
1

© Dennis Shasha, Philippe Bonnet - 2002 1

Database Tuning
Principles, Experiments and
Troubleshooting Techniques

http://www.mkp.com/dbtune
Dennis Shasha (shasha@cs.nyu.edu)
Philippe Bonnet (bonnet@diku.dk)

© Dennis Shasha, Philippe Bonnet - 2002 2

Database Tuning

Database Tuning is the activity of making a
database application run more quickly.
“More quickly” usually means higher
throughput, though it may mean lower

response time for time-critical applications.

2

© Dennis Shasha, Philippe Bonnet - 2002 3

Application
Programmer

(e.g., business analyst,
Data architect)

Sophisticated
Application
Programmer

(e.g., SAP admin)

DBA,
Tuner

Hardware
[Processor(s), Disk(s), Memory]

Operating System

Concurrency Control Recovery

Storage SubsystemIndexes

Query Processor

Application

© Dennis Shasha, Philippe Bonnet - 2002 4

Outline

1. Basic Principles
2. Tuning the guts
3. Indexes
4. Relational Systems
5. Application Interface
6. Ecommerce Applications
7. Data warehouse Applications
8. Distributed Applications
9. Troubleshooting

3

1 - Basic Principles © Dennis Shasha, Philippe Bonnet - 2002 5

Goal of the Tutorial

• To show:
– Tuning principles that port from one system to

the other and to new technologies
– Experimental results to show the effect of these

tuning principles.
– Troubleshooting techniques for chasing down

performance problems.

1 - Basic Principles © Dennis Shasha, Philippe Bonnet - 2002 6

Tuning Principles Leitmotifs

• Think globally, fix locally (does it matter?)
• Partitioning breaks bottlenecks (temporal

and spatial)
• Start-up costs are high; running costs are

low (disk transfer, cursors)
• Be prepared for trade-offs (indexes and

inserts)

4

1 - Basic Principles © Dennis Shasha, Philippe Bonnet - 2002 7

Experiments -- why and where

• Simple experiments to illustrate the
performance impact of tuning principles.

• http://www.diku.dk/dbtune/experiments to
get the SQL scripts, the data and a tool to
run the experiments.

© Dennis Shasha, Philippe Bonnet - 2002 8

Experimental DBMS and
Hardware

• Results presented throughout this tutorial
obtained with:

– SQL Server 7, SQL Server 2000, Oracle 8i,
Oracle 9i, DB2 UDB 7.1

– Three configurations:
1. Dual Xeon (550MHz,512Kb), 1Gb RAM, Internal RAID

controller from Adaptec (80Mb) 2 Ultra 160 channels, 4x18Gb
drives (10000RPM), Windows 2000.

2. Dual Pentium II (450MHz, 512Kb), 512 Mb RAM, 3x18Gb
drives (10000RPM), Windows 2000.

3. Pentium III (1 GHz, 256 Kb), 1Gb RAM, Adapter 39160 with 2
channels, 3x18Gb drives (10000RPM), Linux Debian 2.4.

5

2 - Tuning the Guts © Dennis Shasha, Philippe Bonnet - 2002 9

Tuning the Guts

• Concurrency Control
– How to minimize lock contention?

• Recovery
– How to manage the writes to the log (to dumps)?

• OS
– How to optimize buffer size, process scheduling, …

• Hardware
– How to allocate CPU, RAM and disk subsystem

resources?

2 - Tuning the Guts © Dennis Shasha, Philippe Bonnet - 2002 10

Isolation

• Correctness vs. Performance
– Number of locks held by each transaction
– Kind of locks
– Length of time a transaction holds locks

6

2 - Tuning the Guts © Dennis Shasha, Philippe Bonnet - 2002 11

Isolation Levels
• Read Uncomitted (No lost update)

– Exclusive locks for write operations are held for the duration of the
transactions

– No locks for read

• Read Committed (No dirty retrieval)
– Shared locks are released as soon as the read operation terminates.

• Repeatable Read (no unrepeatable reads for read/write)
– Two phase locking

• Serializable (read/write/insert/delete model)
– Table locking or index locking to avoid phantoms

© Dennis Shasha, Philippe Bonnet - 2002 12

Snapshot isolation

T1

T2

T3

TIME

R(Y) re
turns 1

R(Z) re
turns 0

R(X) re
turns 0

W(Y:=1)

W(X:=2, Z:=3)

X=Y=Z=0

• Each transaction executes
against the version of the data
items that was committed when
the transaction started:

– No locks for read
– Costs space (old copy of data

must be kept)
• Almost serializable level:

– T1: x:=y
– T2: y:= x
– Initially x=3 and y =17
– Serial execution:

x,y=17 or x,y=3
– Snapshot isolation:

x=17, y=3 if both transactions
start at the same time.

7

© Dennis Shasha, Philippe Bonnet - 2002 13

Value of Serializability -- Data

Settings:
accounts(number, branchnum, balance);
create clustered index c on accounts(number);

– 100000 rows
– Cold buffer; same buffer size on all systems.
– Row level locking
– Isolation level (SERIALIZABLE or READ COMMITTED)
– SQL Server 7, DB2 v7.1 and Oracle 8i on Windows 2000
– Dual Xeon (550MHz,512Kb), 1Gb RAM, Internal RAID

controller from Adaptec (80Mb), 4x18Gb drives (10000RPM),
Windows 2000.

© Dennis Shasha, Philippe Bonnet - 2002 14

Value of Serializability --
transactions

Concurrent Transactions:
– T1: summation query [1 thread]

select sum(balance) from accounts;

– T2: swap balance between two account numbers (in
order of scan to avoid deadlocks) [N threads]
valX:=select balance from accounts where number=X;
valY:=select balance from accounts where number=Y;
update accounts set balance=valX where number=Y;
update accounts set balance=valY where number=X;

8

2 - Tuning the Guts © Dennis Shasha, Philippe Bonnet - 2002 15

Value of Serializability -- results

• With SQL Server and
DB2 the scan returns
incorrect answers if
the read committed
isolation level is used
(default setting)

• With Oracle correct
answers are returned
(snapshot isolation),
but beware of
swapping

Oracle

0
0.2
0.4
0.6
0.8

1

0 2 4 6 8 10

Concurrent update threads

R
at

io
 o

f
co

rr
ec

t
an

sw
er

s

read committed
serializable

SQLServer

0
0.2
0.4
0.6
0.8

1

0 2 4 6 8 10

Concurrent update threads

R
at

io
 o

f
co

rr
ec

t
an

sw
er

s

read committed
serializable

2 - Tuning the Guts © Dennis Shasha, Philippe Bonnet - 2002 16

Cost of Serializability

Because the update
conflicts with the scan,
correct answers are
obtained at the cost of
decreased concurrency
and thus decreased
throughput.

Oracle

0 2 4 6 8 10

Concurrent Update Threads

Th
ro

ug
hp

u
t

(t
ra

ns
/s

ec
)

read committed
serializable

SQLServer

0 2 4 6 8 10

Concurrent Update Threads

Th
ro

ug
hp

ut

(tr
an

s/
se

c)

read committed
serializable

9

© Dennis Shasha, Philippe Bonnet - 2002 17

Locking Overhead -- data

Settings:
accounts(number, branchnum, balance);
create clustered index c on accounts(number);

– 100000 rows
– Cold buffer
– SQL Server 7, DB2 v7.1 and Oracle 8i on Windows 2000
– No lock escalation on Oracle; Parameter set so that there is no

lock escalation on DB2; no control on SQL Server.
– Dual Xeon (550MHz,512Kb), 1Gb RAM, Internal

RAID controller from Adaptec (80Mb), 4x18Gb
drives (10000RPM), Windows 2000.

© Dennis Shasha, Philippe Bonnet - 2002 18

Locking Overhead -- transactions

No Concurrent Transactions:
– Update [10 000 updates]
update accounts set balance = Val;

– Insert [10 000 transactions], e.g. typical one:
insert into accounts values(664366,72255,2296.12);

10

2 - Tuning the Guts © Dennis Shasha, Philippe Bonnet - 2002 19

Locking Overhead
Row locking is barely
more expensive than table
locking because recovery
overhead is higher than
row locking overhead
– Exception is updates on

DB2 where table locking is
distinctly less expensive
than row locking.

0

0.2

0.4

0.6

0.8

1

update insert

T
h

ro
u

g
h

p
u

t
ra

ti
o

(r

o
w

 lo
ck

in
g

/t
ab

le
 lo

ck
in

g
)

db2
sqlserver
oracle

2 - Tuning the Guts © Dennis Shasha, Philippe Bonnet - 2002 20

Logical Bottleneck: Sequential
Key generation

• Consider an application in which one needs
a sequential number to act as a key in a
table, e.g. invoice numbers for bills.

• Ad hoc approach: a separate table holding
the last invoice number. Fetch and update
that number on each insert transaction.

• Counter approach: use facility such as
Sequence (Oracle)/Identity(MSSQL).

11

© Dennis Shasha, Philippe Bonnet - 2002 21

Counter Facility -- data

Settings:

– default isolation level: READ COMMITTED; Empty tables
– Dual Xeon (550MHz,512Kb), 1Gb RAM, Internal RAID

controller from Adaptec (80Mb), 4x18Gb drives (10000RPM),
Windows 2000.

accounts(number, branchnum, balance);
create clustered index c on accounts(number);

counter (nextkey);
insert into counter values (1);

© Dennis Shasha, Philippe Bonnet - 2002 22

Counter Facility -- transactions

No Concurrent Transactions:
– System [100 000 inserts, N threads]

• SQL Server 7 (uses Identity column)
insert into accounts values (94496,2789);

• Oracle 8i
insert into accounts values (seq.nextval,94496,2789);

– Ad-hoc [100 000 inserts, N threads]
begin transaction
NextKey:=select nextkey from counter;
update counter set nextkey = NextKey+1;

commit transaction
begin transaction

insert into accounts values(NextKey,?,?);
commit transaction

12

© Dennis Shasha, Philippe Bonnet - 2002 23

Avoid Bottlenecks: Counters
• System generated counter

(system) much better than a
counter managed as an
attribute value within a table
(ad hoc).

• The Oracle counter can
become a bottleneck if every
update is logged to disk, but
caching many counter numbers
is possible.

• Counters may miss ids.

SQLServer

0 10 20 30 40 50

Number of concurrent insertion threads

Th
ro

ug
hp

ut

(s
ta

te
m

en
ts

/s
ec

)

system
ad-hoc

Oracle

0 10 20 30 40 50

Number of concurrent insertion threads

Th
ro

ug
hp

ut

(s
ta

te
m

en
ts

/s
ec

)

system
ad-hoc

© Dennis Shasha, Philippe Bonnet - 2002 24

Insertion Points -- transactions

No Concurrent Transactions:
– Sequential [100 000 inserts, N threads]

Insertions into account table with clustered index on ssnum
Data is sorted on ssnum
Single insertion point

– Non Sequential [100 000 inserts, N threads]
Insertions into account table with clustered index on ssnum
Data is not sorted (uniform distribution)
100 000 insertion points

– Hashing Key [100 000 inserts, N threads]
Insertions into account table with extra attribute att with clustered index

on (ssnum, att)
Extra attribute att contains hash key (1021 possible values)
1021 insertion points

13

© Dennis Shasha, Philippe Bonnet - 2002 25

Insertion Points

• Page locking: single
insertion point is a source
of contention (sequential
key with clustered index,
or heap)

• Row locking: No
contention between
successive insertions.

• DB2 v7.1 and Oracle 8i do
not support page locking.

Row Locking

0

200

400

600

800

0 10 20 30 40 50 60

Number of concurrent insertion threads

Th
ro

ug
hp

ut

(t
up

le
s/

se
c)

sequential
non sequential
hashing key

Page Locking

0
20

40
60

80
100

120
140

0 10 20 30 40 50 60

Number of concurrent insertion threads

Th
ro

ug
hp

ut

(t
up

le
s/

se
c) sequential

non sequential
hashing key

2 - Tuning the Guts © Dennis Shasha, Philippe Bonnet - 2002 26

Atomicity and Durability
• Every transaction either

commits or aborts. It
cannot change its mind

• Even in the face of
failures:
– Effects of committed

transactions should be
permanent;

– Effects of aborted
transactions should leave no
trace.

ACTIVE
(running, waiting)

ABORTED

COMMITTED
COMMIT

ROLLBACK

Ø BEGIN
TRANS

14

2 - Tuning the Guts © Dennis Shasha, Philippe Bonnet - 2002 27

LOG DATADATADATA

STABLE STORAGE

UNSTABLE STORAGE

WRITE
log records before commit

WRITE
modified pages after commit

RECOVERY

PjPi

DATABASE BUFFER
LOG BUFFER

lri lrj

© Dennis Shasha, Philippe Bonnet - 2002 28

Log IO -- data

Settings:
lineitem (L_ORDERKEY, L_PARTKEY , L_SUPPKEY,

L_LINENUMBER , L_QUANTITY, L_EXTENDEDPRICE ,
L_DISCOUNT, L_TAX , L_RETURNFLAG, L_LINESTATUS ,
L_SHIPDATE, L_COMMITDATE,
L_RECEIPTDATE, L_SHIPINSTRUCT ,
L_SHIPMODE , L_COMMENT);

– READ COMMITTED isolation level
– Empty table
– Dual Xeon (550MHz,512Kb), 1Gb RAM, Internal RAID controller

from Adaptec (80Mb), 4x18Gb drives (10000RPM), Windows 2000.

15

© Dennis Shasha, Philippe Bonnet - 2002 29

Log IO -- transactions

No Concurrent Transactions:
Insertions [300 000 inserts, 10 threads], e.g.,
insert into lineitem values
(1,7760,401,1,17,28351.92,0.04,0.02,'N','O',
'1996-03-13','1996-02-12','1996-03-
22','DELIVER IN PERSON','TRUCK','blithely
regular ideas caj');

2 - Tuning the Guts © Dennis Shasha, Philippe Bonnet - 2002 30

Group Commits

• DB2 UDB v7.1 on
Windows 2000

• Log records of many
transactions are written
together
– Increases throughput by

reducing the number of
writes

– at cost of increased
minimum response time.

0
50

100
150
200
250

300
350

1 25

Size of Group Commit

Th
ro

ug
hp

ut
 (t

up
le

s/
se

c)

16

2 - Tuning the Guts © Dennis Shasha, Philippe Bonnet - 2002 31

Put the Log on a Separate Disk

• DB2 UDB v7.1 on
Windows 2000

• 5 % performance
improvement if log is
located on a different disk

• Controller cache hides
negative impact
– mid-range server, with

Adaptec RAID controller
(80Mb RAM) and 2x18Gb
disk drives.

0

50

100

150

200

250

300

350

controller cache no controller cache

Th
ro

ug
hp

ut
 (t

up
le

s/
se

c)

Log on same disk
Log on separate disk

2 - Tuning the Guts © Dennis Shasha, Philippe Bonnet - 2002 32

Tuning Database Writes

• Dirty data is written to disk
– When the number of dirty pages is greater than

a given parameter (Oracle 8)
– When the number of dirty pages crosses a given

threshold (less than 3% of free pages in the
database buffer for SQL Server 7)

– When the log is full, a checkpoint is forced.
This can have a significant impact on
performance.

17

2 - Tuning the Guts © Dennis Shasha, Philippe Bonnet - 2002 33

Tune Checkpoint Intervals

• Oracle 8i on Windows
2000

• A checkpoint (partial flush
of dirty pages to disk)
occurs at regular intervals
or when the log is full:
– Impacts the performance of

on-line processing
+ Reduces the size of log
+ Reduces time to recover

from a crash

0

0.2

0.4

0.6

0.8

1

1.2

0 checkpoint 4 checkpoints

T
h

ro
u

g
h

p
u

t R
at

io

2 - Tuning the Guts © Dennis Shasha, Philippe Bonnet - 2002 34

Database Buffer Size
• Buffer too small, then hit

ratio too small
hit ratio =

(logical acc. - physical acc.) /
(logical acc.)

• Buffer too large, paging
• Recommended strategy:

monitor hit ratio and increase
buffer size until hit ratio
flattens out. If there is still
paging, then buy memory. LOG DATADATA

RAM

Paging
Disk

DATABASE PROCESSES

DATABASE
BUFFER

18

© Dennis Shasha, Philippe Bonnet - 2002 35

Buffer Size -- data

Settings:
employees(ssnum, name, lat, long, hundreds1,
hundreds2);

clustered index c on employees(lat); (unused)

– 10 distinct values of lat and long, 100 distinct values of hundreds1
and hundreds2

– 20000000 rows (630 Mb);
– Warm Buffer
– Dual Xeon (550MHz,512Kb), 1Gb RAM, Internal RAID

controller from Adaptec (80Mb), 4x18Gb drives (10000 RPM),
Windows 2000.

© Dennis Shasha, Philippe Bonnet - 2002 36

Buffer Size -- queries

Queries:
– Scan Query
select sum(long) from employees;

– Multipoint query
select * from employees where lat = ?;

19

© Dennis Shasha, Philippe Bonnet - 2002 37

Database Buffer Size

• SQL Server 7 on
Windows 2000

• Scan query:
– LRU (least recently used) does

badly when table spills to disk
as Stonebraker observed 20
years ago.

• Multipoint query:
– Throughput increases with

buffer size until all data is
accessed from RAM.

Multipoint Query

0

40

80

120

160

0 200 400 600 800 1000

Buffer Size (Mb)

Th
ro

ug
hp

ut

(Q
ue

ri
es

/s
ec

)
Scan Query

0

0.02

0.04

0.06

0.08

0.1

0 200 400 600 800 1000

Buffer Size (Mb)

Th
ro

ug
hp

ut

(Q
ue

rie
s/

se
c)

© Dennis Shasha, Philippe Bonnet - 2002 38

Scan Performance -- data

Settings:
lineitem (L_ORDERKEY, L_PARTKEY , L_SUPPKEY,

L_LINENUMBER , L_QUANTITY, L_EXTENDEDPRICE ,
L_DISCOUNT, L_TAX , L_RETURNFLAG, L_LINESTATUS ,
L_SHIPDATE, L_COMMITDATE,
L_RECEIPTDATE, L_SHIPINSTRUCT ,
L_SHIPMODE , L_COMMENT);

– 600 000 rows
– Lineitem tuples are ~ 160 bytes long
– Cold Buffer
– Dual Xeon (550MHz,512Kb), 1Gb RAM, Internal RAID

controller from Adaptec (80Mb), 4x18Gb drives (10000RPM),
Windows 2000.

20

© Dennis Shasha, Philippe Bonnet - 2002 39

Scan Performance -- queries

Queries:
select avg(l_discount) from lineitem;

2 - Tuning the Guts © Dennis Shasha, Philippe Bonnet - 2002 40

Prefetching

• DB2 UDB v7.1 on
Windows 2000

• Throughput increases
up to a certain point
when prefetching size
increases.

0

0.05

0.1

0.15

0.2

32Kb 64Kb 128Kb 256Kb

Prefetching

T
h

ro
u

g
h

p
u

t
(T

ra
n

s
/s

e
c
)

scan

21

2 - Tuning the Guts © Dennis Shasha, Philippe Bonnet - 2002 41

Usage Factor

• DB2 UDB v7.1 on
Windows 2000

• Usage factor is the
percentage of the page
used by tuples and
auxilliary data structures
(the rest is reserved for
future)

• Scan throughput increases
with usage factor.

0

0.05

0.1

0.15

0.2

70 80 90 100

Usage Factor (%)

T
h

ro
u

g
h

p
ut

 (T
ra

n
s/

se
c)

scan

2 - Tuning the Guts © Dennis Shasha, Philippe Bonnet - 2002 42

RAID Levels

• RAID 0: striping (no redundancy)
• RAID 1: mirroring (2 disks)
• RAID 5: parity checking

– Read: stripes read from multiple disks (in parallel)
– Write: 2 reads + 2 writes

• RAID 10: striping and mirroring
• Software vs. Hardware RAID:

– Software RAID: run on the server’s CPU
– Hardware RAID: run on the RAID controller’s CPU

22

© Dennis Shasha, Philippe Bonnet - 2002 43

Why 4 read/writes when updating
a single stripe using RAID 5?

• Read old data stripe; read parity stripe (2
reads)

• XOR old data stripe with replacing one.
• Take result of XOR and XOR with parity

stripe.
• Write new data stripe and new parity stripe

(2 writes).

© Dennis Shasha, Philippe Bonnet - 2002 44

RAID Levels -- data

Settings:
accounts(number, branchnum, balance);
create clustered index c on accounts(number);

– 100000 rows
– Cold Buffer
– Dual Xeon (550MHz,512Kb), 1Gb RAM, Internal

RAID controller from Adaptec (80Mb), 4x18Gb drives
(10000RPM), Windows 2000.

23

© Dennis Shasha, Philippe Bonnet - 2002 45

RAID Levels -- transactions

No Concurrent Transactions:
– Read Intensive:
select avg(balance) from accounts;

– Write Intensive, e.g. typical insert:
insert into accounts values (690466,6840,2272.76);

Writes are uniformly distributed.

© Dennis Shasha, Philippe Bonnet - 2002 46

RAID Levels
• SQL Server7 on Windows

2000 (SoftRAID means
striping/parity at host)

• Read-Intensive:
– Using multiple disks

(RAID0, RAID 10, RAID5)
increases throughput
significantly.

• Write-Intensive:
– Without cache, RAID 5

suffers. With cache, it is ok.

Write-Intensive

0

40

80

120

160

Soft-
RAID5

RAID5 RAID0 RAID10 RAID1 Single
Disk

Th
ro

ug
hp

ut
 (t

up
le

s/
se

c)

Read-Intensive

0

20000

40000

60000

80000

Soft-
RAID5

RAID5 RAID0 RAID10 RAID1 Single
Disk

Th
ro

ug
hp

ut
 (t

up
le

s/
se

c)

24

2 - Tuning the Guts © Dennis Shasha, Philippe Bonnet - 2002 47

RAID Levels

• Log File
– RAID 1 is appropriate

• Fault tolerance with high write throughput. Writes are
synchronous and sequential. No benefits in striping.

• Temporary Files
– RAID 0 is appropriate.

• No fault tolerance. High throughput.

• Data and Index Files
– RAID 5 is best suited for read intensive apps or if the

RAID controller cache is effective enough.
– RAID 10 is best suited for write intensive apps.

2 - Tuning the Guts © Dennis Shasha, Philippe Bonnet - 2002 48

Controller Prefecthing no,
Write-back yes.

• Read-ahead:
– Prefetching at the disk controller level.
– No information on access pattern.
– Better to let database management system do it.

• Write-back vs. write through:
– Write back: transfer terminated as soon as data is

written to cache.
• Batteries to guarantee write back in case of power failure

– Write through: transfer terminated as soon as data is
written to disk.

25

© Dennis Shasha, Philippe Bonnet - 2002 49

SCSI Controller Cache -- data

Settings:
employees(ssnum, name, lat, long, hundreds1,
hundreds2);

create clustered index c on
employees(hundreds2);

– Employees table partitioned over two disks; Log on a separate
disk; same controller (same channel).

– 200 000 rows per table
– Database buffer size limited to 400 Mb.
– Dual Xeon (550MHz,512Kb), 1Gb RAM, Internal RAID

controller from Adaptec (80Mb), 4x18Gb drives (10000RPM),
Windows 2000.

© Dennis Shasha, Philippe Bonnet - 2002 50

SCSI (not disk) Controller Cache
-- transactions

No Concurrent Transactions:
update employees set lat = long, long = lat
where hundreds2 = ?;

– cache friendly: update of 20,000 rows (~90Mb)
– cache unfriendly: update of 200,000 rows (~900Mb)

26

2 - Tuning the Guts © Dennis Shasha, Philippe Bonnet - 2002 51

SCSI Controller Cache
• SQL Server 7 on Windows

2000.
• Adaptec ServerRaid

controller:
– 80 Mb RAM
– Write-back mode

• Updates
• Controller cache increases

throughput whether
operation is cache friendly or
not.
– Efficient replacement policy!

 2 Disks - Cache Size 80Mb

0

500

1000

1500

2000

cache friendly (90Mb) cache unfriendly (900Mb)

Th
ro

ug
hp

ut
 (t

up
le

s/
se

c)

no cache
cache

3 - Index Tuning © Dennis Shasha, Philippe Bonnet - 2002 52

Index Tuning

• Index issues
– Indexes may be better or worse than scans
– Multi-table joins that run on for hours, because

the wrong indexes are defined
– Concurrency control bottlenecks
– Indexes that are maintained and never used

27

© Dennis Shasha, Philippe Bonnet - 2002 53

Clustered / Non clustered index

• Clustered index
(primary index)
– A clustered index on

attribute X co-locates
records whose X values are
near to one another.

• Non-clustered index
(secondary index)
– A non clustered index does

not constrain table
organization.

– There might be several non-
clustered indexes per table.

Records Records

3 - Index Tuning © Dennis Shasha, Philippe Bonnet - 2002 54

Dense / Sparse Index

• Sparse index
– Pointers are associated to

pages

• Dense index
– Pointers are associated to

records
– Non clustered indexes are

dense

P1 PiP2 record

record record

28

3 - Index Tuning © Dennis Shasha, Philippe Bonnet - 2002 55

Index Implementations in some
major DBMS

• SQL Server
– B+-Tree data structure
– Clustered indexes are sparse
– Indexes maintained as

updates/insertions/deletes
are performed

• DB2
– B+-Tree data structure,

spatial extender for R-tree
– Clustered indexes are dense
– Explicit command for index

reorganization

• Oracle
– B+-tree, hash, bitmap,

spatial extender for R-Tree
– clustered index

• Index organized table
(unique/clustered)

• Clusters used when
creating tables.

• TimesTen (Main-memory
DBMS)
– T-tree

3 - Index Tuning © Dennis Shasha, Philippe Bonnet - 2002 56

Types of Queries

• Point Query

SELECT balance
FROM accounts
WHERE number = 1023;

• Multipoint Query

SELECT balance
FROM accounts
WHERE branchnum = 100;

• Range Query

SELECT number
FROM accounts
WHERE balance > 10000 and
balance <= 20000;

• Prefix Match Query

SELECT *
FROM employees
WHERE name = ‘J*’ ;

29

3 - Index Tuning © Dennis Shasha, Philippe Bonnet - 2002 57

More Types of Queries

• Extremal Query

SELECT *
FROM accounts
WHERE balance =

max(select balance from accounts)

• Ordering Query

SELECT *
FROM accounts
ORDER BY balance;

• Grouping Query

SELECT branchnum, avg(balance)
FROM accounts
GROUP BY branchnum;

• Join Query

SELECT distinct branch.adresse
FROM accounts, branch
WHERE

accounts.branchnum =
branch.number

and accounts.balance > 10000;

© Dennis Shasha, Philippe Bonnet - 2002 58

Index Tuning -- data

Settings:
employees(ssnum, name, lat, long, hundreds1,

hundreds2);

clustered index c on employees(hundreds1)
with fillfactor = 100;

nonclustered index nc on employees (hundreds2);
index nc3 on employees (ssnum, name, hundreds2);

index nc4 on employees (lat, ssnum, name);

– 1000000 rows ; Cold buffer
– Dual Xeon (550MHz,512Kb), 1Gb RAM, Internal RAID controller from Adaptec

(80Mb), 4x18Gb drives (10000RPM), Windows 2000.

30

© Dennis Shasha, Philippe Bonnet - 2002 59

Index Tuning -- operations

Operations:
– Update:

update employees set name = ‘XXX’ where ssnum = ?;

– Insert:
insert into employees values
(1003505,'polo94064',97.48,84.03,4700.55,3987.2);

– Multipoint query:
select * from employees where hundreds1= ?;
select * from employees where hundreds2= ?;

– Covered query:
select ssnum, name, lat from employees;

– Range Query:
select * from employees where long between ? and ?;

– Point Query:
select * from employees where ssnum = ?

3 - Index Tuning © Dennis Shasha, Philippe Bonnet - 2002 60

Clustered Index

• Multipoint query that
returns 100 records
out of 1000000.

• Cold buffer
• Clustered index is

twice as fast as non-
clustered index and
orders of magnitude
faster than a scan.

0

0.2

0.4

0.6

0.8

1

SQLServer Oracle DB2

Th
ro

ug
hp

ut
 ra

tio

clustered nonclustered no index

31

3 - Index Tuning © Dennis Shasha, Philippe Bonnet - 2002 61

Index “Face Lifts”
• Index is created with

fillfactor = 100.
• Insertions cause page splits

and extra I/O for each query
• Maintenance consists in

dropping and recreating the
index

• With maintenance
performance is constant
while performance degrades
significantly if no
maintenance is performed.

SQLServer

0
20
40
60
80

100

0 20 40 60 80 100

% Increase in Table Size

Th
ro

ug
hp

ut

(q
ue

rie
s/

se
c)

No maintenance
Maintenance

3 - Index Tuning © Dennis Shasha, Philippe Bonnet - 2002 62

Index Maintenance

• In Oracle, clustered index are
approximated by an index
defined on a clustered table

• No automatic physical
reorganization

• Index defined with pctfree = 0
• Overflow pages cause

performance degradation

Oracle

0

5

10

15

20

0 20 40 60 80 100
% Increase in Table Size

Th
ro

ug
hp

ut

(q
ue

rie
s/

se
c)

No
maintenance

32

3 - Index Tuning © Dennis Shasha, Philippe Bonnet - 2002 63

Covering Index - defined

• Select name from employee where
department = “marketing”

• Good covering index would be on
(department, name)

• Index on (name, department) less useful.
• Index on department alone moderately

useful.

3 - Index Tuning © Dennis Shasha, Philippe Bonnet - 2002 64

Covering Index - impact

• Covering index performs
better than clustering
index when first attributes
of index are in the where
clause and last attributes
in the select.

• When attributes are not in
order then performance is
much worse.

0

10

20

30

40

50

60

70

SQLServer

T
h

ro
u

g
h

pu
t

(q
u

er
ie

s/
se

c) covering

covering - not
ordered
non clustering

clustering

33

3 - Index Tuning © Dennis Shasha, Philippe Bonnet - 2002 65

Scan Can Sometimes Win
• IBM DB2 v7.1 on

Windows 2000
• Range Query
• If a query retrieves 10% of

the records or more,
scanning is often better
than using a non-
clustering non-covering
index. Crossover > 10%
when records are large or
table is fragmented on
disk – scan cost increases.

0 5 10 15 20 25
% of selected records

Th
ro

ug
hp

ut
 (q

ue
rie

s/
se

c)

scan
non clustering

3 - Index Tuning © Dennis Shasha, Philippe Bonnet - 2002 66

Index on Small Tables
• Small table: 100 records,

i.e., a few pages.
• Two concurrent processes

perform updates (each
process works for 10ms
before it commits)

• No index: the table is
scanned for each update.
No concurrent updates.

• A clustered index allows
to take advantage of row
locking.

0
2
4
6
8

10
12
14
16
18

no index index

Th
ro

ug
hp

ut
 (u

pd
at

es
/s

ec
)

34

© Dennis Shasha, Philippe Bonnet - 2002 67

Bitmap vs. Hash vs. B+-Tree

Settings:
employees(ssnum, name, lat, long, hundreds1,

hundreds2);
create cluster c_hundreds (hundreds2 number(8)) PCTFREE 0;
create cluster c_ssnum(ssnum integer) PCTFREE 0 size 60;

create cluster c_hundreds(hundreds2 number(8)) PCTFREE 0
HASHKEYS 1000 size 600;

create cluster c_ssnum(ssnum integer) PCTFREE 0 HASHKEYS
1000000 SIZE 60;

create bitmap index b on employees (hundreds2);
create bitmap index b2 on employees (ssnum);

– 1000000 rows ; Cold buffer
– Dual Xeon (550MHz,512Kb), 1Gb RAM, Internal RAID controller from Adaptec

(80Mb), 4x18Gb drives (10000RPM), Windows 2000.

3 - Index Tuning © Dennis Shasha, Philippe Bonnet - 2002 68

Multipoint query: B-Tree, Hash
Tree, Bitmap

• There is an overflow
chain in a hash index

• In a clustered B-Tree
index records are on
contiguous pages.

• Bitmap is proportional
to size of table and
non-clustered for
record access.

 Multipoint Queries

0

5

10

15

20

25

B-Tree Hash index Bitmap index

Th
ro

ug
hp

ut
 (q

ue
rie

s/
se

c)

35

3 - Index Tuning © Dennis Shasha, Philippe Bonnet - 2002 69

• Hash indexes don’t
help when evaluating
range queries

• Hash index
outperforms B-tree on
point queries

Range Queries

0

0.1

0.2

0.3

0.4

0.5

B-Tree Hash index Bitmap index

Th
ro

ug
hp

ut
 (q

ue
rie

s/s
ec

)

B-Tree, Hash Tree, Bitmap

Point Queries

0

10

20

30

40

50

60

B-Tree hash index

Th
ro

ug
hp

ut
(q

ue
rie

s/s
ec

)

4 - Relational Systems © Dennis Shasha, Philippe Bonnet - 2002 70

Tuning Relational Systems

• Schema Tuning
– Denormalization

• Query Tuning
– Query rewriting
– Materialized views

36

© Dennis Shasha, Philippe Bonnet - 2002 71

Denormalizing -- data

Settings:
lineitem (L_ORDERKEY, L_PARTKEY , L_SUPPKEY,

L_LINENUMBER, L_QUANTITY, L_EXTENDEDPRICE ,
L_DISCOUNT, L_TAX , L_RETURNFLAG, L_LINESTATUS ,
L_SHIPDATE, L_COMMITDATE,
L_RECEIPTDATE, L_SHIPINSTRUCT ,
L_SHIPMODE , L_COMMENT);

region(R_REGIONKEY, R_NAME, R_COMMENT);
nation(N_NATIONKEY, N_NAME, N_REGIONKEY, N_COMMENT,);
supplier(S_SUPPKEY, S_NAME, S_ADDRESS, S_NATIONKEY,

S_PHONE, S_ACCTBAL, S_COMMENT);

– 600000 rows in lineitem, 25 nations, 5 regions, 500 suppliers

© Dennis Shasha, Philippe Bonnet - 2002 72

Denormalizing -- transactions
lineitemdenormalized (L_ORDERKEY, L_PARTKEY ,

L_SUPPKEY, L_LINENUMBER, L_QUANTITY,
L_EXTENDEDPRICE ,
L_DISCOUNT, L_TAX , L_RETURNFLAG, L_LINESTATUS ,
L_SHIPDATE, L_COMMITDATE,
L_RECEIPTDATE, L_SHIPINSTRUCT ,
L_SHIPMODE , L_COMMENT, L_REGIONNAMEL_REGIONNAME);

– 600000 rows in lineitemdenormalized
– Cold Buffer
– Dual Pentium II (450MHz, 512Kb), 512 Mb RAM,

3x18Gb drives (10000RPM), Windows 2000.

37

© Dennis Shasha, Philippe Bonnet - 2002 73

Queries on Normalized vs.
Denormalized Schemas

Queries:
select L_ORDERKEY, L_PARTKEY, L_SUPPKEY, L_LINENUMBER, L_QUANTITY,

L_EXTENDEDPRICE, L_DISCOUNT, L_TAX, L_RETURNFLAG, L_LINESTATUS,
L_SHIPDATE, L_COMMITDATE, L_RECEIPTDATE, L_SHIPINSTRUCT, L_SHIPMODE,
L_COMMENT, R_NAME

from LINEITEM, REGION, SUPPLIER, NATION
where
L_SUPPKEY = S_SUPPKEY
and S_NATIONKEY = N_NATIONKEY
and N_REGIONKEY = R_REGIONKEY
and R_NAME = 'EUROPE';

select L_ORDERKEY, L_PARTKEY, L_SUPPKEY, L_LINENUMBER, L_QUANTITY,
L_EXTENDEDPRICE, L_DISCOUNT, L_TAX, L_RETURNFLAG, L_LINESTATUS,
L_SHIPDATE, L_COMMITDATE, L_RECEIPTDATE, L_SHIPINSTRUCT, L_SHIPMODE,
L_COMMENT, L_REGIONNAME

from LINEITEMDENORMALIZED
where L_REGIONNAME = 'EUROPE';

4 - Relational Systems © Dennis Shasha, Philippe Bonnet - 2002 74

Denormalization
• TPC-H schema
• Query: find all lineitems

whose supplier is in
Europe.

• With a normalized schema
this query is a 4-way join.

• If we denormalize
lineitem and add the name
of the region for each
lineitem (foreign key
denormalization)
throughput improves 30%

0

0.0005

0.001

0.0015

0.002

normalized denormalized

Th
ro

ug
hp

ut
 (Q

ue
rie

s/
se

c)

38

© Dennis Shasha, Philippe Bonnet - 2002 75

Queries

Settings:
employee(ssnum, name, dept, salary, numfriends);
student(ssnum, name, course, grade);
techdept(dept, manager, location);
clustered index i1 on employee (ssnum);
nonclustered index i2 on employee (name);
nonclustered index i3 on employee (dept);

clustered index i4 on student (ssnum);
nonclustered index i5 on student (name);

clustered index i6 on techdept (dept);

– 100000 rows in employee, 100000 students, 10 departments; Cold buffer
– Dual Pentium II (450MHz, 512Kb), 512 Mb RAM, 3x18Gb drives

(10000RPM), Windows 2000.

© Dennis Shasha, Philippe Bonnet - 2002 76

Queries – View on Join

View Techlocation:
create view techlocation as
select ssnum, techdept.dept, location
from employee, techdept
where employee.dept = techdept.dept;

Queries:
– Original:

select dept from techlocation where ssnum = ?;

– Rewritten:
select dept from employee where ssnum = ?;

39

4 - Relational Systems © Dennis Shasha, Philippe Bonnet - 2002 77

Query Rewriting - Views

• All systems expand the
selection on a view into a
join

• The difference between a
plain selection and a join
(on a primary key-foreign
key) followed by a
projection is greater on
SQL Server than on
Oracle and DB2 v7.1.

0

10

20

30

40

50

60

70

80

view

Th
ro

ug
hp

ut
 im

pr
ov

em
en

t p
er

ce
nt

SQLServer 2000
Oracle 8i
DB2 V7.1

© Dennis Shasha, Philippe Bonnet - 2002 78

Queries – Correlated Subqueries
Queries:

– Original:
select ssnum
from employee e1
where salary =

(select max(salary)
from employee e2
where e2.dept = e1.dept);

– Rewritten:
select max(salary) as bigsalary, dept
into TEMP
from employee group by dept;

select ssnum
from employee, TEMP
where salary = bigsalary
and employee.dept = temp.dept;

40

4 - Relational Systems © Dennis Shasha, Philippe Bonnet - 2002 79

Query Rewriting –
Correlated Subqueries

• SQL Server 2000 does a
good job at handling the
correlated subqueries (a
hash join is used as
opposed to a nested loop
between query blocks)
– The techniques

implemented in SQL Server
2000 are described in
“Orthogonal Optimization
of Subqueries and
Aggregates” by C.Galindo-
Legaria and M.Joshi,
SIGMOD 2001.

-10

0

10

20

30

40

50

60

70

80

correlated subquery

Th
ro

ug
hp

ut
 im

pr
ov

em
en

t p
er

ce
nt

SQLServer 2000
Oracle 8i
DB2 V7.1

> 10000> 1000

© Dennis Shasha, Philippe Bonnet - 2002 80

Aggregate Maintenance -- data

Settings:
orders(ordernum, itemnum, quantity, purchaser, vendor);
create clustered index i_order on orders(itemnum);

store(vendor, name);
item(itemnum, price);
create clustered index i_item on item(itemnum);

vendorOutstanding(vendor, amount);
storeOutstanding(store, amount);

– 1000000 orders, 10000 stores, 400000 items; Cold buffer
– Dual Pentium II (450MHz, 512Kb), 512 Mb RAM, 3x18Gb drives

(10000RPM), Windows 2000.

41

© Dennis Shasha, Philippe Bonnet - 2002 81

Aggregate Maintenance --
triggers

Triggers for Aggregate Maintenance
create trigger updateVendorOutstanding on orders for insert as
update vendorOutstanding
set amount =

(select vendorOutstanding.amount+sum(inserted.quantity*item.price)
from inserted,item
where inserted.itemnum = item.itemnum
)

where vendor = (select vendor from inserted) ;

create trigger updateStoreOutstanding on orders for insert as
update storeOutstanding
set amount =

(select storeOutstanding.amount+sum(inserted.quantity*item.price)
from inserted,item
where inserted.itemnum = item.itemnum

)
where store = (select store.name from inserted, store

where inserted.vendor = store.vendor) ;

© Dennis Shasha, Philippe Bonnet - 2002 82

Aggregate Maintenance --
transactions

Concurrent Transactions:
– Insertions

insert into orders values
(1000350,7825,562,'xxxxxx6944','vendor4');

– Queries (first without, then with redundant tables)
select orders.vendor, sum(orders.quantity*item.price)
from orders,item
where orders.itemnum = item.itemnum
group by orders.vendor;

vs. select * from vendorOutstanding;

select store.name, sum(orders.quantity*item.price)
from orders,item, store
where orders.itemnum = item.itemnum
and orders.vendor = store.vendor

group by store.name;

vs. select * from storeOutstanding;

42

4 - Relational Systems © Dennis Shasha, Philippe Bonnet - 2002 83

Aggregate Maintenance

• SQLServer 2000 on
Windows 2000

• Using triggers for
view maintenance

• If queries frequent or
important, then
aggregate maintenance
is good.

pect. of gain with aggregate maintenance

21900

31900

- 62.2-5000
0

5000
10000
15000
20000
25000
30000
35000

insert vendor total store total

© Dennis Shasha, Philippe Bonnet - 2002 84

Superlinearity -- data

Settings:
sales(id, itemid, customerid, storeid, amount, quantity);
item (itemid);
customer (customerid);
store (storeid);

A sale is successful if all foreign keys are present.

successfulsales(id, itemid, customerid, storeid, amount,
quantity);

unsuccessfulsales(id, itemid, customerid, storeid, amount,
quantity);

tempsales(id, itemid, customerid, storeid,
amount,quantity);

43

© Dennis Shasha, Philippe Bonnet - 2002 85

Superlinearity -- indexes

Settings (non-clustering, dense indexes):
index s1 on item(itemid);

index s2 on customer(customerid);

index s3 on store(storeid);

index succ on successfulsales(id);

– 1000000 sales, 400000 customers, 40000 items, 1000 stores
– Cold buffer
– Dual Pentium II (450MHz, 512Kb), 512 Mb RAM, 3x18Gb drives

(10000RPM), Windows 2000.

© Dennis Shasha, Philippe Bonnet - 2002 86

Superlinearity -- queries

Queries:
– Insert/create indexdelete

insert into successfulsales
select sales.id, sales.itemid, sales.customerid,

sales.storeid, sales.amount, sales.quantity
from sales, item, customer, store
where sales.itemid = item.itemid
and sales.customerid = customer.customerid
and sales.storeid = store.storeid;

insert into unsuccessfulsales
select * from sales;
go
delete from unsuccessfulsales
where id in (select id from successfulsales)

44

© Dennis Shasha, Philippe Bonnet - 2002 87

Superlinearity -- batch queries

Queries:
– Small batches

DECLARE @Nlow INT;
DECLARE @Nhigh INT;
DECLARE @INCR INT;
set @INCR = 100000
set @NLow = 0
set @Nhigh = @INCR
WHILE (@NLow <= 500000)
BEGIN

insert into tempsales
select * from sales
where id between @NLow and @Nhigh

set @Nlow = @Nlow + @INCR
set @Nhigh = @Nhigh + @INCR
delete from tempsales

where id in (select id from successfulsales);
insert into unsuccessfulsales

select * from tempsales;
delete from tempsales;

END

© Dennis Shasha, Philippe Bonnet - 2002 88

Superlinearity -- outer join

Queries:
– outerjoin

insert into successfulsales
select sales.id, item.itemid, customer.customerid, store.storeid,

sales.amount, sales.quantity
from
((sales left outer join item on sales.itemid = item.itemid)
left outer join customer on sales.customerid = customer.customerid)
left outer join store on sales.storeid = store.storeid;

insert into unsuccessfulsales
select *
from successfulsales
where itemid is null
or customerid is null
or storeid is null;
go
delete from successfulsales
where itemid is null
or customerid is null
or storeid is null

45

4 - Relational Systems © Dennis Shasha, Philippe Bonnet - 2002 89

Circumventing Superlinearity

• SQL Server 2000
• Outer join achieves the

best response time.
• Small batches do not

help because overhead
of crossing the
application interface is
higher than the benefit
of joining with smaller
tables.

0

20

40

60

80

100

120

140

small large

R
es

po
ns

e
Ti

m
e

(s
ec

)

insert/delete no index
insert/delete indexed
small batches
outer join

5 - Tuning the API © Dennis Shasha, Philippe Bonnet - 2002 90

Tuning the Application Interface

• 4GL
– Power++, Visual basic

• Programming language +
Call Level Interface
– ODBC: Open DataBase Connectivity
– JDBC: Java based API
– OCI (C++/Oracle), CLI (C++/ DB2), Perl/DBI

• In the following experiments, the client program is
located on the database server site. Overhead is
due to crossing the application interface.

46

© Dennis Shasha, Philippe Bonnet - 2002 91

Looping can hurt -- data

Settings:
lineitem (L_ORDERKEY, L_PARTKEY , L_SUPPKEY,

L_LINENUMBER, L_QUANTITY, L_EXTENDEDPRICE ,
L_DISCOUNT, L_TAX , L_RETURNFLAG, L_LINESTATUS ,
L_SHIPDATE, L_COMMITDATE,
L_RECEIPTDATE, L_SHIPINSTRUCT ,
L_SHIPMODE , L_COMMENT);

– 600 000 rows; warm buffer.
– Dual Pentium II (450MHz, 512Kb), 512 Mb RAM, 3x18Gb drives

(10000RPM), Windows 2000.

© Dennis Shasha, Philippe Bonnet - 2002 92

Looping can hurt -- queries
• Queries:

– No loop:
sqlStmt = “select * from lineitem where l_partkey <= 200;”
odbc->prepareStmt(sqlStmt);
odbc->execPrepared(sqlStmt);

– Loop:
sqlStmt = “select * from lineitem where l_partkey = ?;”
odbc->prepareStmt(sqlStmt);
for (int i=1; i<100; i++)
{

odbc->bindParameter(1, SQL_INTEGER, i);
odbc->execPrepared(sqlStmt);

}

47

5 - Tuning the API © Dennis Shasha, Philippe Bonnet - 2002 93

Looping can Hurt
• SQL Server 2000 on

Windows 2000
• Crossing the application

interface has a significant
impact on performance.

• Why would a programmer
use a loop instead of
relying on set-oriented
operations: object-
orientation?

0

100

200

300

400

500

600

loop no loop

th
ro

ug
hp

ut
 (r

ec
or

ds
/s

ec
)

© Dennis Shasha, Philippe Bonnet - 2002 94

Cursors are Death -- data

Settings:
employees(ssnum, name, lat, long, hundreds1,
hundreds2);

– 100000 rows ; Cold buffer
– Dual Pentium II (450MHz, 512Kb), 512 Mb RAM, 3x18Gb drives

(10000RPM), Windows 2000.

48

© Dennis Shasha, Philippe Bonnet - 2002 95

Cursors are Death -- queries

Queries:
– No cursor

select * from employees;

– Cursor
DECLARE d_cursor CURSOR FOR select * from employees;

OPEN d_cursor
while (@@FETCH_STATUS = 0)

BEGIN

FETCH NEXT from d_cursor
END

CLOSE d_cursor
go

5 - Tuning the API © Dennis Shasha, Philippe Bonnet - 2002 96

Cursors are Death

• SQL Server 2000 on
Windows 2000

• Response time is a few
seconds with a SQL
query and more than
an hour iterating over
a cursor.

0

1000

2000

3000

4000

5000

cursor SQL

Th
ro

ug
hp

ut
 (r

ec
or

ds
/s

ec
)

49

© Dennis Shasha, Philippe Bonnet - 2002 97

Retrieve Needed Columns Only -
data

Settings:
lineitem (L_ORDERKEY, L_PARTKEY , L_SUPPKEY,

L_LINENUMBER, L_QUANTITY, L_EXTENDEDPRICE ,
L_DISCOUNT, L_TAX , L_RETURNFLAG, L_LINESTATUS ,
L_SHIPDATE, L_COMMITDATE,
L_RECEIPTDATE, L_SHIPINSTRUCT ,
L_SHIPMODE , L_COMMENT);

create index i_nc_lineitem on lineitem (l_orderkey,
l_partkey, l_suppkey, l_shipdate, l_commitdate);

– 600 000 rows; warm buffer.
– Lineitem records are ~ 10 bytes long
– Dual Pentium II (450MHz, 512Kb), 512 Mb RAM, 3x18Gb drives

(10000RPM), Windows 2000.

© Dennis Shasha, Philippe Bonnet - 2002 98

Retrieve Needed Columns Only -
queries

Queries:
– All

Select * from lineitem;

– Covered subset
Select l_orderkey, l_partkey, l_suppkey, l_shipdate,
l_commitdate from lineitem;

50

5 - Tuning the API © Dennis Shasha, Philippe Bonnet - 2002 99

Retrieve Needed Columns Only
• Avoid transferring

unnecessary data
• May enable use of a

covering index.
• In the experiment the

subset contains ¼ of the
attributes.
– Reducing the amount of

data that crosses the
application interface yields
significant performance
improvement.

0
0.25
0.5

0.75
1

1.25
1.5

1.75

no index indexTh
ro

ug
hp

ut
 (q

ue
rie

s/
m

se
c)

all
covered subset

Experiment performed on
Oracle8iEE on Windows 2000.

© Dennis Shasha, Philippe Bonnet - 2002 100

Bulk Loading Data

Settings:
lineitem (L_ORDERKEY, L_PARTKEY , L_SUPPKEY,

L_LINENUMBER, L_QUANTITY, L_EXTENDEDPRICE ,
L_DISCOUNT, L_TAX , L_RETURNFLAG, L_LINESTATUS ,
L_SHIPDATE, L_COMMITDATE,
L_RECEIPTDATE, L_SHIPINSTRUCT ,
L_SHIPMODE , L_COMMENT);

– Initially the table is empty; 600 000 rows to be inserted (138Mb)
– Table sits one disk. No constraint, index is defined.
– Dual Pentium II (450MHz, 512Kb), 512 Mb RAM, 3x18Gb drives

(10000RPM), Windows 2000.

51

© Dennis Shasha, Philippe Bonnet - 2002 101

Bulk Loading Queries

Oracle 8i
sqlldr directpath=true control=load_lineitem.ctl data=E:\Data\lineitem.tbl

load data
infile "lineitem.tbl"
into table LINEITEM append
fields terminated by '|'
(

L_ORDERKEY, L_PARTKEY, L_SUPPKEY, L_LINENUMBER,
L_QUANTITY, L_EXTENDEDPRICE, L_DISCOUNT, L_TAX,
L_RETURNFLAG, L_LINESTATUS, L_SHIPDATE DATE "YYYY-MM-
DD", L_COMMITDATE DATE "YYYY-MM-DD", L_RECEIPTDATE
DATE "YYYY-MM-DD", L_SHIPINSTRUCT, L_SHIPMODE,
L_COMMENT

)

5 - Tuning the API © Dennis Shasha, Philippe Bonnet - 2002 102

Direct Path

• Direct path loading
bypasses the query
engine and the storage
manager. It is orders
of magnitude faster
than for conventional
bulk load (commit
every 100 records) and
inserts (commit for
each record).

65
0

10000

20000

30000

40000

50000

conventional direct path insert

Th
ro

ug
hp

ut
 (r

ec
/s

ec
)

Experiment performed on
Oracle8iEE on Windows 2000.

52

5 - Tuning the API © Dennis Shasha, Philippe Bonnet - 2002 103

Batch Size
• Throughput increases

steadily when the batch
size increases to 100000
records.Throughput
remains constant
afterwards.

• Trade-off between
performance and amount
of data that has to be
reloaded in case of
problem.

0

1000

2000

3000

4000

5000

0 100000 200000 300000 400000 500000 600000

Th
ro

ug
hp

ut
 (r

ec
or

ds
/s

ec
)

Experiment performed on
SQL Server 2000
on Windows 2000.

6 - Ecommerce © Dennis Shasha, Philippe Bonnet - 2002 104

Tuning
E-Commerce Applications

Database-backed web-sites:
– Online shops
– Shop comparison portals
– MS TerraServer

53

6 - Ecommerce © Dennis Shasha, Philippe Bonnet - 2002 105

E-commerce Application
Architecture

Clients Web servers Application servers Database server

W
eb

 c
ac

he
W

eb
 c

ac
he

W
eb

 c
ac

he

D
B

 c
ac

he
D

B
 c

ac
he

6 - Ecommerce © Dennis Shasha, Philippe Bonnet - 2002 106

E-commerce Application
Workload

• Touristic searching (frequent, cached)
– Access the top few pages. Pages may be personalized.

Data may be out-of-date.
• Category searching (frequent, partly cached and

need for timeliness guarantees)
– Down some hierarchy, e.g., men’s clothing.

• Keyword searching (frequent, uncached, need for
timeliness guarantees)

• Shopping cart interactions (rare, but transactional)
• Electronic purchasing (rare, but transactional)

54

6 - Ecommerce © Dennis Shasha, Philippe Bonnet - 2002 107

Design Issues
• Need to keep historic information

– Electronic payment acknowledgements get lost.
• Preparation for variable load

– Regular patterns of web site accesses during the day,
and within a week.

• Possibility of disconnections
– State information transmitted to the client (cookies)

• Special consideration for low bandwidth
• Schema evolution

– Representing e-commerce data as attribute-value pairs
(IBM Websphere)

6 - Ecommerce © Dennis Shasha, Philippe Bonnet - 2002 108

Caching
• Web cache:

– Static web pages
– Caching fragments of dynamically created web pages

• Database cache (Oracle9iAS, TimesTen’s
FrontTier)
– Materialized views to represent cached data.
– Queries are executed either using the database cache or

the database server. Updates are propagated to keep the
cache(s) consistent.

– Note to vendors: It would be good to have queries
distributed between cache and server.

55

© Dennis Shasha, Philippe Bonnet - 2002 109

Ecommerce -- setting

Settings:
shoppingcart(shopperid, itemid, price, qty);

– 500000 rows; warm buffer
– Dual Pentium II (450MHz, 512Kb), 512 Mb RAM, 3x18Gb drives

(10000RPM), Windows 2000.

© Dennis Shasha, Philippe Bonnet - 2002 110

Ecommerce -- transactions

Concurrent Transactions:
– Mix

insert into shoppingcart values (107999,914,870,214);
update shoppingcart set Qty = 10 where shopperid =
95047 and itemid = 88636;

delete from shoppingcart where shopperid = 86123 and
itemid = 8321;

select shopperid, itemid, qty, price from shoppingcart
where shopperid = ?;

– Queries Only
select shopperid, itemid, qty, price from shoppingcart
where shopperid = ?;

56

6 - Ecommerce © Dennis Shasha, Philippe Bonnet - 2002 111

Connection Pooling (no refusals)
• Each thread establishes a

connection and performs 5
insert statements.

• If a connection cannot be
established the thread waits 15
secs before trying again.

• The number of connection is
limited to 60 on the database
server.

• Using connection pooling, the
requests are queued and
serviced when possible. There
are no refused connections.

0

50

100

150

200

250

20 40 60 80 100 120 140

Number of client threads

R
es

p
o

n
se

 T
im

e

connection pooling

simple connections

Experiment performed on
Oracle8i on Windows 2000

6 - Ecommerce © Dennis Shasha, Philippe Bonnet - 2002 112

Indexing

• Using a clustered
index on shopperid in
the shopping cart
provides:
– Query speed-up
– Update/Deletion speed-

up
Experiment performed on
SQL Server 2000
on Windows 2000

0
10
20
30
40
50
60
70
80
90

Mix Queries Only

Th
ro

ug
hp

ut
 (q

ue
ri

es
/s

ec
) no index

clustered index

57

6 - Ecommerce © Dennis Shasha, Philippe Bonnet - 2002 113

Capacity Planning
• Arrival Rate

– A1 is given as an assumption
– A2 = (0.4 A1) + (0.5 A2)
– A3 = 0.1 A2

• Service Time (S)
– S1, S2, S3 are measured

• Utilization
– U = A x S

• Response Time
– R = U/(A(1-U)) = S/(1-U)
(assuming Poisson arrivals)

Entry (S1) 0.4

Search (S2)

Checkout (S3)

0.5

0.1

Getting the demand assumptions right
is what makes capacity planning hard

7 - Datawarehouse © Dennis Shasha, Philippe Bonnet - 2002 114

Datawarehouse Tuning

• Aggregate (strategic) targeting:
– Aggregates flow up from a wide selection of

data, and then
– Targeted decisions flow down

• Examples:
– Riding the wave of clothing fads
– Tracking delays for frequent-flyer customers

58

7 - Datawarehouse © Dennis Shasha, Philippe Bonnet - 2002 115

Data Warehouse
Workload

• Broad
– Aggregate queries over ranges of values, e.g., find

the total sales by region and quarter.
• Deep

– Queries that require precise individualized
information, e.g., which frequent flyers have been
delayed several times in the last month?

• Dynamic (vs. Static)
– Queries that require up-to-date information, e.g.

which nodes have the highest traffic now?

7 - Datawarehouse © Dennis Shasha, Philippe Bonnet - 2002 116

Tuning Knobs

• Indexes
• Materialized views
• Approximation

59

© Dennis Shasha, Philippe Bonnet - 2002 117

Bitmaps -- data

Settings:
lineitem (L_ORDERKEY, L_PARTKEY , L_SUPPKEY, L_LINENUMBER,

L_QUANTITY, L_EXTENDEDPRICE ,
L_DISCOUNT, L_TAX , L_RETURNFLAG, L_LINESTATUS ,
L_SHIPDATE, L_COMMITDATE,
L_RECEIPTDATE, L_SHIPINSTRUCT ,
L_SHIPMODE , L_COMMENT);

create bitmap index b_lin_2 on lineitem(l_returnflag);

create bitmap index b_lin_3 on lineitem(l_linestatus);
create bitmap index b_lin_4 on lineitem(l_linenumber);

– 100000 rows ; cold buffer
– Dual Pentium II (450MHz, 512Kb), 512 Mb RAM, 3x18Gb drives

(10000RPM), Windows 2000.

© Dennis Shasha, Philippe Bonnet - 2002 118

Bitmaps -- queries

Queries:
– 1 attribute

select count(*) from lineitem where l_returnflag =
'N';

– 2 attributes
select count(*) from lineitem where l_returnflag = 'N'
and l_linenumber > 3;

– 3 attributes
select count(*) from lineitem where l_returnflag =

'N' and l_linenumber > 3 and l_linestatus = 'F';

60

7 - Datawarehouse © Dennis Shasha, Philippe Bonnet - 2002 119

Bitmaps

• Order of magnitude
improvement compared to
scan.

• Bitmaps are best suited for
multiple conditions on
several attributes, each
having a low selectivity.A

N
R

l_returnflag
O
F

l_linestatus

0

2

4

6

8

10

12

1 2 3

Th
ro

ug
hp

ut
 (Q

ue
rie

s/
se

c)

linear scan
bitmap

© Dennis Shasha, Philippe Bonnet - 2002 120

Multidimensional Indexes -- data

Settings:
create table spatial_facts
(a1 int, a2 int, a3 int, a4 int, a5 int, a6 int, a7
int, a8 int, a9 int, a10 int, geom_a3_a7
mdsys.sdo_geometry);
create index r_spatialfacts on

spatial_facts(geom_a3_a7) indextype is
mdsys.spatial_index;

create bitmap index b2_spatialfacts on
spatial_facts(a3,a7);

– 500000 rows ; cold buffer
– Dual Pentium II (450MHz, 512Kb), 512 Mb RAM, 3x18Gb drives

(10000RPM), Windows 2000.

61

© Dennis Shasha, Philippe Bonnet - 2002 121

Multidimensional Indexes --
queries

Queries:
– Point Queries

select count(*) from fact where a3 = 694014 and a7 = 928878;

select count(*) from spatial_facts where
SDO_RELATE(geom_a3_a7, MDSYS.SDO_GEOMETRY(2001, NULL,
MDSYS.SDO_POINT_TYPE(694014,928878, NULL), NULL, NULL),
'mask=equal querytype=WINDOW') = 'TRUE';

– Range Queries
select count(*) from spatial_facts where

SDO_RELATE(geom_a3_a7, mdsys.sdo_geometry(2003,NULL,NULL,
mdsys.sdo_elem_info_array(1,1003,3),mdsys.sdo_ordinate_array
(10,800000,1000000,1000000)), 'mask=inside
querytype=WINDOW') = 'TRUE';

select count(*) from spatial_facts where a3 > 10 and a3 <
1000000 and a7 > 800000 and a7 < 1000000;

7 - Datawarehouse © Dennis Shasha, Philippe Bonnet - 2002 122

Multidimensional Indexes

• Oracle 8i on Windows
2000

• Spatial Extension:
– 2-dimensional data
– Spatial functions used

in the query
• R-tree does not

perform well because
of the overhead of
spatial extension.

0

2

4

6

8

10

12

14

point query range query

R
es

po
ns

e
Ti

m
e

(s
ec

) bitmap - two
attributes
r-tree

62

© Dennis Shasha, Philippe Bonnet - 2002 123

Multidimensional Indexes

R-Tree

SELECT STATEMENT
SORT AGGREGATE

TABLE ACCESS BY INDEX
ROWID SPATIAL_FACTS
DOMAIN INDEX
R_SPATIALFACTS

Bitmaps

SELECT STATEMENT
SORT AGGREGATE

BITMAP CONVERSION
COUNT
BITMAP AND
BITMAP INDEX SINGLE

VALUE B_FACT7
BITMAP INDEX SINGLE

VALUE B_FACT3

© Dennis Shasha, Philippe Bonnet - 2002 124

Materialized Views -- data

Settings:
orders(ordernum, itemnum, quantity, purchaser, vendor);
create clustered index i_order on orders(itemnum);

store(vendor, name);
item(itemnum, price);
create clustered index i_item on item(itemnum);

– 1000000 orders, 10000 stores, 400000 items; Cold buffer
– Oracle 9i
– Pentium III (1 GHz, 256 Kb), 1Gb RAM, Adapter 39160 with 2

channels, 3x18Gb drives (10000RPM), Linux Debian 2.4.

63

© Dennis Shasha, Philippe Bonnet - 2002 125

Materialized Views -- data

Settings:
create materialized view vendorOutstanding
build immediate
refresh complete
enable query rewrite
as
select orders.vendor, sum(orders.quantity*item.price)
from orders,item
where orders.itemnum = item.itemnum
group by orders.vendor;

© Dennis Shasha, Philippe Bonnet - 2002 126

Materialized Views --
transactions

Concurrent Transactions:
– Insertions

insert into orders values
(1000350,7825,562,'xxxxxx6944','vendor4');

– Queries
select orders.vendor, sum(orders.quantity*item.price)
from orders,item
where orders.itemnum = item.itemnum
group by orders.vendor;

select * from vendorOutstanding;

64

© Dennis Shasha, Philippe Bonnet - 2002 127

Materialized Views
• Graph:

– Oracle9i on Linux
– Total sale by vendor is

materialized
• Trade-off between query speed-up

and view maintenance:
– The impact of incremental

maintenance on performance is
significant.

– Rebuild maintenance achieves a
good throughput.

– A static data warehouse offers a
good trade-off.

0

400

800

1200

1600

Materialized
View (fast on

commit)

Materialized
View (complete

on demand)

No
Materialized

ViewTh
ro

ug
hp

ut
 (s

ta
te

m
en

ts
/s

ec
)

0
2
4
6
8

10
12
14

Materialized View No Materialized View

R
es

po
ns

e
Ti

m
e

(s
ec

)

© Dennis Shasha, Philippe Bonnet - 2002 128

Materialized View
Maintenance

• Problem when large
number of views to
maintain.

• The order in which views
are maintained is
important:
– A view can be computed

from an existing view
instead of being recomputed
from the base relations
(total per region can be
computed from total per
nation).

• Let the views and base tables be
nodes v_i

• Let there be an edge from v_1 to
v_2 if it possible to compute the
view v_2 from v_1. Associate the
cost of computing v_2 from v_1 to
this edge.

• Compute all pairs shortest path
where the start nodes are the set of
base tables.

• The result is an acyclic graph A.
Take a topological sort of A and let
that be the order of view
construction.

65

© Dennis Shasha, Philippe Bonnet - 2002 129

Approximations -- data

Settings:
– TPC-H schema
– Approximations

insert into approxlineitem
select top 6000 *
from lineitem
where l_linenumber = 4;

insert into approxorders
select O_ORDERKEY, O_CUSTKEY, O_ORDERSTATUS,
O_TOTALPRICE, O_ORDERDATE, O_ORDERPRIORITY, O_CLERK,
O_SHIPPRIORITY, O_COMMENT

from orders, approxlineitem
where o_orderkey = l_orderkey;

© Dennis Shasha, Philippe Bonnet - 2002 130

Approximations -- queries
insert into approxsupplier
select distinct S_SUPPKEY,

S_NAME ,
S_ADDRESS,
S_NATIONKEY,
S_PHONE,
S_ACCTBAL,
S_COMMENT

from approxlineitem, supplier
where s_suppkey = l_suppkey;

insert into approxpart
select distinct P_PARTKEY,

P_NAME ,
P_MFGR ,
P_BRAND ,
P_TYPE ,
P_SIZE ,
P_CONTAINER ,
P_RETAILPRICE ,
P_COMMENT

from approxlineitem, part
where p_partkey = l_partkey;

insert into approxpartsupp
select distinct PS_PARTKEY,

PS_SUPPKEY,
PS_AVAILQTY,
PS_SUPPLYCOST,
PS_COMMENT

from partsupp, approxpart, approxsupplier
where ps_partkey = p_partkey and

ps_suppkey = s_suppkey;

insert into approxcustomer
select distinct C_CUSTKEY,

C_NAME ,
C_ADDRESS,
C_NATIONKEY,
C_PHONE ,
C_ACCTBAL,
C_MKTSEGMENT,
C_COMMENT

from customer, approxorders
where o_custkey = c_custkey;
insert into approxregion select * from

region;
insert into approxnation select * from

nation;

66

© Dennis Shasha, Philippe Bonnet - 2002 131

Approximations -- more queries

Queries:
– Single table query on lineitem
select l_returnflag, l_linestatus, sum(l_quantity) as sum_qty,

sum(l_extendedprice) as sum_base_price,
sum(l_extendedprice * (1 - l_discount)) as sum_disc_price,
sum(l_extendedprice * (1 - l_discount) * (1 + l_tax)) as
sum_charge,
avg(l_quantity) as avg_qty, avg(l_extendedprice) as avg_price,
avg(l_discount) as avg_disc, count(*) as count_order

from lineitem
where datediff(day, l_shipdate, '1998-12-01') <= '120'
group by l_returnflag, l_linestatus
order by l_returnflag, l_linestatus;

© Dennis Shasha, Philippe Bonnet - 2002 132

Approximations -- still more
Queries:

– 6-way join
select n_name, avg(l_extendedprice * (1 - l_discount)) as

revenue
from customer, orders, lineitem, supplier, nation, region
where c_custkey = o_custkey

and l_orderkey = o_orderkey
and l_suppkey = s_suppkey
and c_nationkey = s_nationkey
and s_nationkey = n_nationkey
and n_regionkey = r_regionkey
and r_name = 'AFRICA'
and o_orderdate >= '1993-01-01'
and datediff(year, o_orderdate,'1993-01-01') < 1

group by n_name
order by revenue desc;

67

7 - Datawarehouse © Dennis Shasha, Philippe Bonnet - 2002 133

Approximation accuracy

• Good approximation for
query Q1 on lineitem

• The aggregated values
obtained on a query with a
6-way join are
significantly different
from the actual values --
for some applications may
still be good enough.

TPC-H Query Q5: 6 way join

-40

-20

0

20

40

60

1 2 3 4 5

Groups returned in the query

A
pp

ro
xi

m
at

ed

ag
gr

eg
at

ed
 v

al
ue

s
(%

 o
f B

as
e

A
gg

re
ga

te
 V

al
ue

)

1% sample
10% sample

TPC-H Query Q1: lineitem

-40

-20

0

20

40

60

1 2 3 4 5 6 7 8

Aggregate values

A
pp

ro
xi

m
at

ed

A
gg

re
ga

te
 V

al
ue

s
 (%

 o
f B

as
e

A
gg

re
ga

te
 V

al
ue

) 1% sample
10% sample

7 - Datawarehouse © Dennis Shasha, Philippe Bonnet - 2002 134

Approximation Speedup

• Aqua approximation
on the TPC-H schema
– 1% and 10% lineitem

sample propagated.

• The query speed-up
obtained with
approximated relations
is significant.

0
0.5

1
1.5

2
2.5

3
3.5

4

Q1 Q5

TPC-H Queries

R
es

po
ns

e
Ti

m
e

(s
ec

)

base relations
1 % sample
10% sample

68

8 - Distributed Apps © Dennis Shasha, Philippe Bonnet - 2002 135

Tuning Distributed Applications

• Queries across multiple databases
– Federated Datawarehouse
– IBM’s DataJoiner now integrated at DB2 v7.2

• The source should perform as much work as
possible and return as few data as possible for
processing at the federated server

• Processing data across multiple databases

8 - Distributed Apps © Dennis Shasha, Philippe Bonnet - 2002 136

A puzzle

• Two databases X and Y
– X records inventory data to be used for restocking
– Y contains sales data about shipments

• You want to improve shipping
– Certain data of X should be postprocessed on Y shortly

after it enters X
– You are allowed to add/change transactions on X and Y
– You want to avoid losing data from X and you want to

avoid double-processing data on Y, even in the face of
failures.

69

8 - Distributed Apps © Dennis Shasha, Philippe Bonnet - 2002 137

Two-Phase Commit

X

Y

commit

commit

Source
(coordinator
& participant)

Destination
(participant)

+ Commits are
coordinated between
the source and the
destination

- If one participant fails
then blocking can
occur

- Not all db systems
support prepare-to-
commit interface

8 - Distributed Apps © Dennis Shasha, Philippe Bonnet - 2002 138

Replication Server

+ Destination within a
few seconds of being
up-to-date

+ Decision support
queries can be asked
on destination db

- Administrator is
needed when network
connection breaks!

X

Y

Source

Destination

70

8 - Distributed Apps © Dennis Shasha, Philippe Bonnet - 2002 139

Staging Tables

+ No specific
mechanism is
necessary at source or
destination

- Coordination of
transactions on X and
Y

X

Y

Source

Destination

Staging table

8 - Distributed Apps © Dennis Shasha, Philippe Bonnet - 2002 140

Database X Database Y

Table S Table I

Yunprocessed
Yunprocessed

Yunprocessed

M1

Read from source table
M2

Write to destination

Staging Tables

Table S

Yunprocessed
Yunprocessed

Yunprocessed

Database Y

Table I

unprocessed
unprocessed
unprocessed

Database X

STEP 1 STEP 2

71

© Dennis Shasha, Philippe Bonnet - 2002 141

Staging Tables

Database X Database Y

Table S Table I

Yunprocessed
Yunprocessed

Yunprocessed

Table S

Yunprocessed
Yunprocessed

Yunprocessed

Database Y

Table I

processed
unprocessed
unprocessed

Database X

STEP 3 STEP 4

M3

Update on destination

processed
unprocessed
unprocessed

M4

Delete source; then dest Y
Xact: Update source site
Xact:update destination site

9 - Troubleshooting © Dennis Shasha, Philippe Bonnet - 2002 142

Troubleshooting Techniques(*)

• Extraction and Analysis of Performance
Indicators
– Consumer-producer chain framework
– Tools

• Query plan monitors
• Performance monitors
• Event monitors

(*) From Alberto Lerner’s chapter

72

© Dennis Shasha, Philippe Bonnet - 2002 143

A Consumer-Producer Chain of
a DBMS’s Resources

High Level
Consumers

Intermediate
Resources/
Consumers

Primary
Resources

PARSER
OPTIMIZER
PARSER

OPTIMIZER

EXECUTION
SUBSYSTEM

EXECUTION
SUBSYSTEMDISK

SYBSYSTEM
DISK

SYBSYSTEM

CACHE
MANAGER
CACHE

MANAGER

LOGGING
SUBSYSTEM
LOGGING

SUBSYSTEM

LOCKING
SUBSYSTEM
LOCKING

SUBSYSTEM

NETWORKDISK/
CONTROLLERCPUMEMORY

sql commands

probing
spots
for

indicators

9 - Troubleshooting © Dennis Shasha, Philippe Bonnet - 2002 144

Recurrent Patterns of Problems

• An overloading high-level
consumer

• A poorly parameterized
subsystem

• An overloaded primary
resource

Effects are not always felt first where the cause is!

73

9 - Troubleshooting © Dennis Shasha, Philippe Bonnet - 2002 145

A Systematic Approach to Monitoring

• Question 1: Are critical
queries being served in
the most efficient manner?

• Question 2: Are
subsystems making
optimal use of resources?

• Question 3: Are there
enough primary resources
available?

Extract indicators to answer the following questions

9 - Troubleshooting © Dennis Shasha, Philippe Bonnet - 2002 146

Investigating High Level Consumers

• Answer question 1:
“Are critical queries being served in
the most efficient manner?”

1. Identify the critical queries
2. Analyze their access plans
3. Profile their execution

74

9 - Troubleshooting © Dennis Shasha, Philippe Bonnet - 2002 147

Identifying Critical Queries

Critical queries are usually those that:
• Take a long time
• Are frequently executed

Often, a user complaint will tip us off.

9 - Troubleshooting © Dennis Shasha, Philippe Bonnet - 2002 148

Event Monitors to Identify
Critical Queries

• If no user complains...
• Capture usage measurements at specific

events (e.g., end of each query) and then sort
by usage

• Less overhead than other type of tools
because indicators are usually by-product of
events monitored

• Typical measures include CPU used, IO
used, locks obtained etc.

75

9 - Troubleshooting © Dennis Shasha, Philippe Bonnet - 2002 149

An example Event Monitor

• CPU indicators
sorted by Oracle’s
Trace Data Viewer

• Similar tools: DB2’s
Event Monitor and
MSSQL’s Server
Profiler

9 - Troubleshooting © Dennis Shasha, Philippe Bonnet - 2002 150

An example Plan Explainer

• Access plan according
to MSSQL’s Query
Analyzer

• Similar tools: DB2’s
Visual Explain and
Oracle’s SQL Analyze
Tool

76

9 - Troubleshooting © Dennis Shasha, Philippe Bonnet - 2002 151

Finding Strangeness in Access Plans

What to pay attention to in a plan
• Access paths for each table
• Sorts or intermediary results
• Order of operations
• Algorithms used in the operators

9 - Troubleshooting © Dennis Shasha, Philippe Bonnet - 2002 152

To Index or not to index?
select c_name, n_name from CUSTOMER join NATION
on c_nationkey=n_nationkey where c_acctbal > 0

Which plan performs best?
(nation_pk is an non-clustered index over n_nationkey,
and similarly for acctbal_ix over c_acctbal)

77

9 - Troubleshooting © Dennis Shasha, Philippe Bonnet - 2002 153

Non-clustering indexes can be trouble

For a low selectivity predicate, each access to
the index generates a random access to the table
– possibly duplicate! It ends up that the number
of pages read from the table is greater than its
size, i.e., a table scan is way better

Table Scan Index Scan
5 sec

143,075 pages
6,777 pages

136,319 pages
7 pages

76 sec
272,618 pages
131,425 pages
273,173 pages

552 pages

CPU time
data logical reads

data physical reads
index logical reads

index physical reads

© Dennis Shasha, Philippe Bonnet - 2002 154

An example
Performance Monitor (query level)

• Buffer and CPU
consumption for a query
according to DB2’s
Benchmark tool

• Similar tools: MSSQL’s
SET STATISTICS
switch and Oracle’s
SQL Analyze Tool

Statement number: 1
select C_NAME, N_NAME
from DBA.CUSTOMER join DBA.NATION on C_NATIONKEY = N_NATIONKEY
where C_ACCTBAL > 0

Number of rows retrieved is: 136308
Number of rows sent to output is: 0
Elapsed Time is: 76.349 seconds

…
Buffer pool data logical reads = 272618
Buffer pool data physical reads = 131425
Buffer pool data writes = 0
Buffer pool index logical reads = 273173
Buffer pool index physical reads = 552
Buffer pool index writes = 0
Total buffer pool read time (ms) = 71352
Total buffer pool write time (ms) = 0
…
Summary of Results
==================

Elapsed Agent CPU Rows Rows
Statement # Time (s) Time (s) Fetched Printed
1 76.349 6.670 136308 0

Statement number: 1
select C_NAME, N_NAME
from DBA.CUSTOMER join DBA.NATION on C_NATIONKEY = N_NATIONKEY
where C_ACCTBAL > 0

Number of rows retrieved is: 136308
Number of rows sent to output is: 0
Elapsed Time is: 76.349 seconds

…
Buffer pool data logical reads = 272618
Buffer pool data physical reads = 131425
Buffer pool data writes = 0
Buffer pool index logical reads = 273173
Buffer pool index physical reads = 552
Buffer pool index writes = 0
Total buffer pool read time (ms) = 71352
Total buffer pool write time (ms) = 0
…
Summary of Results
==================

Elapsed Agent CPU Rows Rows
Statement # Time (s) Time (s) Fetched Printed
1 76.349 6.670 136308 0

78

9 - Troubleshooting © Dennis Shasha, Philippe Bonnet - 2002 155

An example
Performance Monitor (system level)

• An IO indicator’s
consumption evolution
(qualitative and
quantitative) according
to DB2’s System
Monitor

• Similar tools: Window’s
Performance Monitor
and Oracle’s
Performance Manager

9 - Troubleshooting © Dennis Shasha, Philippe Bonnet - 2002 156

Investigating High Level Consumers:
Summary

Find
critical
queries

Found any?Investigate
lower levels

Answer Q1
over them

Overcon-
sumption?

Tune problematic
queries

yes

yesno

no

79

9 - Troubleshooting © Dennis Shasha, Philippe Bonnet - 2002 157

Investigating Primary Resources

• Answer question 3:
“Are there enough primary resources
available for a DBMS to consume?”

• Primary resources are: CPU, disk &
controllers, memory, and network

• Analyze specific OS-level indicators to
discover bottlenecks.

• A system-level Performance Monitor is
the right tool here

9 - Troubleshooting © Dennis Shasha, Philippe Bonnet - 2002 158

CPU Consumption Indicators
at the OS Level

100%

CPU
% of

utilization

70%

time

Sustained utilization
over 70% should
trigger the alert.

System utilization
shouldn’t be more

than 40%.
DBMS (on a non-

dedicated machine)
should be getting a
decent time share.

total usage

system usage

80

© Dennis Shasha, Philippe Bonnet - 2002 159

Disk Performance Indicators
at the OS Level

Wait queue

Average Queue Size

New requests
Disk Transfers

/second

Should be
close to zero

Wait times
should also
be close to

zeroIdle disk with
pending requests?
Check controller

contention.
Also, transfers

should be
balanced among
disks/controllers

9 - Troubleshooting © Dennis Shasha, Philippe Bonnet - 2002 160

Memory Consumption Indicators
at the OS Level

pagefile

real
memory

virtual
memory

Page faults/time
should be close

to zero. If paging
happens, at least

not DB cache pages.

% of pagefile in
use (it’s used a fixed
file/partition) will tell

you how much
memory is “lacking.”

81

9 - Troubleshooting © Dennis Shasha, Philippe Bonnet - 2002 161

Investigating Intermediate
Resources/Consumers

• Answer question 2:
“Are subsystems making optimal use of
resources?”

• Main subsystems: Cache Manager, Disk
subsystem, Lock subsystem, and Log/Recovery
subsystem

• Similarly to Q3, extract and analyze relevant
Performance Indicators

9 - Troubleshooting © Dennis Shasha, Philippe Bonnet - 2002 162

Cache Manager Performance Indicators

Table
scan

readpage()

Free Page slots

Page reads/
writes

Pick
victim

strategy Data Pages

Cache
Manager

If page is not in the
cache, readpage

(logical) generate an
actual IO (physical).

Ratio of readpages that
did not generate

physical IO should be
90% or more

Pages are regularly
saved to disk to make

free space.
of free slots should

always be > 0

82

9 - Troubleshooting © Dennis Shasha, Philippe Bonnet - 2002 163

Disk Manager Performance Indicators

rows

page

extent

file

Storage
Hierarchy
(simplified)

disk

Row displacement: should be
kept under 5% of rows

Free space fragmentation:
pages with few space should

not be in the free list

Data fragmentation: ideally
files that store DB objects

(table, index) should be in one
or few (<5) contiguous extents

File position: should balance
workload evenly among all

disks

9 - Troubleshooting © Dennis Shasha, Philippe Bonnet - 2002 164

Lock Manager Performance Indicators

Lock
request

Object Lock Type TXN ID

Lock
List

Locks
pending list

Deadlocks and timeouts
should seldom happen (no

more then 1% of the
transactions)

Lock wait time for a
transaction should be a

small fraction of the whole
transaction time.

Number of locks on wait
should be a small fraction
of the number of locks on

the lock list.

83

9 - Troubleshooting © Dennis Shasha, Philippe Bonnet - 2002 165

Investigating Intermediate and Primary
Resources: Summary

Answer Q3

Problems at
OS level?

Answer Q2 Tune low-level
resources

yesno

Problematic
subsystems?

Tune
subsystems

Investigate
upper level

yes no

9 - Troubleshooting © Dennis Shasha, Philippe Bonnet - 2002 166

Troubleshooting Techniques

• Monitoring a DBMS’s performance should
be based on queries and resources.
– The consumption chain helps distinguish

problems’ causes from their symptoms
– Existing tools help extracting relevant

performance indicators

84

© Dennis Shasha, Philippe Bonnet - 2002 167

Recall Tuning Principles

• Think globally, fix locally (troubleshoot to see
what matters)

• Partitioning breaks bottlenecks (find parallelism in
processors, controllers, caches, and disks)

• Start-up costs are high; running costs are low
(batch size, cursors)

• Be prepared for trade-offs (unless you can rethink
the queries)

