
INTERLEAVING A JOIN SEQUENCE WITH SEMIJOINS IN

DISTRIBUTED QUERY PROCESSING

Ming�Syan Chen and Philip S� Yu

IBM Thomas J� Watson Research Center

P�O� Box ���

Yorktown Heights� NY ����	

Abstract

In distributed query processing� the conventional approach to reduce the amount of data

transmission is to �rst apply a sequence of semijoins as �reducers� and then ship the resultant

relations to the �nal site to carry out the join operations� Recently� it has been shown that the

approach of applying a combination of joins and semijoins as reducers can lead to substantially

larger reduction on data transmission required� In this paper� we develop an e�cient heuristic

approach to determine an e�ective sequence of semijoin and join reducers� Semijoins whose

execution will reduce the amount of data transmission required to perform a join sequence are

termed bene�cial semijoins for that join sequence� Note that bene�cial semijoins include the

conventional pro�table semijoins and the gainful semijoins that are not pro�table themselves

but become bene�cial due to the inclusion of join reducers� This type of dependency between

semijoin and join reducers complicates the identi�cation of bene�cial semijoins and the ordering

in the reducer sequence� In this paper� we �rst obtain a sequence of join reducers and map

it into a join sequence tree� In light of the join sequence tree� we derive important properties

of bene�cial semijoins� These properties are then applied to develop an e�cient algorithm to

determine the bene�cial semijoins which can be inserted into the join sequence� Examples are

also given to illustrate this approach� Our results show that the approach of interleaving a join

sequence with bene�cial semijoins are not only e�cient but also e�ective in reducing the total

amount of data transmission required to process distributed queries�

Index Terms� Distributed query processing� gainful semijoins� bene�cial semijoins� join sequence
tree� reducible set�

� Introduction

In a distributed relational database system� the processing of a query involves data transmission
among di�erent sites via a computer network� As pointed out in ����� the processing of a distributed
query in such a system is composed of the following three phases� 	
� local processing phase which
involves all local processing such as selections and projections� 	�� reduction phase where a sequence
of semijoins is used to reduce the size of relations� and 	�� �nal processing phase in which all
resulting relations are sent to the site where the �nal query processing is performed� The objective
taken in this context is mainly to reduce the communication cost required for data transmission
��� Signi�cant research e�orts have been focused on the problem of reducing the amount of data
transmission required for phases 	�� and 	�� of distributed query processing �
���
�� �
����
�� ��
� ����
��� ����� The semijoin operation especially has received considerable attention and been extensively

studied in the literature� It has been proved that a tree query can be fully reduced by using semijoin
���� and there has been much research reported in optimizing semijoin sequences to process certain
tree queries� such as star and chain queries ��� �
��� However� the determination of an optimal
semijoin sequence for general tree queries has been proved to be NP�hard ����� For general query
graphs with cycles� even with one join attribute� the problem of �nding an optimal strategy to
minimize the data transmission cost has also been proved to be NP�hard �
���

In addition to semijoins� join operations can also be used as reducers in processing distributed
queries ��� ��� �
�� �
��� As shown in ��� ��� and to be illustrated later� judiciously applying join
operations as reducers can further reduce the amount of data transmission required� Moreover� as
pointed out in ���� the approach of combining join and semijoin operations as reducers can result in
more bene�cial semijoins due to the inclusion of joins as reducers� 	Such semijoins are referred to
as gainful semijoins in ����� In addition� this approach can reduce the communication cost further
by taking advantage of the removability of pure join attributes�� For simplicity� both the pro�table
semijoins and the gainful semijoins in ��� are called bene�cial semijoins in this paper� In ���� it is
proved that the problem of determining the optimal sequence of join operations for a given query
graph is of exponential complexity� thus justifying the need to apply heuristic approaches to deal
with this problem� Also� it is shown in ��� that by mapping the problem of determining a sequence
of join reducers for a query into that of �nding a speci�c type of cut set for the query graph�� one
can develop e�cient heuristic algorithms of polynomial time complexity for tree and general query
graphs respectively� However� the issue of identi�cation of gainful semijoins was not addressed in ���
where the semijoin sequences are assumed to be given and applied prior to the join reducers� Note
that as gainful semijoins depend upon subsequent join and semijoin operations� they can not be
determined in isolation as pro�table semijoins� Consequently� despite its importance� the problem
of �nding an ordered sequence of join and semijoin reducers for distributed query processing was
not fully explored� and in fact� there is no e�cient algorithm proposed thus far for such a problem�
This is mainly due to the inherent di�culty of this problem� since the dependency between semijoin
and join reducers signi�cantly complicates the identi�cation of bene�cial semijoins as well as the
ordering in the reducer sequence� In view of this fact� we in this paper focus on the issue of
determining the bene�cial semijoins 	including pro�table and gainful semijoins� and the proper
ordering to insert the semijoins determined into the join sequence to form a sequence of join and
semijoin reducers for distributed query processing� To the best of our knowledge� no prior work
has either explored the theoretical aspects of� or developed algorithms for such an approach� This
fact distinguishes our work from others�

We shall �rst obtain a join sequence and then map the sequence of joins into a join sequence
tree� For example� consider the query graph �� in Fig�
� Assume R� is in the site where the �nal
results are needed� The join sequence tree� for a join sequence R� � R�� R� � R�� R� � R� and
R� � R� can be found in Fig� �� In light of the structure of a join sequence tree� we can derive
important properties of bene�cial semijoins for the join sequence tree� These properties will then
be applied to develop an e�cient algorithm to determine bene�cial semijoins for the join sequence�
It is worth mentioning that the conventional approach of sending all the relations to the �nal site
in phase 	�� of the query processing is corresponding to the join sequence tree in Fig� �� and thus
a special case of our study� Examples will be given to illustrate our results� It can be seen that the
approach to determine bene�cial semijoins and interleave a join sequence with bene�cial semijoins
is not only e�cient but also e�ective in reducing the total amount of data transmission required to

�Pure join attributes are those which are used in join predicates but not part of the output attributes�
�This type of cut set is termed complete and feasible �CF� set of cuts in ����
�The formal de�nition of a join sequence tree is given in Section ��

�

process a distributed query� thus making the approach of using a combination of joins and semijoins
as reducers more attractive�

This paper is organized as follows� The notation and de�nitions required are given in Section
��
 and some facts of using a combination of join and semijoin reducers are given in Section ���� In
Section �� we �rst introduce the mapping to obtain a join sequence tree� and then derive important
properties for bene�cial semijoins which are applied later to develop an algorithm for determining
bene�cial semijoins for a join sequence� Illustrative examples are presented in Section �� This paper
concludes with Section �

� Preliminaries

The notation� de�nitions and assumptions required are stated in Section ��
� and some properties
and an example for the approach of combining joins and semijoins as reducers in query processing
are presented in Section ����

��� Notation� de�nitions and assumptions

As in most previous work in distributed databases �� ����� we assume that the cost for executing
a query can mainly be expressed in terms of the total amount of inter�site data transmission
required� Also� it is assumed that a query is of the form of conjunctions of equi�join predicates and
all attributes are renamed in such a way that two join attributes have the same attribute name if
and only if they have a join predicate between them� To facilitate our presentation� we assume that
relations referenced in the query are located in di�erent sites�� When multiple copies of a relation
exist� we assume that one copy has been preselected�

A join query graph can be denoted by a graph G � 	V� E�� where V is the set of nodes and
E is the set of edges� An edge connecting two nodes ni and nj is denoted by 	ni�nj�� and said to
be incident to ni and nj � Each node in a join query graph represents a relation� Two nodes are
connected by an edge if there exists a join predicate on some attribute of the two corresponding
relations� An edge 	ni�nj� in a graph G is being shrunken if 	ni�nj� is removed from the graph
and ni and nj are merged together� Notice that when a join operation between the two relations
corresponding to nodes ni and nj in a given query graph G is carried out� we can obtain the
resulting query graph by shrinking the edges between ni and nj to represent the resulting relation
from the join operation� Also we use NT 	G� to denote the number of tuples in the relation resulting
from the query graph G�

We use jKj to denote the cardinality of a set K� Let wA be the width of an attribute A and
wRi

be the width of a tuple in Ri� The size of the total amount of data in Ri can then be denoted
by wRi

jRij� For notational simplicity� we use jAj to denote the cardinality of the domain of an

attribute A� De�ne the selectivity �i�a of attribute A in Ri as
jRi�A�j
jAj � where Ri	A� is the set of

distinct values for the attribute A in Ri� We use Ri � A � Rj to mean a semijoin from Ri to
Rj on attribute A� in which Ri is called the reducer and Rj is called the reducee of the semijoin�
Note that the reduction of the relation Rj by the semijoin Ri � A � Rj is proportional to the
reduction of Rj	A�� The estimation of the size of the relation reduced by a semijoin is thus similar
to estimating the reduction of projection on the semijoin attributes� After the semijoin Ri�A �
Rj � the cardinality of Rj can be estimated as jRjj�i�a� A semijoin Ri�A� Rj� is called pro�table

�Note that if some relations referenced by a query are located in the same site� some local processing can be
performed �rst and the query is modi�ed accordingly before the proposed scheme is applied�

�

if its cost of sending Ri	A�� wAjRi	A�j �wAjAj�i�a� is less than its bene�t� wRj
jRj j�wRj

jRjj �i�a�
wRj

jRj j	
� �i�a�� where wRj
jRjj and wRj

jRjj�i�a are respectively the sizes of Rj before and after
the semijoin� Note that� instead of directly sending Ri	A� to Rj� there can be di�erent methods to
carry out the semijoin operation Ri� A � Rj� For example� in the case that jRj	A�j is much less
than jRi	A�j� Rj can send Rj	A� to Ri �rst� and then Ri� instead of sending Ri	A� to Rj � sends
to Rj a bit vector to indicate the matching attributes so as to reduce the cost of the semijoin��
In view of this� we can use the minimal cost of the applicable methods as the cost of the semijoin
and determine if a semijoin is pro�table�� Nevertheless� as can be seen later� the results and the
algorithm developed in this paper do not rely on any particular semijoin method� Without loss of
generality� as in most prior work ����� we use wAjRi	A�j to denote the cost of a semijoin Ri �A�

Rj � To simplify the notation� we use Ri � Rj to mean a semijoin from Ri to Rj in the case that the
semijoin attribute does not have to be speci�ed� Also� the notation Ri�Rj is used to mean that
Ri is sent to the site of Rj and a join operation is performed with Rj there� We use Ri� to denote
the resulting relation after some reducers 	joins or semijoins� are applied to an original relation Ri�
In addition� we assume that the values of attributes are uniformly distributed over all tuples in a
relation and that the values of one attribute are independent of those in another attribute�

Suppose R� has two attributes A and B� The problem of estimating the cardinality of R�

projected on the non�semijoin attribute B after the semijoin operation R� �A� R�� where jR�j�n�
jR�	B�j�m and jR�j���a�k� has been studied and can be described by the following combinatorial
problem� �There are n balls with m di�erent colors� Each ball has one color and the m colors are
uniformly distributed over the n balls� Find the expected number of colors if k balls are randomly
selected from the n balls�� Denote the expected number of colors of the k selected balls as g	m�n�k��
Then� as pointed out in ����� g	m�n�k� can be formulated as follows�

g	m�n� k� � m�
�
kY
i��

	
n�m���

m
� i�

n � i�

�� 	
�

As shown in ���� Eq�	
� can be approximated as below�

g	m�n� k� �

���
��

m� for m � k
� �

k� for k � m
� �

�m	k�
� � otherwise�

	��

It can be seen that when jR�	B�j�m is much less than jR�j���a�k� the cardinality of R�	B�
remains approximately the same after the semijoin R� �A � R�� Thus� as in most prior work
�
� ���� we assume in this paper the cardinality of a non�semijoin attribute remains the same after
a semijoin operation to simplify our discussion� In addition� to facilitate our presentation for the
join sequence tree later� it is necessary to introduce the structure of a tree� A tree is a connected
acyclic graph �
��� If every edge in a tree is directed and all the arrows in edges are away from a
single node� the directed tree is called a rooted tree and that single node is called the root of the
tree� Note that a rooted tree can be viewed as a partial order set� We denote ni�nj if there is a
path along the arrows in the tree from ni to nj � In such a case� node nj 	ni� is called an o�spring
	ancestor� of ni 	nj�� We use ni � nj to mean ni � nj and ni �� nj � Use Tni to denote the subtree
formed by ni and its o�spring in a rooted tree T� and let S	Tni� be the set of nodes in Tni � i�e��
S	Tni��fnj jni � nj � nj � S	T �g� De�ne the lowest common ancestor of two nodes ni and nj in a
rooted tree� denoted by ni � nj � to be the node that is an ancestor of ni and nj and none of its

�Such a method was pointed out by an anonymous referee�
�This is also true in determining if a semijoin is bene�cial later�

�

o�spring is an ancestor of ni and nj � For example� for a rooted tree in Fig� �a� Tn� is given in Fig�
�b� and S	Tn��� fn�� n�� n�� n�g� Also� n� � n�� n� and n� � n
� n� in Fig� �a� In addition� when
ni � nj in a rooted tree T� we use P	ni�nj� to denote the set of nodes that are on the path from ni
to nj excluding ni� i�e�� P	ni�nj�� fnkjni � nk � njandi �� k� 	nk � S	T �g� In the rooted tree in
Fig� �a� P	n��n���fn�� n�g and P	n��n���fn�� n�g�

��� Inclusion of join operations as reducers in query processing

In this section� we shall �rst describe in Section ����
 the method to estimate the e�ect of a
set of join operations on a query graph� which has been formulated in ���� In Section ����� we
describe the concepts of gainful semijoins and pure join attributes which occur with the use of join
operations as reducers in query processing� As pointed out in ���� the two concepts are very useful
in further reducing the amount of data transmission required for query processing� thus increasing
the applicability of join reducers� An illustrative example for the inclusion of joins as reducers is
given in Section ������

����� determination of the e�ect of join operations

To determine the e�ect of a join operation speci�ed by a query graph� the following theorem was
developed in ����

Theorem � ���� Let G�	V�E� be a join query graph� GB�	VB� EB� is a connected subgraph
of G� Let R�� R������ Rp be the relations corresponding to nodes in VB� A�� A������ Aq be the distinct
attributes associated with edges in EB and mi be the number of di�erent nodes 	relations� that
edges with attribute Ai are incident to� Suppose R� is the relation resulting from the join operations
between relations in GB and NT 	GB� is the expected number of tuples in R�� Then

NT 	GB� �

Qp
i�� jRijQq

i�� jAijmi��
� 	��

For the example query in Fig� a� the expected number of tuples in the resulting relation is
jR�jjR�jjR�jjR�j
jAj�jBjjCjjDj

� It can be veri�ed that in the case that Ri�

i
 jVBj� are those resulting from some

semijoins� a similar result still holds� but the cardinalities of the corresponding domains have to be
modi�ed accordingly� For example� suppose that Ri�

i
�� in Fig� a are those after semijoins R�

�A � R� and R� �B � R� have been performed� The expected number of tuples in the resulting
relation is thus estimated as jR��jjR�jjR�jjR�j

���ajAj����bjBjjCjjDj � Moreover� the estimated cardinality of the resulting

relation is independent of the sequence in which those join operations are performed� For example�
consider the query in Fig� a� Suppose VR�

�fR�� R�g and VR�
�fR�� R�g� The corresponding G�

is given in Fig� b� Then we have jR�
�j �

jR�jjR�j
jDj and jR�

�j �
jR�jjR�j
jAjjCj � It can be veri�ed that NT 	G�

� NT 	G�� �
jR�

�
jjR�

�
j

jAjjBj �
Notice that for a given query there are usually many potential sequences of reducers to perform

the query� However� di�erent sequences� though resulting in the same �nal relation� may involve
di�erent transmission costs since the intermediate relations in di�erent sequences may have di�erent
sizes� In light of the results in Theorem
� we can estimate the sizes of intermediate relations for
each sequence and determine the cost of a sequence of join operations�

����� gainful semijoins and pure join attributes

The concepts of gainful semijoins and pure join attributes occur with the use of join operations�
As pointed out earlier� the application of join operations as reducers may result in more bene�cial

semijoins available� Those semijoins which become bene�cial due to the use of join and semijoin
reducers are termed gainful semijoins� An example for the gainful semijoin can be found in the
following subsection� For convenience� both pro�table semijoins and gainful semijoins are called
bene�cial semijoins in this paper
� Note that whether a semijoin is gainful or not depends on the
subsequent reducer operations� Also� it can be veri�ed that gainful semijoins are not only those
that become pro�table after the corresponding join operations are performed�

In addition� some join attributes in a query may not be part of the �nal answer� Therefore�
after the corresponding join operations are performed we can remove some attributes which are not
needed further to reduce the amount of data transmission required in the subsequent operations�
Consider the following query as an example�
select A�C from R�� R�� R� where R��A � R��A and R��B � R��B and R��C � R��C�

In the above query� A and C are output attributes and B is a pure join attribute� Since B is
not needed after the join between R�	A�B� and R�	B�C�� we can remove attribute B by performing
a projection of R��	A�B�C� on 	A�C�� where R��	A�B�C� is the relation resulting from joining R�

and R�� Note that the removal of pure join attributes is only available when joins are included as
reducers since a pure join attribute can be removed only after the corresponding join operation has
been performed�

����� example for the inclusion of joins as reducers

Consider the following query�
select B�D�F from R�� R�� R�� R�� R� where R��A � R��A and R��B � R��B and R��C � R��C�
R��F � R��F and R��E � R��E and R��D � R��D�
The corresponding query graph and pro�le can be found in Fig�
 and Table
� respectively�
Suppose R� is the site where the �nal results are needed�

Case
 � Using only semijoins as reducers for query processing�
From the data shown in Table
� it can be seen that R� �F � R� and R� �D � R� are pro�table
semijoins and should be executed in phase 	��� The costs required for the two semijoins are ��
and ��� respectively� After the execution of the two semijoins� the corresponding data in the
pro�le of the query are changed� It can be veri�ed that there is no pro�table semijoin available
thereafter� Then in phase 	��� one has ����
���� ����� �

��� ������ units of transmission
cost to send the remaining data in R�� R�� R� and R� to the �nal site where R� is located� The
total transmission cost for phases 	�� and 	�� is

������� ��

��

Case� � Using joins and semijoins as reducers for query processing�
When join operations are also used as reducers in distributed query processing� we do not distinguish
between phase 	�� and phase 	��� Similar to the procedure in Case
� R� �F � R� and R� �D �

R� are pro�table semijoins and are performed �rst� Then� it can be seen that attributes A and C
are pure join attributes� Also� in light of Theorem
 it can be shown that jR� join R�j � jR�j and
jR� join R� join R�j � jR�j� Thus� instead of sending all relations toward the �nal site� we would
like to use joins as reducers and perform R� � R� and then R�� � R�� Note that the semijoin
R� � B � R� which incurs ��� units of transmission cost� though not pro�table� is gainful with
respect to the joins R��R� and R���R�� and should be performed before the execution of R��R�

and R���R�� After R� � B � R�� we have jR��j �

������� ������ and the cost for R�� �R�

is thus ������� ������� After R���R� and the projection on attributes B� C� D of R�� we get
jR��j�
����� and the size of R�� is
������� ����� which is in turn the cost of R���R�� After the
removal of attribute C from the resulting R��� we perform R���R� and then R���R�� leading to

�The condition to determine if a semijoin is bene�cial is formally formulated in Theorem � of Section ��	�

�

the �nal result� In all� the transmission cost for each step is as follows� R��F � R�� ��� R��D
� R�� ���� R��B � R�� ���� R�� � R�� ����� R�� � R�� ����� R�� � R��
� and R�� � R��
��� Thus� the total transmission cost of Case � is
�
��� which is signi�cantly less than �

� that
is required in Case
� The join and semijoin operations applied can be illustrated by the change
of the query graph as shown in Fig� � where � � � and � � � denote respectively a join and a
semijoin operation�

� Interleaving a Join Sequence with Bene�cial Semijoins

As pointed out earlier� judiciously applying join operations as reducers can reduce the amount of
data transmission required� Once a sequence of join reducers is determined� we need to identify
the corresponding bene�cial semijoins and determine the proper ordering of the join and semijoin
reducers to achieve the most reduction in data transmission� Speci�cally� our approach to determine
an e�ective sequence of join and semijoin reducers can be described in this section by the following
�ve steps� 	
� to obtain a join reducer sequence� 	�� to map the join reducer sequence into a join
sequence tree 	in Section ��
�� 	�� to derive the set of reducible relations for each semijoin 	in
Section ����� 	�� to identify the bene�cial semijoins based on the properties of bene�cial semijoins
developed� and 	� to determine the proper ordering in the combined reducer sequence 	in Section
�����

��� Determining a join sequence tree

Note that there have been several methods proposed to obtain a join sequence� A polynomial time
algorithm based on a mapping between a sequence of joins and a speci�c type of cut set to the
query graph was developed in ���� In addition� methods� such as dynamic programming �
�� and
A� search ����� are alternative approaches to determine a join sequence� As can be seen later� our
results in this paper to determine the bene�cial semijoins do not rely upon any particular method
to obtain the join sequence� In order not to distract the readers from the main theme of the paper�
we do not include here the algorithms to obtain a join sequence� Interested readers are referred
to ��� �
��� As pointed out earlier� the conventional approach of shipping all relations directly to
the �nal site to perform the join operations after applying the semijoins is also one sort of join
sequence� and thus a special case of our study� Such a join sequence tree is termed the conventional
join sequence tree in what follows� Once a join sequence is determined� it can be mapped into its
corresponding join sequence tree� which is de�ned as follows�

De�nition �� A join sequence tree is a rooted tree where each node denotes a relation and each
edge implies a join between the two relations to which the edge is incident� The tree represents a
sequence of join operations which are performed in such a way that each relation in a node is sent
to its parent node in the tree for a join operation in the sense of bottom up�

More formally� we have the following lemma�
Lemma �� A sequence of join operations for a query can be mapped into a join sequence tree�
Note that for the join sequence R��R�� R���R�� R��R�� and R���R�� the corresponding

join sequence tree is given in Fig� �� It can be seen that the join sequence tree only implies a
partial ordering on the join operations� In fact� the total communication required is immaterial
to the order between the two joins R��R� and R��R� in Fig� �� since there is no precedence
imposed between the two joins� As it can be seen later� the concept of the join sequence tree will
facilitate the derivation of theoretical results as well as the development of a heuristic algorithm for
the approach of interleaving a join sequence with semijoins to produce an e�ective reducer sequence

�

in distributed query processing� Note that the join sequence tree corresponds to the sequence of
join operations to be performed in a query graph� and should not be confused with the original
query graph� For the join query tree in Fig� �a with its pro�le shown in Table �� it can be seen that
there is no pro�table semijoin in the given query graph� Thus� we can view this pro�le as if phases
	
� and 	�� of the query processing indicated in Section
 had been performed� It can be veri�ed
that the cost of the join sequence� R��R� and R���R�� is less than that of sending R� and R�

directly to R�� Thus R��R� and R��� R� is the preferred join sequence� The corresponding join
sequence tree is given in Fig� �b which is di�erent from Fig� �a�

Recall that TRi
is the subtree formed by Ri and its o�spring in the join sequence tree� and

S	TRi
� is the set of nodes in TRi

� The weight of a relation Ri in the join sequence tree� denoted by
W	Ri�� is de�ned as the size of the resulting relation from joining all the relations in S	TRi

�� That
is� the weight of a relation Ri in a join sequence tree is equal to the cost of sending the relation
resulting from joining those relations within TRi

to the parent node of Ri� For the join sequence
tree in Fig� �� W	R��� wR��jR��j and W	R��� wR��jR��j where R�� is the relation resulting from
joining R� and R�� and R�� is the one from joining R�� R�� R� and R�� For convenience the weight
of the root of a join sequence tree� which corresponds to the �nal site� is de�ned to be zero� Also�
to facilitate our study on the e�ect of semijoin operations� we de�ne the con�guration of a query�
JQ	SMJ�� to be the structure of the query and its pro�le associated after the set of semijoins SMJ
has been performed� When it is necessary� we use W	Ri�JQ	SMJ��� instead of W	Ri�� to mean the
weight of Ri after the semijoins in SMJ are performed�

Let C	JQ	SMJ�� be the amount of data transmission required to complete the query according
to a join sequence tree T in the con�guration JQ	SMJ�� C	JQ	SMJ�� can be obtained by the
following lemma�

Lemma �� C	JQ	SMJ���
P

Ri�T W 	Ri� JQ	SMJ���
It can be seen that in the conventional join sequence tree as the one in Fig� �� the weight of

each relation is also the size of that relation� Thus� it can be veri�ed that the cost of completing the
phase 	�� of the distributed query processing under the conventional approach is consistent with
the result in Lemma ��

��� Properties of bene�cial semijoins

To study the properties of bene�cial semijoins� we shall �rst investigate the e�ect of a semijoin on
a join sequence tree� A relation is said to be reducible by a semijoin SJi if the weight of the relation
in the join sequence tree is a�ected by the execution of the semijoin� Then� the set of reducible
relations of a semijoin under a join sequence tree can be determined by the following theorem�

Theorem �� Given a join sequence tree T� the set of reducible relations of a semijoin Ri�Rj �
denoted by Rd	Ri�Rj�� is P	Ri�Rj �Rj��

Proof� Recall thatRi�Rj is the lowest common ancestor of Ri and Rj � and P	Ri�Rj �Rj� denotes
the set of nodes on the path from Ri�Rj to Rj excluding Ri�Rj � Note that the join operations
are performed according to the corresponding join sequence tree in the sense of bottom up� After
a semijoin is performed� the weights of those relations which are ancestors of the reducee of the
semijoin will be reduced accordingly� However� for each relation Rk in the join sequence tree all the
join operations in TRk

have to be performed before Rk is sent to its parent node for another join
operation� Thus� we know that Ri and Rj will be joined� together with other relations in TRi�Rj

�
in the site of Ri � Rj before the resulting relation in Ri�Rj can be sent to its parent node� This
fact in turn implies that the e�ect of the semijoin Ri�Rj diminishes after the join in Ri�Rj � This
theorem thus follows� Q�E�D�

�

For example� suppose Fig� � is the join sequence tree derived from Fig� �� then Rd	R� �

R���fR�� R�� R
g� Rd	R� � R���fR�g and Rd	R� � R���fR�� R�g� It is worth mentioning that
in the conventional join sequence tree� the reducible set of a semijoin only consists of the reducee
of that semijoin� This fact is described by the following corollary�

Corollary ���� Suppose Ri�Rj is a semijoin in a conventional join sequence tree where Rj is
not the root� then Rd	Ri�Rj��fRjg�

For example� Rd	R��R���fR�g and Rd	R��R���fR�g in Fig� �� Then� using the set of
reducible relations the condition for a semijoin to be bene�cial can be formally stated as follows�

Theorem �� A semijoin SJk � Ri � A � Rj in the con�guration JQ	SMJ�� is bene�cial if and
only if wAjRi	A�j
 	
��i�a�

P
Rp�Rd�SJk�

W	Rp� JQ	SMJ���
Proof� Note that W	Ri� JQ	SMJ��� the weight of Ri in JQ	SMJ�� is the size of the relation

resulting from joining all the relations in TRi
� From Theorems
 and �� we know that due to the

execution of semijoin SJk the weight of a relation Rp in the set Rd	Ri�Rj� will be changed to
�i�aW	Rp� JQ	SMJ��� Thus� it can be seen from Lemma � that due to the addition of SJk the
total cost required to ship the relations in the set Rd	Ri�Rj� is changed from

P
Rp�Rd�SJk�

W	Rp�
JQ	SMJ�� to wAjRi	A�j� �i�a

P
Rp�Rd�SJk�

W	Rp� JQ	SMJ��� leading to this theorem� Q�E�D�
It can be seen from Theorem � that the condition for a semijoin to be bene�cial in the con�

ventional join sequence tree is similar to that of a pro�table semijoin as applied in prior work
��� since a semijoin Ri � A � Rj in a conventional join sequence tree is bene�cial if and only if
wAjRi	A�j
 	
��i�a� wRj

jRj j� In addition� recall that Ri�Rj means Ri is an ancestor of Rj in the
join sequence tree� Note that Rd	Rj�Ri��� if Ri�Rj � Then� from this fact and Theorem � we
have the following corollary which indicates that a node in a join sequence tree will not serve as a
reducer for a semijoin to its ancestor� This agrees well with our intuition since the e�ect of such a
semijoin will be o�set by the subsequent join operations in TRi

�
Corollary ���� Suppose Ri and Rj are two relations in a join sequence tree T and Ri�Rj �

Then� Rj�Ri is not a bene�cial semijoin for T�
Two semijoins are called correlated with each other if the condition for one to be bene�cial

depends on the execution of the other� Thus� using Theorem � we can determine by the following
corollary if two semijoins are correlated with each other in a join sequence tree� Note that this
concept will be used in the algorithm in Section ��� to determine the set of semijoins whose e�ect
will be changed by the addition of a new semijoin�

Corollary ���� In a join sequence tree� two semijoins SJi and SJk are correlated with each
other if and only if Rd	SJi� � Rd	SJk� �� ��

For example� for the join sequence tree in Fig� �� R��R� and R��R� are not correlated since
Rd	R��R�� � Rd	R��R�� ��� However� R��R� and R��R
 are correlated since Rd	R��R��
� Rd	R��R
� �fR
g� It is interesting to see that under the conventional approach in which only
pro�table semijoins are concerned� two semijoins are correlated with each other only when they
have the same reducee� This fact can also be described by the corollary below which follows directly
from Corollaries ��
 and ����

Corollary ���� In a conventional join sequence tree two semijoins are correlated if and only if
they have the same reducee�

��� Algorithm to determine bene�cial semijoins for a join sequence tree

In light of the properties of bene�cial semijoins derived in Section ���� we can develop a heuristic al�
gorithm to determine the bene�cial semijoins for a join sequence tree as given in algorithm G below�
Note that the condition for a semijoin on JQ	SMJ� to be bene�cial can be determined by Theorem

�

�� To simplify the presentation of the algorithm� we use a Boolean function B	SJi�JQ	SMJ�� to
denote the outcome of such a condition� i�e�� B	SJi�JQ	SMJ�� is �true� 	respectively� �false�� if SJi
is 	respectively� is not� bene�cial in the con�guration JQ	SMJ��

We use SMT to denote the set of possible semijoins in the original query graph� and SMJ to
mean the set of bene�cial semijoins identi�ed thus far� De�ne the cumulative bene�t of a semijoin
SJk� Ri � A � Rj� denoted by CB	SJk�� as the amount of reduction if it is applied individually
prior to the execution of a given join sequence� i�e�� CB	SJk�� 	
��i�a�

P
Rp�Rd�SJk� W	Rp� JQ	����

Note that the cumulative bene�t of a semijoin is in fact the same as the bene�t of a semijoin as in
most prior work ���� when the corresponding join sequence tree is the conventional join sequence
tree� Clearly� the cumulative bene�t can be used as a heuristic to determine the order of semijoins
to be evaluated so that semijoins with larger cumulative bene�ts can be considered �rst� Thus�
this algorithm checks each semijoin in SMT � according to a descending order of their cumulative
bene�ts� to see if that semijoin should be included into SMJ according to the con�guration JQ	SMJ�
in line �� If �yes� in line �� we shall include SJi into SMJ 	line �� and then check if any semijoin
previously included in SMJ should be removed due to the addition of SJi 	line � to line

�� Note
that in light of Corollary ���� only those semijoins that are correlated with SJi� denoted by SMB�
have to be re�evaluated� thus reducing the computational cost required� On the other hand� if �no�
in line �� we shall check if the semijoin SJi is bene�cial in the original con�guration JQ	�� 	line

��� If �yes�� we know that the semijoin SJi is not bene�cial due to the existence of some other
semijoins in SMB which are correlated with SJi� We thus check in line
� to line
� to determine
if it is worth while replacing those semijoins in SMB with SJi� Note that C	SMB� is the cost of
executing semijoins in SMB and C	fSJig� is that of executing SJi� This algorithm can be formally
described as follows�

Algorithm G � Determine bene�cial semijoins for a join sequence�

� Determine the set of possible semijoins SMT from the query graph such that
the condition in Corollary ��
 is satis�ed�

�� Sort the semijoins in SMT in a descending order of their cumulative bene�ts� i�e��
CB	SJi��CB	SJj� if i
j�

�� SMJ�� ��
�� for i�
� jSMT j do
� begin

�� if B	SJi� JQ	SMJ�� then
�� begin

�� SMJ�� SMJ fSJig�
�� SMB ��fSJqj Rd	SJq��Rd	SJi� �� � and SJq � SMJg�

�� for SJk�SMBdo

� if �B	SJk� JQ	SMJ � fSJkg�� then SMJ�� SMJ�fSJkg�

�� end

�� else

�� if B	SJi�JQ	��� then

� begin

�� SMB ��fSJqj Rd	SJq� � Rd	SJi� �� � and SJq � SMJg�

�� if C	JQ	SMJ���C	SMB� � C	JQ	SMJ �SMB fSJig�� �C	fSJig�

�� then SMJ�� SMJ�SMBfSJig�

�� end

��� end

�

Note that for a query of n relations� the complexity of determining B	SJi� JQ	SMJ�� is O	n��
From this fact and the operations in lines
� and

� it can be shown that the worst case complexity
of algorithm G is O	jSMT j

�n�� Moreover� in light of Corollary ���� it can be seen that when the
join sequence tree is the conventional join sequence tree� algorithm G will degenerate into the one
of determining a set of pro�table semijoins� a version similar to the algorithm in ����

After the bene�cial semijoins are identi�ed by the above algorithm� these semijoins can be
inserted into the join sequence according to the procedure given below� In this procedure� we
perform the operation� a join or a semijoin� from the leaf nodes of the join sequence tree� In Step

� a join operation associated with a leaf node is performed as long as the leaf node is neither a
reducer nor a reducee of a semijoin operation in SMJ� Step
 is repeated until there is no such a
join available� In Step � and Step �� we then perform proper semijoins to enable the execution of
Step
 while minimizing the cost required for semijoins�

Procedure P � Determine the order of join and semijoin reducers�

Step
� In the join sequence tree� perform join operations associated with leaf nodes which are neither
reducers nor reducees of the semijoins in SMJ�

Update the join sequence tree by merging the leaf node to its parent node after each join
operation is performed�

Repeat Step
 until there is no such a join available�

Step �� If there is a semijoin SJi in SMJ� of which the reducer is a leaf node of the join sequence tree�
then perform SJi� remove SJi from SMJ� and go to Step
�

Otherwise� go to Step ��

Step �� �� All the leaf nodes in the join sequence tree are reducees of the remaining semijoins in SMJ�
��

Choose a semijoin SJk with the smallest cost from SMJ�

Perform SJk and remove it from SMJ�

Go to Step
�

It is worth mentioning that the execution of join or semijoin operation for a relation will reduce
the cardinalities of attributes in that relation� This is also true for those attributes which are
neither join nor semijoin attributes in that relation� This fact can be veri�ed by Eq�	
�� This is the
very reason that in procedure P while exploiting each semijoin� we do not execute a semijoin until
it is necessary so as to reduce the cost of data transmission required for the semijoin operation�
The operations in algorithm G and procedure P can be illustrated by the examples in the following
section�

� Remarks and Examples

To show the execution of algorithm G� consider the query graph in Fig� � with the join sequence
tree in Fig� �� Suppose that each edge is associated with one attribute�� It can be seen from Fig� �
that there are
� possible semijoins for the query� The selectivities and costs of these semijoins are
given in Table �� In light of the join sequence tree in Fig� �� it can be veri�ed using Corollary ��

�This assumption is not essential but will simplify our example�

that only
� semijoins are potentially bene�cial to be included into SMT � In Table �� the column
�in SMT� identi�es the
� semijoins� The
� semijoins are illustrated in Fig�
�� Also� we assume
that the sizes and weights of relations in the join sequence tree are those in Table �� Recall that
the weight of a relation is the size of the resultant relation from joining that relation and all its
o�spring� which can be determined by Theorem
� It can be veri�ed that the cost of executing the
join sequence without applying semijoins is

P

i��W	Ri��
����

Using the pro�le in Tables � and �� the bene�cial semijoins can be identi�ed from SMT by
algorithm G� Note that the cumulative bene�t of R��R� is determined by ��������
��

 and
that of R��R� is 	����������
������� �������� Similarly� the cumulative bene�t of each
semijoin can be obtained and shown in column �CB	SJi�� of Table �� Then� the semijoins are
evaluated by algorithm G according to their order in Table � It can be seen that the �rst two
semijoins R��R� and R��R� are bene�cial and thus included into SMJ� Note that due to the
addition of the two semijoins� the weights of R�� R� and R
 have to be modi�ed accordingly� i�e��
W	R��� W	R�� and W	R
� become
����
��� and
��� respectively� This accounts for the reason
that R��R� is not included into SMJ� Following the same procedure� semijoins R��R�� R��R�

and R
�R� will also be included into SMJ by the operations of algorithm G as indicated in Table
� resulting in �ve bene�cial semijoins for the query in Fig� ��

It is worth mentioning that a di�erent order of semijoins evaluated in line � may result in a
di�erent set of bene�cial semijoins� To illustrate this fact and show more insights to the operations
in algorithm G� consider the case that the semijoins in SMT are evaluated according to the order
in Table �� In such a case� it can be seen that the �rst three semijoins R��R�� R��R� and
R��R
 are bene�cial and thus included into SMJ �rst� Then� semijoins R��R�� R
�R� and
R��R� will also be included into SMJ by the operations of algorithm G� Notice that� as indicated
in Table �� R��R� was not bene�cial at �rst� However� it becomes bene�cial after the removal
of R��R�� This is a result of the operations in line
� to line
� of algorithm G� Also note that
after the operations in line � to line

 of algorithm G� the addition of R��R� whose reducible
set is fR�� R�� R
g will cause the semijoins R��R� and R��R
 to become no longer bene�cial
and thus be removed from SMJ� By the same reason� R��R� is removed later due to the addition
of R��R�� resulting to the four bene�cial semijoins as indicated in Table �� It can be seen that
semijoin R��R�� which should be included into the �nal SMT � is absent in the resulting set of
Table �� since it was removed due to the addition of R��R� which is� however� deleted later by the
addition of R��R�� This is the very reason we evaluate in algorithm G the semijoins according to
the descending order of their cumulative bene�ts so that more bene�cial semijoins can be included
�rst� avoiding unnecessary or even incorrect addition�deletion of semijoins as shown in Table ��

After the execution of algorithm G as in Table � the semijoins kept in SMJ areR��R�� R��R��
R
�R�� R��R� and R��R�� An illustration of these bene�cial semijoins for the join sequence tree
can be found in Fig�

� The �nal join and semijoin reducers� R
�R�� R��R
� R��R�� R��R��
R��R�� R��R
� R
�R�� R��R�� R��R�� R��R�� and R��R�� can then be determined from
procedure P in Section ���� It can also be obtained that the total cost of data transmission
is ������� �����
��� �����
��� �
������� �
����
����� ����� signi�cantly less than

��� that is previously required when semijoins have not been inserted into the join sequence� It
is worth mentioning that if we only apply semijoins as reducers and evaluate the semijoins based
on the algorithm in ��� according to their order in Table �� semijoins R�� R�� R�� R�� R�� R��
R
� R� and R��R� will be identi�ed as pro�table semijoins which are not the same as those
obtained by algorithm G� The total cost of data transmission required for this approach is
���
�
including the cost of performing the pro�table semijoins and that of sending all the remaining
relations to the �nal site� It can be seen from the above example and the one in Section ����� that

�

the approach of combining join and semijoin reducers is e�ective in reducing the amount of data
transmission required�

� Conclusion

In this paper� we studied the problem of combining join and semijoin reducers for distributed query
processing� An approach of interleaving a join sequence with bene�cial semijoins was proposed�
A join sequence was mapped into a join sequence tree �rst� The join sequence tree provides an
e�cient way to identify for each semijoin its correlated semijoins as well as its reducible relations
under the join sequence� In light of these properties� we developed an algorithm to determine an
e�ective sequence of join and semijoin reducers� Examples were also given to illustrate our results�
Speci�cally� our approach to determine an e�ective sequence of join and semijoin reducers consists
of the following �ve steps� 	
� to obtain a join reducer sequence 	e�g� based on the algorithm in
����� 	�� to map the join reducer sequence into a join sequence tree� 	�� to derive the set of reducible
relations for each semijoin 	see Theorem ��� 	�� to identify the bene�cial semijoins based on the
properties of bene�cial semijoins developed in Section ��� 	see algorithm G�� and 	� to determine
the proper ordering in the combined reducer sequence 	see Procedure P�� Our results showed the
advantage of using a combination of joins and semijoins as reducers for distributed query processing�

ACKNOWLEDGEMENT

The authors would like to thank J��C� Chen at IBM for her technical assistance in preparing this
paper�

REFERENCES

�
� P� M� G� Apers� A� R� Hevner and S� B� Yao� �Optimization Algorithms for Distributed
Queries�� IEEE Trans� on Software Eng�� vol� SE��� no�
� pp� ����� Jan�
����

��� P� A� Bernstein and D��M� W Chiu �Using Semi�Joins to Solve Relational Queries�� Journal

of ACM� vol� ��� no�
� pp� ����� Jan�
��
�

��� P� A� Bernstein� N� Goodman� E� Wong� C� Reeve and J� B� Rothnie� �Query Processing in a
System for Distributed Databases 	SDD�
��� ACM Trans� on Database Syst�� vol� �� no� ��
pp� ������� Dec�
��
�

��� P� A� Black and W� S� Luk� �A New Heuristic for Generating Semi�Join Programs for Dis�
tributed Query Processing�� Proceedings of IEEE COMPSAC� pp� �
����
����

�� S� Ceri and G� Pelagatti� Distributed Databases Principle and Systems� NY�� McGraw�Hill�

���

��� A� L� P� Chen and V� O� K� Li� �Improvement Algorithms for Semijoin Query Processing
Programs in Distributed Database Systems�� IEEE Trans� on Comput�� vol� C���� no�

�
pp� ������� Nov�
����

�

��� A� L� P� Chen and O� K� Li� �Optimizing Star Queries in a Distributed Database System��
Proceedings of the ��th Int�l Conf� on Very Large Data Bases� pp� �������� Aug�
����

��� M��S� Chen and P� S� Yu� �Using Combination of Join and Semijoins Operations for Dis�
tributed Query Processing�� Proceedings of the ��th Int�l Conf� on Distributed Computing

Systems� pp� ������� May
����

��� M��S� Chen and P� S� Yu� �Using Join Operations as Reducers in Distributed Query Process�
ing�� Proceedings of the �nd Intern�l Symp� on Databases in Parallel and Distributed Systems�
July
���� Also� IBM Research Report RC

��� Nov�
����

�
�� D��M� Chiu� P� A� Bernstein and Y��C� Ho� �Optimizing Chain Queries in a Distributed
Database System�� SIAM Journal on Computing� vol�
�� no�
� pp�

��
��� Feb�
����

�

� W� W� Chu and P� Hurley� �Optimal Query Processing for Distributed Database Systems��
IEEE Trans� on Comput�� vol� C��
� no� �� pp�
��
�� Sep�
����

�
�� N� Goodman and O� Shmueli� �The Tree Property is Fundamental for Query Processing��
Proceedings ACM Symp� on Principles of Database Systems� pp� ������
����

�
�� F� Harary� Graph Theory� Mass�� Addison�Wesley�
����

�
�� A� R� Hevner� �The Optimization of Query Processing on Distributed Database Systems��
Ph�D� Dissertation� Purdue University�
����

�
� A� R� Hevner and S� B� Yao� �Query Processing in Distributed Database Systems�� IEEE

Trans� on Software Eng�� vol� SE�� no� � pp�
���
��� May
����

�
�� Y� Kambayashi� M� Yoshikawa and S� Yajima� �Query Processing for Distributed Databases
Using Generalized Semi�Joins�� ACM Proceedings of SIGMOD� pp�

�
���
����

�
�� H� Kang and N� Roussopoulos� �Combining Joins and Semijoins in Distributed Query Pro�
cessing�� Univ� Maryland� College Park� Tech� Rep� CS�TR�
����
����

�
�� S� Lafortune and E� Wong� �A State Transition Model for Distributed Query Processing��
ACM Trans� on Database Systems� vol�

� no� �� pp� �������� Sep�
����

�
�� G� M� Lohman� C� Mohan� L� M� Hass� B� G� Lindsay� P� G� Selinger� P� F� Wilms and D�
Daniels� �Query Processing in R��� Res� Rep� RJ ����� IBM Research Laboratory� San Jose�
CA�� April
����

���� N� J� Nilsson� Principles of Arti�cial Intelligence� Springer�Verlag�
����

��
� S� Pramanik and D� Vineyard� �Optimizing Join Queries in Distributed Databases�� IEEE

Trans� on Software Eng�� vol� SE�
�� no� �� pp�
�
��
���� Sep�
����

�

���� A� Segev� �Global Heuristic for Distributed Query Optimization�� Proceedings of IEEE IN�

FOCOM� pp� ��������
����

���� C� Wang� �The Complexity of Processing Tree Queries in Distributed Databases�� Proceedings
of the �nd IEEE Symp� on Parallel and Distributed Processing� pp� �����

� December
����

���� S� B� Yao� �Approximating Block Access in Database Organizations�� Comm� of ACM� vol�
��� pp� ������
� Apr�
����

��� H� Yoo and S� Lafortune� �An Intelligent Search Method for Query Optimization by Semi�
joins�� IEEE Trans� on Knowledge and Data Eng�� vol�
� no� �� pp� �������� June
����

���� C� T� Yu� Z� Ozsoyoglu and K� Lam� �Optimization of Distributed Tree Queries�� J� Comput�

Syst� Sci�� vol� ��� no� �� pp� ������� Dec�
����

���� C� T� Yu and C� C� Chang� �Distributed Query Processing�� ACM Computing Surveys� vol�

�� no� �� pp� �������� Dec�
����

