
Efficient Creation of Statistics over Query Expressions

Nicolas Bruno ∗

Columbia University
nicolas@cs.columbia.edu

Surajit Chaudhuri
Microsoft Research

surajitc@microsoft.com

Abstract

Query optimizers use base-table statistics to derive statis-
tics on the sub-plans that are enumerated during optimiza-
tion. In practice, traditional optimizers rely on a number
of simplifying assumptions, which can compromise the accu-
racy of cardinality estimates. To address this limitation, we
had earlier introduced SITs, which are statistics built over
query expressions, and we explained how a traditional op-
timizer can judiciously use SITs to sidestep the problem of
inaccurate estimates. A significant challenge that was not
addressed was how to build SITs efficiently in a database
system. In this paper we present a family of techniques to
create SITs. These techniques differ from each other in the
trade-off they present between accuracy and efficiency of cre-
ation. We also present techniques to efficiently create multi-
ple SITs by taking advantage of the commonalities among
their generating query expressions.

1 Introduction

Most query optimizers for relational database manage-
ment systems (RDBMS) rely on a cost model to choose the
best possible query execution plan for a given query. There-
fore, quality of the query execution plan depends on the ac-
curacy of cost estimates. Cost estimates, in turn, crucially
depend on cardinality estimations of various sub-plans (in-
termediate results) generated during optimization. Tradition-
ally, query optimizers use statistics built over base tables for
cardinality estimation, and rely on a number of simplify-
ing assumptions while propagating these base-table statistics
through query plans. It is widely recognized that such cardi-
nality estimates may be off by orders of magnitude [17], and
thus might lead the query optimizer to choose significantly
low-quality execution plans.

In [2] we introduced the concept of SITs, which are statis-
tics built over the result of query expressions, to alleviate
this problem. SITs can be used to directly model the dis-
tribution of tuples on intermediate nodes in query execution

∗Work done while the author was visiting Microsoft Research.

plans. For instance, suppose we build a SIT over attribute
S.a on the result of evaluating R ./x=y S. Whenever the
optimizer needs to estimate the cardinality of some sub-plan
of the form σS.a<c(R ./x=y S), it can use directly such SIT,
without performing the error-prone propagation of base-table
histograms over R.x, S.y and S.a. When optimizers have
appropriate SITs available during query optimization, the re-
sulting query plans may be drastically improved [2].

Despite the conceptual simplicity of SITs, a significant
challenge that still needs to be addressed is providing mech-
anisms to efficiently create SITs in a database system. The
most accurate procedure to build a SIT is to execute its asso-
ciated query expression and then build a histogram over this
temporary result. In this way, the resulting SIT accurately re-
flects the true distribution without relying on any simplifying
assumption. However, such an approach also results in a high
cost for building SITs. In this paper, we investigate approx-
imated variants of SITs that can be built far more efficiently
while giving up some of the accuracy of traditional SITs.
In order to develop such alternatives, we critically examine
the main simplifying assumptions used by current optimizers
while estimating cardinalities, which are the containment and
independence assumptions. Furthermore, in many systems
statistics are built using sampling. We lay out a spectrum of
alternatives between using traditional estimation and approx-
imated SITs that are obtained by eliminating one or more of
the simplifying assumptions listed above (containment, inde-
pendence, and sampling). These alternatives differ in trade-
offs between accuracy and efficiency of construction. In par-
ticular, we study in detail one of these alternatives, which we
call Sweep. Sweep eliminates the independence assumption,
but does rely on the containment assumption and uses sam-
pling. We show that Sweep presents a compelling trade-off:
it is efficient while resulting in accurate approximated SITs.

We also recognize that while trying to create several SITs
at once, commonalities between their generating queries
need to be leveraged. We formalize the problem of opti-
mally creating a set of SITs and show how this problem can
be mapped to a generalized version of the Shortest Common
Supersequence (SCS) problem. We modify the A* algorithm
that solves SCS optimally to our framework, and also present
more efficient greedy alternatives.

1

The rest of the paper is structured as follows. Section 2 re-
views SITs and how they can be effectively incorporated into
the optimization framework. Section 3 introduces Sweep, a
novel family of techniques to efficiently create SITs. Sec-
tion 4 introduces algorithms to find optimal strategies to cre-
ate multiple SITs by sharing invocations of Sweep. Section 5
reports experimental results for the techniques of Sections 3
and 4. Finally, Section 6 reviews related work.

2 Background

In this section we briefly describe the query optimizer
component in a RDBMS and how it takes advantage of sta-
tistical information over base tables to find good quality exe-
cution plans. We then motivate the introduction of SITs and
review how SITs can be incorporated to existing optimizers.

2.1 Query Optimization

The query optimizer is the component in a database sys-
tem that transforms a parsed representation of an SQL query
into an efficient execution plan for evaluating it. Optimizers
examine a large number of possible query plans and choose
the best one in a cost-based manner. For each incoming
query, the optimizer iteratively explores the set of candidate
execution plans using a rule-based enumeration engine. Af-
ter each candidate plan or sub-plan is generated, the opti-
mizer estimates its execution cost, which in turn refines the
exploration of further candidate plans. Once all “interesting”
plans are explored, the most efficient one is extracted and
passed to the execution engine.

The cost estimation module is critical in the optimization
process, since the quality of plans produced by the optimizer
is highly correlated to the accuracy of the cost estimation
routines. The cost estimate for a sub-plan, in turn, crucially
depends on cardinality estimations of its sub-plans. Tradi-
tionally, query optimizers use statistics (mainly histograms)
that are built over base tables to estimate cardinalities. His-
tograms are accurate for estimating cardinalities of simple
queries, such as range queries. For complex query plans,
however, the optimizer estimates cardinalities by “propagat-
ing” base-table histograms through the plan and relying on
some simplifying assumptions (notably the independence as-
sumption between attributes). The following example shows
how base-table histograms are used to estimate the cardinal-
ity of a SELECT-PROJECT-JOIN query.

S.a < 10

SR

R.x = S.y
Independence
assumption to

propagate
S.a’s histogram

Containment
assumption for
join predicates

Sampling
assumption

for base-table
histograms

Figure 1. Simplifying assumptions in cardinality estimation.

Example 1 Consider query SELECT * FROM R,S WHERE

R.x=S.y AND S.a<10 and the plan shown in Figure 1. As-
sume that histograms over R.x, S.y and S.a are available.
To estimate the cardinality of the query, we first use his-
tograms over R.x and S.y to estimate the cardinality of
R ./ S, ignoring predicate S.a < 10. Then, the histogram
over S.a is propagated 1 through the join upwards in the tree.
The propagated histogram is then used to estimate the car-
dinality of S.a < 10 over the intermediate result R ./ S, to
finally obtain the cardinality of σS.a<10(R ./ S).

Variations of the scheme above are used extensively in
current optimizers. We identify the following simplifying
assumptions during cardinality estimation of SPJ queries:

Independence assumption: When propagating histogram
HS.a over S.a through the join predicate R ./x=y S,
bucket frequencies for HS.a are uniformly scaled down
so that the sum of all frequencies in the propagated his-
togram equals the estimated cardinality of R ./x=y S.
Implicit in this procedure is the assumption that distri-
butions of attributes in R and S are independent.

Containment assumption: To estimate the cardinality of
joins using histograms, the buckets of each histogram
are aligned and a per-bucket estimation takes place, fol-
lowed by an aggregation of all partial results. The con-
tainment assumption [16] dictates that for each pair of
buckets, each group of distinct valued tuples belonging
to the bucket with the minimal number of different val-
ues joins with some group of tuples in the other bucket.
For instance, if the number of distinct values in bucket
bR is 10, and the number of distinct values in bucket bS

is 15, the containment assumption states that each of the
10 groups of distinct valued tuples in bR join with one
of the 15 groups of distinct valued tuples in bS .

Sampling assumption: Random sampling is a standard
technique for constructing approximated base-table his-
tograms. Usually the approximated histograms are of
good quality regarding frequency distribution. How-
ever, estimating the number of distinct values inside
buckets using sampling is provably difficult [3]. The
sampling assumption states that the number of distinct
values in each bucket predicted by sampling is a good
estimator of the actual values.

Very often, some simplifying assumptions described
above (or all of them) do not hold. For instance, many
attributes are actually correlated and the independence as-
sumption is often inaccurate. Therefore, the optimizer might
rely on wrong cardinality information and therefore choose
low quality execution plans. More complex queries (e.g., n-
way joins) only exacerbate this problem, since estimation

1The histogram propagation step just scales the bucket frequencies so
that they reflect the new cardinality information. In this case, the frequency
values for the histogram over S.a are scaled so that the sum of all frequen-
cies is equal to the estimated number of tuples in R ./ S.

2

errors propagate themselves through the plans. To address
these limitations in current optimizers, we introduced in [2]
the concept of SITs. In the next section we briefly review
SITs and how they can be incorporated in existing relational
optimizers to increase the quality of the resulting plans.

2.2 SITs: Statistics on Query Expressions

SITs are statistics built over the results of query expres-
sions, and their purpose is to eliminate error propagation
through query plan operators. As a simple example, con-
sider again Figure 1, and suppose that we build a histogram
over the result of the query expression RS = R ./x=y S,
specifically on RS.a. In this case, we can estimate the car-
dinality of the original query plan by simply estimating the
cardinality of the equivalent plan σRS.a<10(RS), and thus
avoid relying on the independence and containment assump-
tions 2. We now formalize the concept of SITs.

Definition 1 Let R be a table, A an attribute of R, and Q an
SQL query that contains R.A in the SELECT clause. We de-
fine SIT(R.A|Q) as the statistic over attributeA on the result
of executing query expression Q. We call Q the generating
query expression of SIT(R.A|Q).

Although SITs can be defined using arbitrary generating
queries, in this paper we will focus on the important fam-
ily of join generating queries, which in turn are enough to
cover optimization of SPJ queries. Therefore, we will con-
sider SITs with the form SIT(Rk.a|R1 .// Rn).

SITs are only useful if the optimizer is able to incorporate
them during query optimization. In [2] we enabled the use of
SITs by implementing a wrapper on top of the original car-
dinality estimation module of the RDBMS. During the opti-
mization of a single query, the wrapper will be called many
times, once for each different query sub-plan enumerated by
the optimizer. Each time the query optimizer invokes the
modified cardinality estimation module with a query plan,
we transform this input plan into an equivalent one that ex-
ploits SITs. Identifying whether or not a SIT is applicable
for a given query plan (and later rewriting the plan to in-
corporate such SIT) leverages materialized view matching
technology 3. After transforming the input plan, we forward
the transformed plan to the original cardinality estimator, and
obtain a more accurate cardinality estimation for the original
plan. In this way, the transformed query plan is a temporary
structure used by the modified cardinality estimation mod-
ule, but is not used for query execution. We refer to [2] for
more details.

In [2] we also showed how an appropriate set of SITs may
be chosen to maximize the benefit to the query optimizer.

2We can always avoid using the sampling assumption by creating the SIT
using a full scan instead of sampling.

3However, some specific SITs applications have no counterpart in tradi-
tional materialized view matching [2].

We recognized that usefulness of SITs depends on how their
presence impacts execution plans for queries against the sys-
tem, and we introduced a workload-based technique that
identify useful SITs without the need to build them a-priori
to evaluate their effectiveness. However, we did not study
efficient mechanisms to create a given set of SITs. The ob-
vious approach to build SITs is to execute the generating
query associated with each SIT, and build the desired statis-
tics over the temporary results. Once statistics have been
computed, the result of the generating query expression can
be discarded. Of course, this strategy is not desirable in gen-
eral, since executing generating queries can be very expen-
sive. The focus of the rest of this paper is to introduce effi-
cient algorithms to create SITs.

3 Creating SITs

For a large class of query expressions, we can design ef-
ficient techniques inspired from the wide body of work in
approximate query processing to create SITs. This is pos-
sible because we might be satisfied with approximate sta-
tistical distributions. In Section 3.1 we introduce Sweep, a
novel technique to efficiently build accurate approximations
of SITs that does not rely on the independence assumption
between attributes. However, for efficiency purposes, Sweep
does rely on the containment and sampling assumptions. As
we will show experimentally in Section 5, the independence
assumption causes most of the estimation errors, so Sweep
is generally both efficient and accurate. In Section 3.1.2 we
describe how to trade accuracy for efficiency and introduce
variations on the basic formulation of Sweep. Finally, in Sec-
tion 3.2 we show how to extend Sweep (which is designed for
single-join generating queries) to deal with arbitrary acyclic-
join generating queries.

3.1 Sweep: A Novel Approach to Create SITs

To create SIT(R.a|Q), Sweep attempts to efficiently gen-
erate a sample of πR.a(Q) without actually executing Q, and
then use existing techniques for building histograms over this
intermediate result. Consider the example shown in Figure 2,
and suppose that we want to create SIT(S.a|R ./x=y S). We
start, in step 1, by performing a sequential scan over table
S 4. For each tuple (yi, ai) scanned from S, in step 2 we
estimate the number of tuples r ∈ R such that r.x = yi.
We denote this value the multiplicity of tuple yi from table
S in table R, and we call m-Oracle the procedure that cal-
culates multiplicity values. Clearly, the multiplicity of yi

in R is the number of matches for tuple (yi, ai) in the join
R ./x=y S. If the estimated number of matches for yi is n,
we append n copies of ai to a temporary table in step 3. It
is important to note that we do not materialize the temporary

4If a multi-column index covering attributes {S.y, S.a} is available, we
replace the sequential scan by an appropriate index scan.

3

Scan S

yi ai ...

yi ai ...

|{t in R : t.x=yi} |
?

m-Oracle

n

Add “n”
copies of ai

ai
ai

. . .
ai

Sample
(on the fly)

ai
aj
ak

.. .

Build
histogram

1

2

3

4 5

Approximation of Approximated sample of

desired
SIT(S.a | R S)

R.x = S.y

Figure 2. Creating SIT(S.a|R ./R.x=S.y S) using Sweep.

table, but we treat it as a stream of values that approximate
πS.a(R ./x=y S). Then, in step 4, we apply a one-pass sam-
pling algorithm over the streaming table, such as reservoir
sampling [19]. The result of this step is an approximated
sample of πS.a(R ./x=y S), which is precisely the distribu-
tion we want to build a SIT over. Finally, in step 5, we use a
traditional histogram technique to build SIT(S.a|R ./x=y S)
from the sample. Below we address the missing piece in the
description of Sweep, i.e., estimating multiplicities for arbi-
trary values yi from S in R.

3.1.1 Using an Approximating m-Oracle

A crucial routine to create SIT(S.a|R ./x=y S) using Sweep
is to obtain, both efficiently and accurately, the multiplicity
of arbitrary tuples from S in R (step 2 in Figure 2). We now
introduce a histogram-based technique that results in accu-
rate and efficient approximations of multiplicity values. The
idea is to use histograms over R.x and S.y (denoted hR and
hS) to provide the multiplicity of tuples from S in R. For a
given value y from S, we first identify the buckets bR,y and
bS,y from histograms hR and hS that contain value y. Then,
we calculate the expected number of tuples from R that join
with y under the containment assumption for join predicates.

To estimate the multiplicity of y in R we consider two
scenarios. Let dvR,y and dvS,y be the number of distinct val-
ues in buckets bR,y and bS,y , respectively. In the case that
dvS,y ≤ dvR,y , i.e., the number of distinct values from hR

is larger than that of hS , we can guarantee (under the con-
tainment assumption) that value y, which belongs to one of
the dvS,y groups in bS,y, would match some of the dvR,y

groups in bR,y . Since we use the uniform spread assumption
inside buckets, the multiplicity for y in this situation would
be fR,y/dvR,y , where fR,y is the frequency of bucket bR,y .
However, if dvS,y > dvR,y , we can no longer guarantee that
value y joins with some of the dvR,y buckets in hR. If the
tuples that verify the join are distributed uniformly, the prob-
ability that y is in one of the dvR,y < dvS,y groups in bR,y

that match some group in bS,y is dvR,y/dvS,y . In that case,
the multiplicity would be fR,y/dvR,y . Otherwise (y does
not match with any value in R), the multiplicity would be
0. In conclusion, when dvS,y > dvR,y , the expected multi-
plicity of y in R is (fR,y/dvR,y) · (dvR,y/dvS,y) + 0 · (1 −
dvR,y/dvS,y) = fR,y/dvS,y .

Putting both results together, we obtain that the ex-
pected multiplicity of y from S in R is given by
fR,y/max(dvR,y, dvS,y). Since we can locate the bucket
that contains a given tuple very efficiently in main memory,
getMultiplicity is extremely efficient. In Section 5 we will
show experimentally that getMultiplicity is also an accurate
estimator of multiplicity values.

3.1.2 Accuracy/Efficiency Tradeoffs

As mentioned in Section 2, the main assumptions when es-
timating cardinalities of SPJ queries are the independence
assumption between attributes, the containment assumption
for join predicates, and the inaccuracies introduced by us-
ing sampling when building histograms. When creating
SIT(S.a|R ./x=y S), Sweep does not rely on the indepen-
dence assumption, since it works over the multidimensional
distribution (S.a, S.x) during the sequential scan in step 1.
However, Sweep does rely on the containment assumption
(when estimating multiplicity values in step 2), and on the
sampling assumption (when building the SIT by using the
sample obtained in step 4). We now show how we can avoid
relying on these remaining assumptions, and therefore obtain
more accurate SITs, at the expense of introducing execution
overheads to the original formulation of Sweep.

SweepIndex (Containment assumption): If an index over
attribute R.x is available in step 2, we can issue re-
peated index lookups to find exact multiplicity values.
Since index lookups are more expensive than histogram
lookups, SweepIndex is more expensive than Sweep.

SweepFull (Sampling assumption): We can omit step 4 in
Sweep and build the SIT directly from the temporary
table. Of course, that might require materializing the
temporary table on disk, since it can be too large to fit
in main memory. For that reason, SweepFull is more
expensive than Sweep.

SweepExact (Containment and Sampling assumptions): By
combining ideas from SweepIndex and SweepFull we
avoid relying on any assumption whatsoever, and the
result of SweepExact is the same as if we evaluate the
SIT’s query and then build a histogram over the result.
This technique returns the most accurate histogram for
a given SIT, but it is also the most expensive.

4

In the rest of the paper, we focus on the original formula-
tion of Sweep. Later, in Section 5, we compare the accuracy
of the alternatives introduced in this section.

3.2 Acyclic-Join Generating Queries

The basic formulation of Sweep handles SITs with single-
join generating queries. We now show how we can extend
Sweep to handle arbitrary acyclic-join queries. A given query
is an acyclic-join query if its corresponding join-graph is
acyclic 5. In the remaining of this section we look at a re-
stricted class of acyclic join queries and assume that for ev-
ery pair of tables t1 and t2 in the generating query q, there is
at most one predicate in q joining t1 and t2. In the general
case, e.g., for R ./R.w=S.x∧R.y=S.z S, we can still extend
the techniques in this section by using multidimensional his-
tograms. The details of these extensions, however, are omit-
ted for lack of space.

As a first case, we extend Sweep to handle chain-join
generating queries. A chain-join query can be expressed as
(R1 .// Rn), where the i-th join (1 ≤ i ≤ n-1) con-
nects tables Ri and Ri+1, i.e., the corresponding join-graph
is a chain. From the description of Sweep in Section 3.1, it is
clear that to approximate SIT(S.a|R ./x=y S) we only need
to perform the following operations: (i) a sequential (or in-
dex) scan covering attributes {S.y, S.a} in table S, and (ii)
histogram lookups over attributes R.x and S.y. To approx-
imate a SIT over a chain-join query, we left associate the
query joins and unfold the original SIT into a set of single-
join SITs, as illustrated below.

��������	��
�������������������������

�
�� ��
�� ��
��

����������� ���������	��
������������������

�
�� ��
��

����������� ���������	�
���������

�
��

����������� ���������������
�
�

Figure 3. Using Sweep to approximate a chain-join query.

Example 2 Consider SIT(U.a| R ./r1=s1 S ./s2=t1

T ./t2=u1 U), shown in Figure 3. We can rewrite such
SIT as SIT(U.a|RST ./t2=u1 U), where RST is defined
as R ./r1=s1 S ./s2=t1 T . To approximate this equivalent
SIT, we need to perform a sequential scan over table U , and
we need to access histograms over U.u1 and RST.t2. How-
ever, RST.t2 is just SIT(T.t2|R ./r1=s1 S ./s2=t1 T). We
then calculate SIT(T.t2|R ./r1=s1 S ./s2=t1 T), and finally
create the original SIT we were interested in. The base case

5We obtain the join-graph of query q by associating nodes with each
table in q and edges that correspond to the join predicates in q.

corresponds to approximating SIT(S.s2|R ./r1=s1 S), since
both join operands are base tables, and Sweep works in this
case. Figure 3 illustrates this procedure.

We next show how to extend Sweep to handle more gen-
eral kinds of acyclic-join generating queries. For that pur-
pose, we first convert the (acyclic) join-graph into the join-
tree that has as the root the table holding the SIT’s attribute.
As an example, Figure 4 shows a SIT with an acyclic-join
generating query and its induced join-tree. Suppose that
the height of the join-tree is one, i.e., the join-tree consists
of a root R and children S1, . . . , Sn, and we want to get
SIT(R.a|R ./r1=s1 S1 ./r2=s2 S2 .//rn=sn Sn).
In this case we can extend Sweep as follows. We first build
base-table histograms for each attribute Si.si and, similar to
the single-join case, we perform a sequential scan over R. To
obtain the multiplicity of tuple r = (a, r1, . . . , rn) from R in
the multi-way join, we first get each partial multiplicity of ri

in Si (denoted mi) and then we multiply the partial results.
The multiplicity of tuple r from R in the join is thenΠi(mi).
We note that this multiplicity value does not assume indepen-
dence between join predicates. In fact, each tuple r from R
joins with mi tuples from each Si, and since the join-graph
is acyclic, the result contains all possible join combinations
between r and each qualifying tuple in Si. After obtaining
the multiplicity values, we proceed with Sweep as before.

SIT(U.a | R T V U S)
R1=T1 T2=V1 T3=U1 U2=S1

R V

U

TS

R1=T1 T2=V1

S1=U2 U1=T3

U.a

Figure 4. SIT with acyclic-join query and join-tree for U.a.

For an arbitrary acyclic-join generating query, we perform
a post-order traversal of the join-tree. At each leaf node we
build (if not present already) the base-table histogram for the
attribute that participates in the join with the parent table in
the join-tree. For each internal node, we use the children’s
SITs produced earlier to compute the corresponding SIT for
the attribute that participates in the join predicate with the
parent (or the final attribute for the root node). As an ex-
ample, for the SIT of Figure 4, we first get the base-table
histograms for S.s1, R.r1, and V.v1. When we process
node T , we calculate SIT(T.t3|R ./r1=t1 T ./t2=v1 V).
Finally, when we process node U we calculate the desired
SIT(U.a|R ./r1=t1 T ./t2=v1 V ./t3=u1 U ./u2=s1 S).

In summary, in this section we introduced Sweep, a tech-
nique to create SITs with arbitrary acyclic-join generating
queries. Sweep requires a sequential scan over each involved
table (except for the root of the join-tree) and some addi-
tional amount of extra processing to build intermediate SITs.

5

In this section we assumed that the only available procedure
to build SITs is Sweep. More complex scenarios are possi-
ble. For instance, we can materialize some portions of the
generating query first, and then apply the techniques of this
section. These extensions, however, are beyond the scope of
this work.

4 Multiple SIT Creation

Sweep is a technique to build SITs with arbitrary acyclic-
join generating queries. If we are interested in creating a
single SIT, we can directly apply Sweep to obtain the desired
histogram. However, in many cases we want to create several
SITs at once. For instance, the techniques in [2] return a set
of candidate SITs to create for a given workload. In such
situations, many commonalities between SITs might exist,
and we could be able to “share” the same sequential scan to
build more than one SIT. For that reason, the obvious one-
at-a-time approach for building SITs is often suboptimal, as
the following example illustrates.

Example 3 Suppose we want to create the SITs below:
SIT(T.a|R ./r1=s1 S ./s3=t3 T)

SIT(S.b|R ./r2=s2 S)

A naive approach would be to apply Sweep to each SIT
separately. In that case, we would use one sequential scan
over tables S and T (to build the first SIT), and a second
sequential scan over table S (to build the second SIT). How-
ever, the following strategy is more efficient:

1. Perform a sequential scan over table S to get both
SIT(S.b|R ./r2=s2 S) and SIT(S.s3|R ./r1=s1 S).
This can be done by sharing the sequential scan over
S (on attributes S.s2, S.b, S.s3, and S.s1) and using
histograms over R.r2 and S.s2 for the first SIT, and
histograms R.r1 and S.s1 for the second to obtain the
required multiplicity values.

2. Perform a sequential scan over T , and using the pre-
viously calculated SIT(S.s3|R ./r1=s1 S), obtain the
required SIT(T.a|R ./r1=s1 S ./s3=t3 T).

The second strategy requires a single sequential scan over
table S, as opposed to two scans for the naive strategy. Of
course, the memory requirements for the second strategy are
larger than those for the first, since we need to maintain two
sets of samples in memory: one for πS.b(R ./r2=s2 S), and
another for πS.s1(R ./r1=s1 S).

These concepts are similar to the ideas in multi-query op-
timization [15], which aims to exploit common subexpres-
sions among the input queries to reduce the overall execution
cost. However, there is a difference between multi-query op-
timization and our problem. In our scenario, the execution
plan for each individual SIT is known in advance (it corre-
sponds to the unique sequence of applications of Sweep de-
scribed in Section 3.2). Therefore, the search space is much

smaller than in the general case, and we can provide a tai-
lored solution to find the optimal strategy. We now formalize
the optimization problem to create a given set of SITs:

Given a set of SITs S = {S1, . . . , Sn}, a sampling
rate s 6, and the amount of available memory M , find
the optimal sequence of applications of the Sweep al-
gorithm (sharing sequential scans as explained above)
such that: (i) at any time the total amount of memory
used for sampling is bounded by M , and (ii) the esti-
mated execution cost for building S is minimized.

To address this optimization problem, we first review
the Shortest Common Supersequence (SCS) problem in Sec-
tion 4.1, and a previously proposed A*-based technique to
solve it in Section 4.2. Then, we show how to map our SIT
creation problem to a generalized version of SCS in Sec-
tion 4.3. We extend the A*-based technique to solve our
problem optimally and finally introduce two greedy alterna-
tives.

4.1 Shortest Common Supersequence

The Shortest Common Supersequence [8], or SCS, is a
well known problem used in text editing, data compression,
and robot assembly lines, among other applications. We now
define the SCS problem.

Definition 2 Let R = x1 . . . xn be a sequence of elements
(individual elements of R can be accessed using array nota-
tion, so R[i] = xi). Given a pair of sequences R and R′, we
say that R′ is a subsequence of R, if R′ can be obtained by
deleting zero or more elements from R (we then say that R is
a supersequence of R′). A sequence R is a common super-
sequence of a set of sequences R = {R1, . . . , Rn} if R is a
supersequence of all Ri ∈ R. A shortest common superse-
quence of R, denoted SCS(R), is a common supersequence
ofR with minimal length.

Example 4 Consider R = {abdc, bca}. Some common su-
persequences ofR are abdcbca, aabbddccbbcaa, and abdca.
We know that SCS(R) = abdca, since no sequence of size
four is a common supersequence of both abdc and bca.

Finding the SCS of a set of sequences is an NP-complete
problem, and can be solved using dynamic programming
in O(ln) for n sequences of length at most l, by formulat-
ing SCS as a shortest path problem in an acyclic directed
graph with O(ln) nodes [18]. For a given set of sequences
R = {R1, . . . , Rn}, the graph is constructed as follows.
Each node in the graph is a n-tuple (r1, . . . , rn), where
ri ∈ {0..|Ri|} indexes a position in Ri. Node (r1, . . . , rn)
will encode a solution for the common supersequence of
{S1, . . . , Sn}, where Si = Ri[1]Ri[2] . . . Ri[ri], i.e., the ri-
prefix of Ri. We insert an edge from node (u1, . . . , un) to

6The sampling rate can be specified as a percentage of the table size, an
absolute amount, or a combination or both (depending of the table size).

6

node (v1, . . . , vn) with label θ if the following properties
hold: (i) ui = vi ∨ ui + 1 = vi, (ii) at least one position
uj verifies uj + 1 = vj , and (iii) for every position vj such
that uj + 1 = vj , we have that Rj [uj] = θ. Informally,
an edge labelled θ connects nodes u and v if we can reach
the state represented by v from the state represented by u by
adding θ to the common supersequence encoded at u.

It is fairly easy to show that any path from node O =
(0, . . . , 0) to node F = (|R1|, . . . , |Rn|) in the graph corre-
sponds to a common supersequence of R. In particular, any
shortest path from O to F corresponds to a shortest common
supersequence ofR. Therefore, to solve SCS we materialize
the induced graph and use any algorithm to find the shortest
path between O and F .

��� ��� ���

��� ��� ���

��� ��� ���

��� ��� ���

��� ���

���

�����

	

�����

����

�

����	

�

� �

� �

����

�����

�

����

�����

����	

�
��������
�

��
�����
�

Figure 5. The graph induced byR = {abdc, bca}.

Example 5 Figure 5 shows the graph induced by the set of
sequences R = {abdc, bca}. For instance, (2, 1) is the fi-
nal node for the subproblem R′ = {ab, b} (the 2- and 1-
prefixes of the original sequences, respectively). By adding
an edge c to any common supersequence of {ab, b} we ob-
tain common supersequences for {ab, bc} and therefore we
insert edge c between nodes (2, 1) and (2, 2). The short-
est path from the initial node O = (0, 0) to the final node
F = (4, 3) is {(0, 0), (1, 1), (2, 1), (3, 1), (4, 2), (4, 3)},
which corresponds to SCS(R) = abdca.

In the next section we review an algorithm to solve
SCS [9] that generally results in fast executions and does not
need to materialize the whole induced graph in advance.

4.2 A*-based Approach to Solve SCS

Algorithm A* [10] is a heuristic technique to efficiently
find shortest paths in graphs that are inductively built (i.e.,
graphs in which we can generate the set of successors of any
given node). The key idea in [9] is to apply A* to the SCS
problem and materialize only a portion of the graph induced
by the input set of sequences. A* searches the input graph

outwards from the starting node O until it reaches the goal
node F , expanding at each iteration the node that has the
most chances to be along the best path from O to F . The ap-
plication of A* is based on the possibility, for each node u in
the induced graph, of estimating a lower bound of the length
of the best path connecting O and F through u (we denote
this value f(u)). At each step in the search, we choose the
most promising node, i.e., the node for which f(u) is the
smallest among those for the nodes created so far. Then,
we expand the chosen node by dynamically generating all its
successors in the graph. Typically, the cost function f(u) is
composed of two components, f(u) = g(u) + h(u), where
g(u) is the length of the shortest path found so far between O
and u, and h(u) is the expected remaining cost (heuristically
determined) to get from u to F . If the heuristic function h(u)
is always an underestimate of the actual length from u to F ,
A* is guaranteed to find the optimal solution. However, if
h(u) is too optimistic, A* will expand too many nodes and
may run out of resources before a solution is found. There-
fore, it is critical to define h(u) as tight as possible. Also,
if for any pair of nodes u and v that are connected by an
edge in the graph, we have that h(u)−h(v) ≤ d(u, v) where
d(u, v) is the cost of going from u to v, the following prop-
erty holds: whenever a node u is expanded, a shortest path
from O to u is already known. This property allows efficient
implementations of A*.

For the SCS problem, an estimate on the length of the
shortest path from u to F , i.e., h(u), is equivalent to an
estimate of the shortest common supersequence of the suf-
fixes of the original sequences not yet processed in state
u. A good value for h(u) can then be calculated as fol-
lows. If we denote o(u, c) to the maximum number of oc-
currences of c in some suffix sequence in state u, a lower
bound h(u) is then

∑

c o(u, c), since every common super-
sequence must contain at least o(u, c) occurrences of c. For
instance, consider the node (2, 1) in Figure 5, for which we
processed the two first elements of abdc and the first element
of bca. The remaining suffixes are dc and ca, respectively.
In this case, h((dc, ca)) = o((dc, ca), d) + o((dc, ca), c) +
o((dc, ca), a) = 1 + 1 + 1 = 3. Putting all pieces together,
we present below the A* algorithm to solve SCS:

Algorithm A* for SCS ()

01 OPEN={O}; CLOSED=∅; g(O)=0; f(O)=0;

02 repeat

03 bestN=n ∈ OPEN s.t. f(n) is minimal

04 OPEN=OPEN - {bestN}
05 CLOSE=CLOSE ∪ {bestN}
06 for each successor s of bestN do

07 gNew=g(bestN) + 1 // d(bestN, s)==1
08 if (s 6∈ OPEN ∪ CLOSE) ∨

(s ∈ OPEN ∧ gNew < g(s)))

09 g(s)=gNew; f(s)=g(s)+
∑

c
o(u, c)

10 OPEN=OPEN ∪ {s}
11 until (bestNode=F)

7

It should be noted that A* does not affect the size of the
graph, but usually results in faster executions since it does
not need to generate the whole graph in advance, but only
explores a small fraction guided by the heuristic function h.

4.3 Exploiting SCS to Create Multiple SITs

In this section we show how we can reduce our problem
of optimally creating a set of SITs into a generalized version
of SCS. Then, we show how to adapt the A* technique of
Section 4.2 to solve this problem, and present a greedy algo-
rithm to quickly approximate a close-to-optimal solution in
a small amount of time.

We recall from the description of Sweep (see Section 3)
that creating a given SIT requires performing sequential
scans over the set of tables referenced in the SIT’s generat-
ing query (with the exception of the root table in the join-
tree). Moreover, the sequential scans must follow the or-
der given by some post-order traversal of the join-tree (see
Section 3.2). As an example, suppose we want to cre-
ate a SIT over attribute R.a with the acyclic-join generat-
ing query of Figure 6(b). Clearly, sequential scans over
tables S and U (which return SIT(S.s1|S ./s2=t1 T) and
SIT(U.u1|U ./u2=v1 V)) must precede sequential scan over
table R, since the latter uses SITs produced by the former.
However, no ordering is required between scans of S and U .

We can concisely specify these order restrictions by using
a set of dependency sequences. A dependency sequence is
simply a sequence of tables (R1, . . . , Rn), such that for all
1 ≤ i, j ≤ n, the sequential scan over table Ri must pre-
cede the sequential scan over Rj . For chain-join queries, a
single dependency sequence is needed, which is obtained by
traversing the chain of joins starting from the table that orig-
inally hosts the SIT’s attribute, and omitting the last table.
In general, for a acyclic-join query we need one dependency
sequence for each root-to-leaf path in the join-tree (omitting
leaf nodes). Figure 6 shows two join queries and their corre-
sponding dependency sequences.

R.aR

S

 r1=s1

T

 s2=t1

V

 t2=v1

R

S

s1
=r1

T

 s2=t1

U

r2=u1

V

 u2=v1

Dependency
Sequences

(S,R)
(U,R)

Dependency
Sequence
(T,S,R)

R.b

Figure 6. Dependency sequences for join generating queries.

To model the time and space required to execute Sweep
over a single-join generating query, we associate with each
table T the following values: Cost(T), which is the es-
timated cost to perform a sequential scan over T , and
SampleSize(T, a), which specifies how much memory we al-
locate for a sample over attribute a of T . SampleSize(T, a)

can be a constant value or depend on the specific table and
attribute. Therefore, if we use Sweep to create SIT(S.a|R ./
S), we estimate the cost of the procedure as Cost(S) and the
memory requirements as SampleSize(S, a).

As illustrated in Example 3, we can share a sequen-
tial scan over table S to create any SIT of the form
SIT(S.a|R ./x=y S) for arbitrary table R and attributes a, x
and y, provided that we have a histogram over R.x available
(recall that for acyclic-join generating queries, R could rep-
resent an intermediate join result). In this situation, the cost
of executing Sweep remains fixed at Cost(T) since the se-
quential scan is shared. However, the space required for sam-
pling increases to

∑

i sampleSets(ai) · SampleSize(T, ai),
where sampleSets(ai) is the number of sample sets for
attribute ai required during the sequential scan over ta-
ble S 7. For instance, if we share the sequential scan
over S to create SIT(S.a|R ./x=y S), SIT(S.b|R ./x=y

S), and SIT(S.a|T ./z=y S), the estimated cost will be
Cost(S) and the memory requirements for sampling will be
2 · SampleSize(S, a) + SampleSize(S, b).

If the amount of available memory is unbounded, the op-
timization problem can be very easily mapped to a weighted
version of SCS, where the input sequences to the SCS prob-
lem are all the dependency sequences of the given SITs. All
we need to change in the A* algorithm is the definition of the
distance function between nodes to incorporate weights, and
the heuristic function h(u) (lines 6 and 8 in the A* algorithm
of Section 4.2). In particular, we replace d(u, v) from the
constant 1 (no weight) to Cost(R), where R is the label of
edge (u, v). The definition of h(u) is changed accordingly to
h(u) =

∑

c Cost(c) · o(u, c).
Once we get the SCS, we can “execute” it as follows. We

iterate through the elements (tables) of the SCS one at a time.
When we process table T , we create (using Sweep) all SITs
of the form SIT(T.a|S ./si=tj

T) for which the histogram
over S.si is already built (or if S is a base table, we create
the corresponding base-table histogram).

Example 6 Consider the SITs of Figure 6, and assume that
Cost(R)=Cost(S) = 10, Cost(T)=Cost(U)=Cost(V)=20,
and SampleSize(t, a) = 10, 000 for all tables and at-
tributes. In such a case, a shortest weighted common
supersequences with cost 60 is (U, T, S,R). The exe-
cution of schedule (U, T, S,R) proceeds as follows. We
first perform a sequential scan over table U obtaining
SIT(U.u1|U ./u2=v1 V). Then, with a sequential scan
over T we obtain SIT(T.t1|T ./t2=v1 V). Then, we per-
form a sequential scan over S obtaining SIT(S.s1|S ./s2=t1

T) and SIT(S.s1|S ./s2=t1 T ./t2=v1 V) (using
2 · SampleSize(S, s1) memory for samples). Finally, we
do a sequential scan over table R and obtain, using
SampleSize(R, a) + SampleSize(R, b) for samples, the re-

7We would need slightly more space than SampleSize(T, a) to store the
input histograms, but we omit this detail for simplicity.

8

quired SIT(R.b|R ./r1=s1 S ./s2=t1 T ./t2=v1 V) and
SIT(R.a|R ./r1=s1 S ./s2=t1 T ./r2=u1 U ./u2=v1 V) .

The scenario considered above assumes that we can allo-
cate any amount of memory to create SITs. When the amount
of available memory M is bounded, we need to addition-
ally modify the search space to solve a constrained, weighted
SCS. For instance, if 2 · SampleSize(S, s1) > M in the ex-
ample above, we would not be able to share the sequential
scan over S, and the optimal execution path would be differ-
ent. We now show how to modify A* to obtain the optimal
strategy to create multiple SITs given memory constraints.

4.3.1 The A* Algorithm for Multiple SIT Creation
The main implication of having a bounded amount of avail-
able memory is that some edges in A*’s search graph are
not valid any longer. As explained in Section 4.2, the im-
plicit meaning of an edge from node u = (u1, . . . , un) to
node v = (v1, . . . , vn) with label c is to “advance” one po-
sition all input sequences for which R[ui] = c. Of course,
while creating SITs, each position that was changed from ui

to vi = ui + 1 in transition (u, v) corresponds to an addi-
tional SIT to create and might increase the memory require-
ments above the given limit. For that reason, in general we
can only advance subsets of all possible positions from node
u using edge c. Moreover, we must try each possibility, or we
might compromise optimality. We modified the procedure to
get the successors of a given node at each iteration of A* to
solve this constrained version of SCS. We note that the size
of the search graph is still bounded by O(ln), where n is the
number of input SITs and l is the size of the largest depen-
dency sequence among the input SITs. However, the number
of edges typically increases. For many input SITs, or SITs
with many joins, the A*-based technique may become too
expensive. The modified procedure is described below.

generateSuccessors (u = (u1, . . . , un) : node,
R = {R1, . . . , Rn} : sequences,
M : memory limit)

01 successors = ∅
02 for each table T in R do

03 candidates = {i : Ri[ui] = T}
04 for each C ⊆ candidates such that

∑

ai
sampleSets(ai) · SampleSize(T, ai) ≤ M do

05 successors = successors ∪ (v1, . . . , vn),

where vi =

{

ui + 1 if i ∈ C

ui otherwise
06 return successors

4.3.2 Greedy/Hybrid Alternatives
The A* algorithm is guaranteed to find an optimal scheduling
to create a set of SITs that minimizes the total execution cost.
However, the worst-case time complexity of the algorithm is
O(ln · 2S) where l is the maximum length of any chain of
joins, n is roughly the number of input SITs, and S is the

maximum size of any candidate set. For small values of l
and n, the A* algorithm is efficient, but if we increase n
or l some executions of A* become prohibitively expensive.
For that reason, we now propose a simple greedy variant of
the A* algorithm and also a hybrid approach that balances
efficiency and quality of the resulting schedule.

Greedy: The Greedy approach can be described as a simple
modification of A*. At each iteration of A*, after we get
the best node u, we empty the OPEN set before adding
the successors of u. In this way, the Greedy variant sim-
ply chooses at each step the element that would result in
the largest local improvement. In this case, the size of
OPEN at each iteration is bounded by the maximal num-
ber of successors of any given node, and the algorithm is
guaranteed to finish in at most

∑

i |Ri| steps (since the
induced search graph is always acyclic). However, due
to the aggressive pruning in the search space, Greedy
usually results in suboptimal schedules.

Hybrid: Hybrid is a combination of Greedy and A*, based
on the observation that we can switch from A* to
Greedy at any given iteration, by simply cleaning OPEN

at the current and every subsequent iteration. Hybrid
starts as A* and after a switch condition, greedily con-
tinues from the most promising node found so far. Sev-
eral switching conditions can be used for Hybrid. For
instance, we can switch after a pre-determined amount
of time has passed without A* returning the optimal so-
lution, or after |OPEN ∪ CLOSE| uses all available mem-
ory. In our experiments, we switch after one second
without A* finding the optimal solution.

5 Experiments

In this section we present experimental results for a C++
implementation of the algorithms described in Sections 3
and 4. All experiments were conducted in a Pentium IV
2.2Ghz with 1GB of main memory. In Section 5.1 we com-
pare the different variations of Sweep for creating a single
SIT using a variety of data sets and generating queries (we
focus on contrasting the accuracy of the techniques rather
than their execution times). In Section 5.2 we report results
for the algorithms of Section 4 to create sets of SITs.

5.1 Creating a Single SIT

In this section we compare different techniques to build a
single SIT, using the following setting:

Data sets, generating queries, and histograms: We used
a synthetic database consisting of 4 tables with 10,000 to
100,000 tuples. Each table is composed of three to five at-
tributes. Some attributes are uniformly distributed and others
follow a zipfian distribution (with parameter z varying from

9

0.1 to 1). For the SITs’ generating queries, we used 2, 3,
and 4-way chain-join queries. We used a variant of MaxD-
iff histograms [14] which are natively supported in Microsoft
SQL Server 2000. We set the default number of buckets in
the histograms as nb = 100.

Techniques compared: We compare Sweep (with a sam-
pling rate of 10%) and its variations of Section 3.1.2. We also
included Hist-SIT , the traditional technique used by current
optimizers to estimate SITs by propagating base-table his-
tograms. Hist-SIT is very efficient, since it operates on the
histogram domain without accessing the actual data, but re-
lies on all the simplifying assumptions of Section 2.

Evaluation metric: For each technique considered, we
created the corresponding SIT and also materialized the gen-
erating query to obtain the actual result. Then, we issued
1,000 random range queries over the SIT domain (corre-
sponding to SPJ queries over the actual data sets) and cal-
culated the relative error between the actual and estimated
cardinalities.

Results: Figure 7 shows the relative error for the different
techniques and generating queries of increasing complexity.
For these experiments, we used join attributes with skewed
distributions (z = 1), so that the independence assumption
is not valid. As expected, Hist-SIT is consistently much
worse than the other techniques, due to all the simplifying
assumptions involved in the estimation. Moreover, the gap
between Hist-SIT and the other techniques increases with the
number of joins in the generating query, due to the propa-
gation of errors through the query plans. For instance, in
Figure 7(c) the relative error is close to 200% independent
of histogram sizes. In contrast, the variants of Sweep result
in estimation errors that are close to those for the most ac-
curate SweepExact. In particular, Sweep results in slightly
worse estimations than SweepFull and SweepIndex, since it
relies on additional simplifying assumptions. However, the
difference is small, which suggests that the critical assump-
tion is independence. Also, there is not a clear winner be-
tween SweepFull and SweepIndex in all situations.

We also conducted an experiment in which the join pred-
icates were uniformly distributed and independent of the re-
maining attributes. In this case, the independence assump-
tion holds, and all techniques result in very accurate estima-
tions (with relative errors below 2%). In this situation, Sweep
and SweepIndex result in slightly worse accuracy (around 2%
versus 1% for the other techniques) due to sampling. A com-
prehensive study of which scenarios are estimated better by
each technique is an important piece of future work.

5.2 Creating Multiple SITs

We now compare different techniques to schedule the cre-
ation of multiple SITs, using the setting below:

Data sets and generating queries: We generated data
schemas and SITs using several parameters. In particular,
we first created nt different table schemas 8. The number of
tuples in each table was taken from a zipfian distribution with
parameter z = 1. We set Cost(T) = |T/1000| units (since
the cost of a sequential scan is proportional to the size of the
input), and SampleSize(T) = s · |T |, where s is the sampling
rate. Finally, we created each input instance by randomly
generating numSITs dependency sequences, each one with
length between 2 and lenSITs. By default we used the fol-
lowing values: numSITs = 10, lenSITs = 5, nt = 10
and s = 10%. The combined size of all tables was 1,000,000.

Techniques compared: We compare the following tech-
niques: Naive (which creates each SIT separately), Opt
(which is the optimal strategy of Section 4.3 based on A*),
Greedy, and Hybrid. By default, we specified the available
amount of memory as M = 50, 000.

Evaluation metric: For each experiment, we generated
100 different instances (sets of SITs) and optimized their
evaluation strategies using each technique. We finally aver-
aged, for each technique, the total optimization time used to
find each schedule, and the estimated cost of such schedule.

5.2.1 Varying numSITs and lenSITs

Figure 8 shows the estimated cost and optimization time for
the default setting and varying numSITs. Not surprisingly,
Naive results in considerably slower schedules than the re-
maining techniques, since it does not take advantage of com-
monalities between SITs. Both Greedy and Hybrid result in
close to optimal schedules for all scenarios (see Figure 8(a)).
However, the optimization times of Greedy and Hybrid are
substantially smaller than those of Opt, specially for larger
instances. For instance, for sets with 20 SITs, Opt took over
36 seconds on average to find the optimal solution. In con-
trast, Greedy and Hybrid took 0.02 and 0.8 seconds, respec-
tively, to produce slightly less efficient schedules (the aver-
age estimated costs were 2024, 2124 and 2278 units for Opt,
Greedy, and Hybrid respectively). We also conducted exper-
iments varying lenSITs and obtained similar results, but we
omit those for space constraints.

5.2.2 Varying the Total Number of Tables.

Figure 9 shows the average estimated cost to create set of
SITs for varying number of tables. When we increase nt
(keeping numSITs fixed) the amount of overlapping be-
tween SITs is reduced. For that reason, all techniques tend
to return similar schedules. In the extreme, if every SITs is
composed of different tables, the Naive approach is optimal,
since it performs just one sequential scan over each involved

8In this section we compare different algorithms that return schedules to
create SITs, but we do not actually execute those schedules. Therefore, we
do not populate the tables, but only specify their schemas and sizes.

10

0

0.1

0.2

0.3

0.4

50 100 150 200 250 300 350 400 450 500
Number of Buckets

R
el

at
iv

e
E

rr
or

Hist-SIT
Sweep
SweepFull
SweepIndex
SweepExact

0

0.3

0.6

0.9

1.2

50 100 150 200 250 300 350 400 450 500
Number�of�Buckets

R
el

at
iv

e�
E

rr
or

Hist-SIT
Sweep
SweepFull
SweepIndex
SweepExact

0

0.5

1

1.5

2

2.5

50 100 150 200 250 300 350 400 450 500
Number�of�Buckets

R
el

at
iv

e�
E

rr
or

Hist-SIT
Sweep
SweepFull
SweepIndex
SweepExact

(a) 2-way join query. (b) 3-way join query. (c) 4-way join query.

Figure 7. Creating SITs with skewed distributions in the join attributes of the generating queries.

0

5000

10000

15000

20000

2 4 6 8 10 12 14 20 40 60 80 100

Number�of�SITs�to�materialize

E
st

im
at

ed
�e

xe
cu

tio
n�

C
os

t

Naive
Greedy
Hybrid(1sec)
Opt

0.1

1

10

100

1000

10000

2 4 6 8 10 12 14 20 40 60 80 100

Number�of�SITs�to�materialize

O
pt

im
iz

at
io

n�
tim

e�
(m

ill
is

ec
on

ds
)

Greedy

Hybrid(1sec)

Opt

(a) Estimated cost of the best plan. (b) Optimization cost to get the best plan.

Figure 8. Creating SITs with varying numSITs.

table. In real applications, however, the degree of common-
ality among SITs may be relatively high and thus necessitate
the use of alternatives to Naive.

0

500

1000

1500

2000

2500

3000

10 20 30 40 50

Total�number�of�tables

E
st

im
at

ed
�e

xe
cu

tio
n�

co
st

Naive
Greedy
Hybrid(1sec)
Opt

Figure 9. Creating SITs with varying number of tables.

0

1000

2000

3000

15
K

17
.5K 20

K
22

.5K 25
K

27
.5K 30

K
32

.5K 35
K

37
.5K 40

K
42

.5K 45
K

Available�memory�for�sampling

E
st

im
at

ed
�e

xe
cu

tio
n�

co
st

Naive
Greedy
Hybrid(1sec)
Opt

Figure 10. Creating SITs with varying memory limit.

5.2.3 Varying the Amount of Available Memory M

For this experiment, we varied the amount of available mem-
ory M from 15 Kb, which is the sample size of the largest
table and therefore the minimal amount of memory for any
algorithm, to 45 Kb which resulted in the same schedule as
whenM is not bounded (see Figure 10). Naive is not affected
by memory constraints, since it maintains a single sample in

memory at all times. The remaining techniques clearly bene-
fit from extra memory and their schedules range from similar
to twice as efficient as that of Naive.

6 Related Work

Virtually all relational optimizers [6, 7, 16] rely on base-
table statistics to choose the most efficient execution plan
in a cost-based manner. Histograms are the most common
type of statistical information used in RDBMS, and there is
a large body of work that studies histogram techniques on a
given column [12, 13, 14]. In this paper we rely on existing
histogram techniques and we focus on approximate attribute
distributions over query expressions.

The idea of building statistics over non base-tables was
introduced in [1] by using join synopses, which are precom-
puted samples of a small set of distinguished joins. The main
focus of that work is approximate query processing, and the
generating queries are restricted to be foreign-key joins. Ref-
erence [2] introduces the concept of SITs, which are statis-
tics built over the result of executing query expressions, and
presents an effective framework to incorporate them to exist-
ing query optimizers. It also introduces a workload-driven
algorithm (based on the MNSA technique of [5]) to select
conservatively a small subset of SITs that can significantly
improve quality of query plans compared to using statistics
on base-tables only. The present work studies the comple-
mentary problem of actually creating a given set of SITs.

There has been some work in the literature on trying to in-
troduce sampling as a primitive relational operation [4, 11].
In particular, reference [4] studies some issues involved when
trying to commute sampling and join operators. This work

11

introduces several algorithms to sample the result of a join
operation without computing the entire join in the first place.
The key difference with our approach is that in [4, 11] an
actual sample of the result is needed. For that reason, all
techniques process both tables and actually evaluate joins (at
least in restricted ways), which is expensive. In our scenario,
when creating SIT(S.a|R ./ S) we are not interested in ac-
tual values from table R, since we only need an approximate
distribution of πS.a(R ./ S). Therefore, we can apply effi-
cient procedures that provide all required information.

Multi-query optimization aims at exploiting common sub-
expressions in the input queries to reduce evaluation cost. It
is recognized that exhaustive algorithms for multi-query op-
timization are impractical, since they explore a doubly ex-
ponential search space. Reference [15] proposes cost-based
heuristics that can be incorporated to existing optimizers, and
shows that the algorithms provide significant benefits over
traditional optimization with acceptable overhead. In this
paper, we solve a more constrained optimization problem,
since the execution plans for each individual SIT is known
in advance (it corresponds to the unique sequence of appli-
cations of Sweep described in Section 3.2). For that reason,
the search space is much smaller than in the general case,
and we are able to adapt SCS to find the optimal global strat-
egy. The Shortest Common Supersequence (SCS) is a well
studied problem in the literature [8]. Finding the SCS of
a set of sequences is NP-complete, and can be solved by
dynamic programming in O(ln) for n input sequences of
length l [18]. Reference [9] introduces an A* algorithm to
solve SCS which is generally more efficient than the classic
dynamic programming technique. In this paper we modi-
fied such algorithm to fit our problem of finding an optimal
schedule to create a set of SITs.

7 Conclusions

In this paper we studied the problem of efficiently creat-
ing statistics over query expressions, or SITs. We designed
a family of techniques that balance accuracy and efficiency
by approximating SITs. In particular, we discussed Sweep,
which avoids relying on the independence assumption be-
tween attributes and requires a single scan over the tables in-
volved in the SIT’s generating query. Although Sweep uses
sampling for its creation and does rely on the containment
assumption, we showed experimentally that Sweep results in
significant improvements in accuracy. We also studied the
problem of scheduling basic applications of Sweep to cre-
ate a set of SITs subject to space constraints. We proposed
an algorithm for constructing the optimal schedule, and also
presented greedy variants that are significantly more efficient
without sacrificing the quality of the resulting schedules in
most cases. An interesting problem that we defer to future
work is to decide which SITs should be created using Sweep,
and which ones would only be useful if built using more ac-

curate (and therefore more expensive) techniques, such as the
intermediate variants of Section 3.1.2.

Acknowledgements

We thank Luis Gravano for his valuable feedback.

References

[1] S. Acharya, P. B. Gibbons, V. Poosala, and S. Ramaswamy. Join syn-
opses for approximate query answering. In Proceedings of the 1999
ACM International Conference on Management of Data, 1999.

[2] N. Bruno and S. Chaudhuri. Exploiting statistics on query expressions
for optimization. In Proceedings of the 2002 ACM International Con-
ference on Management of Data, 2002.

[3] S. Chaudhuri, R. Motwani, and V. Narasayya. Random sampling for
histogram construction: How much is enough? In Proceedings of the
1998 ACM International Conference on Management of Data, 1998.

[4] S. Chaudhuri, R. Motwani, and V. Narasayya. On random sampling
over joins. In Proceedings of the 1999 ACM International Conference
on Management of Data, 1999.

[5] S. Chaudhuri and V. Narasayya. Automating statistics management
for query optimizers. In Proceedings of the Sixteenth International
Conference on Data Engineering, 2000.

[6] G. Graefe. The cascades framework for query optimization. Data
Engineering Bulletin, 18(3), 1995.

[7] L. M. Haas, J. C. Freytag, G. M. Lohman, and H. Pirahesh. Exten-
sible query processing in starburst. In Proceedings of the 1989 ACM
International Conference on Management of Data, 1989.

[8] D. Maier. The complexity of some problems on subsequences and
supersequences. In Journal of the ACM, 25, 1978.

[9] G. Nicosia and G. Oriolo. Solving the shortest common supersequence
problem. In Operation Research. Springer-Verlag, 2001.

[10] N. J. Nilsson. Problem solving methods in artificial intelligence.
McGraw-Hill, 1971.

[11] F. Olken and D. Rotem. Random sampling from database files: A
survey. In Statistical and Scientific Database Management, 5th Inter-
national Conference (SSDBM), 1990.

[12] G. Piatetsky-Shapiro and C. Connell. Accurate estimation of the num-
ber of tuples satisfying a condition. In Proceedings of the 1984 ACM
International Conference on Management of Data, 1984.

[13] V. Poosala and Y. Ioannidis. Selectivity estimation without the at-
tribute value independence assumption. In Proceedings of the Twenty-
third International Conference on Very Large Databases, 1997.

[14] V. Poosala, Y. Ioannidis, P. Haas, and E. Shekita. Improved histograms
for selectivity estimation of range predicates. In Proceedings of the
1996 ACM International Conference on Management of Data, 1996.

[15] P. Roy, S. Seshadri, S. Sudarshan, and S. Bhobe. Efficient algorithms
for multi query optimization. In Proceedings of the 2000 ACM Inter-
national Conference on Management of Data, 2000.

[16] P. G. Selinger et al. Access path selection in a relational database
management system. In Proceedings of the 1979 ACM International
Conference on Management of Data, 1979.

[17] M. Stillger, G. M. Lohman, V. Markl, and M. Kandil. LEO - DB2’s
learning optimizer. In Proceedings of the Twenty-seventh International
Conference on Very Large Databases, 2001.

[18] V. G. Timkovskii. Complexity of common subsequence and superse-
quence and related problems. In Journal of Cybernetics, 25, 1990.

[19] J. S. Vitter. Random sampling with a reservoir. In ACM Trans. Math-
ematical Software, 11, 1985.

12

