the AVG aggregate is
not a simple average but rather a ratio of two averages.
A perhaps more subtle but even more serious complica-
tion faces all three estimators: the random observations
f expressionp(r; s) : (r; s) 2 Rn � Sn g are identically dis-
tributed but not independent, and similarly for the random
observations f onep(r; s) : (r; s) 2 Rn � Sn g. For example,
suppose that r 2 Rn and s; s0 2 Sn. Then expressionp(r; s)

and expressionp(r; s
0) are in general dependent, because both

observations involve the same tuple r. Thus we need an
extension of the classical clt to the case of \cross-product
averages" and (in order to handle AVG queries) ratios of such
averages.

The desired extensions of the clt can be derived us-
ing arguments very similar to those in [HNSS96, Haa97].
The basic idea for an individual cross-product average is
to use induction on the number of input relations together
with results from the theory of \convergence in distribution"
[Bil86]; ratios of cross-product averages are handled using a
\delta-method" argument as in [Bil86]. The new clt's as-
sert that after a su�ciently large number of sampling steps,
the SUM, COUNT, and AVG aggregate estimators of Section 5.1
are each approximately distributed according to a normal
distribution with mean � equal to the �nal query result and
variance �2=n, where the formula for the variance constant
�2 depends on the type of aggregate. Given such results,
we can then proceed exactly as in Section 5.2.1 and obtain
a 100p% con�dence interval for the running estimate after
n sampling steps as In = [b�n � �n; b�n + �n]. Here b�n is the
running estimate and

�n =
zpb�np

n
; (5.3)

where b�2n is a consistent estimator of �2. This �nal half-
width �n of the con�dence interval is precisely the quantity

displayed in the interval column of the interface in Fig-
ure 1.

In the remainder of this section we describe the speci�c
form of the variance constant �2 and its estimator b�2n in the
context of SUM, COUNT, and AVG queries. For simplicity we
focus primarily on two-way joins; see [HH98] for a detailed
discussion of K-way joins.

SUM and COUNT Queries

First consider a SUM query. For r 2 R, let �(r;R) be the
average of jRj � jSj � expressionp(r; s) over all s 2 S. It is not
hard to see that the average of �(r;R) over r 2 R is simply
the �nal query result �. Let �2(R) be the variance of the
numbers f�(r;R) : r 2 R g: �2(R) = (1=jRj)Pr2R

�
�(r;R)

���2. Similarly de�ne �2(S) for relation S. Suppose that at
each sampling step of the ripple join we retrieve �R blocks of
tuples from R and �S blocks of tuples from S, where there
are � tuples per block. Then the variance constant �2 is
given by �2 = �2(R)=(��R) + �2(S)=(��S).

As in the classical iid case, the parameter �2 is unknown
and must be estimated from the tuples seen so far. A
natural estimator b�2n(R) of �2(R) after n sampling steps
is the variance of the numbers f b�n(r;R) : r 2 Rn g, where
each b�n(r;R) estimates �(r;R) and is simply the average of
jRj � jSj �expressionp(r; s) over all s 2 Sn (that is, over all tu-
ples from S seen so far). We can similarly de�ne an estima-
tor b�2n(S) of �2(S) and estimate �2 by b�2n = b�2n(R)=(��R)+b�2n(S)=(��S). In the case of a COUNT query, the formulas
for �2 and b�2n are almost identical to those for a SUM query,
except that onep(r; s) plays the role of expressionp(r; s).

AVG Queries

Because con�dence intervals for an AVG query are based
on a clt for ratios of cross-product averages, the formulas
for �2 and b�2n are correspondingly more complicated than for
a SUM or COUNT query. Recall that the AVG estimator can be
expressed as a SUM estimator divided by a COUNT estimator.
Denote by �2s and �2c the variance constants for these two
estimators, de�ned as above. Also let �c and �s be the value
of the COUNT and SUM aggregates based on all of the tuples
in R and S. For r 2 R, de�ne �(r;R) as in the case of a SUM
query and de�ne �0(r;R) as the average of jRj�jSj�onep(r; s)
over all s 2 S. Next de�ne �(R) to be the covariance5

of the pairs
��

�(r;R); �0(r;R)
�
: r 2 R

	
. Similarly de�ne

�0(s;S) and �(S), and set � = �(R)=(��R) + �(S)=(��S).
Then the variance constant �2 is given by �2 = (�2s � 2��+
�2�2c)=�

2
c , where � = �s=�c is the �nal AVG query result.

Each of the parameters �, �, �2s , �
2
c , and �c in the formula

for �2 is computed from all of the tuples in R and S. If
instead we compute each parameter from the tuples in Rn

and Sn, we obtain natural estimators b�n, b�n, b�2s;n, b�2c;n, andb�c;n of the parameters. Substituting these estimators into
the formula for �2 leads to a consistent estimator b�2n.
General Aggregation Queries

For aggregation queries with K � 2 input relations R1;
R2; :::; RK and corresponding aspect ratios �1; �2; : : : ; �K ,
the computations are almost the same as the case of two in-
put relations. Quantities such as �(r;Rk), for example, are
computed by �xing tuple r 2 Rk and averaging expressionp
over the cross-product of the remaining input relations; see

5Recall that for pairs (x1; y1); (x2; y2); : : : ; (xk; yk), the covari-

ance is de�ned as (1=k)
Pk

i=1(xi � x)(yi � y), where x and y are the
averages of the xi's and yi's.)



[HH98] for details. With respect to choosing the aspect ra-
tios (as discussed in the next section), the most important
overall observation is that, for SUM, COUNT, AVG, VARIANCE,
and STDEV queries, the variance constant �2 can be written
in the form

�2 =
KX
k=1

d(k)

��k
: (5.4)

In the above representation, each d(k) is a constant that is
computed from all of the tuples in the input relations accord-
ing to a formula that depends upon the type of aggregate.

Moreover, there always exists a consistent estimator bdn(k)
of each d(k), which is obtained by applying the formula for
d(k) to the samples from the input relations rather than to
the relations themselves.

5.3 Ripple Optimization: Choosing Aspect Ratios

For any aggregation query, the two key goals of ripple join
are (1) to maximize the rate of updates to the estimates, and
(2) to maximize the shrinkage of the con�dence intervals at
each update. These goals typically conict: increasing the
updating speed decreases the shrinkage rate for the con�-
dence intervals, since rapid updates allow for only a few
samples per update. To handle this tradeo�, we allow the
user to set a lower bound on the updating speed; this lower
bound is inversely proportional to the maximum time that
a user is willing to look at a frozen display. In our exam-
ple interface of Figure 1, the bound is controlled via the
animation speed slider. Given a speci�ed animation-speed
setting, we try to minimize the length of the running con�-
dence intervals. This is done by carefully selecting values of
the aspect-ratio parameters6 and, in the case of block ripple
join, the blocking factor. In the following we consider the
case of K-way block ripple and hash ripple joins with a sin-
gle aggregate, and then briey discuss the case of multiple
aggregates.

5.3.1 Block Ripple Joins

Consider a block ripple join with blocking factor � and
aspect-ratio parameters �1; �2; : : : ; �K . It can be shown
[HH98] that the cumulative I/O cost for n sampling steps of
a block ripple join is proportional to7 �1�2 � � � �K�K�1nK+
o(nK). Roughly speaking, the quantity �1�2 � � � �K�K�1 de-
termines the rate at which the con�dence-interval length
is updated; the smaller the �k's, the faster the updating
rate. At one extreme, the animation speed is maximized
when �1 = �2 = � � � = �K = � = 1; that is, when we
have a non-blocked square ripple join. Conversely, it fol-
lows from (5.4) that the larger the �k's and �, the smaller
the con�dence-interval length after each update. So at the
other extreme, the con�dence-interval length is minimized
when ��k is equal to the cardinality of the kth relation for
1 � k � K; that is, when the entire join is completed in one
\sampling step."

Suppose for simplicity that the blocking factor � is pre-
speci�ed, so that we need only optimize the aspect-ratio pa-
rameters. This is often the case in practice; see [GG97] for

6It might be tempting to try and select an aspect ratio such that
the con�dence-interval length is minimized at each time point. Un-
fortunately, such an aspect ratio does not exist in general.

7For simplicity, we assume that a constant I/O cost is incurred per
tuple scanned; our basic approach can be extended to more compli-
cated I/O models.

if (�1 < 1) f
j := 0;
repeat f
j := j + 1;

a := min
�
(�j�j+1 � � ��K�

K�1=c)1=(K�j+1); �j
�

for k = j; j + 1; : : : ;K f
�k := �k=a;

g
g

until (�1�2 � � ��K�
K�1 � c or j = K);

g
for k = 1; 2; : : : ;K f
�k := min(b�kc ; bmk=�c);

g

Figure 10: Algorithm for modi�cation of �1; �2; : : : ; �K in
block ripple join.

rules of thumb when choosing a blocking factor. Our goal
is to minimize the con�dence interval subject to an upper
bound on the product of the �k's that corresponds to the
animation-speed setting. More precisely, we wish to choose
�1; �2; : : : ; �K to solve the optimization problem

minimize

KX
k=1

d(k)

��k

such that

�1�2 � � � �K�K�1 � c;

1 � �k � mk=� for 1 � k � K;

�1; �2; : : : ; �K integer;

(5.5)

where mk is the cardinality of the kth input relation and the
value of the constant c is determined by the position of the
animation speed slider. (The constant c is permitted to
lie anywhere between �K�1 and m1m2 � � �mK=�.) An ex-
act solution method for the nonlinear integer-programming
problem in (5.5) is expensive and complicated to code. For
our prototype we use a simple approximate solution algo-
rithm: �rst solve a relaxed version of (5.5) in which all the
constraints but the �rst are dropped, and then adjust the
solution so that the remaining constraints are satis�ed. For
simplicity, suppose that each d(k) is positive. Then it can
be shown [HH98] that the solution ��1 ; �

�
2 ; : : : ; �

�
K to the

relaxed minimization problem is given by

��k =

�
c

d(1)d(2) � � � d(K)

�1=K

�(1�K)=Kd(k)

for 1 � k � K. To adjust this solution, set �k = ��k for
1 � k � K and then execute the algorithm in Figure 10.
For ease of exposition, we present the algorithm for the spe-
cial case in which, initially, �1 � �2 � � � � � �K ; in general,
we sort �1; �2; : : : ; �K in ascending order and then execute
the algorithm. The �rst step of the algorithm is to deter-
mine whether at least one �k is less than 1. If so, then during
the �rst time through the repeat loop the algorithm scales
up �1; �2; : : : ; �K proportionately so that each �k is greater
than or equal to 1, as required by the second constraint in
(5.5). Observe, however, that this scaleup will cause the �rst
constraint in (5.5) to be violated. To handle this problem,
the algorithm then executes one or more scaling-down steps
(the remaining iterations of the repeat loop): at each such
step, those �k's that exceed 1 are scaled down proportion-
ately until either the �rst constraint in (5.5) is satis�ed (in
which case the scaling-down phase terminates) or the small-
est of these �k's is scaled down to 1. This procedure is re-
peated until the �rst constraint in (5.5) is satis�ed. Finally,



each �k is decreased further if necessary to ensure that the
remaining constraints in (5.5) are satis�ed. If �1; �2; : : : ; �K
have a greatest common divisor (gcd) that is greater than
1, we can divide each �k by this gcd|this modi�cation in-
creases interactivity without a�ecting statistical e�ciency.

5.3.2 Hash Ripple Joins

For hash ripple join, the approach to choosing the aspect-
ratio parameters is similar; see [HH98] for details. The main
di�erence from block ripple join is that the cumulative I/O
cost for n sampling steps of a hash ripple join is proportional
to (�1 + �2 + � � � + �K)n, since each input tuple is read
from disk exactly once. Thus the appropriate optimization
problem is of the form (5.5) with the �rst constraint changed
to: �1+�2+ � � �+�K � c. It can be shown that the solution
��1 ; �

�
2 ; : : : ; �

�
K to the corresponding relaxed problem is given

by ��k = c
p
d(k)=

PK
j=1

p
d(j) for 1 � k � K. This solution

can then be adjusted to satisfy the remaining constraints
using an algorithm almost identical to that in Figure 10; see
[HH98].

5.3.3 Multiple Aggregates

Many aggregation queries encountered in practice, such as
queries with a GROUP BY clause, require computation of sev-
eral aggregates simultaneously. One approach to setting the
aspect-ratio parameters when there are multiple aggregates
is to minimize a weighted average of the squared con�dence
interval lengths, that is, to minimize w1�

2
n;1+w2�

2
n;2+ � � �+

wm�
2
n;m, where m is the number of aggregates, �n;j (1 � j �

m) is the length of the con�dence interval for the jth run-
ning estimate after n sampling steps, and w1; w2; : : : ; wm

are weights chosen by the user. Since, by our previous dis-
cussion, each �2n;j can be written in the form

�2n;j =
z2p
n

KX
k=1

d(k; j)

��k
;

it follows that the appropriate minimization problem is of
the form (5.5) with d(k) =

Pm
j=1 wjd(k; j). This approach is

easy to implement; more sophisticated approaches are pos-
sible, but they require solution of a more complex minimiza-
tion problem than the one in (5.5).

5.4 Implementation Issues

Given the foregoing framework, ripple join can be designed
to adaptively set its aspect ratio by estimating the optimal
�k's at the end of each sampling step. The idea is to replace

each d(k) with its estimator bdn(k) before solving the opti-
mization problem in (5.5). Lacking any initial information
about the optimal values of the �k's, we start the join with
each �k equal to 1 in order to get a high initial tuple de-
livery rate. The �k estimates can uctuate signi�cantly at
�rst, but typically stabilize quickly. A large, poorly chosen
aspect ratio can result in a long period of ine�ective process-
ing. Thus it is best to postpone updating the initial aspect
ratio until at least 20 to 30 tuples have passed the WHERE
clause, and then use a stepwise approach for adjustment:
when the estimated optimal �k is far from its current value,
the new value can be set to a fractional point (e.g. halfway)
between the current value and its newly estimated optimum.

When the aspect ratio is changed at the end of a sam-
pling step, the new sampling step must \wrap" the current
hyper-rectangle as described in Section 4 so that the length

of the kth side (1 � k � K) becomes an appropriate mul-
tiple of the updated value of �k. For example, consider our
two-table query at the end of step n = 2, with blocking fac-
tor � = 1 and aspect ratio speci�ed by �1 = 2 and �2 = 3.
At this point, the ripple join has swept out a 4 � 6 rectan-
gle. Suppose that it is bene�cial to change the aspect-ratio
parameters to �1 = �2 = 1. Then at the end of the next
sampling step the ripple join should have swept out a 7� 7
rectangle. Note that at the end of the step we have jumped
from n = 2 to n = 7; such jumps do not present di�culties
to our estimation methods.

In the remainder of this section we outline algorithms
for computing the variance-constant estimator b�2n that de-
termines the half-width �n of the con�dence intervals as
in (5.3). Consider, for example, a SUM query as in Sec-
tion 5.2.2. In order to update b�2n at the end of a sam-
pling step, we �rst need to update the quantities b�2n(R) andb�2n(S). In the following we focus on updating methods forb�2n(R); these methods apply to b�2n(S) virtually unchanged.
Recall that b�2n(R) is the variance of the numbers in the
set I = f b�n(r;R) : r 2 Rn g, and that each b�n(r;R) is the
average of jRj � jSj � expressionp(r; s) over all s 2 Sn. Ob-
serve that, at each sampling step, we add new elements to I
(which correspond to new tuples from R) and also possibly
modify some of the existing elements of I (which correspond
to old tuples from R that join with new tuples from S). Our
goal when updating b�2n(R) is to minimize the amount of re-
computation required at each sampling step. To this end,
we use the fact [CGL83] that if we augment a set of n num-
bers with average A1 and variance V1 by adjoining a set ofm
numbers with average A2 and variance V2, then the variance
V of the augmented set of n+m numbers is

V =
n

m+ n
V1 +

m

m+ n
V2 +

mn

(m+ n)2
(A1 �A2)

2: (5.6)

Using this composition formula, we proceed as follows. At
the beginning of each sampling step, we update b�2n(R) un-
der the \optimistic" assumption that all new observations
expressionp(r; s) obtained during the sampling step will be
identically zero. The reason for this approach is that in prac-
tice many observations expressionp(r; s) are in fact equal to
0 because r doesn't join with s. The initial update is easy
to apply: it can be shown that the e�ect of changes in the
existing entries can be incorporated into b�2n(R) simply by

multiplying8 the old value of b�2n(R) by �(n � 1)=n
�3
, and

then all of the new (zero) entries can be incorporated via a
single computation based on (5.6). Each nonzero observa-
tion actually encountered during the sampling step results in
changes to one or more elements of I. For each changed ele-
ment, we run the composition formula in (5.6) \backwards"
to remove the element from the b�2n(R) computation, update
the element, and then run the formula forwards to incorpo-
rate the modi�ed element back into the b�2n(R) computation.

The above updating approach works for any SUM or COUNT
query; see [HH98] for the complete algorithm. For AVG
queries we also need to update the covariance statistic b�n
introduced in Section 5.2.2. The updating method is al-
most identical to that for b�2n; see [HH98]. In practice, the
computation cost for the updating algorithms is minimal.
Memory consumption, however, is proportional to the num-
ber of tuples that have passed the WHERE clause so far. This
increasing storage requirement can become burdensome af-
ter a signi�cant period of processing. Typically, we expect

8For the general case of K > 2 input relations, the multiplicative

factor is
�
(n � 1)=n

�2K�1.



the user to abort the query before the storage problem be-
comes severe|tight estimates are usually obtained quickly
when the output relation is of non-trivial size. If the user
does not abort the query, then several approaches are avail-
able for handling the later stages of query processing. One
approach is to switch to a \conservative" or \determinis-
tic" con�dence interval as described in [HHW97]; such in-
tervals typically are longer than large-sample intervals but
have no additional storage requirements. Another approach
is to also process the query using standard \batch" tech-
niques; this batch processing can be performed in parallel
with the online execution, and the user can switch over to
batch mode as desired. Alternatively, all of the statistics
except the current running estimate and con�dence-interval
length can be discarded and a new running aggregation com-
putation initiated; the new running estimate and con�dence-
interval length can be combined with the previous running
estimate(s) and con�dence-interval length(s) to yield �nal
running results. We hope to explore this last approach in
future work.

6 Performance

In this section, we present results from an implementation of
the ripple join algorithm in postgres

9; these results illus-
trate the functionality of the algorithm and expose tradeo�s
in online performance. We used data from the University
of Wisconsin that comprise the course history of students
enrolled over a three-year period. Our experiments focus
on two tables: student, which contains information about
students at the university, and enroll, which records infor-
mation about students' enrollment in particular classes. The
student table has 60,300 rows, and in postgres occupies
about 22.3 Mb on disk; the enroll table has 1,547,606 rows,
and occupies about 327.0 Mb on disk. Records are clustered
in random order on disk, so a scan yields a random sample.
Our version of postgres does not support histograms, and
hence makes radically incorrect selectivity estimates. We
augmented postgres by providing the equivalent of a 20-
bucket equi-width histogram per column from the command
line as needed; a standard DBMS would typically provide
at least this much accuracy [IBM97, Inf97, Ora97].

The two relevant performance metrics for online aggre-
gation are the rate at which the length of the con�dence in-
terval decreases (i.e., the precision of the display over time)
and the rate at which the user receives new updates (i.e.,
the animation speed).

In our �rst experiment we ran the following query:

SELECT ONLINE AVG(enroll.grade) FROM enroll,student
WHERE enroll.sid = student.sid

AND student.honors code IS NULL;

We ran the query for 60 seconds, using block-, hash-, and
index-ripple join (i.e., index nested-loops join), along with
classical block nested-loops join. In order to avoid exagger-
ating the e�ectiveness of ripple join, we attempted to make
nested-loops as competitive as possible. We therefore built
an index over the far bigger enroll table, which is used by

9Our implementation is based on the publicly available Post-
greSQL distribution [Pos98], Version 6.3. Our measurements were
performed on a PC with an Intel Pentium Pro 200 Mhz processor
and 256 Kb cache, 128 Mb RAM, running the RedHat Linux 5.1
distribution (kernel version 2.0.34). One 6.4 Gb Quantum Fireball
ST6.4A EIDE disk was used to hold the database, and another 2.1
Gb Seagate ST32151N SCSI disk held the operating system and core
applications, home directories, swap space, and postgres binaries.
postgres was con�gured with 10,000 8-Kb bu�ers in its bu�er pool.
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Figure 11: Con�dence-interval half-width (�) over time.
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Figure 12: Number of sampling steps completed over time.

the indexed join. We also forced the postgres optimizer
to choose the smaller student relation as the \inner" of the
block nested-loops join, since this is more e�ective for online
aggregation. Finally, we set the animation speed to 100%,
which makes block- and hash-ripple join very interactive,
but hampers their ability to shrink con�dence intervals as
discussed in Section 5.3.1.

Figure 11 shows how the con�dence interval half-width �
shrinks over time for the query. Despite the maximal anima-
tion speed, hash ripple join gives extremely tight con�dence
intervals within seconds, performing comparably to index
ripple join (but without requiring an index). By contrast,
block ripple join shrinks much more slowly. Note the initial
instability in the block ripple join estimator, before the num-
ber of sampling steps is su�ciently large for the clt-based
estimator; cf. Figure 12. This e�ect could have been masked
by using a (much wider) conservative con�dence interval un-
til a small number of tuples had been fetched. Index ripple
join also demonstrates some instability during its startup
phase.

To compare the ripple joins with traditional algorithms,
note that nested loops join takes over 10 seconds to even
begin giving estimates|this is because each sampling step
requires a full scan of the student table. The best batch
join algorithm is hybrid hash join, which is the choice of
the postgres optimizer for this query. Hybrid hash runs
for 208 seconds before completing the join, at which point
it produces a precise result. Even if we replaced postgres

with the world's fastest database software, our system's disk



transfer rate10 of 8.2Mb/sec would still require about 42 sec-
onds simply to read the two relations into memory. Note
that online aggregation in postgres produces very tight
bounds a full two orders of magnitude faster than batch
mode in the same system, and one order of magnitude faster
than an ideal system. Presumably an ideal system would
also do online aggregation considerably faster than post-

gres as well. The performance advantage of ripple join
would increase if the size of the relations being joined were
increased|calculations similar to [HNS94] show that for a
key/foreign-key join as in our example, the I/O cost ratio
of hybrid hash to ripple join increases roughly as the square
root of the table cardinality due to the bene�cial e�ects of
sampling.

While block ripple join looks quite unattractive in this
example, it is important to note that this key/foreign-key
equijoin discards most tuples, with only 1 in every 63,446 tu-
ples of the cross-product satisfying the WHERE clause. Block
ripple join is more appropriate for joins with large result
sizes. For such joins a large fraction of the cross-product
space contributes to the output, so that � shrinks at an ac-
ceptable rate despite the high I/O cost. Moreover, whenever
the result size is large because the join is a non-equijoin, then
block ripple is applicable but hash ripple is not.

In the previous example, the high animation speed forced
a square aspect ratio. To demonstrate the advantages of
adaptive aspect-ratio tuning at lower animation speeds, we
consider a query that returns the average ratio of Education
student to Agriculture student grades, normalized by year11:

SELECT ONLINE AVG(d.grade/a.grade)
FROM enroll d, enroll a
WHERE d.college = 'Education'

AND a.college = 'Agriculture'
AND a.year = d.year;

We ran this query using block ripple joins of di�ering aspect
ratios; postgres chose block ripple in this case because the
result size of the join is quite large. The resulting perfor-
mance is shown in Figure 13. In all the joins, the Education
relation instance was the left operand, and the Agriculture
relation instance was the right; the curves are labeled with
the left�right aspect ratio. As can be seen from Figure 13,
it is best to sample the Agriculture relation instance at a
much higher rate than Education. The adaptive block rip-
ple join's aspect ratio starts at the initial default value of
1 � 1 and then, after some uctuation, settles to a ratio
of around 1 � 6 in favor of Education. Note the relatively
smooth shape of the curve for the square aspect ratio, which
produces a result as often as possible (animation speed set to
the maximum.) By contrast, the other curves|particularly
the adaptive curve, which had animation speed set to 90%|
have a \staircase" shape, reecting long sampling steps dur-
ing which running estimates remain �xed. This clearly illus-
trates the tradeo� between estimation quality and animation
speed that was described in Section 5.

To once more compare online to batch performance, we
tried this query in postgres. The postgres optimizer

10We measured disk transfer rate using raw I/Os on the Quantum
Fireball holding the data. The rate of 8.2Mb/sec is the best-case
behavior at the outer tracks; the inner tracks provide only about 5.1
Mb/sec.

11Although this query is actually a self-join, we process it as a
binary join. We can do this because the rows for Agriculture students
and Education students form two disjoint subtables of the enroll
table. The idea is independently sample a row (or set of rows) from
each subtable at every sampling step. Moreover, for this query we
can use catalog statistics to obtain the precise cardinalities of the
two subtables. See Section 7 for further discussion of self-joins.
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Figure 13: Con�dence-interval half-width (�) over time for
block ripple joins of di�ering aspect ratios.

chose a naive nested loops join, and the query took so long to
complete that it had to be aborted. The most sensible batch
algorithm for this low-selectivity query is block nested-loops
join. An idealized implementation would make one pass of
enroll for the outer loop, and djenrollj=jbu�er poolje =
d327=80e = 5 passes of enroll for the inner relation. Assum-
ing bu�er pool hits on memory-resident portion of enroll,
each inner pass would require 327-80=247Mb of I/O, for a
total of 327 + 5 � 247 = 1562 I/Os. At the peak transfer
rate of 8.2 Mb/s, this would require about 190 seconds to
complete|between one and two orders of magnitude longer
than required for ripple join to produce good estimates in
postgres.

7 Conclusions and Future Work

A complete implementation of online aggregation must be
able to handle multi-table queries. This paper introduces
ripple joins, a family of join algorithms designed to meet the
performance needs of an online aggregation system. Ripple
joins generalize block nested-loops and hash join, and au-
tomatically adjust their behavior to provide precise con�-
dence intervals while updating the estimates at a rapid rate.
Users can trade o� precision and updating rate on the y
by changing an \animation speed" parameter that controls
the aspect ratio of the rectangles swept out by the join. In
our experiments, the time required to produce reasonably
precise online estimates was up to two orders of magnitude
smaller than the time required for the best o�ine join al-
gorithms to produce exact answers. A key observation is
that the time required to achieve a con�dence interval of a
speci�ed \acceptable" length is a sub-linear (and sometimes
constant!) function of the cardinality of the input relations;
cf [HNS94]. It follows that, as the size of databases increases,
online join algorithms should appear more and more attrac-
tive relative to their o�ine counterparts for a wide variety
of queries.

This paper opens up a number of areas for future work.
Although the ripple join is symmetric, it is still not clear how
a query optimizer should choose among ripple join variants,
nor how it should order a sequence of ripple joins. As we
have seen in this paper, the optimization goals for an online
aggregation system are di�erent than for a traditional dbms:
even for a simple binary nested-loops join, the traditional
choice of outer and inner is often inappropriate in an online
scenario.



Another challenge is the development of e�cient tech-
niques for processing self-joins that avoid the need for two
separate running samples from the input table; such self-
joins arise naturally in a variety of queries. When the input
expressionp(r; s) to a SUM or AVG aggregation function is a
symmetric function of r and s, it appears that results for \U-
statistics" [Hoe48] can be used to obtain con�dence-interval
formulas based on a single running sample. This approach
needs to be developed and extended to deal with arbitrary
self-join queries.

Although the postgres dbms was useful for rapid proto-
typing, there are a number of performance issues that need
to be studied in an industrial-strength system. One impor-
tant area is the parallelization of ripple joins. If base re-
lations are horizontally partitioned across processing nodes,
random retrieval of tuples from di�erent nodes can be viewed
as a strati�ed sampling scheme, and the con�dence-interval
formulas presented here can be adjusted accordingly. The
\strati�ed" estimates generated at the nodes must be com-
bined in an e�cient manner to yield an overall running es-
timate and a corresponding con�dence interval. To study
these and other issues, we are currently implementing rip-
ple join and hash ripple join in high-performance, parallel
commercial dbms's.

In this paper we present ripple joins in the context of
a statistical estimation problem. We believe, however, that
ripple joins will be useful for other, non-statistical modes
of data exploration, particularly data visualization. We are
currently exploring online visualization [HAR99], and plan
to test the e�ectiveness of ripple join at producing quick,
meaningful visualizations of very large data sets.
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