
Concurrency Control in
Advanced Database Applications

Naser S. Barghouti and Gail E. Kaiser

Department of Computer Science

Columbia University

New York, NY 10027

11 January 1994

Copyright  1994 Naser S. Barghouti and Gail E. Kaiser

1

Abstract

Concurrency control has been thoroughly studied in the context of traditional database applica-

tions such as banking and airline reservations systems. There are relatively few studies, however,

that address the concurrency control issues of advanced database applications such as

CAD/CAM and software development environments. The concurrency control requirements in

such applications are different from those in conventional database applications; in particular,

there is a need to support non-serializable cooperation among users whose transactions are long-

lived and interactive, and to integrate concurrency control mechanisms with version and con-

figuration control. This paper outlines the characteristics of data and operations in some ad-

vanced database applications, discusses their concurrency control requirements, and surveys the

mechanisms proposed to address these requirements.

Categories and Subject Descriptors: H.2.4 [Database Management]:Systems—concurrency;

transaction processing; H.2.8 [Database Management]: Applications; D.2.6 [Software

Engineering]: Programming Environments—interactive; D.2.9 [Software Engineering]:

Management—programming teams

General Terms: Design, Management, Algorithms

Additional Key Words and Phrases: Concurrency control, design environments, advanced

database applications, relaxing serializability, extended transaction models, cooperative

transactions, long transactions, object-oriented databases
Appeared in ACM Computing Surveys, 23(3):269-317, September 1991.

1

INTRODUCTION

Many advanced computer-based applications, such as computer-aided design and manufac-

turing (CAD/CAM), network management, financial instruments trading, medical informatics,

office automation, and software development environments (SDEs), are data-intensive in the

sense that they generate and manipulate large amounts of data (e.g., all the software artifacts in

an SDE). It is desirable to base these kinds of application systems on data management

capabilities similar to those provided by database management systems (DBMSs) for traditional

data processing. These capabilities include adding, removing, retrieving and updating data from

on-line storage, and maintaining the consistency of the information stored in a database. Consis-

tency in a database is maintained if every data item satisfies specific consistency constraints.

These are typically implicit in data processing in the sense that they are known to the implemen-

tors of the applications, and programmed into atomic units called transactions that transform the

database from one consistent state to another. Consistency can be violated by concurrent access

to the same data item by multiple transactions. A DBMS solves this problem by enforcing a

concurrency control policy that allows only consistency-preserving schedules of concurrent

transactions to be executed.

We use the term advanced database applications to describe application systems, such as

the ones mentioned above, that utilize DBMS capabilities. They are termed advanced to distin-

guish them from traditional database applications, such as banking and airline reservations sys-

tems. In traditional applications, the nature of the data and the operations performed on the data

are amenable to concurrency control mechanisms that enforce the classical transaction model.

Advanced applications, in contrast, have different kinds of consistency constraints, and, in

general, the classical transaction model is not applicable. For example, applications like network

management and medical informatics may require real-time processing. Others like CAD/CAM

and office automation involve long interactive database sessions and cooperation among multiple

database users. Conventional concurrency control mechanisms are not applicable "as is" in these

new domains. We are concerned in this paper with the latter class of advanced applications,

which involve computer-supported cooperative work. The requirements of these applications are

elaborated in section 5.

Some researchers and practitioners question the adoption of terminology and concepts from

on-line transaction processing (OLTP) systems for advanced applications. In particular, these

2

researchers feel that the terms ‘‘long transactions’’ and ‘‘cooperating transactions’’ are an in-

appropriate and misleading use of the term ‘‘transaction’’, since they do not carry the atomicity

and serializability properties of OLTP transactions. We agree that atomicity, serializability and

the corresponding OLTP implementation techniques are not appropriate for advanced applica-

tions. However, the term ‘‘transaction’’ provides a nice intuition regarding the need for consis-

tency, concurrency control and fault recovery. Basic OLTP concepts such as locks, versions and

validation provide a good starting point for the implementation of ‘‘long transactions’’ and

‘‘cooperating transactions’’. In any case, nearly all the relevant literature uses the term ‘‘trans-

action’’. We do likewise in our survey.

The goals of this paper are: (1) to provide a basic understanding of the difference between

concurrency control in advanced database applications and that in traditional data processing ap-

plications; (2) to outline some of the mechanisms used to control concurrent access in these ad-

vanced applications; and (3) to point out some problems with these mechanisms. We assume

that the reader is familiar with database concepts, but do not assume an in-depth understanding

of transactions and concurrency control issues. Throughout the paper, we try to define the con-

cepts that we use, and give practical examples of these concepts. We explain the various

mechanisms at an intuitive level rather than a detailed technical level.

The paper is organized as follows. We start with an example to motivate the need for new

concurrency control mechanisms. Section 2 describes the data handling requirements of ad-

vanced database applications and shows why there is a need for capabilities like those provided

by DBMSs. Section 3 gives a brief overview of the consistency problem in traditional database

applications and explains the concept of serializability. Section 4 presents the main

serializability-based concurrency control mechanisms. Readers who are familiar with conven-

tional concurrency control schemes may wish to skip sections 3 and 4. Section 5 enumerates the

concurrency control requirements of advanced database applications. The discussion in that sec-

tion focuses on software development environments, although many of the problems of

CAD/CAM and office automation systems are similar. Sections 6, 7 and 8 survey the various

concurrency control mechanisms proposed for this class of advanced database applications. Sec-

tion 9 discusses some of the shortcomings of these mechanisms and concludes with a summary

of the mechanisms.

3

1 A MOTIVATING EXAMPLE

We motivate the need for extended concurrency control policies by a simple example from

the software development domain. Variants of the following example are used throughout the

paper to demonstrate the various concurrency control models.

Two programmers, John and Mary, are working on the same software project. The project

consists of four modules A, B, C and D. Modules A, B and C consist of procedures and declara-

tions that comprise the main code of the project; module D is a library of procedures called by

the procedures in modules A, B and C. Figure 1 depicts the organization of the project.

Figure 1: Organization of example project

When testing the project, two bugs are discovered. John is assigned the task of fixing one

bug that is suspected to be in module A. He "reserves" A and starts working on it. Mary’s task is

to explore a possible bug in the code of module B, so she starts browsing B after "reserving" it.

After a while, John finds out that there is a bug in A caused by bugs in some of the procedures in

the library module, so he "reserves" module D. After modifying a few procedures in D, John

proceeds to compile and test the modified code.

Mary finds a bug in the code of module B and modifies various parts of the module to fix it.

Mary now wants to test the new code of B. She is not concerned with the modifications that John

made in A because module A is unrelated to module B. However, she wants to access the

modifications that John made in module D because the procedures in D are called in module

B. The modifications that John has made to D might have introduced inconsistencies with the

4

code of module B. But since John is still working on modules A and D, Mary will either have to

access module D at the same time that John is modifying it or wait until he is done.

In the above example, if the traditional concurrency control scheme of two-phase locking

was used, for example, John and Mary would not be able to access the modules in the manner

described above. They would be allowed to concurrently lock module B and module A, respec-

tively, since they work in isolation on these modules. Both of them, however, need to work

cooperatively on module D and thus neither of them can lock it. Even if the locks were at the

granularity of procedures, they would still have a problem because both John and Mary might

need to access the same procedures, in order to recompile D, for example. The locks are released

only after reaching a satisfactory stage of modification of the code such as the completion of unit

testing. Other traditional concurrency control schemes would not solve the problem because

they would also require the serialization of Mary’s work with John’s.

The problem might be solved by supporting parallel versions of module D. Mary would

access the last compiled version of module D while John works on a new version. This requires

Mary to later retest her code after the new version of D is released, which is really unnecessary.

What is needed is a flexible concurrency control scheme that allows cooperation between John

and Mary. In the rest of this paper, we explain the basic concepts behind traditional concurrency

control mechanisms, show how these mechanisms do not support the needs of advanced applica-

tions, and describe several concurrency control mechanisms that provide some of the necessary

support.

2 ADVANCED DATABASE APPLICATIONS

Many large multi-user software systems, such as software development environments,

generate and manipulate large amounts of data. SDEs, for example, generate and manipulate

source code, object code, documentation, test suites, etc. Traditionally, users of such systems

managed the data they generate either manually or by the use of special-purpose tools. For ex-

ample, programmers working on a large-scale software project use system configuration

management tools such as Make [Feldman 79] and RCS [Tichy 85] to manage the configurations

and versions of the programs they are developing. Releases of the finished project are stored in

different directories manually. The only common interface among all these tools is the file sys-

tem, which stores project components in text or binary files regardless of their internal structures.

5

This significantly limits the ability to manipulate these objects in desirable ways. It also causes

inefficiencies in the storage of collections of objects, and leaves data, stored as a collection of

related files, susceptible to corruption due to incompatible concurrent access.

Recently, researchers have attempted to utilize database technology to manage the objects

belonging to a system uniformly. Design environments, for example, need to store the objects

they manipulate (design documents, circuit layouts, programs, etc.) in a database and have it

managed by a DBMS for several reasons [Bernstein 87; Dittrich et al. 87; Nestor 86; Rowe and

Wensel 89]:

1. Data integration: providing a single data management and retrieval interface for all

tools accessing the data.

2. Application orientation: organizing data items into structures that capture much of

the semantics of the intended applications.

3. Data integrity: preserving consistency and recovery, to ensure that all the data

satisfy the integrity constraints required by the application.

4. Convenient access: providing a powerful query language to access sets of data

items at a time.

5. Data independence: hiding the internal structure of data from tools so that if the

structure is changed, it will have a minimal impact on the applications using the

data.

Since there are numerous commercial DBMSs available, several projects have tried to use

them in advanced applications. Researchers discovered quite rapidly, however, that even the

most sophisticated of today’s DBMSs are inadequate for advanced applications [Korth and Sil-

berschatz 86; Bernstein 87]. One of the shortcomings of traditional general-purpose DBMSs is

the inability to provide flexible concurrency control mechanisms. To understand the reasons

behind this, we need to explain the concepts of transactions and serializability. These two con-

cepts are central to all conventional concurrency control mechanisms.

6

3 THE CONSISTENCY PROBLEM IN CONVENTIONAL DBMSs
Database consistency is maintained if every data item in the database satisfies the

application-specific consistency constraints. For example, in an airline reservation system, one

consistency constraint might be that each seat on a flight can be reserved by only one passenger.

It is often the case, however, that the consistency constraints are not known before hand to the

designers of general-purpose DBMSs. This is due to the lack of information about the computa-

tions in potential applications, and the semantics of database operations in these applications.

Thus, the best a DBMS can do is to abstract each database operation to be either a read operation

or a write operation, irrespective of the particular computation. Then it can guarantee that the

database is always in a consistent state with respect to reads and writes independent of the

semantics of the particular application.

Ignoring the possibility of bugs in the DBMS program and the application program, incon-

sistent data then results from two main sources: (1) software or hardware failures such as bugs in

the operating system or a disk crash in the middle of operations, and (2) concurrent access of the

same data item by multiple users or programs.

3.1 The Transaction Concept

To solve these problems, the operations performed by a program accessing the database are

grouped into sequences called transactions [Eswaran et al. 76]. Users interact with a DBMS by

executing transactions. In traditional DBMSs, transactions serve three distinct purposes [Lynch

83]: (1) they are logical units that group together operations comprising a complete task; (2) they

are atomicity units whose execution preserves the consistency of the database; and (3) they are

recovery units that ensure that either all the steps enclosed within them are executed, or none are.

It is thus by definition that if the database is in a consistent state before a transaction starts ex-

ecuting, it will be in a consistent state when the transaction terminates.

In a multi-user system, users execute their transactions concurrently. The DBMS must

provide a concurrency control mechanism to guarantee that consistency of data is maintained in

spite of concurrent accesses by different users. From the user’s viewpoint, a concurrency control

mechanism maintains the consistency of data if it can guarantee: (1) that each of the transactions

submitted to the DBMS by a user eventually gets executed; and (2) that the results of the com-

putation performed by each transaction are the same whether it is executed on a dedicated system

7

T TJohn Mary
|
| reserve(A)
| modify(p1)
| write(A)
| reserve(A)
| modify(p2)
| write(A)
| reserve(B)
| modify(p3)
| write(B)
| reserve(B)
| modify(p4)
| write(B)
\/
Time

Figure 2: Serializable schedule

or concurrently with other transactions in a multi-programmed system [Bernstein et al. 87;

Papadimitriou 86].

Let us follow up on our previous example to demonstrate the transaction concept. John and

Mary are now assigned the task of fixing two bugs that were suspected to be in modules A and

B. The first bug is caused by an error in procedure p1 in module A, which is called by procedure

p3 in module B. Thus, fixing the bug might affect both p1 and p3. The second bug is caused by

an error in the interface of procedure p2 in module A, which is called by procedure p4 in B. John

and Mary agree that John will fix the first bug and Mary will fix the second. John starts a

transaction T and proceeds to modify procedure p1 in module A. After completing theJohn

modification to p1, he starts modifying procedure p3 in module B. At the same time, Mary starts

a transaction T to modify procedure p2 in module A and procedure p4 in module B.Mary

Although T and T are executing concurrently, their outcomes are expected to be theJohn Mary

same as they would have been had each of them been executed on a dedicated system. The

overlap between T and T results in a sequence of actions from both transactions, called aMary John

schedule. Figure 2 shows an example of a schedule made up by interleaving operations from

T and T . A schedule that gives each transaction a consistent view of the state of theJohn Mary

database is considered a consistent schedule. Consistent schedules are a result of synchronizing

8

the concurrent operations of transactions by allowing only those operations that maintain consis-

tency to be interleaved.

3.2 Serializability

Let us give a more formal definition of a consistent schedule. A schedule is consistent if

the transactions comprising the schedule are executed serially. In other words, a schedule con-

sisting of transactions T , T , ..., T is consistent if for every i= 1 to n-1, transaction T is ex-1 2 n i

ecuted to completion before transaction T begins). We can then establish that a serializablei+1

execution, one that is equivalent to a serial execution, is also consistent. From the perspective of

a DBMS, all computations in a transaction either read or write a data item from the database.

Thus, two schedules S1 and S2 are said to be computationally equivalent if [Korth and Sil-

berschatz 86]:

1. The set of transactions that participate in S and S are the same.1 2

2. For each data item Q in S , if transaction T executes read(Q) and the value of Q1 i

read by T is written by T , then the same will hold in S (i.e., read-writei j 2

synchronization).

3. For each data item Q in S , if transaction T executes write(Q) before T executes1 i j

write(Q), then the same will hold in S (i.e., write-write synchronization).2

For example, the schedule shown in figure 2 is computationally equivalent to the serial

schedule T , T (execute T to completion and then execute T) because: (1) the setJohn Mary John Mary

of transactions in both schedules are the same; (2) both data items A and B read by T areMary

written by T in both schedules; and (3) T executes both write(A) and write(B) afterJohn Mary

T in both schedules.John

The consistency problem in conventional database systems reduces to that of testing for

serializable schedules because it is accepted that the consistency constraints are unknown. Each

operation within a transaction is abstracted into either reading a data item or writing one.

Achieving serializability in DBMSs can thus be decomposed into two subproblems: read-write

synchronization and write-write synchronization, denoted rw and ww synchronization,

respectively [Bernstein and Goodman 81]. Accordingly, concurrency control algorithms can be

9

categorized into those that guarantee rw synchronization, those that are concerned with ww

synchronization, and those that integrate the two. Rw synchronization refers to serializing trans-

actions in such a way that every read operation reads the same value of a data item as it would

have read in a serial execution. Ww synchronization refers to serializing transactions so that the

last write operation of every transaction leaves the database in the same state as it would have

left it in some serial execution. Rw and ww synchronization together result in a consistent

schedule.

Thus, even though a DBMS may not have any information about application-specific con-

sistency constraints, it can guarantee consistency by allowing only serializable executions of

concurrent transactions. This concept of serializability is central to all the concurrency control

mechanisms described in the next section. If more semantic information about transactions and

their operations was available, schedules that are not serializable but do maintain consistency can

be permitted. This is exactly the goal of the extended transaction mechanisms discussed later.

4 TRADITIONAL APPROACHES TO CONCURRENCY CONTROL

In order to understand why conventional concurrency control mechanisms are too restric-

tive for advanced applications, it is necessary to be familiar with the basic ideas of the main

serializability-based concurrency control mechanisms in conventional DBMSs. Most of the

mechanisms follow one of four main approaches to concurrency control: two-phase locking (the

most popular example of locking protocols), timestamp ordering, multiversion timestamp order-

ing, and optimistic concurrency control. Some mechanisms add multiple granularities of locking

and nesting of transactions. In this section, we briefly describe these approaches. There have

been a few comprehensive discussions and surveys of traditional concurrency control

mechanisms [Bernstein and Goodman 81; Kohler 81]; a book has also been written on the

subject [Bernstein et al. 87].

4.1 Locking Mechanisms

4.1.1 Two-Phase Locking

The two-phase locking mechanism (2PL) introduced by Eswaran et al. is now accepted as

the standard solution to the concurrency control problem in conventional DBMSs. 2PL

guarantees serializability in a centralized database when transactions are executed concurrently.

The mechanism depends on well-formed transactions, which (1) do not relock entities that have

10

been locked earlier in the transaction, and (2) are divided into a growing phase, in which locks

are only acquired, and a shrinking phase, in which locks are only released [Eswaran et al. 76].

During the shrinking phase, a transaction is prohibited from acquiring locks. If a transaction

tries during its growing phase to acquire a lock that has already been acquired by another trans-

action, it is forced to wait. This situation might result in deadlock if transactions are mutually

waiting for each other’s resources.

4.1.2 Tree Protocol

Schedule S1:

T T TJohn Mary Bob

| lock(A)
| read(A)
| modify(A)
| write(A)
| unlock(A)
| lock(A)
| read(A)
| modify(A)
| write(A)
| lock(B)
| read(B)
| modify(B)
| write(B)
| unlock(B)
| lock(B)
| read(B)
| modify(B)
| write(B)
| unlock(B)
| lock(B)
| read(B)
| modify(B)
| write(B)
| unlock(A)
| unlock(B)
\/
Time

Figure 3: Serializable but not 2PL schedule

2PL allows only a subset of serializable schedules. In the absence of information about

11

how and when the data items are accessed, however, 2PL is both necessary and sufficient to

ensure serializability by locking [Yannakakis 82]. In advanced applications, it is often the case

that the DBMS has prior knowledge about the order of access of data items. The DBMS can use

this information to ensure serializability by using locking protocols that are not 2PL. One such

protocol is the tree protocol, which can be applied if there is a partial ordering on the set of data

items accessed by concurrent transactions [Silberschatz and Kedem 80]. To illustrate this

protocol, assume that a third programmer, Bob, joined the programming team of Mary and John

and is now working with them on the same project. Suppose that Bob, Mary and John want to

modify modules A and B concurrently in the manner depicted in schedule S1 of figure 3. The

tree protocol would allow this schedule because it is serializable (equivalent to T TBob John

T) even though it does not follow the 2PL protocol (because T releases the lock on AMary John

before it acquires the lock on B). It is possible to construct S1 because all of the transactions in

the example access (write) A before B. This information about the access patterns of the three

transactions is the basis for allowing the non-2PL schedule shown in the figure.

4.2 Timestamp Ordering

One of the problems of locking mechanisms is the potential for deadlock. Deadlock occurs

when two or more transactions are mutually waiting for each other’s resources. This problem

can be solved by assigning each transaction a unique number, called a timestamp, chosen from a

monotonically increasing sequence. This sequence is often a function of the time of the

day [Kohler 81]. Using timestamps, a concurrency control mechanism can totally order requests

from transactions according to the transactions’ timestamps [Rosenkrantz et al. 78]. The

mechanism forces a transaction T requesting to access a data item x that is being held by1

another transaction T to either (1) wait until T terminates, (2) abort itself and restart if it cannot2 2

be granted access to x, or (3) preempt T and get hold of x. A scheduling protocol decides which2

one of these three actions to take after comparing the timestamps of T and T .1 2

Two of the possible alternative scheduling protocols used by timestamp-based mechanisms

are: (1) the WAIT-DIE protocol, which forces a transaction to wait if it conflicts with a running

transaction whose timestamp is more recent, or to die (abort and restart) if the running

transaction’s timestamp is older; and (2) the WOUND-WAIT protocol, which allows a trans-

action to wound (preempt by suspending) a running one with a more recent timestamp, or forces

the requesting transaction to wait otherwise. Locks are used implicitly in both protocols since

12

some transactions are forced to wait as if they were locked out. Both protocols guarantee that a

deadlock situation will not arise.

4.3 Multiversion Timestamp Ordering

The timestamp ordering mechanism above assumes that only one version of a data item

exists. Consequently, only one transaction can access a data item at a time. This restriction can

be relaxed by allowing multiple transactions to read and write different versions of the same data

item, as long as each transaction sees a consistent set of versions for all the data items that it

accesses. This is the basic idea of the first multiversion timestamp ordering scheme introduced

by Reed [Reed 78]. In Reed’s mechanism, each transaction is assigned a unique timestamp

when it starts; all operations of the transaction are assigned the same timestamp. In addition,

each data item x has a set of transient versions, each a <write timestamp, value> pair, and a set

of read timestamps. If a transaction reads a data item, the transaction’s timestamp is added to the

set of read timestamps of the data item. A write operation, if permitted by the concurrency

control protocol, causes the creation of a new transient version with the same timestamp as that

of the transaction requesting the write operation. The concurrency control mechanism operates

as follows.

Let T be a transaction with timestamp TS(i), and let R(x) be a read operation requested byi

T (i.e., R(x) will also be assigned the timestamp TS(i)). R(x) is processed by reading the valuei

of the version of x whose timestamp is the largest timestamp smaller than TS(R) (i.e., the latest

value written before T started). TS(i) is then added to the set of read timestamps of x. Readi

operations are always permitted. Write operations, in contrast, might cause a conflict. Let T bej

another transaction with timestamp TS(j), and let W(x) be a write operation requested by T thatj

assigns value v to item x. W(x) will be permitted only if other transactions with a more recent

timestamp than TS(j) have not read a version of x whose timestamp is greater than TS(j).

A situation like this can occur because of delays in executing operations within a trans-

action. That is, an operation O belonging to transaction T is executed after T has started by aj j j

period of time. Meanwhile, other operations from a transaction with a more recent timestamp

might have been performed. In order to detect such situations, let interval(W) be the interval

from TS(j) to the smallest timestamp of a version of x greater than TS(j) (i.e., a version of x that

was written by a transaction whose timestamp is more recent than T ’s timestamp). If any readj

13

timestamps lie in the interval (i.e., a transaction has already read a value of x written by a more

recent write operation than W(x)), then W(x) is rejected (and the transaction is aborted). Other-

wise, W(x) is allowed to create a new version of x with timestamp TS(j).

The existence of multiple versions eliminates the need for write-write synchronization since

each write operation produces a new version and thus cannot conflict with another write opera-

tion. The only possible conflicts are those corresponding to read-from relationships [Bernstein et

al. 87], as demonstrated by the protocol above.

4.4 Optimistic Non-Locking Mechanisms

In many applications, locking has been found to constrain concurrency and to add an un-

necessary overhead. The locking approach has the following disadvantages [Kung and Robinson

81]:

1. Lock maintenance represents an unnecessary overhead for read-only transactions,

which do not affect the integrity of the database.

2. There are no locking mechanisms that provide high concurrency in all cases. Most

of the general-purpose deadlock-free locking mechanisms work well only in some

cases but perform rather poorly in other cases.

3. When large parts of the database reside on secondary storage, locking of objects

that are accessed frequently (referred to as congested nodes), while waiting for

secondary memory access, causes a significant decrease in concurrency.

4. Not permitting locks to be released except at the end of the transaction, which al-

though not required is always done in practice to avoid cascaded aborts, decreases

concurrency.

5. Most of the time it is not necessary to use locking to guarantee consistency since

most transactions do not overlap; locking may be necessary only in the worst case.

To avoid these disadvantages, Kung and Robinson presented the concept of "optimistic"

concurrency control [Kung and Robinson 81]. They require each transaction to consist of two or

three phases: a read phase, a validation phase and possibly a write phase. During the read phase,

14

all writes take place on local copies (also referred to as transient versions) of the records to be

written. Then, if it can be established during the validation phase that the changes the trans-

action made will not violate serializability with respect to all committed transactions, the local

copies are made global. Only then, in the write phase, do these copies become accessible to

other transactions.

Validation is done by assigning each transaction a timestamp at the end of the read phase

and synchronizing using timestamp ordering. The correctness criteria used for validation are

based on the notion of serial equivalence. Any schedule produced by this technique ensures that

if transaction T has a timestamp older than the timestamp of transaction T , then the schedule isi j

equivalent to the serial schedule T followed by T . This can be ensured if any one of the follow-i j

ing three conditions holds:

1. T completes its write phase before T starts its read phase.i j

2. The set of data items written by T does not intersect with the set of data items readi

by T , and T completes its write phase before T starts its write phase.j i j

3. The set of data items written by T does not intersect with the set of data items readi

or written by T , and T completes its read phase before T completes its read phase.j i j

Although optimistic concurrency control allows more concurrency under certain cir-

cumstances, it decreases concurrency when the read and write sets of concurrent transactions

overlap. For example, Kung and Robinson’s protocol would cause one of transactions in the

simple 2PL schedule in figure 2 to be rolled back and restarted. From the viewpoint of advanced

applications, the use of rollback as the main mechanism of maintaining consistency is a serious

disadvantage. Since operations in advanced transactions are generally long-lived (e.g., compil-

ing a module), rolling them back and restarting them wastes all the work that these operations

did (the object code produced by compilation). The inappropriateness of rolling back a long

transaction in advanced applications is discussed further in section 5.

15

4.5 Multiple Granularity Locking

The concurrency control protocols described so far operate on individual data items to

synchronize transactions. It is sometimes desirable, however, to be able to access a set of data

items as a single unit. Gray et al. presented a multiple granularity concurrency control protocol

that aims to minimize the number of locks used while accessing sets of objects in a database

[Gray et al. 75]. In their model, Gray et al. organize data items in a tree where small items are

nested within larger ones. Each non-leaf item represents the data associated with its descen-

dants. This is different from the tree protocol presented above in that the nodes of the tree do not

represent the order of access of individual data items but rather the organization of data objects.

The root of the tree represents the whole database. Transactions can lock nodes explicitly, which

in turn locks descendants implicitly. Two kinds of locks are defined: exclusive and shared. An

exclusive (X) lock excludes any other transaction from accessing (reading or writing) the node; a

shared (S) lock permits other transactions to read the same node concurrently, but prevents any

updating of the node.

To determine whether to grant a lock on a node to a transaction, the transaction manager

would have to follow the path from the root to the node to find out if any other transaction has

explicitly locked any of the ancestors of the node. This is clearly inefficient. To solve this

problem, a third kind of lock mode called intention lock was introduced [Gray 78]. All the an-

cestors of a node must be locked in intention mode before an explicit lock can be put on the

node. In particular, nodes can be locked in five different modes. A non-leaf node is locked in

intention-shared (IS) mode to specify that descendant nodes will be explicitly locked in shared

(S) mode. Similarly, an intention-exclusive (IX) lock implies that explicit locking is being done

at a lower level in an exclusive (X) mode. A shared and intention-exclusive (SIX) lock on a

non-leaf node implies that the whole subtree rooted at the node is being locked in shared mode,

and that explicit locking will be done at a lower level with exclusive-mode locks. A com-

patibility matrix for the five kinds of locks is shown in figure 4. The matrix is used to determine

when to grant lock requests and when to deny them.

Gray et al. defined the following multiple granularity protocol based on the compatibility

matrix:

1. A transaction T can lock a node in S or IS mode only if all ancestors of the nodei

are locked in either IX or IS mode by T .i

16

IS IX S SIX X

IS yes yes yes yes no

IX yes yes no no no

S yes no yes no no

SIX yes no no no no

X no no no no no

Figure 4: Compatibility matrix of granularity locks

2. A transaction T can lock a node in X, SIX, or IX mode only if all the ancestors ofi

the node are locked in either SIX or IX mode by T .i

3. Locks should be released either at the end of the transaction (in any order) or in

leaf to root order. In particular, if locks are not held to the end of the transaction, it

should not hold a lock on a node after releasing its ancestors.

The multiple granularity protocol increases concurrency and decreases overhead. This is

especially true when there is a combination of short transactions with a few accesses and trans-

actions that last for a long time accessing a large number of objects such as audit transactions

that access every item in the database. The Orion object-oriented database system provides a

concurrency control mechanism based on the multi-granularity mechanism described

above [Kim et al. 88; Garza and Kim 88].

4.6 Nested Transactions

A transaction, as presented above, is a set of primitive atomic actions abstracted as read and

write operations. Each transaction is independent of all other transactions. In practice, there is a

need to compose several transactions into one unit (i.e., one transaction) for two reasons: (1) to

provide modularity; and (2) to provide finer grained recovery. The recovery issue may be the

more important one, but it is not addressed in detail here since the focus of this paper is on

concurrency control. The modularity problem is concerned with preserving serializability when

composing two or more transactions. One way to compose transactions is gluing together the

primitive actions of all the transactions by concatenating the transactions in order into one big

transaction. This preserves consistency but decreases concurrency because the resulting trans-

action is really a serial ordering of the subtransactions. Interleaving the actions of the trans-

17

actions to provide concurrent behavior, on the other hand, can result in violation of serializability

and thus consistency. What is needed is to execute the composition of transactions as a trans-

action in its own right, and to provide concurrency control within the transaction.

The idea of nested spheres of control, which is the origin of the nested transactions concept,

was first introduced by Davies [Davies 73] and expanded by Bjork [Bjork 73]. Reed presented a

comprehensive solution to the problem of composing transactions by formulating the concept of

nested transactions [Reed 78]. A nested transaction is a composition of a set of subtransactions;

each subtransaction can itself be a nested transaction. To other transactions, only the top-level

nested transaction is visible and appears as a normal atomic transaction. Internally, however,

subtransactions are run concurrently and their actions are synchronized by an internal concur-

rency control mechanism. The more important point is that a subtransaction can fail and be

restarted or replaced by another subtransaction without causing the whole nested transaction to

fail or restart. In the case of gluing the actions of subtransactions together, on the other hand, the

failure of any action would cause the whole new composite transaction to fail.

In Reed’s design, timestamp ordering is used to synchronize the concurrent actions of sub-

transactions within a nested transaction. Moss designed a nested transaction system that uses

locking for synchronization [Moss 85].

Figure 5: Scheduling nested transactions

18

As far as concurrency is concerned, the nested transaction model presented above does not

change the meaning of transactions (in terms of being atomic). It also does not alter the concept

of serializability. The only advantage of nesting is performance improvement because of the

possibility of increasing concurrency at the subtransaction level, especially in a multiprocessor

system. To illustrate this, consider transactions T and T of figure 2. We can constructJohn Mary

each as a nested transaction as shown in figure 5. Using Moss’s algorithm, the concurrent ex-

ecution of John’s transaction and Mary’s transaction will produce the same schedule presented in

figure 2. Within each transaction, however, the two subtransactions can be executed concur-

rently, improving the overall performance.

It should be noted that many of the concurrency control mechanisms proposed for advanced

database applications are based on combinations of optimistic concurrency control, multiversion

objects, and nested transactions. To understand the reasons behind this, we must first address the

concurrency control requirements of advanced database applications. We explore these require-

ments in the next section, and then in the rest of the paper we present several approaches that

take these requirements into consideration.

5 CONCURRENCY CONTROL REQUIREMENTS IN ADVANCED DATABASE

APPLICATIONS

Traditional DBMSs enforce serializable executions of transactions with respect to read and

write operations because of the lack of semantic knowledge about the application-specific opera-

tions. This leads to the inability to specify or check semantic consistency constraints on data.

But there is nothing that makes a non-serializable schedule inherently inconsistent. If enough

information is known about the transactions and operations, a non-serializable but consistent

schedule can be constructed. In fact, equating the notions of consistency with serializability

causes a significant loss of concurrency in advanced applications. In these applications, it is

often possible to define specific consistency constraints. The DBMS can use these specifications

rather than serializability as a basis for maintaining consistency. Several researchers have

studied the nature of concurrent behavior in advanced applications, and have arrived at new re-

quirements for concurrency control [Bancilhon et al. 85; Yeh et al. 87]:

1. Supporting long transactions: Operations on objects in design environments

(such as compiling source code or circuit layout) are often long-lived. If these

19

operations are embedded in transactions, these transactions, unlike traditional ones,

will also be long-lived. Long transactions need different support than traditional

short transactions. In particular, blocking a transaction until another commits is

rarely acceptable for long transactions. It is worthwhile noting that the problem of

long transactions has also been addressed in traditional data processing applica-

tions (bank audit transactions, for example).

2. Supporting user control: In order to support user tasks that are nondeterministic

and interactive in nature, the concurrency control mechanism should provide the

user with the ability to start a transaction, interactively execute operations within it,

dynamically restructure it, and commit or abort it at any time. The nondeterminis-

tic nature of transactions implies that the concurrency control mechanism will not

be able to determine whether or not the execution of a transaction will violate

database consistency, except by actually executing it and validating its results

against the changed database. This might lead to situations in which the user might

have invested many hours running a transaction, only to find out later when he

wants to commit his work that some of the operations he performed within the

transaction violated some consistency constraints. The user would definitely op-

pose deleting all of his work (by rolling back the transaction). He might, however,

be able to explicitly reverse the effects of some operations in order to regain con-

sistency. Thus, there is a need to provide more user control over transactions.

3. Supporting synergistic cooperation: Cooperation among programmers to develop

project components has significant implications on concurrency control. In

CAD/CAM systems, SDEs and other design environments, several users might

have to exchange knowledge (i.e., share it collectively) in order to be able to con-

tinue their work. The activities of two or more users working on shared objects

may not be serializable. They may pass the shared objects back and forth in a way

that cannot be accomplished by a serial schedule. Also, two users might be

20

modifying two parts of the same object concurrently, with the intent of integrating

these parts to create a new version of the object. In this case, they might need to

look at each others’ work to make sure that they are not modifying the two parts in

a way that would make their integration difficult. This kind of sharing and ex-

changing knowledge was termed synergistic interaction by Yeh et al. To insist on

serializable concurrency control in design environments might thus decrease con-

currency or, more significantly, actually disallow desirable forms of cooperation

among developers.

There has been a flurry of research to develop new approaches to transaction management

that meet the requirements of advanced applications. In the rest of the paper, we survey the

mechanisms that address the requirements listed above. We categorize these mechanisms into

three categories according to which requirement they support best. All the mechanisms that ad-

dress only the problems introduced by long transactions are grouped in one section. Of the

mechanisms that address the issue of cooperation, some achieve only coordination of the ac-

tivities of multiple users while others do allow synergistic cooperation. The two classes of

mechanisms are separated into two different sections. Issues related to user control are slightly

addressed by mechanisms in both categories, but we did not find any mechanism that provides

satisfactory support for user control over transactions in advanced applications.

In addition to the three requirements listed above, many advanced applications require sup-

port for complex objects. For example, objects in a software project might be organized in a

nested object system (projects consisting of modules that contain procedures), where individual

objects are accessed hierarchically. We do not survey mechanisms that support complex objects

because we felt that describing these mechanisms would require explaining concepts from

object-oriented programming and object-oriented database systems, both of which are outside

the scope of this paper. It is worthwhile noting, however, that the complexity of the structure

and the size of objects in advanced applications strongly suggest the appropriateness of concur-

rency control mechanisms that combine and extend multiversion and multiple granularity

mechanisms.

Many of the ideas implemented in the mechanisms we survey in the rest of the paper have

21

actually been discussed earlier in other contexts. For instance, some of the ideas related to mul-

tilevel transactions, long transactions and cooperative transactions were discussed by Davies in

1978 [Davies 78].

6 SUPPORTING LONG TRANSACTIONS

Many of the operations performed on data in advanced database applications are long-lived.

Some last for several minutes or hours such as compiling code or printing a complete layout of a

VLSI chip. When these operations are part of a transaction, they result in a long transaction

(LT), which lasts for an arbitrarily long period of time (ranging from hours to weeks). Such

transactions occur in traditional domains (e.g., printing the monthly account statements at a

bank) as well as in advanced applications, but they are usually an order of magnitude longer in

advanced applications. LTs are particularly common in design environments. The length of

their duration causes serious performance problems if these transactions are allowed to lock

resources until they commit. Other short or long transactions wanting to access the same

resources are forced to wait even though the LT might have finished using the resources. LTs

also increase the likelihood of automatic aborts (rollback), in order to avoid deadlock, or in the

case of failing validation in optimistic concurrency control.

Two main approaches have been pursued to solve these problems: (1) extending

serializability-based mechanisms while still maintaining serializable schedules; and (2) relaxing

serializability of schedules containing LTs. These alternative approaches utilize the application-

specific semantics of operations in order to increase concurrency. Several examples of each ap-

proach are presented in this section. Some of the schemes were proposed to support LTs for

traditional DBMSs, but the techniques themselves seem applicable to advanced applications and

thus they are discussed in this section.

6.1 Extending Serializability-Based Techniques

In traditional transaction processing, all database operations are abstracted into read and

write operations. This abstraction is necessary for designing general-purpose concurrency con-

trol mechanisms that do not depend on the particulars of applications. Two-phase locking, for

example, can be used to maintain consistency in any database system, regardless of the intended

application. This is true because 2PL maintains serializability, and thus consistency, of trans-

action schedules by guaranteeing the atomicity of all transactions.

22

The performance of two-phase locking, however, is unacceptable for advanced applications

because it forces LTs to lock resources for a long time even after they have finished using them.

In the mean time, other transactions that need to access the same resources are blocked. Op-

timistic mechanisms that use timestamp ordering also suffer from performance problems when

applied to long transactions. They cause repeated rollback of transactions when the rate of con-

flicts increases significantly, which is generally the case in the context of long transactions.

One approach for solving the problems introduced by LTs is to extract semantic infor-

mation about transactions and operations and use that information to extend traditional tech-

niques. The extended technique should revert back to the traditional scheme in case the ad-

ditional information is not available (i.e., it might be available for some transactions but not for

others). This approach is the basis for extending both two-phase locking and optimistic concur-

rency control in order to address the requirements of long transactions.

6.1.1 Altruistic Locking

One piece of information that can be used to increase concurrency is when resources are no

longer needed by a transaction, so that they can be released and used by other transactions. This

information can be used to allow a long transaction, that otherwise follows a serializable

mechanism such as two-phase locking, to conditionally release some of its resources. These

resources can then be used by other transactions given that they satisfy certain requirements.

One formal mechanism that follows this approach is altruistic locking, which is an exten-

sion of the basic two-phase locking algorithm [Salem et al. 87]. Altruistic locking makes use of

information about access patterns of a transaction to decide which resources it can release. In

particular, the technique uses two types of information: (1) Negative access pattern information,

which describes objects that will not be accessed by the transaction; and (2) Positive access pat-

tern information, which describes which, and in what order, objects will be accessed by the

transaction. Taken together, these two types of information allow long transactions to release

their resources after they are done with them. The set of all data items that have been locked and

then released by an LT is called the wake of the transaction. Releasing a resource is a con-

ditional unlock operation because it allows other transactions to access the released resource as

long as they follow the restrictions stated in the protocol below, which ensures serializability.

A two-phase with release schedule is then defined as any schedule that adheres to two

restrictions:

23

1. No two transactions can hold locks on the same data item simultaneously unless

one of them has locked and released the object before the other locks it; the later

lock-holder is said to be in the wake of the releasing transaction.

2. If a transaction is in the wake of another transaction, it must be completely in the

wake of that transaction. This means that if John’s transaction locks a data item

that has been released by Mary’s transaction, then any data item that is accessed by

both John and Mary and that is currently locked by John, must have been released

by Mary before it was locked by John.

These two restrictions guarantee serializability of transactions without altering their struc-

ture. The protocol assumes that transactions are programmed and not user-controlled (i.e., the

user cannot make up the transactions as he goes along). In the following example, however, we

will assume an informal extension to this mechanism that will allow user-controlled transactions.

Consider again the example depicted in figure 1 in the introduction where each module in

the project contains a number of procedures (subobjects). Suppose that Bob, who joined the

programming team of Mary and John, wants to familiarize himself with the code of all the

procedures of the project. He starts a long transaction, T , that accesses all of the procedures,Bob

one procedure at a time. Bob needs to access each procedure only once to read it and add some

comments about the code; as he finishes accessing each procedure he releases it. In the

meanwhile, John starts a short transaction, T , that accesses only two procedures, p1 and thenJohn

p2, from module A. Assume that T has already accessed p2 and released it, and is currentlyBob

reading p1. T has to wait until T is finished with p1 and releases it. At that point TJohn Bob John

can start accessing p1 by entering the wake of T . T will be allowed to enter the wake ofBob John

T (i.e., to be able to access p1) because all of the objects that T needs to access (p1 andBob John

p2) are in the wake of T . After finishing with p1, T can start accessing p2 without delayBob John

since it has already been released by T .Bob

Now assume that Mary starts another short transaction, T , that needs to access both p2Mary

and a third procedure p3 that is not in the wake of T yet. T can access p2 after TBob Mary John

terminates, but then it must wait until either p3 has been accessed by T (i.e., until p3 entersBob

the wake of T) or until T terminates. If T never accesses p3 (Bob changes his mindBob Bob Bob

24

Figure 6: Access patterns of three transactions

about viewing p3), T is forced to wait until T terminates (which might take a long timeMary Bob

since it is a long transaction). To improve concurrency in this situation, Salem et al. introduced

a mechanism for expanding the wake of a long transaction dynamically in order to enable short

transactions that are already in the wake of a long transaction to continue running. The

mechanism uses the negative access information provided to it in order to add objects that will

not be accessed by the long transaction to its wake. Following up on the example, the

mechanism would add p3 to the wake of T by issuing a release on p3 even if T had notBob Bob

locked it. This would allow T to access p3 and thus continue executing without delay.Mary

Figure 6 depicts the example above. Each data object is represented along the vertical axis.

Time is represented along the horizontal axis. The transactions belonging to Bob, John, and

Mary are represented by solid lines. T accesses p2 at time t since the line of T passesiBob Bob

through a black dot at the point (t , p2). As shown, T is totally in the wake of T whilei John Bob

T is not. The transaction manager can dynamically expand the wake of T by adding p3Mary Bob

to it (as shown by the thick line) and then T would be totally in the wake of T . In thisMary Bob

25

case, the schedule of the three transactions is equivalent to the serial execution of T , followedBob

by T , followed by T .John Mary

The basic advantage of altruistic locking is its ability to utilize the knowledge that a trans-

action no longer needs access to a data object that it has locked. It maintains serializability and

assumes that the data stored in the database is of the conventional form. Furthermore, if access

information is not available, any transaction, at any time, can run under the conventional 2PL

protocol without performing any special operations. However, as observed earlier, because of

the interactive nature of transactions in design environments, the access patterns of transactions

are not predictable. In the absence of this information, altruistic locking reduces to two-phase

locking. Altruistic locking also suffers from the problem of cascaded rollbacks: when a long

transaction aborts, all the short transactions in its wake have to be aborted even if they have

already terminated.

6.1.2 Snapshot Validation

Altruistic locking assumes two-phase locking as its basis, and thus suffers from the over-

head of locking mechanisms as noted in section 4. An alternative approach that avoids this over-

head is to assume an underlying validation mechanism. As presented in section 4, validation

(also called optimistic) techniques allow concurrent transactions to proceed without restrictions.

Before committing a transaction, however, a validation phase has to be passed in order to estab-

lish that the transaction did not produce conflicts with other committed transactions. The main

shortcoming of the traditional validation technique is its weak definition of conflict. Because of

this weak definition some transactions, such as those in figure 2, are restarted unnecessarily. In

other words, the transactions might have been actually serializable but the conflict mechanism

did not recognize them as such. This is not a serious problem in conventional applications where

transactions are short. It is very undesirable, however, to restart a long transaction that has done

a significant amount of work. Pradel et al. observed that the risk of restarting a transaction can

be reduced by distinguishing between serious conflicts, which require restart, and non-serious

conflicts, which do not. They introduced a mechanism called snapshot validation that uses this

approach [Pradel et al. 86].

Going back to our example, assume that Bob, John, and Mary start three transactions T ,Bob

T and T simultaneously. T modifies (i.e., writes) procedures p1 and p2 during theJohn Mary Bob

read phase of T and T as shown in figure 7. The validation phases of T and TJohn Mary John Mary

26

Figure 7: Validation conflicts

will thus consider operations in T . According to the traditional optimistic concurrency con-Bob

trol protocol, both T and T would have to be restarted because of conflicts. ProceduresJohn Mary

p1 and p2 that they read have been updated by T . T read p1, which was later changed byBob John

T , and thus what T read was out of date. This conflict is "serious" since it violatesBob John

serializability and must be prevented. In this case, T has to be restarted to read the updatedJohn

p1. The conflict between T and T , however, is not serious since the concurrent scheduleMary Bob

presented in figure 7 is equivalent to the serial schedule of T followed by T . ThisBob Mary

schedule is not allowed under the traditional protocol, but the snapshot technique allows TMary

to commit because the conflict is not serious.

Pradel et al. presented a simple mechanism for determining whether or not conflicts are

serious. In the example above, T terminates while T is still in its read phase. EachBob Mary

transaction has a read set that is ordered by the time of access of each object. For example, if

object p1 is accessed before object p2 by the same transaction, then p1 appears before p2 in the

transaction’s read set. When T terminates, T takes note of the termination in its read set.Bob Mary

During its validation phase, T has to consider only the objects that were read before TMary Bob

terminated. Any conflicts that occur after that point in the read set are not considered serious.

Thus, the conflict between T and T regarding procedure p2 is not serious because TBob Mary Mary

read p2 after T has terminated.Bob

Pradel et al. also analyzed the starvation problem in the conventional optimistic protocol

and discovered that the longer the transaction is the greater the risk of starvation. Starvation

occurs when a transaction that is restarted because it had failed its validation phase keeps failing

27

its validation phase due to conflicts with other transactions. Starvation is detected after a certain

number of trials and restarts. The classical optimistic concurrency control protocol solves the

starvation problem by locking the whole database for the starving transaction, thus allowing it to

proceed uninterrupted. Such a solution is clearly not acceptable for advanced applications.

Pradel et al. present an alternative solution based on the concept of a substitute transaction.

If a transaction, T , is starving, a substitute transaction, ST , is created such thatJohn John

ST has the same read set and write set of T . At this point, T is restarted. STJohn John John John

simply reads its transaction number (the first thing that any transaction does) and then im-

mediately enters its validation phase. This will force all other transactions to validate against

ST . Since ST has the same read and write sets of T , it will make sure that any otherJohn John John

transaction T that conflicts with T would not pass its validation against ST and thusj John John

would have to restart. This "clears the way" for T to proceed with its execution with a muchJohn

decreased risk of restart. T terminates only after T commits.John John

6.1.3 Order-Preserving Serializability for Multilevel Transactions

The two mechanisms presented above extend traditional single-level protocols, in which a

transaction is a flat computation made up of a set of atomic operations. In advanced applica-

tions, however, most computations are long-duration operations that involve several lower-level

suboperations. For example, linking the object code of a program involves reading the object

code of all its component modules, accessing system libraries, and generating the object code of

the program. Each of these operations might itself involve suboperations that are distinguish-

able. If traditional single-level protocols are used to ensure atomicity of such long transactions,

the lower-level operations will be forced to be executed in serial order, resulting in long delays

and a decrease in concurrency.

Beeri, Weikum and Schek have observed that concurrency can be increased if long-duration

operations are abstracted into subtransactions that are implemented by a set of lower-level opera-

tions. If these lower-level operations are themselves translated into yet more lower-level opera-

tions, then the abstraction can be extended to multiple levels [Beeri et al. 88]. This is distinct

from the traditional nested transactions model presented in section 4 in two main respects: (1) a

multilevel transaction has a predefined number of levels, of which each two adjacent pairs define

a layer of the system, whereas nested transactions have no predefined notion of layers; and (2) in

contrast to nested transactions where there need not be a notion of abstraction, in a multilevel

transaction, the higher the level, the more abstract the operations.

28

These two distinctions lead to a major difference between transaction management for

nested transactions and for multilevel transactions. In nested transactions, a single global

mechanism must be used because there is no predefined notion of layers. The existence of layers

of abstraction in multilevel transactions opens the way to a modular approach to concurrency

control. Different concurrency control protocols (schedulers) are applied at different layers of

the system. More specifically, layer-specific concurrency control protocols can be used. Each of

these protocols must ensure serializability with respect to its layer. In addition, a protocol at one

layer should not invalidate the protocols at higher levels. In other words, the protocols at all

layers of the multilevel transaction should work together to produce a correct execution

(schedule).

Unfortunately, not all combinations of concurrency control protocols lead to correct execu-

tions. To illustrate, assume we have a three-level multilevel transaction and that the protocol

between the second and third levels is commutativity-based. This means that if two adjacent

operations at the third level can commute, their order in the schedule can be changed. Changing

the order of operations at the third level, however, might change the order of subtransactions at

the second level. Since the protocol only considers operations at the third level, it may change

the order of operations in such a way so as to result in a non-serializable order of the subtran-

sactions at second level.

The example above shows that serializability is too weak a correctness criterion to use for

the "handshake" between the protocols of adjacent layers in a multilevel system. The correctness

criteria must be extended to take into account the order of transactions at the adjacent layers.

Beeri, Bernstein and Goodman introduced the notion of order-preserving correctness as the

necessary property that layer-specific protocols must use to guarantee consistency [Beeri et al.

86; Beeri et al. 89]. This notion was used earlier in a concurrency control model for multilevel

transactions implemented in the DASDBS system [Weikum and Schek 84; Weikum 86]. A com-

bined report on both of these efforts appears in [Beeri et al. 88].

The basic idea of order-preserving serializability is to extend the concept of commutativity.

Commutativity states that order transformation of two operations belonging to the same trans-

action can be applied if and only if the two operations commute (i.e., the order of their execution

with respect to each other is immaterial). This notion can be translated to multilevel systems by

allowing the order of two adjacent operations to change only if their least common ancestor does

29

not impose an order on their execution. If commuting operations leads to serializing the opera-

tions of a subtransaction in one unit (i.e., they are not interleaved with operations of other sub-

transactions), and thus making it an atomic computation, the tree rooted at the subtransaction can

be replaced by a node representing the atomic execution of the subtransaction. The pruning of

serial computations, and thus reducing the number of levels in a multilevel transaction by one, is

termed reduction.

Figure 8: Order-Preserving Serializable Schedule

To illustrate, assume that Mary is assigned the task of adding a new procedure p10 to

module A and recompiling the module to make sure that the addition of procedure p10 does not

30

introduce any compile-time errors. Bob is simultaneously assigned the task of deleting proce-

dure p0 from module A. Adding or deleting a procedure from module A is an abstraction that is

implemented by two operations: updating the attribute that maintains the list of procedures con-

tained in A (i.e., updating the object containing module A), and updating the documentation D to

describe the new functionality of the module A after adding/deleting a procedure. Recompiling a

module is an abstraction for reading the source code of the module and updating the object con-

taining the module (to update its timestamp and modify the object code, for example). Consider

the concurrent execution of T and T in figure 8(a). Although the schedule is not serializ-Mary Bob

able, it is correct because the operations at the lower level can be commuted so as to produce a

serializable schedule while preserving the order of the subtransactions at the second level. The

results of successive commutations is shown in figures 8 (b) and (c). The result of applying

reduction is shown in (d) and the final result of applying commutation to the reduced tree, which

is a serial schedule, is shown in (e).

Figure 9: Conflict-Based Order-Preserving Serializable Schedule

Beeri, Schek and Weikum have shown that order preservation is only a sufficient condition

to maintain consistency across layers in a multilevel system. They present a weaker necessary

condition, conflict-based order-preserving serializability. This condition states that a layer-

specific protocol need only preserve the order of conflicting operations of the top level of its

layers. For example, consider the schedule in figure 9(a). The schedule shows a concurrent

execution of three transactions initiated by Mary, Bob and John. Compiling module A and com-

piling module B are non-conflicting operations since they do not involve any shared objects.

31

Linking the subsystem containing both A and B, however, conflicts with the other two opera-

tions. Although the schedule is not order-preserving serializable, it is correct because it could be

serialized as shown in figure 9(b) by changing the order of the two compile operations. Since

these are non-conflicting subtransactions, the change of order preserves correctness.

Martin [Martin 87] presented a similar model based on the paradigm of nested objects,

which models hierarchical access to data by defining a nested object system. Each object in the

system exists at a particular level of data abstraction. Operations at level i are specified in terms

of operations at level i-1. Thus, the execution of operations at level i result in the execution of

perhaps several suboperations at level i-1. The objects accessed by suboperations at level i-1 on

behalf of an operation on an object at level i are called subobjects of the object at level i.

Martin’s model allows two kinds of schedules that are not serializable, externally

serializable schedules and semantically verifiable schedules. Externally serializable schedules al-

low only serializable access to top-level objects while allowing non-serializable access to sub-

objects. Subobjects may be left in a state that cannot be produced by any serial execution.

Semantically verifiable schedules allow non-serializable access to objects at all levels. Non-

serializable behavior can be proven to be correct if the semantics of operations at all levels are

given and considered. In Martin’s model, weakening an object’s conflict specification may

produce a correct non-serializable schedule. For example, in figure 9, it can be specified that a

write operation on a specific object at a specific level does not conflict with a read operation on

the same node. The scheduler would have then allowed the link operation and the compile opera-

tions to be commuted. Such a schedule might be considered correct if the semantics of linking

the object code of two modules does not prohibit the linker from reading different versions of the

two modules.

6.2 Relaxing Serializability

The approaches presented in the previous section extend traditional techniques while main-

taining serializability as a basis for guaranteeing consistency. Another approach that aims at

supporting long transactions is based on relaxing the serializability requirement by using the

semantics of either data or application-specific operations. Relaxing serializability allows more

concurrency, and thus improves the performance of a system of concurrent transactions.

The semantics-based mechanisms can be divided into two main groups [Skarra and Zdonik

32

89]. One group defines concurrency properties on abstract data types, while the other defines

concurrency properties on the transactions themselves. The first group of mechanisms [Weihl

88; Herlihy and Weihl 88] constrains interleaving of concurrent transactions by considering con-

flicts between operations defined on typed objects. Describing the details of this group of

mechanisms requires an overview of abstract data types and object-oriented systems. But since

these concepts are outside the scope of this paper, we have chosen to limit our discussion to the

mechanisms in the second group, which use semantics of transactions rather than typed objects.

6.2.1 Semantics-Based Concurrency Control

Garcia-Molina observed that by using semantic information about transactions, a DBMS

can replace the serializability constraint by the semantic consistency constraint [Garcia-Molina

83]. The gist of this approach is that from a user’s point of view, not all transactions need to be

atomic. Garcia-Molina introduced the notion of sensitive transactions to guarantee that users see

consistent data on their terminals. Sensitive transactions are those that must output only consis-

tent data to the user, and thus must see a consistent database state in order to produce correct

data. Not all transactions that output data are sensitive since some users might be satisfied with

data that is only relatively consistent. For example, say that Bob wants to get an idea about the

progress of his programming team. He starts a transaction T that browses the modules andBob

procedures of the project. Meanwhile, John and Mary have two in-progress transactions, TJohn

and T respectively, that are modifying the modules and procedures of the project. BobMary

might be satisfied with information returned by a read-only transaction that does not take into

consideration the updates being made by T and T . This would avoid delays that wouldJohn Mary

result from having T wait for T and T to finish before reading the objects they haveBob John Mary

updated.

A semantically consistent schedule is one that transforms the database from one

semantically consistent state to another. It does so by guaranteeing that all sensitive transactions

obtain a consistent view of the database. Each sensitive transaction must thus appear to be an

atomic transaction with respect to all other transactions.

It is more difficult to build a general concurrency control mechanism that decides which

schedules preserve semantic consistency than it is to build one that recognizes serializable

schedules. Even if all the consistency constraints were given to the DBMS (which is not pos-

sible in the general case), there is no way for the concurrency control mechanism to determine a

33

priori which schedules maintain semantic consistency. The DBMS must run the schedules and

check the constraints on the resulting state of the database in order to determine if they maintain

semantic consistency [Garcia-Molina 83]. Doing that, however, would be equivalent to im-

plementing an optimistic concurrency control scheme that suffers from the problem of rollback.

In order to avoid rollback, the concurrency control mechanism must be provided with infor-

mation about which transactions are compatible with each other.

Two transactions are said to be compatible if their operations can be interleaved at certain

points without violating semantic consistency. Having the user provide this information, of

course, is not feasible in the general case because it burdens the user with having to understand

the details of applications. However, in some applications, this kind of burden might be accept-

able in order to avoid the performance penalty of traditional general-purpose mechanisms. If this

is the case, the user still has to be provided with a framework for supplying information about

the compatibility of transactions.

Garcia-Molina presented a framework that explicitly defines semantics of database opera-

tions. He defines four kinds of semantic information: (1) transaction semantic types; (2) com-

patibility sets associated with each type; (3) division of transactions into smaller steps (subtran-

sactions); and (4) countersteps to compensate for some of the steps executed within transactions.

The first three kinds of information are declarative, while the fourth piece of information consists

of a procedural description. Transactions are categorized into types depending on the specifics

of the application, in particular, the kinds of data objects, and operations on them, supported by

the application. Each transaction type is divided into steps with the assumption that each step

must be performed as an indivisible unit. A compatibility set associated with a transaction type

defines allowable interleavings between steps of transactions of the particular kind with the same

or other kinds of transactions. Countersteps specify what to do in case a step needs to be un-

done.

Using these definitions, Garcia-Molina defines an alternative concept to atomicity called

semantic atomicity. A transaction is said to be semantically atomic if all its steps are executed,

or if any executed steps are eventually followed by their countersteps. An atomic transaction, in

contrast, is one in which all or none of the steps are executed. In the context of a DBMS, the

four pieces of information presented above are used by a locking mechanism that uses two kinds

of locks: local locks, which ensure the atomicity of transaction steps; and global locks, which

guarantee that the interleavings between transactions do not violate semantic consistency.

34

Thus, depending on the compatibility sets of different types of transactions, various levels

of concurrency can be achieved. In one extreme, if the compatibility sets of all kinds of trans-

actions are empty, the mechanism reverts to a traditional locking mechanism that enforces

serializability of the long transactions. In the other extreme, if all transaction types are com-

patible, the mechanism only enforces the atomicity of the small steps within each transaction,

and thus the mechanism reverts to a system of short atomic transactions (i.e., the steps). In

advanced applications where this kind of mechanism might be the most applicable, allowable

interleavings would be between these two extremes.

In Garcia-Molina’s scheme, transactions are statically divided into atomic steps and com-

patibility sets that define the allowable interleavings with respect to those steps. Thus if trans-

actions of type X are compatible with transactions of types Y and Z, then any two transactions

T , of type Y, and T , of type Z, can arbitrarily interleave their steps with a transaction T , of typei j k

X. There is thus no distinction between interleaving with respect to Y and interleaving with

respect to Z. Lynch observed that it might be more appropriate to have different sets of inter-

leavings with respect to different transaction types [Lynch 83]. More specifically, it would be

useful if for every two transaction types X and Y, the DBMS is provided with information about

the set of breakpoints at which the steps of a transactions of type X can be interleaved with the

steps of a transaction of type Y. A breakpoint specifies a point between two operations within a

transaction at which one or more operations of another transaction can be executed.

Lynch’s observation seems to be valid for systems in which activities tend to be hierar-

chical in nature, for example, software development environments. Transactions in such systems

can often be nested into levels. Each level groups transactions that have something in common,

in terms of access to data items. Level one groups all the transactions in the system while sub-

sequent levels group transactions that are more strongly related to each other. A strong relation

between two transactions might be that they often need to access the same objects at the same

time in a non-conflicting way. A set of breakpoints is then described for each level. The higher

order sets (for the higher levels) always includes the lower order sets. This results in a total

ordering of all sets of breakpoints. This means that the breakpoints that specify interleavings at a

level cannot be more restrictive than those that define interleavings at a higher level.

Let us illustrate this concept by following up on our example from the software develop-

ment domain. To remind the reader, Bob, John and Mary are cooperatively developing a

35

software project. In their development effort, they need to modify objects (code and documen-

tation) as well as get information about the current status of development (e.g., the latest cross-

reference information between procedures in modules A and B). Suppose that Mary starts two

transactions (in two different windows, for example), T and T , to modify a procedureMary1 Mary2

in module A, and get cross-reference information, respectively. Bob starts a transaction T toBob1

update a procedure in module B. John starts two transactions, T to modify module A, andJohn1

T to get cross-reference information.John2

Figure 10: Multilevel Transaction Classes

A hierarchy of transaction classes for this example can be set up as shown in figure 10. The

top level includes all transactions. Level 2 groups all modification transactions (T , TMary1 Bob1

and T) together and all cross-reference transactions (T and T) together. Level 3John1 Mary2 John2

separates the transactions according to which modules they affect. It separates the transactions

that modify module A (T and T) from those that modify module B (T). LevelMary1 John1 Bob1

four contains all the singleton transactions.

The sets of breakpoints for these levels can be specified by describing the transaction seg-

ments between the breakpoints. For example, the top level set might specify that no interleaving

is allowed; the second-level set might specify that all modification transactions might interleave

at some granularity, and that cross-reference transactions might similarly interleave. The two

types of transactions, however, cannot interleave their operations. This guarantees that cross-

reference information does not change while a modification transaction is in progress.

36

The concurrency control mechanism can then use the sets of breakpoints to provide as

much concurrency as permitted by the allowed interleaving between these breakpoints at each

level. Atomicity with respect to breakpoints and allowed interleaving is maintained at each

level. Thus, the mechanism in our example might allow transactions T and T to inter-Mary1 John1

leave their steps while modifying module A (i.e., allow some degree of cooperation so as not to

block out module A for a long time by one of them), but it will not allow T and T toMary1 John2

interleave their operations.

Breakpoints is the not the only way to provide semantic information about transactions. In

some advanced applications such as CAD, where the different parts of the design are stored in a

project database, it is possible to supply semantic information in the form of integrity constraints

on database entities. Design operations incrementally change those entities in order to reach the

final design [Eastman 80; Eastman 81]. By definition, full integrity of the design, in the sense of

satisfying its specification, exists only when it is complete. Unlike in conventional domains

where database integrity is maintained during all quiescent periods, the iterative design process

causes the integrity of the design database to be only partially satisfied until the design is com-

plete. There is a need to define transactions that maintain the partial integrity required by design

operations. Kutay and Eastman proposed a transaction model that is based on the concept of

entity state [Kutay and Eastman 83].

Each entity in the database is associated with a state that is defined in terms of a set of

integrity constraints. Like a traditional transaction, an entity state transaction is a collection of

actions that read a set of entities and potentially write into a set of entities. Unlike traditional

transactions, however, entity state transactions are instances of transaction classes. Each class

defines: (1) the set of entities that instance transactions read; (2) the set of entities that instance

transactions write; (3) the set of constraints that must be satisfied on the read and write entity sets

prior to the invocation of a transaction; (4) the set of constraints that can be violated during the

execution of an instance transaction; (5) the set of constraints that hold after the execution of the

transaction is completed; and (6) the set of constraints that are violated after the transaction ex-

ecution is completed. A very simple example of a transaction class is the class of transactions

that have all the entities in the database as their read set. All other sets are empty since these

transactions do not transform the database in any way.

The integrity constraints associated with transaction classes define a partial ordering of

37

these classes in the form of a precedence ordering. Transaction classes can thus be depicted as a

finite state machine where the violation or satisfaction of specific integrity constraints defines a

transition from one database state to another. Based on this, Kutay and Eastman define a concur-

rency control protocol that detects violations to the precedence ordering defined by the

application-specific integrity constraints. Violations are resolved by communication among

transactions to negotiate the abortion of one or more of the conflicting transactions. Kutay and

Eastman did not provide any details of inter-transaction communication.

6.2.2 Sagas

Semantic atomicity, multilevel atomicity and entity-based integrity constraints are theoreti-

cal concepts that are not immediately practical. For example, neither

Garcia-Molina [Garcia-Molina 83] nor Lynch [Lynch 83] explain how a multilevel atomicity

scheme might be implemented. It is not clear how the user decides on the levels of atomicity and

breakpoint sets. Simplifying assumptions are needed to make these concepts practical. One

restriction that simplifies the multilevel atomicity concept is to allow only two levels of nesting:

the LT at the top level and simple transactions. Making this simplifying restriction, Garcia-

Molina and Salem introduced the concept of sagas [Garcia-Molina and Salem 87], which are

LTs that can be broken up into a collection of sub-transactions that can be interleaved in any way

with other transactions.

A saga is not just a collection of unrelated transactions because it guarantees that all its

sub-transactions will be completed or they will be compensated (explained shortly). A saga thus

satisfies the definition of a transaction as a logical unit; they are similar to Moss’s nested trans-

actions and Lynch’s multilevel transactions in that respect. Sagas are different from nested

transactions, however, in that, in addition to there being only two levels of nesting, they are not

atomicity units since sagas may view the partial results of other sagas. By structuring long trans-

actions in this way, non-serializable schedules that allow more concurrency can be produced.

Mechanisms based on nested transactions as presented in section 4 produce only serializable

schedules.

In traditional concurrency control, when a transaction is aborted for some reason, all the

changes that it introduced are undone and the database is returned to the state that existed before

the transaction began. This operation is called rollback. The concept of rollback is not ap-

plicable to sagas because unlike atomic transactions, sagas permit other transactions to change

38

the same objects that its committed sub-transactions have changed. Thus, it would not be pos-

sible to restore the database to its state before the saga started without cascaded aborts of all the

committed transactions that viewed the partial results of the aborted transaction. Instead, user-

supplied compensation functions are executed to compensate for each transaction that was com-

mitted at the time of failure or automatic abort.

A compensation function undoes the actions performed by a transaction from a semantic

point of view. For example, if a transaction reserves a seat on a flight, its compensation function

would cancel the reservation. We cannot say, however, that the database was returned to the

state that existed before the transaction started, because in the meantime, another transaction

could have reserved another seat and thus the number of seats that are reserved would not be the

same as it was before the transaction.

Although sagas were introduced to solve the problem of long transactions in traditional ap-

plications, their basic idea of relaxing serializability is applicable to design environments. For

example, a long transaction to fix a bug in a design environment can be naturally modeled as a

saga that consists of subtransactions to edit a file, compile source code, and run the debugger.

These subtransactions can usually be interleaved with subtransactions of other long transactions.

The three transactions in figure 9 can be considered as sagas, and the interleavings shown in the

figure can be allowed under the sagas scheme. Using compensation functions instead of cas-

caded aborts is also suitable for advanced applications. For example, if one decided to abort the

modifications introduced to a file, one can revert to an older version of the file and delete the

updated version.

One shortcoming of sagas, however, is that it limits nesting to two levels. Most design

applications require several levels of nesting to support high-level operations that are composed

of a set of sub-operations [Beeri et al. 89]. In software development, for example, a high-level

operation such as modifying a subsystem translates into a set of operations to modify its com-

ponent modules, each of which in turn is an abstraction for modifying the procedures that make

up the module.

Realizing the multilevel nature of advanced applications, several researchers have proposed

models and proof techniques that address multilevel transactions. We have already described

three related models in the previous subsection [Weikum and Schek 84; Beeri et al. 89; Beeri et

39

al. 88]. Two other nested transaction models [Walter 84; Kim et al. 84] are described in section

7, since these two models address the issue of groups of users and coordinated changes. We now

describe a formal model of correctness without serializability that is based on multilevel trans-

actions.

6.2.3 Conflict Predicate Correctness

Korth and Speegle have presented a formal model that allows mathematical characteriza-

tion of correctness without serializability [Korth and Speegle 88]. Their model combines three

features that lead to enhancing concurrency over the serializability-based models: (1) versions of

objects; (2) multilevel transactions; and (3) explicit consistency predicates, similar to Kutay and

Eastman’s predicates, described earlier. We describe their model intuitively.

The database in Korth and Speegle’s model is a collection of entities, each of which has

multiple versions (i.e., multiple values). The versions are persistent and not transient like in the

traditional multi-version schemes. A specific combination of versions of entities is termed a

unique database state. A set of unique database states that involve different versions of the same

entities forms one database state. In other words, each database state has multiple versions. The

set of all versions that can be generated from a database state is termed the version state of the

database. A transaction in Korth and Speegle’s model is a mapping from a version state to a

unique database state. Thus, a transaction transforms the database from one consistent combina-

tion of versions of entities to another. Consistency constraints are specified in terms of pairs of

input and output predicates on the state of the database. A predicate, which is a logical conjunc-

tion of comparisons between entities and constants, can be defined on a set of unique states that

satisfy it. Each transaction guarantees that if its input predicate holds when the transaction

begins, its output predicate will hold when it terminates.

Instead of implementing a transaction by a set of flat operations, it is implemented by a pair

of a set of subtransactions and a partial ordering on these subtransactions. Any transaction that

cannot be divided into subtransactions is a basic operation such as read and write. Thus, a trans-

action in Korth and Speegle’s model is a quadruple (T, P, I , O) where T is the set of subtran-t t

sactions, P is a partial order on these subtransactions, I is the input predicate on the set of allt

database states, and O is the output predicate. The input and output predicates define three setst

of data items related to a transaction: (1) the input set, (2) the update set, and (3) the fixed-point

set, which is the set of entities not updated by the transaction. Given this specification, Korth

40

and Speegle define a parent-based execution of a transaction as a relation on the set of subtran-

sactions T that is consistent with the partial order P. The relation encodes dependencies between

subtransactions based on their three data sets. This definition allows independent executions on

different versions of database states.

Finally, they define a new multilevel correctness criteria: an execution is correct if at each

level, every subtransaction can access a database state that satisfies its input predicate and the

result of all of the subtransactions satisfies the output predicate of the parent transaction. But

since determining whether an execution is in the class of correct executions is NP-complete,

Korth and Speegle consider subsets of the set of correct executions that have efficient protocols.

One of these subsets is the conflict predicate correct class (CPC) in which the only conflicts that

can occur are a read of a data item followed by a write of the same data item (this is the same as

in traditional multi-version techniques). In addition, if two data items are in different conjuncts

of the consistency predicate, execution order must be serializable only with respect to each con-

junct individually. If for each conjunct the execution order is serializable, then the execution is

correct. The protocol that recognizes the CPC class creates a graph for each conjunct where each

node is a transaction. An arc is drawn between two nodes if one node reads a data item in the

conjunct and the other node writes the same data item in the same conjunct. A schedule is cor-

rect if the graphs of all conjuncts are acyclic. This class contains executions that could not be

produced by any of the mechanisms mentioned above except for sagas.

T TJohn Mary
|
| write(A)
| read(A)
| write(B)
| read(B)
| write(A)
| write(B)
\/
Time

Figure 11: Non-serializable but Conflict Predicate Correct Schedule

Korth and Speegle, recognizing that the practicality of their model was in question, applied

the model to a realistic example from the field of computer-aided software engineering [Korth

41

Figure 12: Graphs built by CPC protocol

and Speegle 90]. Rather than using the same example they presented, we use another example

here. Consider the schedule shown in figure 11 (which is adapted from [Korth and Speegle 88]).

This schedule is clearly not serializable and is not allowed by any of the traditional protocols.

However, suppose that the database consistency constraint is a conjunct of the form P1 OR P2,

where P1 is over A while P2 is over B. This occurs when A and B are not related to each other

(i.e., the value of B does not depend on A and vice versa). In this case, the schedule is in CPC

since the data items A and B are in different conjuncts of the database consistency constraint and

the graphs for both conjuncts P1 and P2 individually are acyclic, as shown in figure 12. In other

words, the schedule is correct because both T and T access A in a serializable mannerJohn Mary

and access B also in a serializable manner.

6.2.4 Dynamic Restructuring of Transactions

In many advanced database applications, such as design environments, operations are inter-

active. The operations a user performs within a transaction might be: (1) of uncertain duration;

(2) of uncertain development, i.e., it cannot be predicted which operations the user will invoke a

priori; and (3) dependent on other concurrent operations. Both altruistic locking and sagas ad-

dress only the first and third of these characteristics. They do not address the uncertainty of the

development of a transaction. Specifically, neither sagas nor long transactions in the altruistic

locking scheme can be restructured dynamically to reflect a change in the needs of the user. To

solve this problem, Pu et al. introduced two new operations, split-transaction and

join-transaction, which are used to reconfigure long transactions while in progress [Pu et al. 88].

The basic idea is that all sets of database actions that are included in a set of concurrent

transactions are performed in a schedule that is serializable when the actions are committed. The

schedule, however, may include new transactions that result from splitting and joining the

original transactions. Thus, the committed set of transactions may not correspond in a simple

way to the originally initiated set. A split-transaction divides an ongoing transaction into two or

42

more serializable transactions by dividing the actions and the resources between the new trans-

actions. The resulting transactions can proceed independently from that point on. More impor-

tant, the resulting transactions behave as if they had been independent all along, and the original

transaction disappears entirely, as if it had never existed. Thus, the split-transaction operation

can be applied only when it is possible to generate two serializable transactions.

One advantage of splitting a transaction is the ability to commit one of the new transactions

in order to release all of its resources so that they can be used by other transactions. The splitting

of a transaction reflects the fact that the user who controlled the original transaction has decided

that he is done with some of the resources reserved by the transaction. These resources can be

treated as part of a separate transaction. Note that the splitting of a transaction in this case has

resulted from new information about the dynamic access pattern of the transaction (the fact that

it no longer needs some resources). This is different from the static access pattern that altruistic

locking uses to determine that a resource can be released. Another difference from altruistic

locking is that rather than only allowing resources to be released by committing one of the trans-

actions that result from a split, the split transactions can proceed in parallel and be controlled by

different users. Join-transaction does the reverse operation of merging the results of two or more

separate transactions, as if these transactions had always been a single transaction, and releasing

their resources atomically.

To clarify this technique, suppose that both Mary and John start two long transactions

T and T to modify the two modules A and B. After a while, John find out that he needsMary John

to access module A. Being notified that T needs to access module A, Mary decides that sheJohn

can "give up" the module since she has finished her changes to it, so she splits up T intoMary

T and T . Mary then commits T , thus committing her changes to A while con-Mary MaryA MaryA

tinuing to retain B. Mary can do that only if the changes committed to A do not depend in any

way on the previous or planned changes to B, which might later be aborted. T can now readJohn

A and use it for testing code. Mary independently commits T , thus releasing B. T canMary John

then access B and finally commit changes to both A and B. The schedule of T , T andMary MaryA

T is shown in figure 13.John

The split-transaction and join-transaction operations relax the traditional concept of

serializability by allowing transactions to be dynamically restructured. Eventually, the restruc-

turing produces a set of transactions that are serialized. Unlike all the other approaches

43

T T TMary MaryA John

|
| initiate
| read(A)
| read(B)
| write(A) initiate
| request read(A)
| corresponding notify(A)
| split((B), (A))
| commit(A)
| write(B) actual read(A)
| commit(B) write(A)
| read(B)
| write(B)
| commit(A, B)
\/
Time

Figure 13: Example of Split-Transaction

described earlier in this section, this approach addresses the issue of user control over trans-

actions since it allows users to dynamically restructure their long transactions. This is most use-

ful when opportunities for limited exchange of data among transactions arise while they are in

progress. The split and join operations can be combined with the other techniques discussed

later in section 8 to provide for the requirements of cooperation.

7 SUPPORTING COORDINATION AMONG MULTIPLE DEVELOPERS

When a small group of developers works on a large project, there arises a need to coor-

dinate the access of its member to the database in which project components are stored. The

developers work independently most of the time on the parts of the project for which they are

responsible, but they need to interact at various points to integrate their work. Thus, a few coor-

dination rules, which moderate the concurrent access to the project database by multiple

developers, need to be enforced in order to guarantee that one developer does not duplicate or

invalidate the work of other developers.

In this section, we describe some mechanisms that coordinate the efforts of members of a

group of developers. It is important to emphasize that all the mechanisms described in this sec-

44

tion fall short of supporting synergistic cooperation in the sense of being able to pass incomplete

but relatively stable data objects between developers in a non-serializable fashion. It is also

important to note that unlike the mechanisms that were presented in the previous section, most of

the models presented here were not developed as formal transaction models, but rather as prac-

tical systems to support design projects, mostly software development efforts. The behavior of

these systems, however, can be formulated in terms of transaction models, as we do in this sec-

tion.

7.1 Version and Configuration Management

The simplest form of supporting coordination among members of a development team is to

control the access to shared files so that only one developer can modify any file at any one time.

One approach that has been implemented by widely-used version control tools like SCCS

[Rochkind 75] and RCS [Tichy 85] is the checkout/checkin mechanism (also called

reserve/replace and reserve/deposit). Each data object is considered to be a collection of dif-

ferent versions. Each version represents the state of the object at some time in the history of its

development. The versions are usually stored in the form of a compact representation that al-

lows the full reconstruction of any version, if needed. Once the original version of the object has

been created, it becomes immutable, which means that it cannot be modified. Instead, a new

version can be created after explicitly reserving the object. The reservation makes a copy of the

original version of the object (or the latest version thereafter) and gives the owner of the reser-

vation exclusive access to the copy so that he can modify it and deposit it as a new version.

Other users who need to access the same object must either wait until the new version is

deposited, or reserve another version, if that exists. Thus, two or more users can modify the

same object only by working on two parallel versions, creating branches in the version history.

Branching ensures write serializability by guaranteeing that only one write per version of an

object exists. The result of consecutive reserves, deposits, and branches is a version tree that

records the full history of development of the object. When two branches of the version tree are

merged (by manually merging the latest version of each branch into one version), the tree be-

comes a dag. This scheme is pessimistic since it does not allow access conflicts to occur on the

same version (rather than allowing them to occur and then correcting them as in optimistic

schemes). It is optimistic, however, in the sense that it allows multiple parallel versions of the

same object to be created even if these versions are conflicting. The conflicts are resolved

manually when the users merge their versions.

45

The basic checkout/checkin mechanism provide minimal coordination between multiple

developers. It does not use semantic information about the objects or the operations performed

on these objects. The model suffer from two main problems as far as concurrency control is

concerned. First, it does not support any notion of aggregate or composite objects, forcing the

user to reserve and deposit each object individually. This can lead to problems if a programmer

reserves several objects, all of which belong conceptually to one aggregate object, creates new

versions of all of them, makes sure that they are consistent as a set, and then forgets to deposit

one of the objects. This will lead to an inconsistent set of versions being deposited. Second, the

reserve/deposit mechanism does not provide any support for reserved objects beyond locking

them in the public database. Thus, once an object has been reserved by a programmer, it is not

controlled by the concurrency control mechanism. The owner of the reservation can decide to let

other programmers access that object.

The first problem results from not keeping track of which versions of objects are consistent

with each other. For example, if each component (object) of a software system has multiple

versions, it would be impossible to find out which versions of the objects actually participated in

producing a particular executable version that is being tested. Further, a programmer cannot tell

which versions of different objects are consistent with each other. There is a need to group sets

of versions that are consistent with each other into configurations. This would enable program-

mers to reconstruct a system using the correct versions of the objects that comprise the system.

This notion of configurations is supported by many software development systems(e.g.,

DSEE [Leblang and Chase, Jr. 87]). A recent survey by Katz gives a comprehensive overview

of version and configuration management systems [Katz 90].

Supporting configurations reduces the problem of consistency to the problem of explicitly

naming the set of consistent versions in configuration objects. This basically solves the problem

of checkout/checkin where only ad hoc ways (associating attributes with versions deposited at

the same time) can be used to keep track of which versions of different objects belong together.

7.1.1 Domain Relative Addressing

Walpole et al. have addressed the problem of consistency in configuration management

systems and introduced a concurrency control notion called domain relative addressing that sup-

ports versions of configuration objects [Walpole et al. 87; Walpole et al. 88a]. Domain relative

addressing extends the notion of Reed’s time relative addressing (multiversion concurrency con-

46

trol) described in section 4.3. Whereas Reed’s mechanism synchronizes accesses to objects with

respect to their timestamps, domain relative addressing does so with respect to the domain of the

data items accessed by the transaction. The database is partitioned into separate consistent

domains where each domain (configuration) consists of one version of each of the conceptual

objects in a related set.

T TBob John
|
| read(p1)
| read(p1)
| read(p2)
| modify(p1)
| write(p1)
| modify(p2)
| read(p2)
| modify(p2)
| write(p2)
| write(p2)
\/
Time

Figure 14: Domain relative addressing schedule

Figure 15: Maintaining consistency using domain relative addressing

To illustrate this technique, consider the two transactions T and T of figure 14. TheBob John

schedule in the figure is disallowed by all the conventional concurrency control schemes. Under

domain relative addressing, the schedule in figure 14 is allowed because T and T operateBob John

on different versions of procedures p1 and p2. A similar scenario occurs if Bob wants to modify

module A and then modify module B to make it consistent with the updated A. At the same time,

47

John wants to modify B keeping it consistent with A. This can be done if T and T useBob John

different versions of modules A and B as shown in figure 15. This scheme captures the seman-
1tics of the operations performed (consistent updates) by maintaining that version A (the original

1 2version of module A) is consistent with B (the version of B modified by T), while AJohn
2(module A after T has modified it) is consistent with B (new version of B that T hasBob Bob

1 2 1 2created). All of A , A , B , and B become immutable versions. Domain relative addressing is

the concurrency control mechanism used in the Cosmos software development environment

[Walpole et al. 88b].

7.2 Pessimistic Coordination

Although domain relative addressing solves the problem of configurations of objects, it

does not address the second problem of the checkout/checkin model, which is concurrency con-

trol support of the checked out objects. Two mechanisms that provide partial solutions to this

problem are the conversational transactions mechanism provided as an extension to System

R [Lorie and Plouffe 83; William et al. 81], and the design transactions mechanism [Katz and

Weiss 84]. Although the models differ in their details, they are similar as far as concurrency

control is concerned. Thus, we refer to both models as the conversational transactions model

hereafter. In this model, the database of a design project consists of a public database and

several private databases. The public database is shared among all designers, whereas each

private database is accessed only by a single designer. Each designer starts a long transaction in

his private database that lasts for the duration of his design task.

When the long transaction needs to access an object in the public database, it requests to

check out the object in a particular mode, either to read it, write it, or delete it. This request

initiates a short transaction on the public database. The short transaction first sets a short-lived

lock on the object, and then checks if the object has been checked out by another transaction in a

conflicting mode. If it has not, the short transaction sets a permanent lock on the object for the

duration of the long transaction. Before the short transaction commits, it copies the object to the

specific private database, and removes the short-lived lock. If the object has been checked out

by another long transaction, the short transaction removes the short-lived lock, notifies the user

that he cannot access the object, and aborts. The short-lived lock that was created by the short

transaction on the public database prevents other short transactions from accessing the same ob-

ject at the same time. The permanent locks prevent long transactions from checking out an ob-

ject that has already been checked out in an exclusive mode.

48

All objects that are checked out by a long transaction are checked back in by initiating short

check-in transactions on the public database at the end of the long transaction. A check-in trans-

action copies the object to the public database, and deletes the old version of the object that was

locked by the corresponding check-out transaction. The new version of the object does not in-

herit the long-lived lock from its predecessor. Thus, each conversational transaction ensures that

all the objects that it checked out will be checked back in before it commits. This mechanism

solves the first problem described above with the reserve/deposit model.

A concurrency control mechanism similar to conversational transactions is used in Smile, a

multi-user software development environment [Kaiser and Feiler 87]. Smile adds semantics-

based consistency preservation to the conversational transactions model by enforcing global con-

sistency checks before allowing a set of objects to be checked in. Smile also maintains semantic

information about the relations among objects, which enables it to reason about collections of

objects rather than individual objects. It thus provides more support to composite objects such as

modules or subsystems.

Like the conversational transactions model, Smile maintains all information about a

software project in a main database, which contains the baseline version of a software project.

Modification of any part of the project takes place in private databases called experimental

databases. To illustrate Smile’s transaction model, assume that John wants to modify modules

A and B; he starts a transaction T and reserves A and B in an experimental databaseJohn

(EDB). When a module is reserved, all of its subobjects (e.g., procedures, types, etc.) areJohn

also reserved. Reserving A and B guarantees that other transactions will not be able to modify

these modules until John has deposited them. Other transactions, however, can read the baseline

version of the modules from the main database. John then proceeds to modify the body of the

modules. When the modification process is complete, he requests a deposit operation to return

the updated A and B to the main database and make all the changes available to other trans-

actions.

But before a set of modules is deposited from an experimental database to the main

database, Smile compiles the set of modules together with the unmodified modules in the main

database. The compilation verifies that the set of modules is self-consistent and that it did not

introduce any errors that would prevent integrating it with the rest of the main database. If the

compilation succeeds, the modules are deposited and T commits. Otherwise, John is in-John

49

formed of the errors and the deposit operation is aborted. In this case, John has to fix the errors

in the modules and repeat the deposit operation when he is done. T commits only when theJohn

set of modules that were reserved are successfully compiled and then deposited.

Smile’s model of consistency not only enforces self-consistency of the set of modules, but

it also enforces global consistency with the baseline version of all other modules. Thus, John

will not be permitted to make a change to the interface of module A (to the number or types of

parameters of a procedure, for example) within EDB unless he has reserved all otherJohn

modules that may be affected by the change. For example, if procedure p1 of module A is called

by procedure p7 of module C, then John has to reserve module C (in addition to A and B, which

he has already reserved) before he can modify the interface of p1. If another transaction TMary

has module C reserved in another experimental database, EDB , the operation to change p1 isMary

aborted and T is forced to either wait until T deposits C, at which point T canJohn Mary John

reserve it, or to continue working on another task that does not require C. From this example, it

should be clear that by enforcing semantics-based consistency, Smile restricts cooperation even

more than the conversational transactions because two users cannot simultaneously access ob-

jects that are semantically related to each other at the interface level.

Although the two-level database hierarchy of Smile and the conversational transactions

mechanism provides better coordination support than the basic checkout/checkin model, it does

not allow for a natural representation of hierarchical design tasks in which groups of users par-

ticipate. Supporting such a hierarchy requires a nested database structure similar to the one

provided by the multilevel transaction schemes described in section 6.

7.2.1 Multilevel Pessimistic Coordination

A more recent system, Infuse, supports a multilevel hierarchy of experimental databases

rather than a two-level hierarchy. Infuse relaxes application-specific consistency constraints by

requiring only that modules in an experimental database be self-consistent before they are

deposited to the parent database [Kaiser and Perry 87]. More global consistency is enforced only

when the modules reserved in top level experimental databases are deposited to the main

database.

Returning to our example, let us assume that both Bob and Mary are involved in a task that

requires modifying modules A and C. Figure 16 depicts the situation. They create an experimen-

50

Figure 16: Experimental databases in Infuse

tal database (EDB), in which both A and C are reserved. Between themselves, Bob and MaryA,C

decide that Bob should modify module A while Mary should work on module C. Bob creates a

child experimental database (EDB) in which he reserves A. Mary creates EDB in which sheA C

reserves C. Bob decides that his task requires changing the interface of procedure p1 by adding a

new parameter. At the same time, Mary starts modifying module C in her database. The reader

is reminded that procedure p7 of module C calls p1 in module A. After Bob completes his

changes, he deposits module A to EDB . No errors are detected at that point because Infuse onlyA

checks that A is self-consistent. This is possible because Infuse assumes that any data types or

procedures that are used in the module but not defined in it, must be defined elsewhere. If they

are not defined anywhere in the system, the final attempt to deposit into the main database will

detect that. Infuse only checks that all uses of a data type or object in the same module are

consistent with each other.

Mary then finishes her changes and deposits C. Again no errors are detected at that level.

However, when either Bob or Mary attempts to deposit the modules in EDB to the mainA,C

database, the compiler reports that modules A and C are not consistent with each other because

of the new parameter of procedure p1. At that point, either Bob or Mary must create a child

experimental database in which he or she can fix the bug by changing the call to p1 in procedure

p7.

Infuse’s model allows greater concurrency at the cost of greater semantics-based inconsis-

tency — and the potential need for a later round of changes to re-establish consistency. But

51

serializability is always maintained by requiring sibling EDBs to reserve disjoint subsets of the

resources locked by the parent EDB.

7.3 Optimistic Coordination

The coordination models presented in the previous section are pessimistic in that they do

not allow concurrent access to the same object in order to prevent any consistency violations that

might occur. They are thus more restrictive in that sense than the configuration and version

management schemes. It is often that case in design efforts, however, that two or more

developers within the same team prefer to access different version of the same object concur-

rently. Since these developers are typically familiar with each other’s work, they can resolve any

conflicts they introduce during their concurrent access by merging the different versions into a

single consistent version. However, rather than supporting multiple versions in a flat database, it

is often needed to provide a hierarchical structure like Infuse’s.

7.3.1 Copy/Modify/Merge

Like Infuse, Sun’s Network Software Environment (NSE) supports a nested transaction

mechanism that operates on a multilevel hierarchical database structure [Adams et al. 89]. Like

Cosmos (and unlike Infuse), NSE supports concurrent access to the same data objects. NSE

combines the checkout/checkin model with an extension to the classical optimistic concurrency

control policy, thus allowing limited cooperation among programmers. Unlike the

checkout/checkin model and Cosmos, however, NSE provides some assistance to developers in

merging different versions of the same data item.

NSE requires programmers to acquire (reserve) copies of the objects they want to modify in

an environment (not to be confused with a software development environment), where they can

modify the copies. Programmers in other environments at the same level cannot access these

copies until they are deposited to the parent environment. Environments, however, can have

child environments that acquire a subset of their set of copies. Multiple programmers can

operate in the same environment where the basic reserve/deposit mechanism is enforced to coor-

dinate their modifications.

Several sibling environments can concurrently acquire copies of the same object and

modify them independently, thus creating parallel versions of the same object. To coordinate the

deposit of these versions to the parent environment, NSE requires that each environment merge

52

its version (called reconcile in NSE’s terminology) with the previously committed version of the

same object. Thus, the first environment to finish its modifications deposits its version as the

new version of the original object in the parent environment, the second environment to finish

has to merge its version with the first environment’s version, creating a newer version. The third

environment to finish will merge its version with this newer version and so on.

Like the optimistic concurrency control (OCC) mechanism, NSE’s mechanism allows con-

current transactions (programmers in sibling environments in this case) to simultaneously access

private copies of the same object. Before users can make their copies visible to other users (i.e.,

the write phase in the OCC mechanism), they have to reconcile (validate) the changes they made

with the changes that other users in sibling environments have concurrently made on the same

objects. If conflicts are discovered, rather than rolling back transactions, the users of conflicting

updates have to merge their changes, producing a new version of the object.

To illustrate this mechanism, assume that the modules of the project depicted in figure 1 in

the introduction represent the following: module A comprises the user interface part of the

project, module B is the kernel of the project, module C is the database manager, while module

D is a library module. The development happens in three layers as shown in figure 17. At the

top layer, the environment PROJ-ENV represents the released project. All the objects of the

project belong to this environment. At the second level, two environments co-exist: one to de-

velop the user interface, FRONT_END, and the other to develop the kernel, BACK_END.

FRONT_END acquires copies of modules A and C, while BACK_END acquires copies of B and

C. John works on modifying the front end in his private environment, JOHN, while Mary works

on developing the back end in her private environment.

John starts by acquiring module A in order to modify it. He creates a new version of p1 but

then finds out that in order to modify p2, he needs to modify p5. Consequently, he acquires p5

into his environment and creates new versions of p2 and p5. Finally he deposits all his changes

to FRONT_END, creating new versions of modules A and C as shown in figure 17. Concur-

rently, Mary acquires module B and modifies it, and deposits the changes to BACK_END. Mary

can then test her code in BACK_END. Let us suppose that before Mary starts testing her code,

John finishes testing his code and deposits all of his changes to the top-level environment, creat-

ing a new version of the project and making all of his changes visible to everybody. Before

testing her code, Mary can check to see if any of the code that is relevant to her (modules B and

53

Figure 17: Layered development in NSE

C) has been changed by some other programmer. NSE provides a command, resync, to do that

automatically on demand. Resync will inform Mary that John has changed procedure p5. At this

point, Mary can decide to acquire John’s new version and proceed to test her code.

54

In another scenario, the exact same series of actions as above occur except that Mary dis-

covers that she needs to modify procedure p5 in C, so she acquires it. In this case, after the

resync command informs her that John has already deposited a new version of p5, Mary has to

merge her new version with John’s. This is done by invoking a special editor that facilitates the

merging process. Merging produces a new version of p5, which Mary can use to test her code.

Finally, she can deposit all of her code, creating a new version of the whole project.

7.3.2 Backout and Commit Spheres

Both Infuse and NSE implicitly use the concept of nested transactions, and they enforce a

synchronous interaction between a transaction and its child subtransactions, in which control

flows from the parent transaction to the child subtransaction. Subtransactions can access only

data items that the parent transaction can access, and they commit their changes only to their

parent transaction. A more general model is needed in order to support a higher level of coor-

dination among transactions. Walter observed that there are three aspects that define the

relationship between a parent transaction and child subtransaction [Walter 84]: (1) the interface

aspect; (2) the dependency aspect; and (3) the synchronization aspect.

The interface between a parent transaction and a child subtransaction can either be single-

request, i.e., the parent requests a query from the child and waits until the child returns the result,

or conversational, i.e., the control changes between the parent that issues a sequence of requests

and the child that answers these requests. A conversational interface, in which values are passed

back and forth between the parent and the child, necessitates grouping the parent and child trans-

actions in the same rollback domain because if the child transaction is aborted (for any reason) in

the middle of a conversation, not only does the system have to rollback the changes of the child

transaction, but the parent transaction has to be rolled back to the point before the conversation

began. In this case, the two transactions are said to belong to the same backout sphere. A

backout sphere includes all transactions that are involved in chain of conversations and requires

that backing out (rollback) of all transactions in the sphere if any one of them is backed out. A

single-request interface, which is what the traditional nested transaction model supports, does not

require rolling back the parent because the computation of the child transaction does not affect

the computation in-progress in the parent transaction.

The dependency aspect concerns a child transaction’s ability to commit its updates indepen-

dently of when its parent transaction commits. If a child is independent of its parent, then it is

55

said to be in a different commit sphere. Any transaction within a commit sphere can commit

only if all other transactions in its sphere also commit. If a child, which is in a different commit

sphere from its parent, commits, then the parent must either remember that the child committed

(e.g., by writing the committed values in its variables), or it must be able to execute the child

transaction again if the parent is restarted.

The synchronization aspect concerns the ability to support the concurrent execution of the

parent transaction and its subtransactions. Such concurrency can occur if the child subtransac-

tion is called from the parent transaction asynchronously (i.e., the parent continues its execution

and fetches the results of the child subtransaction at a later time). In this case, both the parent

and the child may attempt to access the same data items at the same time, and thus the need for

synchronization. If the child is called synchronously (i.e., the parent waits until the child ter-

minates), then it can safely access the data items locked by its parent.

Given these three aspects, Walter presented a nested transaction model in which each sub-

transaction has three attributes that must be defined when it is created. The first attribute,

reflecting the interface criterion, can be set to either COMMIT or NOCOMMIT. The depen-

dency attribute is set to either BACKOUT or NOBACKOUT, and the third attribute, reflecting

the synchronization mode, is set to either SYNC or NOSYNC. The eight combinations of these

attributes define levels of coordination between a transaction and its subtransactions. For ex-

ample, a subtransaction created with the attributes COMMIT, BACKOUT, SYNC, is independ-

ent of its parent since it possesses its own backout sphere, its own commit sphere and it can

access data items not locked by its parent.

Walter claims that it is possible to define all other nested transaction models in his model.

Moss’ model for example is defined as creating subtransactions with attributes set to BACK-

OUT, NOCOMMIT, SYNC. Beeri, Schek and Weikum’s multilevel transaction model [Beeri et

al. 88], described in section 6.1.3, supports the combination COMMIT, BACKOUT, NOSYNC.

No synchronization is needed between a transaction and its subtransactions because they operate

at two different levels of abstraction (e.g., if locking is used, different levels would use different

types of locks).

The models we described in this section support limited cooperation among teams of

developers mainly by coordinating their access to shared data. Both NSE and Cosmos allow two

56

or more environments to acquire copies of the same object, modify them and merge them. NSE

also provides programmers with the ability to set notification requests on particular objects so

that they are informed when other programmers acquire or reconcile these objects. Infuse

provides a notion of workspaces that cut across the hierarchy to permit grouping of an arbitrary

set of experimental databases. This "cutting across" enables users to look at the partial results of

other users’ work under certain circumstances, for the purpose of early detection of inconsis-

tencies. None of the models described so far, however, support all the requirements of syner-

gistic cooperation among teams of developers.

8 SUPPORTING SYNERGISTIC COOPERATION

In the previous section, we addressed the issue of coordinating the access of a group of

developers to the shared project database. Although this coordination is often all that is needed

for small groups of developers, it is not sufficient when a large number of developers work on a

large-scale design project [Perry 91]. The developers are often subdivided into several groups,

each responsible for a part of the design task. Members of each group usually cooperate to

complete their part. In this case, there is a need to support cooperation among members of the

same group, as well as coordination of the efforts of multiple groups. The mechanisms described

in the previous section address the coordination issue, but most of them do not support any form

of cooperation.

Supporting synergistic cooperation necessitates relying on sharing the collective knowledge

of designers. For example, in a software development environment (SDE), it is common to have

several programmers cooperate on developing the same subsystem. Each programmer becomes

an "expert" in a particular part of the subsystem, and it is only through the sharing of the exper-

tise of all the programmers that the subsystem is integrated and completed. In such a cooperative

design environment, the probability of conflicting accesses to shared data is relatively high be-

cause it is often the case that several users, with overlapping expertise, are working on related

tasks concurrently. Note that in an SDE there is overlapping access to executables and status

information even if not to source code components.

However, many of the conflicts that occur in design environments are not serious in the

sense that they can be tolerated by users. In particular, designers working closely together often

need to exchange incomplete designs, knowing that they might change shortly, in order to coor-

57

dinate the development of various parts of the design. A DBMS supporting such an environment

should not obstruct this kind of cooperation by disallowing concurrent access to shared objects

or non-serializable interaction.

Instead, the concept of database consistency preservation needs to be refined along the lines

of the previous section to allow non-serializable cooperative interaction. Such a refinement can

be based on four observations [Bancilhon et al. 85]: (1) design efforts are usually partitioned into

separate projects, where each project is developed by a team of designers; (2) available worksta-

tions provide multiple windows, in which multiple tasks can be executed concurrently by the

same designer; (3) projects are divided into subtasks were a group of designers, each working on

a subtask, have a great need to share data among them; and (4) in complex design projects, some

subtasks are contracted to other design groups (subcontractors) that have only limited access to

the main project’s database.

In this section, we present two models that aim at defining the underlying primitives needed

for the implementation of cooperative concurrency control mechanisms. We then describe four

mechanisms, two from the CAD/CAM community and two from the SDE domain, that use com-

binations of these primitives to implement cooperative concurrency control policies. It is

worthwhile to note that much of the work described in this section is very recent, and some of it

is preliminary. We believe that the models presented here provide a good sample of the research

efforts under way in the area of cooperative transaction models.

8.1 Cooperation Primitives

In order to address the four observations listed above, there is a need to introduce two new

primitives that can be used by mechanisms supporting cooperation. The first primitive is

notification (mentioned in the previous section), which enables developers to monitor what is

going on as far as access to particular objects in the database is concerned. The second is the

concept of a group of cooperating developers. The members of a group usually work on the

same task (or at least related tasks), and thus need to cooperate among themselves much more

than with members of other groups.

58

8.1.1 Interactive Notification

One approach to maintaining consistency, while still allowing some kind of cooperation, is

to support notification and interactive conflict resolution rather than enforcing serialization [Yeh

et al. 87]. To do this, the Gordion database system provides a notification primitive that can be

used in conjunction with other primitives (such as different lock modes) to implement coopera-

tive concurrency control policies [Ege and Ellis 87]. Notification alerts users about "interesting"

events such as an attempt to lock and object that has already been locked in an exclusive mode.

Two policies that use notification in conjunction with non-exclusive locks and versions

were implemented in the Gordion system: immediate notification and delayed notification [Yeh

et al. 87]. Immediate notification alerts the user of any conflict (attempts to access an object that

has an exclusive lock on it or out of which a new version is being created by another user) as

soon as the conflict occurs. Delayed notification alerts the user of all the conflicts that have

occurred only when one of the conflicting transactions attempts to commit. Conflicts are

resolved by instigating a ‘‘phone call’’ between the two parties with the assumption that they can

interact (hence the name interactive notification) to resolve the conflict.

These policies incorporate humans as part of the conflict resolution algorithm. This, on the

one hand, enhances concurrency in advanced applications, where many of the tasks are inter-

active. But on the other hand, it can also degrade consistency because humans might not really

resolve conflicts, resulting in inconsistent data. Like the sagas model, this model also burdens

the user with knowledge about the semantics of applications. This points to the need for incor-

porating some intelligent tools, similar to NSE’s merge tool, to help the user resolve conflicts.

8.1.2 The Group Paradigm

Since developers of a large project often work in small teams, there is a need to formally

define the kinds of interactions that can happen among members of the same team as opposed to

interactions between teams. Abbadi and Toueg defined the concept of a group as a set of trans-

actions that when executed transforms the database from one consistent state to another [Abbadi

and Toueg 88]. They presented the group paradigm to deal with consistency of replicated data in

an unreliable distributed system. They hierarchically divide the problem of achieving

serializability into two simpler ones: (1) a local policy that ensures a total ordering of all trans-

actions within a group; and (2) a global policy that ensures correct serialization of all groups.

59

Groups, like nested transactions, is an aggregation of a set of transactions. There are sig-

nificant differences, however, between groups and nested transactions. A nested transaction is

designed a priori in a structured manner as a single entity that may invoke subtransactions,

which may themselves invoke other subtransactions. Groups do not have any a priori assigned

structure and no predetermined precedence ordering imposed on the execution of transactions

within a group. Another difference is that the same concurrency control policy is used to ensure

synchronization among nested transactions at the root level and within each nested transaction.

Groups, however, could use different local and global policies (an optimistic local policy, for

example, and a 2PL global policy).

The group paradigm was introduced to model inter-site consistency in a distributed

database system. It can be used, however, to model teams of developers, where each team is

modeled as a group with a local concurrency control policy that supports synergistic cooperation.

A global policy can then be implemented to coordinate the efforts of the various groups. Of

course, the local policies and the global policy have to be compatible in the sense that they do

not contradict each other. Toueg and Abbadi do not sketch the compatibility requirements be-

tween global and local policies.

Dowson and Nejmeh have applied the group concept to model teams of programmers.

They have introduced the notion of visibility domains, which model groups of programmers ex-

ecuting nested transactions on immutable objects [Dowson and Nejmeh 89]. A visibility domain

is a set of users who can share the same data items. Each transaction has a particular visibility

domain associated with it. Any member of a visibility domain of a transaction may start a sub-

transaction on the copy of data that belongs to the transaction. The only criterion for data consis-

tency is that the visibility domain of a transaction be a subset of the visibility domain of its

parent.

8.2 Cooperating Transactions

Variations of the primitives defined above have been the basis for several concurrency con-

trol mechanisms that provide various levels of cooperation. In this section we present four

mechanisms that support some form of synergistic cooperation. Two of the mechanisms were

designed for CAD environments while the other two were designed for SDEs. The notion of

cooperation in SDEs is similar to that in CAD. There are differences, however, that arise from

60

the differences in the structure of projects in the two domains. It seems that CAD projects are

more strictly organized than software development projects, with a more stringent division of

tasks, and with less sharing among tasks.

In both cases, designers working on the same subtask might need unconstrained coopera-

tion, while two designers working on different tasks of the same project might need more con-

strained cooperation. CAD designers working on two different projects (although within the

same division, for example) might be content with traditional transaction mechanisms that en-

force isolation. In software development, programmers working on different projects might still

need shared access to libraries, and thus might need more cooperation than is provided by tradi-

tional mechanisms even if their tasks are unrelated.

One approach to providing such support is to divide users (designers or programmers) into

groups. Each group is then provided with a range of lock modes that allows various levels of

isolation and cooperation among multiple users in the same group, and between different groups.

Specific policies that allow cooperation can then be implemented by the environment using the

knowledge about user groups and lock modes. In this section, we describe four mechanisms that

are based on the group concept. All four mechanisms avoid using blocking to synchronize trans-

actions, thus eliminating the problem of deadlock.

8.2.1 Group-Oriented CAD Transactions

One approach, called the group-oriented model extends the conversational transactions

model described in section 7 [Klahold et al. 85]. Unlike the conversational transactions model,

the group-oriented model does not use long-lived locks on objects in the public database. The

conversational transactions model sets long-lived locks on objects that checked out from the

public database until they are checked back into the public database.

The group-oriented model categorizes transactions into group transactions (GT) and user

transactions (UT). Any UT is a subtransaction of a GT. The model also provides primitives to

define groups of users with the intention of assigning each GT a user group. Each user group

develops a part of the project in a group database. A GT reserves objects from the public

database into the group database of the user group it was assigned. Within a group database,

individual designers create their own user database, and they invoke UTs to reserve objects from

the group database to their user database.

61

In the group-oriented model, user groups are isolated from each other. One user group

cannot see the work of another user group until the work is deposited in the public database.

Group transactions are thus serializable. Within a group transaction, several user transactions

can run concurrently. These transactions are serializable unless users intervene to make them

cooperate in a non-serializable schedule. The basic mechanism provided for relaxing

serializability is a version concept that allows parallel development (branching) and notification.

Versions are derived, deleted, and modified explicitly by a designer only after being locked in

any one of a range of lock modes..

The model supports five lock modes on a version of an object: (1) read-only, which makes

a version available only for reading; (2) read/derive, which allows multiple users to either read

the same version or derive a new version from it; (3) shared derivation, which allows the owner

to both read the version and derive a new version from it, while allowing parallel reads of the

same version and derivation of different new versions by other users; (4) exclusive derivation,

which allows the owner of the lock to read a version of an object and derive a new version, and

allows only parallel reads of the original version; and (5) exclusive lock, which allows the owner

to read, modify and derive a version, and allows no parallel operations on the locked version.

Using these lock modes, several designers can cooperate on developing the same design

object. The exclusive lock modes allow for isolation of development efforts (as in traditional

transactions), if that is what is needed. To guarantee consistency of the database, designers are

only allowed to access objects as part of a transaction. Each transaction in the group-oriented

model is two-phase, consisting of an acquire phase and a release phase. Locks can only be

strengthened (i.e., converted into a more exclusive mode) in the acquire phase, and weakened

(converted into a more flexible lock) in the release phase. If a user requests a lock on a par-

ticular object and the object is already locked with an incompatible lock, the request is rejected

and the initiator of the requesting transaction is informed of the rejection. This avoids the

problem of deadlock, which is caused by blocking transactions that request unavailable

resources. The initiator of the transaction is notified later when the object he requested becomes

available for locking.

In addition to this flexible locking mechanism, the model provides a read operation that

breaks any lock by allowing a user to read any version, knowing that it might be about to be

changed. This operation provides the designer (more often a manager of a design effort) the

62

ability to observe the progress of development of a design object, without affecting the designers

doing the development.

8.2.2 Cooperating CAD Transactions

Like the group-oriented model, the cooperating CAD transactions model, introduced by

Bancilhon, Kim and Korth, envisions a design workspace to consist of a global database that

contains a public database for each project and private databases of active designers’ transactions

[Bancilhon et al. 85]. Traditional two-phase locking is used to synchronize access to shared

data among different projects in the database. Within the same project, however, each designer

is responsible for a well-defined subtask and he invokes a long transaction to complete the sub-

task.

All the designers of a single project participate in one cooperating transaction, which is the

set of all long transactions initiated by those designers. All the short-duration transactions in-

voked by all the designers within the same cooperating transaction are serialized as if they were

invoked by one designer. Thus, if a designer invokes a short-transaction (within his long trans-

action) that conflicts with another designer’s short transaction, one of them has to wait only for

the duration of the short transaction. Each cooperating transaction encapsulates a complete

design task. Some of the subtasks within a design task can be "subcontracted" to another group

instead of being implemented by members of the project. In this case, a special cooperating

transaction called a client/subcontractor transaction is invoked for that purpose. Each

client/subcontractor transaction can invoke other client/subcontractor transactions leading to a

hierarchy of such transactions spawned by a single client (designer). This notion is similar to

Infuse’s hierarchy of experimental databases, discussed in section 7.2.1.

A cooperating transaction is thus a nested transaction that preserves some consistency con-

straints defined as part of the transaction. Each subtransaction (itself a cooperating transaction)

in turn preserves some integrity constraints (not necessarily the same ones as its parent trans-

action). The only requirement here is that subtransactions have weaker constraints than their

ancestors but not vice versa. Thus, the integrity constraints defined at the top level of a cooperat-

ing transaction imply all the constraints defined at lower levels. At the lowest levels of the

nested transaction are the database operations, which are atomic sequences of physical instruc-

tions such as reading and writing of a single data item.

63

To replace the conventional concept of a serializable schedule for a nested transaction, Ban-

cilhon, Kim and Korth define the notion of an execution of a cooperating transaction to be a total

order of all the operations invoked by the subtransactions of the cooperating transaction that is

compatible with the partial orders imposed by the different levels of nested transactions. A

protocol is a set of rules that restrict the set of admissible executions. Thus, if the set of rules are

strict enough, they would allow only serializable executions. The set of rules can, however,

allow non-serializable, and even incorrect, executions.

8.2.3 Transaction Groups

In order to allow members of the same group to cooperate and to monitor changes in the

database, there is a need to provide concurrency control mechanisms with a range of lock modes

of varying exclusiveness. The transaction groups model proposed for the ObServer system

replaces classical locks with <lock mode, communication mode> pairs to support the implemen-

tation of a nested framework for cooperating transactions [Skarra and Zdonik 89; Fernandez and

Zdonik 89]. A transaction group (TG) is defined as a process that controls the access of a set of

cooperating transactions (members of the transaction group) to objects from the object server.

Since a TG can include other TGs, a tree of TGs is composed.

Within each TG, member transactions and subgroups are synchronized according to an

input protocol that defines some semantic correctness criteria appropriate for the application.

The criteria are specified by semantic patterns, and enforced by a recognizer and a conflict detec-

tor. The recognizer ensures that a lock request from a member transaction matches an element in

the set of locks that the group may grant its members. The conflict detector ensures that a re-

quest to lock an object in a certain mode does not conflict with the locks already held on the

object.

If a transaction group member requests an object that is not currently locked by the group,

the group has to request a lock on the object from its parent. The input protocol of the parent

group, which controls access to objects, might be different from that of the child group. There-

fore, the child group might have to transform its request lock into a different lock mode accepted

by the parent’s input protocol. The transformation is carried out by an output protocol, which

consults a lock translation table to determine how to transform a lock request into one that is

acceptable by the parent group.

64

The lock modes provided by ObServer indicate whether the transaction intends to read or

write the object and whether it permits reading while another transaction writes, writing while

other transactions read, and multiple writers of the same objects. The communication modes

specify whether the transaction wants to be notified if another transaction needs the object or if

another transaction has updated the object. Transaction groups and the associated locking

mechanism provide suitable low-level primitives for implementing a variety of concurrency con-

trol policies.

Figure 18: Transaction Groups

To illustrate, consider the following example. Mary and John are assigned the task of up-

dating modules A and B that are strongly related (i.e., procedures in them call each other, and

type dependencies exist between the two modules), while Bob is assigned responsibility for up-

dating the documentation of the project. Obviously, Mary and John need to cooperate while

updating the modules whereas Bob only needs to access the final result of the modification of

both modules in order to update the documentation. Two transaction groups are defined, TG1

and TG2. TG1 has T and TG2 as its members, and TG2 has T and T as its members.Bob John Mary

The output protocol of TG2 states that changes made by the transactions within TG2 are com-

mitted to TG1 only when all the transactions of TG2 have either committed or aborted. The

input protocol of TG2 accepts lock modes that allow T and T to cooperate (e.g., seeMary John

partial results of their updates to the modules) while isolation is maintained within TG1 (to

65

prevent T from accessing the partial results of the transactions in TG2). This arrangement isBob

depicted in figure 18.

8.2.4 Participant Transactions

The transaction groups mechanism defines groups in terms of their access to database ob-

jects in the context of a nested transaction system. Another approach is to define a group of
1transactions as participants in a specific domain [Kaiser 90]. Participant transactions in a

domain need not appear to have been performed in some serial order with respect to each other.

The set of transactions that are not participants in a domain are considered observers of the

domain. The set of observer transactions of a domain must be serialized with respect to the

domain. A particular transaction may be a participant in some domain and an observer for others

whose transactions access the same objects.

A user can initiate a transaction that nests subtransactions to carry out subtasks or to con-

sider alternatives. Each subtransaction may be part of an implicit domain, with itself as the sole

participant. Alternatively, one or more explicit domains may be created for subsets of the sub-

transactions. In the case of an implicit domain, there is no requirement for serializability among

the subtransactions. However, each subtransaction must appear atomic with respect to any par-

ticipants, other than the parent, in the parent transaction’s domain.

The domain in which a transaction participates would typically be the set of transactions

associated with the members of a cooperating group of users working towards a common goal.

However, unlike transaction groups, there is no implication that all the transactions in the

domain commit together, or even that all of them commit (some may abort). Thus it is mislead-

ing to think of the domain as a top-level transaction, with each user’s transaction as a subtran-

saction, although this is likely to be a frequent case in practice. The transaction groups

mechanism described above is thus a special case of participant transactions.

Each transaction is associated with zero or one particular domains at the time it is initiated.

A transaction that does not participate in any domain is the same as a classical (but interactive)

transaction. Such a transaction must be serializable with respect to all other transactions in the

system. A transaction is placed in a domain in order to non-serializably share partial results with

1The word domain means different things in participant transactions, visibility domains, and domain relative
addressing.

66

other transactions in the same domain, but it must be serializable with respect to all transactions

not in the domain.

T TJohn Mary
|
| begin(X)
| access(A)
| read(B) begin(X)
| write(B) access(C)
| read(B)
| access(A) write(B)
| read(B)
| write(B)
| commit(B,C)
| read(B)
| write(B)
| commit(A,B)
\/
Time

Figure 19: Example of a Participation Schedule

To illustrate, say a domain X is defined to respond to a particular modification request, and

programmers Mary and John start transactions T and T that participate in X. AssumeMary John

that an access operation is either a read or a write operation. The schedule shown in Figure 19 is

not serializable according to any of the conventional concurrency control mechanisms. TMary

reads the updates that T made to module B that are written but are not yet committed byJohn

T , modifies parts of module B, and then commits. T continues to modify modules A andJohn John

B after T has committed. Since T and T participate in the same domain X, theMary Mary John

schedule is legal according to the participation transactions mechanism.

Now say that Bob starts a transaction T that is an observer of domain X. Assume that theBob

sequence of events shown in Figure 20 happens. Bob first modifies module C. This by itself

would be legal, since T thus far could be serialized before T (but not after). But then TBob John Bob

attempts to read module B which has been modified and committed by T . This would beMary

illegal even though T was committed. T cannot be serialized before T , and thusMary Mary Bob

before T , because T reads the uncommitted changes to module B written by T . InJohn Mary John

fact, T cannot be serialized either before or after T . This would not be a problem if itMary John

67

T T TJohn Mary Bob
|
| begin(X) begin
| modify(A) modify(C)
| modify(B) begin(X)
| read(C) access(D)
| write(C) read(B)
| modify(A) write(B)
| read(B)
| modify(B)
| commit(B,D)
| modify(B)
| read(B)
\/
Time

Figure 20: Example of a Participation Conflict

was not necessary to serialize T with any transactions outside the domain. Mary’s update toMary

module B would be irrelevant if John committed his final update to B before any transactions

outside the domain accessed B. Thus the serializability of transactions within a participation

domain need be enforced only with respect to what is actually observed by the users who are not

participants in the domain.

9 SUMMARY AND DISCUSSION

This paper investigates concurrency control issues for a class of advanced database applica-

tions involving computer-supported cooperative work, concentrating primarily on software

development environments, although the requirements of CAD/CAM environments and office

automation are similar. The differences between concurrency control requirements in these ad-

vanced applications and traditional data processing applications are discussed, and several new

mechanisms and policies that address these differences are presented. Many of these have not

yet been implemented in any system. This is due to two factors: (1) many are theoretical

frameworks rather than practical schemes; and (2) many of the more pragmatic schemes are so

recent that there has not been a sufficient period of time to design and implement even prototype

systems. The table in figure 21 summarizes the discussions of the previous sections by indicat-

ing whether or not each mechanism or policy addresses long transactions, user control and

cooperation, and naming a system, if any, in which the ideas have been implemented.

68

Mechanism System Long Trans. User Control Cooperation

Altruistic Locking N/A Yes No Limited

Snapshot N/A Yes No Limited
Validation

Order-Preserving DASDBS Yes No Limited
Transactions

Entity-State N/A Yes No Limited
Transactions

Semantic Atomicity N/A Yes No Limited

Multilevel Atomicity N/A Yes No Yes

Sagas N/A Yes No Limited

Conflict-Based N/A Yes No Limited
Serializability

Split-transaction N/A Yes Yes Limited
Join-transaction

Checkout/Checkin RCS No No Limited

Domain Relative Cosmos Yes No Limited
Addressing

Conversational System R Limited Limited No
Transactions

Multilevel Infuse Yes Yes Limited
Coordination

Copy/Modify/ NSE Yes Yes Limited
Merge

Backout and N/A Yes Yes Limited
Commit Spheres

Interactive Gordion No Limited Limited
Notification

Visibility Domains N/A Yes Limited Yes

Group-Oriented N/A Yes Limited Yes
CAD Trans.

Cooperating CAD Orion Yes Limited Yes
Transactions

Transaction Groups ObServer Limited Limited Yes

Participant N/A Yes Limited Yes
Transactions

Figure 21: Advanced database systems and their concurrency
control schemes

There are four other concerns that extended transaction models for advanced applications

should also address. These are: (1) the interface to and requirements for the underlying DBMS;

(2) the interface to the application tools and environment kernel; (3) the end-user interface; and

69

(4) the environment/DBMS administrator’s interface. In a software development environment,

for example, there are a variety of tools that need to retrieve different kinds of objects from the

database. A tool that builds the executable code of the whole project might access the most

recent version of all objects that are of type code. Another tool, for document preparation, ac-

cesses all the objects of type document or of type description in order to produce a user manual.

There might be several relationships between documents and code (a document describing a

module may have to be modified if the code of the module is changed, for instance). Users

collaborating on a project invoke tools as they go along in their sessions, which might result in

tools being executed concurrently. In such a situation, the transaction manager, which controls

concurrent access to the database, must "understand" how to provide each user and each tool

with access to a consistent set of objects that they operate on, where consistency is defined ac-

cording to the needs of the application.

A problem that remains unsolved is the lack of performance metrics by which to evaluate

the proposed policies and mechanisms in terms of the efficiencies of both implementation and

use. We have encountered only one empirical study [Yeh et al. 87] that investigate the needs of

developers working together on the same project and how different concurrency control schemes

might affect the development process and the productivity of developers. It might very well be

that some of the schemes that appear adequate theoretically will turn out to be very inefficient or

unproductive for the purposes of a particular application. But it is not clear how to define ap-

propriate measures.

Another problem is that most of the notification schemes are limited to (1) attaching the

notification mechanism to the locking primitives and (2) notifying human users, generally about

the availability of resources. These schemes assume that only the human user is active and that

the database is just a repository of passive objects. It is important, however, for the DBMS of an

advanced application to be active in the sense that it be able to monitor the activities in the

database and automatically perform some operations in response to changes made to the database

(this is what the database community calls triggers [Stonebraker et al. 88]). Notification must be

expanded, perhaps in combination with triggers, to detect a wide variety of database conditions,

to consider indirect as well as direct consequences of database updates, and to notify appropriate

monitor and automation elements provided by the software development environment.

In addition to supporting automation, advanced applications like SDEs typically provide the

70

user with capabilities to execute queries about the status of the development process. By defini-

tion, this requires access to the internal status of in-progress tasks or transactions, perhaps

restricted to distinguished users such as managers. If a manager of a design project needs to

determine the exact status of the project in terms of what has been completed (and how far the

schedule has slipped!), the database management system must permit access to subparts of tasks

that are still in-progress and not yet committed. However, some queries may require a consistent

state of the database, in the sense that no other activities may be concurrently writing the

database. The brief lack of concurrency in this case may be deemed acceptable to fulfill

managerial goals).

One key reason why traditional concurrency control mechanisms are too restrictive for ad-

vanced applications is that they do not make use of the available semantics. Many of the ex-

tended transaction models presented in this paper do use some kind of information about trans-

actions, such as their access patterns, and about users, such as which design group they belong

to. Most, however, do not define or use the semantics of the task that a transaction is intended to

perform, or the semantics of database operations in terms of when an operation is applicable,

what effects it has and what implications it has for leading to future database operations. Con-

sequently, these mechanisms capture only a subset of the interactions possible in advanced ap-

plications. One approach to solving this problem is to define a formal model that can charac-

terize the whole range of interactions among transactions. This approach was pursued in

developing the ACTA framework, which is capable of specifying both the structure and behavior

of transactions, as well as concurrency and recovery properties [Chrysanthis and Ramamritham

90].

Although all of the extended transaction models presented in the paper address at least one

of the concurrency control requirements, which include supporting long duration transactions,

user control over transactions and cooperation among multiple users, none of them supports all

requirements. For example, some mechanisms that support long transactions, such as altruistic

locking, do not support user control. Some mechanisms that support user control, such as op-

timistic coordination, do not directly support cooperation. All three requirements must be ful-

filled for the class of advanced applications considered here, those involving computer-supported

cooperative work.

71

ACKNOWLEDGMENTS

This work was supported in part by the National Science Foundation under grants number

CCR-8858029 and CCR-8802741, by grants from AT&T, BNR, Citicorp, DEC, IBM, Siemens,

Sun and Xerox, by the Center for Advanced Technology and by the Center for Telecommunica-

tions Research. We would like to thank Terrance Boult and Soumitra Sengupta for reviewing

earlier versions of this paper. We would also like to thank the anonymous referees, the associate

editor Hector Garcia-Molina and the editor-in-chief Salvatore March, all of whom provided

many detailed suggestions and corrections.

72

REFERENCES

[Abbadi and Toueg 88] Abbadi, A., and Toueg, S. The Group paradigm for Concurrency Con-

trol Protocols. Proceedings of the ACM SIGMOD International Conference on the Management

of Data, ACM Press, June, 1988, pp. 126-134.

[Adams et al. 89] Adams, E. W., Honda, M., and Miller, T. C. Object Management in a CASE

Environment. Proceedings of the 11th International Conference on Software Engineering, May,

1989, pp. 154-163.

[Bancilhon et al. 85] Bancilhon, F., Kim, W., and Korth, H. A Model of CAD Transactions.

Proceedings of the 11th International Conference on Very Large Data Bases, Morgan Kaufmann,

August, 1985, pp. 25-33.

[Beeri et al. 86] Beeri, C., Bernstein, P. A., and Goodman, N. A Model for Concurrency in

Nested Transaction Systems. Technical Report TR-86-03, The Wang Institute for Graduate

Studies, Tyngaboro, MA, March, 1986.

[Beeri et al. 88] Beeri, C., Schek, H. -J., and Weikum, G. Multilevel Transaction Management,

Theoretical Art or Practical Need? Advances in Database Technology - EDBT ’88, 1988.

[Beeri et al. 89] Beeri, C., Bernstein, P. A., and Goodman, N. ‘‘A Model for Concurrency in

Nested Transaction Systems .’’ Journal of the ACM 36, 1, 1989.

[Bernstein 87] Bernstein, P. Database System Support for Software Engineering -- An Ex-

tended Abstract. Proceedings of the 9th International Conference on Software Engineering,

March, 1987, pp. 166-178.

[Bernstein and Goodman 81] Bernstein, P., and Goodman, N. ‘‘Concurrency Control in Dis-

tributed Database Systems.’’ ACM Computing Surveys 13, 2, June 1981, pp. 185-221.

[Bernstein et al. 87] Bernstein, P. A., Hadzilacos, V., and Goodman, N. Concurrency Control

and Recovery in Database Systems. Addison-Wesley, Reading, MA, 1987.

[Bjork 73] Bjork, L. A. Recovery Scenario for a DB/DC System. Proceedings of the 28th

ACM National Conference, ACM Press., August, 1973, pp. 142-146.

73

[Chrysanthis and Ramamritham 90] Chrysantis. P. K., and Ramamritham, K. . Acta: A

Framework for Specifying and Reasoning about Transaction Structure and Behavior. Proceed-

ings of the 1990 ACM SIGMOD International Conference on the Management of Data, ACM

Press, May, 1990. To Appear

[Davies 73] Davies, C. T. Recovery Semantics for A DB/DC System. Proceedings of the 28th

ACM National Conference, ACM Press., 1973, pp. 136-141.

[Davies 78] Davies, C. T. ‘‘Data Processing Spheres of Control.’’ IBM System Journal 17, 2,

1978, pp. 179-198.

[Dittrich et al. 87] Dittrich, K., Gotthard, W., and Lockemann, P. ‘‘DAMOKLES -- The

Database System for the UNIBASE Software Engineering Environment.’’ IEEE Bulletin on

Database Engineering 10, 1, March 1987, pp. 37-47.

[Dowson and Nejmeh 89] Dowson, M., and Nejmeh, B. Nested Transactions and Visibility

Domains. Proceedings of the 1989 ACM SIGMOD Workshop on Software CAD Databases,

ACM Press, February, 1989, pp. 36-38. Position paper.

[Eastman 80] Eastman, C. System Facilties for CAD Databases. Proceedings of the 17th ACM

Design Automation Conference, ACM Press, June, 1980, pp. 50-56.

[Eastman 81] Eastman, C. Database Facilties for Engineering Design. Proceedings of the

IEEE, IEEE Computer Society Press, October, 1981, pp. 1249-1263.

[Ege and Ellis 87] Ege, A., and Ellis, C. A. . Design and implementation of Gordion, an Object

Base Management System. Proceedings of the 3rd International Conference on Data Engineer-

ing, IEEE Computer Society Press, February, 1987, pp. 226-234.

[Eswaran et al. 76] Eswaran, K., Gray, J., Lorie, R., and Traiger, I. ‘‘The Notions of Consis-

tency and Predicate Locks in a Database System.’’ Communications of the ACM 19, 11, Novem-

ber 1976, pp. 624-632.

[Feldman 79] Feldman, S. I. ‘‘Make — A Program for Maintaining Computer Programs.’’

Software — Practice & Experience 9, 4, April 1979, pp. 255-265.

74

[Fernandez and Zdonik 89] Fernandez, M. F., and Zdonik, S. B. Transaction Groups: A

Model for Controlling Cooperative Work. Proceedings of the 3rd International Workshop on

Persistent Object Systems, January, 1989.

[Garcia-Molina 83] Hector Garcia-Molina. ‘‘Using Semantic Knowledge for Transaction

Processing in a Distributed Database.’’ ACM Transactions on Database Systems 8, 2, June

1983, pp. 186-213.

[Garcia-Molina and Salem 87] Garcia-Molina, H., and Salem, K. SAGAS. Proceedings of the

ACM SIGMOD 1987 Annual Conference, ACM Press, May, 1987, pp. 249-259. Special issue

of SIGMOD Record, 16(3), December 1987.

[Garza and Kim 88] Garza, J., and Kim, W. Transaction Management in an Object-Oriented

Database System. Proceedings of the ACM SIGMOD International Conference on the Manage-

ment of Data, ACM Press, June, 1988, pp. 37-45.

[Gray 78] Gray, J. Notes On Database Operating Systems. Research Report

RJ2188(30001)2/23/78, IBM Research Laboratory, San Jose, CA, 1978.

[Gray et al. 75] Gray, J., Lorie R., and Putzolu, G. Granularity of Locks and Degrees of Con-

sistency in a Shared Database. IBM Research Report RJ1654, IBM Research Laboratory, San

Jose, CA, 1975.

[Herlihy and Weihl 88] Herlihy, M. P., and Weihl, W. E. Hybrid Concurrency Control for

Abstract Data Types. Proceedings of the 7th ACM Symposium on Principles of Database Sys-

tems, ACM Press, March, 1988, pp. 201-210.

[Kaiser 90] Kaiser, G. E. A Flexible Transaction Model for Software Engineering. Proceed-

ings of the 6th International Conference on Data Engineering, IEEE Computer Society Press,

February, 1990. To appear.

[Kaiser and Feiler 87] Kaiser, G. E., and Feiler, P. H. Intelligent Assistance without Artificial

Intelligence. Proceedings of the 32nd IEEE Computer Society International Conference, IEEE

Computer Society Press, February, 1987, pp. 236-241.

75

[Kaiser and Perry 87] Kaiser, G. E., and Perry, D. E. Workspaces and Experimental

Databases: Automated Support for Software Maintenance and Evolution. Proceedings of the

Conference on Software Maintenance, September, 1987, pp. 108-114.

[Katz 90] Katz, R. H. ‘‘Toward a Unified Framework for Version Modeling in Engineering

Databases.’’ ACM Computing Surveys 22, 4, December 1990, pp. 375-408.

[Katz and Weiss 84] Katz, R., and Weiss, S. Design Transaction Management. Proceedings of

the ACM IEEE 21st Design Automation Conference, IEEE Computer Society Press, June, 1984,

pp. 692-693.

[Kim et al. 84] Kim, W., Lorie, R. A., McNabb, D., and Plouffe, W. A Transaction Mechanism

for Engineering Databases. Proceedings of the 10th International Conference on Very Large

Data Bases, Morgan Kaufmann, August, 1984, pp. 355-362.

[Kim et al. 88] Kim, W., Ballou, N., Chou, H., and Garza, J. Integrating an Object-Oriented

Programming System with a Database System. Proceedings of the 3rd International Conference

on Object Oriented Programming Systems, Languages and Applications, September, 1988, pp.

142-152.

[Klahold et al. 85] Klahold, P.,Schlageter, G., Unland, R., and Wilkes, W. A Transaction

Model Supporting Complex Applications in Integrated Information Systems. Proceedings of the

ACM SIGMOD International Conference on the Management of Data, ACM Press, May, 1985,

pp. 388-401.

[Kohler 81] Kohler, W. ‘‘A Survey of Techniques for Synchronization and Recovery in

Decentralized Computer Systems.’’ ACM Computing Surveys 13, 2, June 1981, pp. 149-183.

[Korth and Silberschatz 86] Korth, H., and Silberschatz, A. Database System Concepts.

McGraw-Hill Book Company, New York, NY, 1986.

[Korth and Speegle 88] Korth, H., and Speegle, G. Formal Model of Correctness Without

Serializability. Proceedings of the ACM SIGMOD International Conference on the Management

of Data, ACM Press, June, 1988, pp. ??.

76

[Korth and Speegle 90] Korth, H., and Silberschatz, A. Long-Duration Transactions in

Software Design Projects. Proceedings of the 6th International Conference on Data Engineering,

IEEE Computer Society Press, February, 1990, pp. 568-574.

[Kung and Robinson 81] Kung, H., and Robinson, J. ‘‘On Optimistic Methods for Concur-

rency Control.’’ ACM Transactions on Database Systems 6, 2, June 1981, pp. 213-226.

[Kutay and Eastman 83] Kutay, A., and Eastman, C. Transaction Management in Engineering

Databases. Proceedings of the Annual Meeting of Database Week; Engineering Design Applica-

tions, IEEE Computer Society Press, May, 1983, pp. 73-80.

[Leblang and Chase, Jr. 87] Leblang, D. B., and Chase, R. P., Jr. ‘‘Parallel Software Con-

figuration Management in a Network Environment.’’ IEEE Software 4, 6, November 1987, pp.

28-35.

[Lorie and Plouffe 83] Lorie, R., and Plouffe, W. Complex Objects and Their Use in Design

Transactions. Proceedings of the Annual Meeting of Database Week; Engineering Design Ap-

plications, IEEE Computer Society Press, May, 1983, pp. 115-121.

[Lynch 83] Lynch, N. A. ‘‘Multilevel Atomicity — A New Correctness Criterion for Database

Concurrency Control.’’ ACM Transactions on Database Systems 8, 4, December 1983, pp.

484-502.

[Martin 87] Martin, B. Modeling Concurrent Activities with Nested Objects. Proceedings of

the 7th International Conference on Distributed Computing Systems, IEEE Computer Society

Press, September, 1987, pp. 432-439.

[Moss 85] Moss, J. E. B. Nested Transactions: An Approach to Reliable Distributed

Computing. MIT Press, Cambridge, MA, 1985.

[Nestor 86] Nestor, J. R. Toward a Persistent Object Base. In Advanced Programming

Environments, Conradi, R., Didriksen, T. M., and Wanvik, D. H., Eds., Springer-Verlag, Berlin,

1986, pp. 372-394.

[Papadimitriou 86] Papadimitriou, C. The Theory of Database Concurrency Control. Com-

puter Science Press, Rochville, MD, 1986.

77

[Perry 91] Perry, D. and Kaiser, G. ‘‘Models of Software Development Environments.’’ IEEE

Transactions on Software Engineering 17, 3, March 1991, pp. 283-295.

[Pradel et al. 86] Pradel, U., Schlageter, G., and Unland, R. Redesign of Optimistic Methods:

Improving Performance and Availability. Proceedings of the 2nd International Conference on

Data Engineering, IEEE Computer Society Press, February, 1986, pp. 466-473.

[Pu et al. 88] Pu, C., Kaiser, G., and Hutchinson, N. Split Transactions for Open-Ended Ac-

tivities. Proceedings of the 14th International Conference on Very Large Databases, Morgan

Kaufmann, August, 1988, pp. 26-37.

[Reed 78] Reed, R. Naming and Synchronization in a Decentralized Computer System. Ph.D.

Thesis, M.I.T. Laboratory of Computer Science, September 1978. MIT Technical Report 205

[Rochkind 75] Rochkind, M. J. ‘‘The Source Code Control System.’’ IEEE Transactions on

Software Engineering SE-1, 1975, pp. 364-370.

[Rosenkrantz et al. 78] Rosenkrantz, D., Stearns, R., and Lewis P. ‘‘System level concurrency

control for distributed database systems.’’ ACM Transactions on Database Systems 3, 2, June

1978, pp. 178-198.

[Rowe and Wensel 89] 1989 ACM SIGMOD Workshop on Software CAD Databases, Napa,

CA, February, 1989.

[Salem et al. 87] Salem, K., Garcia-Molina, H., and Alonso, R. Altruistic Locking: A Strategy

for Coping with Long Lived Transactions. Proceedings of the 2nd International Workshop on

High Performance Transaction Systems , September, 1987, pp. 19.1 - 19.24.

[Silberschatz and Kedem 80] Silberschatz, A. and Kedem, Z. ‘‘Consistency in Hierarchical

Database Systems.’’ Journal of the ACM 27, 1, January 1980, pp. 72-80.

[Skarra and Zdonik 89] Skarra, A. H., and Zdonik, S. B. Concurrency Control and Object-

Oriented Databases. In Kim, W., and Lochovsky, F. H., Ed., Object-Oriented Concepts,

Databases, and Applications, ACM Press, New York, NY, 1989, pp. 395-421.

[Stonebraker et al. 88] Stonebraker, M., Katz, R., Patterson, D. and Ousterhout, J. The Design

of XPRS. Proceedings of the 14th International Conference on Very Large Databases, Morgan

Kaufmann, August, 1988, pp. 318-330.

78

[Tichy 85] Tichy, W. F., ‘‘RCS — A System for Version Control.’’ Software — Practice and

Experience 15, 7, July 1985, pp. 637-654.

[Walpole et al. 87] Walpole, J., Blair, G., Hutchison, D., and Nicol, J. ‘‘Transaction

mechanisms for distributed programming environments.’’ Software Engineering Journal 2, 5,

September 1987, pp. 169-177.

[Walpole et al. 88a] Walpole, J., Blair, G., Malik, J., and Nicol, J. A Unifying Model for Con-

sistent Distributed Software Development Environments. Proceedings of the ACM

SIGSOFT/SIGPLAN Software Engineering Symposium on Practical Software Development En-

vironments, ACM Press, November, 1988, pp. 183-190.

[Walpole et al. 88b] Walpole, J., Blair, G., Malik, J., and Nicol, J. Maintaining Consistency in

Distributed Software Engineering Environments. Proceedings of the 8th International Con-

ference on Distributed Computing Systems, IEEE Computer Society Press, June, 1988, pp.

418-425.

[Walter 84] Walter, B. Nested Transactions with Multiple Commit Points: An Approach to the

Structuring of Advanced Database Applications. Proceedings of the 10th International Con-

ference on Very Large Data Bases, Morgan Kaufmann, August, 1984, pp. 161-171.

[Weihl 88] Weihl, W. Commutativity-Based Concurrency Control for Abstract Data Types

(Preliminary Report). Proceedings of the 21st Annual Hawaii International Conference on Sys-

tem Sciences, IEEE Computer Society Press, January, 1988, pp. 205-214.

[Weikum 86] Weikum, G. A Theoretical Foundation of Multi-level Concurrency Control.

Proceedings of the 5th ACM Symposium on Principles of Database Systems, ACM Press, 1986.

[Weikum and Schek 84] Weikum, G., and Schek, H. -J. Architectural Issues of Transaction

Management in Multi-Level Systems. Proceedings of the 10th International Conference on Very

Large Data Bases, Morgan Kaufmann, August, 1984.

*[William et al. 81] Williams, R., et al. R : An Overview of the Architecture. IBM Research

Laboratory, San Jose, CA, December, 1981.

79

[Yannakakis 82] Yannakakis, M. ‘‘Issues of Correctness in Database Concurrency Control by

Locking.’’ Journal of the ACM 29, 3, July 1982, pp. 718-740.

[Yeh et al. 87] Yeh, S., Ellis, C., Ege, A., and Korth, H. Performance Analysis of Two Concur-

rency Control Schemas for Design Environments. Technical Report STP-036-87, MCC, Austin,

TX, June, 1987 .

i

Table of Contents
INTRODUCTION 1

1 A MOTIVATING EXAMPLE 3
2 ADVANCED DATABASE APPLICATIONS 4
3 THE CONSISTENCY PROBLEM IN CONVENTIONAL DBMSs 6

3.1 The Transaction Concept 6
3.2 Serializability 8

4 TRADITIONAL APPROACHES TO CONCURRENCY CONTROL 9
4.1 Locking Mechanisms 9

4.1.1 Two-Phase Locking 9
4.1.2 Tree Protocol 10

4.2 Timestamp Ordering 11
4.3 Multiversion Timestamp Ordering 12
4.4 Optimistic Non-Locking Mechanisms 13
4.5 Multiple Granularity Locking 15
4.6 Nested Transactions 16

5 CONCURRENCY CONTROL REQUIREMENTS IN ADVANCED DATABASE 18
APPLICATIONS

6 SUPPORTING LONG TRANSACTIONS 21
6.1 Extending Serializability-Based Techniques 21

6.1.1 Altruistic Locking 22
6.1.2 Snapshot Validation 25
6.1.3 Order-Preserving Serializability for Multilevel Transactions 27

6.2 Relaxing Serializability 31
6.2.1 Semantics-Based Concurrency Control 32
6.2.2 Sagas 37
6.2.3 Conflict Predicate Correctness 39
6.2.4 Dynamic Restructuring of Transactions 41

7 SUPPORTING COORDINATION AMONG MULTIPLE DEVELOPERS 43
7.1 Version and Configuration Management 44

7.1.1 Domain Relative Addressing 45
7.2 Pessimistic Coordination 47

7.2.1 Multilevel Pessimistic Coordination 49
7.3 Optimistic Coordination 51

7.3.1 Copy/Modify/Merge 51
7.3.2 Backout and Commit Spheres 54

8 SUPPORTING SYNERGISTIC COOPERATION 56
8.1 Cooperation Primitives 57

8.1.1 Interactive Notification 58
8.1.2 The Group Paradigm 58

8.2 Cooperating Transactions 59
8.2.1 Group-Oriented CAD Transactions 60
8.2.2 Cooperating CAD Transactions 62
8.2.3 Transaction Groups 63
8.2.4 Participant Transactions 65

9 SUMMARY AND DISCUSSION 67
ACKNOWLEDGMENTS 71
REFERENCES 72

ii

List of Figures
Figure 1: Organization of example project 3
Figure 2: Serializable schedule 7
Figure 3: Serializable but not 2PL schedule 10
Figure 4: Compatibility matrix of granularity locks 16
Figure 5: Scheduling nested transactions 17
Figure 6: Access patterns of three transactions 24
Figure 7: Validation conflicts 26
Figure 8: Order-Preserving Serializable Schedule 29
Figure 9: Conflict-Based Order-Preserving Serializable Schedule 30
Figure 10: Multilevel Transaction Classes 35
Figure 11: Non-serializable but Conflict Predicate Correct Schedule 40
Figure 12: Graphs built by CPC protocol 41
Figure 13: Example of Split-Transaction 43
Figure 14: Domain relative addressing schedule 46
Figure 15: Maintaining consistency using domain relative addressing 46
Figure 16: Experimental databases in Infuse 50
Figure 17: Layered development in NSE 53
Figure 18: Transaction Groups 64
Figure 19: Example of a Participation Schedule 66
Figure 20: Example of a Participation Conflict 67
Figure 21: Advanced database systems and their concurrency control 68

schemes

