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ABSTRACT. The semi-join is a relational algebraic operation that selects a set of tuples in one relation that 
match one or more tuples of another relation on the joining domains. Semi-joins have been used as a basic 
ingredient in query processing strategies for a number of hardware and software database systems. 
However, not all queries can be solved entirely using semi-joins. In this paper the exact class of relational 
queries that can be solved using semi-joins is shown. It is also shown that queries outside of this class may 
not even be partially solvable using "short" semi-join programs. In addition, a linear-time membership 
test for this class is presented. 
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i. Introduction 

The uti l i ty o f  very  high level da t abase  que ry  l anguages  based  on the re la t iona l  
database  model ,  such as Q U E L  [8] and  S E Q U E L  [4], is p red ica t ed  on  the abi l i ty  to 
implement  these l anguages  efficiently.  M a n y  schemes for in te rp re t ing  re la t iona l  
query l anguages  in cent ra l ized  systems, d i s t r ibu ted  systems, and  on specia l  pa ra l l e l  
hardware  have  been  devised (e.g., [9, 10, 12-14]). These  schemes  are  essent ia l ly  
strategies for execut ing  a c o m b i n a t i o n  o f  pro jec t ion ,  restr ict ion,  a n d  j o i n  opera to r s  
from re la t iona l  a lgebra  to answer  the given que ry  [7]. Two o f  these methods ,  the 
dis t r ibuted re t r ieva l  a lgo r i thm for SDD-1  [14] and  the R A P  da t abase  ma c h ine  [9], 
use a special  o p e r a t o r  that  is a composed  j o i n  and  project ion.  The  p roper t i e s  o f  this 
operator ,  which  we call  the semi-join and  deno te  by  0<, are  the subject  o f  this paper .  

The  semi- jo in  o p e r a t o r  takes  the j o in  o f  two relat ions,  R and  S, and  then  projects  
back out  on  the d o m a i n s  o f  re la t ion  R. ~ Tha t  is, it retr ieves those tuples  in R that  j o i n  
with some tuple  in S. Al te rna t ive ly ,  one can  th ink  o f  semi- jo in  as a genera l i za t ion  o f  
restriction; it restr icts  R by  values  that  a p p e a r  in S ' s  j o in  domain .  

The  value  o f  the semi- jo in  ope ra to r  is that  it can reduce  the a m o u n t  o f  effort  
required to do  a la te r  expensive  jo in ,  while  the  semi- jo in  i tself  is of ten qui te  cheap.  

t The join_ of relations R(A, B) and S(B, C) on domain B is the set of tuples {(a, b, c) E A x B x 
Cl(a, b) ~ R and (b, c) E S}. The projection of relation T(A, B, C) on domains A and B is the set 
{(a, b) ~ A x BI3c E C((a, b, c) E T)}, that is, the join of R and S projected back on the domains 
of R. 
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For example, suppose a query requires that the join of R and S be constructed. 
Instead of computing the join directly, one can first reduce the size of  R and S by 
semi-joins (i.e., R t~ S and S t~ R) and then construct the join of the resulting 
relations. No information is lost by the preliminary semi-joins. For the semi-joins to 
be performed, only the projection of the joining columns need be sent. If  the size of 
these projections is small relative to the amount by which R and S are reduced, then 
the preliminary semi-joins will be profitable. 

To reduce the cost of  processing joins, semi-joins play a pivotal role in the query 
processing algorithm of  SDD-1, a prototype distributed database system. The prin- 
cipal problem in evaluating a relational query on a distributed database is that two 
relations that must be joined may reside at different sites. For the join to be 
performed, one relation must be shipped to the site of the other. Communication is 
the dominant cost in a distributed database system, so minimizing the amount of 
data to be shipped is of prime importance [11]. Since the join must eventually be 
performed, one can only hope to limit communication, not eliminate it. One tactic 
for limiting communication is to perform first as much local processing of the query 
as possible; for example, all restrictions should be applied early. Another tactic is to 
use semi-joins. To join R and S at different sites, one can ship the projection of R on 
its joining column to S's site and use a semi-join to reduce S by R before shipping 
S to R's site. This will be a profitable tactic whenever the projection of  R on its 
joining column is smaller than the amount by which S is reduced by the semi-join. 
The SDD-I algorithm uses a heuristic hill-climbing strategy that tries to apply as 
many such semi-joins as are profitable. 

Semi-joins are also important for the RAP machine, a hardware device tailored 
for relational query processing. RAP is not capable of performing joins itself and 
must therefore ship data to a conventional CPU to perform them. To reduce the 
amount of data shipped, the RAP designers have provided a hardware semi-join 
instruction that they recommend using to partially evaluate queries before performing 
joins on an external processor. 

Since the database is of finite size, there are limits to how much the database can 
be reduced relative to a given query using semi-joins. Knowing which sequences of 
semi-joins can fully reduce the size of  the database is important in selecting optimal 
retrieval strategies for RAP, SDD-1, and other systems as well. In this paper we 
examine the question of which semi-join sequences are efficacious. We show that 
relational calculus queries are naturally partitioned into two broad classes: One class 
can be fully evaluated using a small number of semi-joins; the other class can be 
neither fully evaluated using semi-joins alone nor easily reduced using a small 
number of semi-joins. For the one class, semi-join solution strategies are well 
behaved; for the other they can be dismally poor. We proceed formally by developing 
some basic properties of  semi-joins and then showing the behavior of  semi-joins with 
respect-to these two classes of queries. 

2. Relations and Semi-Joins 

A relation is a subset of  the Cartesian product of its domains. We distinguish between 
relation names, denoted by {RI, Re . . . .  }, and their corresponding relations (i.e., sets 
of tuples), denoted by {$1, $2 . . . .  }. A database D is defined to be an ordered set of 
relation names R. A database state is, in turn, a pair (S, env), where S is an ordered 
set of relations and env:R ~ S. For notational convenience we will assume that 
R = (R1 . . . . .  Rn), S = ($1 . . . . .  S~), and env(Ri) = Si for i = 1 . . . . .  n. 

Note that we use the standard mathematical definition of a relation as a fixed 
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i subset of the Cartesian product of its domains. This differs slightly from some uses 
ii in the database literature where relation means a "time-varying subset of  the 
' Cartesian product of  its domains" that changes as operations are applied (e.g., [6]). 
:: Thus, in our model an operation maps one database state into another. In practice, 

of course, only a single copy of  the database is maintained. Update operations modify 
the copy; retrieval operations produce a temporary database that is the subset of  the 
real database that the query requested. We adopt our model for mathematical 
simplicity only and do not suggest that entire databases be created and destroyed as 
a consequence of  each operation. 

Given two database states S' and S", we define S' tO S" = {S" tO S['  I i = 1 . . . . .  n} 
to be their componentwise union. Also, we define a partial order ~ on database 
states. We write S' _< S" if S[ C_ S " ,  i = 1 . . . . .  n. Similarly, S' < S" if S[ ~ S[',  
i =  l , . . . , n .  

We denote the semi-join operation by the symbol t,<. The semi-join of  Ri on 
domain A with Rj on domain B is defined as a function from database states 
into database states: (Ri AtKB Rj) (S)  = S',  where S'k = Sk for k # i and S" = 
{t, E S,13tj ~ Sj such that ti.A = tj.B}. The relational calculus notation t .X  means 
"the value of domain X o f t u p l e  t." When there is only one semi-join on Ri by Rj, we 
drop domain references and simply write Ri t~ Rj. 

We limit ourselves to semi-joins involving single domains. Our justification is 
practicality. To perform a semi-join of, say, Ri on domains A and B with R/ on 
domains C and D requires projecting Rj on a pair of  domains C and D. The size of  
such a projection will generally be quite large and therefore the benefit of  the semi- 
join is unlikely to exceed its cost. For this reason, multidomain semi-joins are ignored 
in SDD-I [14] and RAP [9]. Still, we do allow multidomain semi-joins in a limited 
context. If  a pair of  domains in a relation are always treated as a single composite 
domain (i.e., neither domain ever participates in a semi-join by itself), then the 
composite domain can be considered to be atomic and all of our results follow 
correctly. 

LEMMA I. I f  $1 = S'~ U S~', then 

(a) <R2 ~ R,)((S, ,  S2}) = (R2  ~< R , ) ( { S ' ~ ,  S~}) U (R~ ~ R,)({ST, S2}); 
= R ' R " (b) (R, v< R2~({S,, S~}) (R, ~x ~)({S,, S~}) U (R, ~ ~;,((S,, S2}). 

PROOF. Follows directly from the definition of  ~. [] 

For evaluating a relational database query, in general many semi-joins are re- 
quired. Hence we define a semi-join program to be a sequence of semi-joins, denoted 
o = (R,, v< R~., . . . . .  R~.~m_, t~ Rg~m), whose meaning is simply the composition of  the 
semi-joins, o = (Rg, ~ Rz 2 ) . . . . .  (R~2~_, tx R~,,). The following lemma shows that 
semi-join programs obey a simple monotonicity property. 

LEMMA 2. I f  S '  <-- S",  then o(S') _< a(S"). 

PROOF. We proceed by induction on the length of  o. The basis step goes as 
follows: Suppose o = (R2 v< R1). Then, 

o({S~', S~'}) = o({S'~, S~'}) U o({S~' - S'~, S~'}) (by Lemma l(a)) 
= o ( ( s ~ ,  s~}) u o ( { S ; ,  s~" - s~}) 

U o({S[' - S~, S~'}) (by Lemma l(b)) 

Thus o({S'h S '})  _< o({S[', S~'}). Since all relations other than $2 remain unchanged 
by o, o(S') _< o(S"). 

The induction step follows similarly. [] 
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3. Queries 

We are interested in applying semi-joins to evaluate relational database queries. We 
will express our queries in a notation similar to that of relational calculus [7]. 
Formally, an equi-join qualification q is a conjunction of  clauses of the form 
(R~.X = Rj. Y), where X and Y are domains of Ri and Ri, respectively. Each equi-join 
qualification q defines an equi-join query Q that produces a relation from each 
database state as follows: 

Q ( S )  = { ( t ,  . . . . .  & )  e~ sa x . . .  x S . l q ( t ,  . . . . .  t . ) } .  

(Since each li is a tuple, (tl . . . . .  t,,) is a tuple of tuples.) In words, Q(S) is the subset 
of  $1 x . . .  x Sn that satisfies q. We say that two queries are equivalent, denoted 
Q1 -= Q2, if Qa(S) = Q2(S) for all S (this is called "strong equivalence" in [2]). 

Notice that equi-join queries do not include one-relation clauses of  the form 
(Ri.X = constant), nor do they include target lists. One-relation clauses were excluded 
because they are generally evaluated using special techniques before semi-joins are 
applied. For example, in SDD-I one-relation clauses correspond to local operations 
that do not require semi-joins [14]; in RAP one-relation clauses are evaluated in one 
rotational delay using the MARK operation [9]. In any case, by creating a relation 
containing a single constant tuple, these one-relation clauses can be considered in 
equi-join queries. 

Target lists were excluded because the semi-join does not have the power to 
"project out" certain domains. A single projection operation applied to the result of 
an equi-join query is always sufficient to obtain the full power of target lists. 2 

Our definition of query does allow multidomain joins between two relations by 
conjoining two clauses. For example, to join Ri on domains W and X with Rj on 
domains Y and Z, the clauses ( (R i .  1¥ = R j .  Y) A ( R i . X  = Rj.Z))  are used. 

We also allow one-relation joins of the form (Ri.A = Ri.B). Like simple one- 
variable clauses, these one-relation joins are also generally evaluated using special 
techniques before semi-joins are applied. However, syntactically eliminating them 
from our class of queries is futile, since a one-relation join can be in the closure of q 
even if it is not in q itself. For example, (Ri.A = Ri.C ) and (Rj.C = Ri.B) implies 
(Ri.A = Ri.B). So, although we will want to think of these one-relation joins as 
executing "for free," we still need them in our definition of query. More will be said 
on this issue in Section 4. 

It will occasionally be convenient to examine the components of Q(S) that come 
from each of  S~ . . . . .  Sn. We introduce projection for this purpose. The notation 
Q ( S ) [ R i ]  denotes (t i  E Si[  (ta . . . . .  ti . . . . .  tn) E Q(S)). Similarly, S[Ri] denotes Si. 

4. Solving Queries by Semi-Join Reduction 

4.1 REDUCTXONS. The main purpose of semi-joins is to reduce the number of 
tuples involved in the evaluation of  a query. Let Q be a query and S be a database 
state. We define REDUCTIONS(Q, S) = (S ' [S '  _< S and Q(S') = Q(S)}. A full  
reduction S* of  S with respect to Q is an element of REDUCTIONS(Q, S) such 
that there is no S' in REDUCTIONS(Q, S) with S' < S*. We denote S*[Ri] by Si*. 

LEMMA 3. For each Q and S there exists a unique S* and S* = (Q(S)[R1] . . . . .  
Q(S)[R.]}. 

PROOF. Let Sred = {Q(S)[R~] . . . . .  Q(S)[R.]} and let S* be a full reduction. It 

The lack of  negation, an existential quantifier, and tuple variables imply that equi-join queries are not 
"relationally complete" in the sense of [7]. 
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s = {S,, $2, $3}. 
s~(,4 B) s~(c D) S3(E 19 

0 i 1 2 2 3 
3 4  4 5 5 0  

Let Q be a query with qualification q. 

q = (R t .B  = R2.C) A (R2.D = Ra.E)  A (Ra.F = R1.A ). 

s* = {o, c), o). 
Yet for each join clause, the corresponding semi-join does not reduce at all. 

Fro. 1. An example where S* is not obtainable by semi-joins. 

29 

R1 
I V  

R2 R1 R 2 R 1 R2 

R 3 R3 R 3 
(c) (b) (c) 

FIo. 2. (a) Query graph G#, for query Q~ defined by qualification q~ = (Rt .A  = R.,.B) A 

(R.,.B = R:~.C). (b) Query graph Go~ for query Q2 defined by qualification q.~ = (R~.A = R~.B) A 

(R.,.B = R:~.C) A (R:~.C = R~.A ). (c) Query graph Go:, for query Q:j defined by qualification q:~ = 
(Ra.A = R2.B) A (R2.C = Ra.D) A (R:~.E = Rt .F) .  

must be that Sred -- S*, for otherwise Q(S*) ~ Q(S). Since this holds for any full 
reduction S*, it follows that Sred is the unique full reduction. [] 

The principal issue of  this paper is discovering when semi-join programs can 
completely resolve an equi-join query. This is equivalent to asking when a semi-join 
program can obtain S*. Unfortunately, S* cannot always be obtained by semi-joins. 
For example, consider S and Q in Figure 1. In this case, semi-joins cannot reduce S 
at all with respect to Q, yet S* = (O, ~,  ~}.  

We now show a class of  queries for which S* can always be obtained by semi- 
joins. Later we will show that for any query outside this class, semi-join programs 
cannot produce S* in general. 

4.2 TREE QUERIES. Given a query Q with qualification q we define its correspond- 
ing query graph GQ( VO, EQ) as (see Figure 2): 

Vo = set of  all relation names referenced by q; 
EQ = {(i, j)  li ~ j and some clause of  q references both Ri and Rj }. 

Since we allow more than one join between two relations, Eo is a multiset (i.e., may 
contain duplicates), so GQ is a multigraph. 

We partition the set of  all equi-join queries into two classes. We call a query a tree 
• query either if its query graph is a tree or if it is equivalent to a query whose query 
graph is a tree. We denote the set of  all tree queries by TQ and all other equi-join 
queries by CQ (for cyclic queries). 

Consider the set of  queries in Figure 2. Since Go, is a tree, Q1 E TQ. Although 
Go. has a cycle, Q1 - Q2, so that Q2 E TQ also. The cycle in Go3 is inherent; Qa is not 
equivalent to any query whose graph is a tree, so Qa E CQ. A simple efficient 
algorithm that tests whether a query is in TQ appears in Section 5. 

In the sequel we will only consider equi-join queries whose query graphs are 
connected. A query whose query graph is disconnected produces a result that is the 
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Let Q be a query with qualification q. ~ 

1 q = (RI.A = R~.B) A (RI.C ~- Ra.D) A (R2.E = R4.F) 
A (R3.G = Rs.H) A (Ra.J = Re.K). 

R 1 ~ 

! 
R2 } 

R4t  Rsd bR 6 ~, 

OQ.I = (R2 ~< R4, R3 D< Rs, R3 Ix: R6, R1 ~< R~, R1 ~< Ra). 

FIG. 3. An example reducing semi-join program, 

Cartesian product o f  database substates produced by each connected component. 
That  is, since these connected components  are not joined in any way, there can be no 
interaction between them with respect to semi-joins. Hence, there is no loss of 
generality in treating the components  separately. 

We can now state our main result. 

THEOREM 1. For any Q ~ TQ, there is a semi-join program o O such that f o r  all S, 
oo(S) = S* and ] ool = 2n - 2, where n is the number  o f  relations referenced by Q. 

, Furthermore, f o r  each i, 1 <_ i <_ n, Si* can be obtained f r o m  S in n - I semi-joins. 

Theorem 1 says that there is always a short semi-join program that produces S* 
for Q E TQ. To prove Theorem 1, we construct a semi-join program that obtains Si* 
from S. 

We begin by briefly reconsidering one-relation clauses of  the form (R, .A = Ri.B). 
These clauses, we will assume, are applied to the database state before any semi-joins 
are executed. They a r e  assumed to be free and do not appear  in the semi-join 
programs that we construct to solve Q. 

Let Q E TQ be a query whose graph is a tree, and let i E V o be a relation 
referenced by Q.z We use Go as a control structure to guide our semi-join program 
that evaluates Q. In G o, choose i as the root o f  the tree and suppose i has m - 1 
children, m _> 1. For  simplicity, we rename the relations so that the root of  the tree 
is 1 (formerly i) and its children are 2 . . . . .  m. Each of  these children is the root of  a 
query subtree, and therefore they define the set o f  queries Q2 . . . . .  Qm. We now 
recursively define the reducing semi-join program f o r  1 in Q, denoted oo.1, as follows: 

(i) if  m = 1, then oQ.a = ( ) ,  the empty program; 
( i i )  e l s e  oo,1 = (o02,2 . . . . .  OOm.m, R1 IX R2, R1 t,< R3 . . . . .  R1 t~ Rm). 

To produce oo,, rename the relations with their original indices. 
In words, oo,1 executes one semi-join per edge in Go, in a breadth-first leaf-to-root 

order. Equivalently, reducing semi-join programs can be produced mechanically 
from queries using the detachment algorithm of  Wong and Youssefi [ 13]. An example 
reducing semi-join program appears in Figure 3. 

The following lemma shows that oo,i is the program we are looking for to prove 
Theorem 1. 

LEMMA 4. Let  Q be a query with qualification q whose query graph is a tree. 
Choose i E Vo as the root o f  the tree. Then oQ, i ( S ) [ R i ]  = S *  = Q(S)[Ri].  That is, oo, i 

fu l ly  reduces Si with respect to Q. 

a For notational convenience, we shall use i in place of Ri. 
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paooF. The proof  is by induction on the height of  the tree Go (the height of  a 
tree is the length of  the longest path from the root to a leaf). Choose i E V o as the 
root of the tree. 

Basis Step. Suppose the height of  Go is 0. Since no join clauses on one variable 
are possible, q is empty. Hence S = S*. Since ao,i is empty, ao,i(S) = S*. 

Induction Step. Suppose the lemma is true for all queries whose query graph is 
a tree of  height <p.  We show it to be true if the height of  G o equals p. As before, let 
us rename the relations so that i becomes 1 and i's children are 2 . . . . .  m, m > 1. Let 
Q2, .-- ,  Qm be the queries, with qualifications qz . . . . .  qm, detrmed by the subtrees (of 
Go) rooted by each child. Finally, let cj, 2 <_j <_ m, be the join clause linking relation 
j to relation 1, and let q'  -- c2/k • . .  /~ Cm. 

From the definition of  query, we have 

(tl . . . . .  t ,) E Q ( S )  iff tj E Sj (l  _< j_< n) and q(tl . . . . .  t,). 

It immediately follows that tl E Q(S)[R1] iff 

3tj  E Sj (2 _<j _< n) such that q(h . . . . .  t ,) .  (1) 

Expanding q into its component clauses, (1) holds iff 

3t~ E Sj (2 _<j _< m) such that 
(q'(h . . . . .  tin) and 
3tk E Sh (m < k _< n) such that (q2(tl . . . . .  t ,)  A . . .  A qm(h . . . . .  t,))). (2) 

Each qj, 2 <_j <_ m, ranges over a set of  relations that is disjoint from every other qk, 
k # j .  Thus, since each qj is evaluated by Qj, 

3 t j E S j ( 2 - < j - < m )  3 t k ~ S k ( m < k _ n )  such that 
(q.,(h . . . . .  t ,) A . . .  A qm(h . . . . .  t,)) iff 3tj  ~ Sj (2 <_j <_ m) tj E Q~(S)[Rj]. (3) 

Since each Gq~, 2 _<j _< m, is a tree of  height <p, by the induction hypothesis we have 
that Qj(S)[Rj]  = ooj, j (S)[Rj].  Substituting this into (3) and combining (3) with (2), 
we find that (1) holds iff 

3tj  ~ Sj (2 ___j_< m) such that (q'(h . . . . .  tin) and tj E aoj, j (S)[Rj]  ). (4) 

Let S~ = oq~u(S)[Rj]. Each clause o f q '  can be evaluated by a semi-join, so (4) holds 
iff 

3 tj E Sj (2 _< j _< m) such that 
(h  . . . . .  tin) ~ (R1 IX R2 . . . . .  R] IX Rm)({S , ,  S~, . . . .  • S+m}). (5)  

But OQ.~(S)[R~ . . . . .  Rm] exactly calculates (R~ IX Re . . . . .  Ra IX R,,)({S~, S~, . . . .  
S+m}),-SO h ~ Q(S)[R,] iff 3tj E $i, 2 <_ j <_ m, such that (t, . . . . .  tin) E 
OQ.KS)[R~ . . . . .  R,,]. It immediately follows that Q(S)[R~] = OQ.~(S)[R~], as 
desired. [] 

Note that OQ,, produces S,* but not S j*, j # i. That is, only relation S~ is fully 
reduced by OQ.~. Intuitively, the reason is that each relation (except for S,) is only 
reduced by a proper subset of  the clauses in the query. More specifically, each 
relation Sj is reduced by clauses in the subtree of  Q rooted a t j  (considering i as the 
root of Q's tree). To produce S*, we first perform oo.~ and then apply semi-joins from 
the root i down the tree toward the leaves. The end effect is that each relation is 
reduced by every clause. Proceeding formally, the program we want is oq = 
(o~.,, o~).~,), where o?~iis defined (with the usual renaming of relations) as follows: 

(i) if m = ! then o~a = { ), the empty program; 
(ii) else o?~!~ = ( R2 IX R~ . . . . .  R,, IX R,, o~.z . . . . .  o?~ ,,),  
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where 2 . . . . .  m are the children of  1 as before. The principal property of o o is that 
for each j  E Vo, ooj is embedded in oo. That is, for each j, oo j  can be obtained frona ~i 
oo simply by excising certain semi-joins from oo. Clearly for all S, oo(S) _< ooj(S). ~ 
The proof of Theorem l now follows directly. 

PROOF OF THEOREM 1. Let Q E TQ and assume G O is a tree. Let S' = oo(S). ~ 
Since for each j  ~ Vo, oo,i is embedded in oo, it follows from Lemma 4 that S' = S*. ii 
ooj contains n - 1 semi-joins and o o contains 2n - 2 semi-joins. 

I f  Go is not a tree, then since Q E TQ, there is an equivalent query Q' whose 
graph is a tree. The proof goes as before, using Q" and the fact that Q'(S) = Q(S), 
by definition of  equivalence. [] 

4.3 CYCLIC QueRies. Queries in CQ are very badly behaved with respect to 
semi-joins compared to those in TQ. Not only are semi-joins incapable of  obtaining 
S* in general, but even the best possible reduction of S may only be obtainable by 
a very long semi-join program. 

Let Q be a query with qualification q. We de/me PROGRAMS(Q) to be the set of 
all semi-join programs that only perform semi-joins that correspond to clauses of q. 
Let S be a database state. We de/me 0<-REDUCTIONS(Q, S) = {S'I S' _< S, 
Q(S') = Q(S), and 3o ~ PROGRAMS(Q) such that o(S) = S'}. In words, ~- 
REDUCTIONS(Q, S) is the set of  all database states that can be obtained from S by 
semi-join programs that correspond to Q. From the definition it immediately follows 
that 0<-REDUCTIONS(Q, S) _C REDUCTIONS(Q, S). A full ~-reduction S ~ of S 
with respect to Q is an element of ~-REDUCTIONS(Q, S) such that there is no S' 
in ~-REDUCTIONS(Q, S) with S' < S ~. 

LEMMA 5. For each Q and S there is a unique full ~-reduction, S ~. 

PROOF. If  I ~-REDUCTIONS(Q, S) I = 1, then t~-REDUCTIONS(Q, S) = {S} 
and we are done. Otherwise, let S 1 and S 2 be two full ~-reductions of S with respect 
to Q that were produced, respectively, by ot and o2. Since S ~ is a full 0<-reduction, 
o2(S *) = S 1. Since S ~_< S, by Lemma 2 o~(S 1)_< o2(S) = S 2. So S ~ ~ S 2. The 
symmetric argument shows that S 2 = o~(S 2) _< oi(S) = S I. Hence S ~ = S 2. [] 

Theorem 1 says that S* = S ~ for tree queries. However, for cyclic queries there are 
states S for which S* is not in t~-REDUCTIONS(Q, S). To show that S* andS ~ are 
not always identical for cyclic queries, we will look at a special subclass of  CQ that 
has minimal cycles. 

Let Q be a query with qualification q. The closure of Q, denoted Q +, is a query 
whose qualification, denoted q+, includes q and all clauses implied by q under 
transitivity. (E.g., if (Ra.AI = R2.A2) and (R2.A2 = R3.A3) are in q, then (R~.A~ = 
R3.A3) is in q+.) Clearly Q+ ~ Q. Also, if Q1 = Q2, then Q~ = Q2*. For if Qi ~ # Q~, 
then there is a clause in q~"- q~', say; by selecting a state S such that some tuple in 
the Cartesian product of the relations in S satisfies q~" but does not satisfy qi ~ - q~', 
we have Q1(S) # Q2(S), or Q1 ~ Qz.' 

LEMMA 6. Q~ =- Q2 iff Q ~ = Q ~. 

PROOF. Follows from the above argument. [] 

A qualification q is called proper cyclic if it is of the form Af-~ (Ri.Am = 
Ri+b,4i+Ll), where p > 2, 1 is the successor of p, and all A~,j are distinct. A query is 
proper cyclic if its qualification is proper cyclic. 

4 This result does not hold when tuple variables are introduced; see [5], 
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FIG. 4. The database constructed for the proof of  Lemma 7. 

fitively, a proper cyclic qualification corresponds to a nonreducible cycle. I f  Q1 
per cyclic, then Q1 = Qi ~. Also, if Q1 --- Q2, then (by Lemma 6) Q1 = Q~" = QL 
o clause of Q1 is implied by the others, so Q~ = Q~" implies Q~ = Q2. Hence 
is no other query equivalent to Q~. 

Proper cyclic queries are badly behaved with respect to semi-joins as indicated by 
the following lemma. 

LEr~raA 7. For any proper cyclic query Q, there exists a database state S such that 
(i) S ~ # S*, and (ii) the fewest number o f  semi-joins required to obtain S ~ is O(m), 
where m is the number of  tuples of  some relation in S. 

PROOF. Let Q have qualification q = A,'=~ (Ri.Ai,2 = Ri+l.Ai+l.1), where p _> 2. 
For convenience we assume that all domains of  all relations are integer valued. 
Choose some integer m > 1 and a set of distinct integers {a~ . . . . .  am}, where aj > 2p 
for 1 _< j _< m. In S let all of  the domains not referenced by q have arbitrary values, 
so that in constructing S, we consider all relations to be binary. In S let S~ = 
{(0, 1), ( p , p  + 1), (am, 1)) t.J {(a/, a./+a):1 < - - j < m } ,  let S v = { ( p -  1, p),  
( 2 p -  1,0)} t_l {(ay, ay ): 1 < j <- m}, and for each k, 1 < k < p ,  l e t S k =  { ( k -  1, 
k), ( p + k -  1,p + k)} LI {(a~-, aj) : 1 <--j<_m} (see Figure 4). 

To show that S* ~ S ~, we observe that the tuples { ( k  - 1, k), (p + k - 1, 
p + k)}  are in each S~, 1 < k < p ,  and { ( p  - 1, p),  (2p - 1, 0)) are in S,. Yet 
S* = ( 6  . . . . .  ~ ) ,  so S* ~ S ~. In addition, S is constructed so that only one possible 
semi-join can reduce the size of any relation in S, and furthermore every database 
produced by a sequence of reducing semi-joins has this property. In fact, the only 
(nonredundant) sequence of semi-joins that can produce S ~ is 

do m times; 
d o k =  1 t o p b y  1; 

Rk+I ~ R,; 
end; 

end; 

where 1 is the successor ofp.  This requirespm semi-joins. [] 

The proof of Lemma 7 actually supports a stronger statement about semi-join 
programs for proper cyclic queries. The constructed database (Figure 4) is designed 
so that each semi-join only reduces the database by one tuple. Even if one were 
willing to be satisfied with a reduced database larger than S ~, obtaining such a 
reduction would still be slow. To obtain S' > S ×, the number of semi-joins required 
equals the number of tuples in S minus the number in S'. 

Of course, not every cyclic query is proper cyclic. However, we can strengthen 
Lemma 7 to cover all cyclic queries. We begin by showing that a certain type of 
proper cyclic qualification is embedded in every cyclic query. 
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A qualification q '  is a proper cyclic subqualification o fq  if 

(1) q'  is contained in q+, 
(2) q' is proper Cyclic, and 
(3) for any two domains Ri.Ai and Rj.Aj that appear in clauses in q', if 

(Ri.Ai = Ry.Aj) is in q+, then (Ri.Ai -- Rj.Aj) is in q. 

Notice that q is a proper cyclic subqualification of  q iff q is proper cyclic, since (3) is 
irrelevant when q is proper cyclic. 

Part (3) of  the above definition guarantees that the cycle corresponding to q" 
cannot be broken up into two shorter cycles, for if (Ri..4i = Rj.,4j) were in q'  but not 
in q', then a "path" of  clauses from Ri.Ai to Rj.Aj in q'  could be replaced by 
(Ri.Ai = Rj.Ai), thereby shortening or destroying the cycle. 

LEMr~A 8. Query Q with qualification q is in CQ iff q has a proper cyclic subqual- 
i ficalion. 

The proof of  Lemma 8 is most conveniently presented after we have developed 
more machinery for manipulating equivalent queries. Section 5 develops this ma- 
chinery for the purpose of  testing membership in TQ, so we defer the proof  to the 
end of  that section. 

Since every cyclic query has a proper cyclic subquery, Lemma 7 holds at least for 
the proper cyclic subquery (when it is treated as a proper cyclic query). We will show 
that Lemma 7 actually holds for the entire query. Since by Lemma 8 every cyclic 
query has a proper cyclic subquery, we can use the database of Figure 4 to produce 
the desired effect. However, there is a technical problem here; we must assign data 
values to all domains outside the proper cyclic subquery. We will show that this can 
be handled by making the rest of  the database a Cartesian product. 

Let Ai be the domains of  Ri. If B C_ Ai, then Si[B] denotes the projection of  Si on 
B, where Si[B] = {(s.B1 . . . . .  s.Bm) Is E Si and By E B for 1 _<j_< m}. Let (Ri × Ry) 
denote the Cartesian product operation. Now if Si = Si[B] × Si[Ai - B], then for 
any Ai,k E B we have 

(Ri  A,.,~. ~( ay} ( (  Si, S j } )  

= < R , [ B ]  × R , [ A ,  - B ] ~ ( < R ~ [ B ]  ~ R~>({Si[B], S,[A~ - B] ,  S , } ) ) .  

In words, if Si is a Cartesian product of  two subrelations, then any semi-join on Si 
can be considered as a semi-join on the database consisting of  the subrelations of  Si. 
A Cartesian product operation can always reconstruct the database to its original 
form--either before or after the semi-join. 

Let q'  = AI~=I(Ri.Ai,2 = Ri+l.Ai+a,l) be a proper cyclic subqualification of  some 
query Q. We say that a database state S is decomposable with respect to q '  if 

(dl) for 1 < i < p ,  S~ = Si[A~,~,A~,2] × (×h,,1,2 Si[A~,h]); 
(d2)_ fo rp  < i <_ n, Si = xh Si[Ai.k]; 
(d3) for all i and k, Si[Ai.k] # O; and 
(d4) for 1 --< i _<p and k = 1, 2, Si[Ai.k] ~ [~Ri.Al.tgd(mi.t: ) Sj[Aj.I]; 

where J(Ai.k) is the set of  domains that join with Ai.h in q+. 
Let DOMAINS(q)  be the domains referenced in qualification q, and let RELA- 

TIONS(q) be the relations referenced in qualification q. Intuitively, by making S 
decomposable with respect to q'  we have made every relation not in RELATIONS(q ' )  
a Cartesian product (by (d2)); and for each relation in RELATIONS(q ' )  we have 
made those domains not in DOMAINS(q ' )  a Cartesian product (by (d l)). Further- 
more, (d3) and (d4) imply that no domain not in DOMAINS(q ' )  can reduce any 
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domain in DOMAINS(q') by means of semi-joins, since the former are supersets of 
the latter. Finally, by the above observation about semi-joins applied to Cartesian 
products, we can decompose S so that domains not in DOMAINS(q') become single- 
domain relations; semi-joins applied to this decomposed database have the same 
effect as if they were applied to S. 

Let q' be a proper cyclic subqualification of q, and let S be a database state 
decomposable with respect to q'. We can decompose S by applying a decomposition 
mapping which maps S into Sd SO that each domain not in DOMAINS(q') becomes 
a single-domain relation. Having decomposed S, we can apply a renaming mapping 
to q (and q'), which maps q (and q') into qd (and qb) by mapping domain references 
in q and q' on S into corresponding domain references in qa and q~t on Sd. We make 
two important observations regarding the decomposed database and renamed query: 

(dml) Each relation R in RELATIONS(q~) is a binary relation containing only 
the two domains of R in DOMAINS(q').  All other relations in Sd are 
unary. 

(dm2) For each domain (= unary relation) Rk.Ak not in DOMAINS(q~), either 
there is no domain Ri.Ai in DOMAINS(qb) such that (Rk.Ak = 
Ri.Ai) is in q~, or there is exactly one clause in q~, (Rz.A~ = Rj.Aj), such 
that (Ri.Ai = Rk.Ak) and (Rj.Aj = Rk.Ak) are in q~. 

(din2) follows from the fact that q~ is a proper cyclic subqualification; if there are 
two (or more) distinct clauses of q~, (Ril.Ail = Rjl.Ail ) and (Ri2.Ai2 = Rj2.Ayz), such 
that (Rk.Ak = Ril.Ail) and (R~.Ak = R~z.Ai2) are in q3, then part (3) of the definition 
of proper cyclic subqualification is violated. Thus, the clauses of q~ partition the 
relations that are not in RELATIONS(q~) but are connected to RELATIONS(q~t) 
in the query graph of  Qd. 

The following lemma extends the first part of Lemma 7 to arbitrary cyclic queries. 
It implies that if q'  is a proper cyclic subqualification of q and S* ~ S ~ with respect 
to q', then S* # S ~ with respect to q. 

LEMMA 9. Let Q be a cyclic query with qualification q, let q' be a proper cyclic 
subqualification of  q, and let S be a database state decomposable with respect to q'. Let 
Sd, qd, and q~ be the results o f  decomposing S and renaming q and q'. Then the full  
semi-join reduction of  Sa with respect to qa (denoted S~,q~) equals the full  semi-join 
reduction of  Sd with respect to q ~ (denoted S ~.q~ ) on each relation in RELA TI  O N S ( q ~ ). 

PROOF. It suffices to show that no relation S~.q:,[RELATIONS(q~'~)] can be 
reduced by a semi-join corresponding to a clause in q~. However, this follows directly 
from (d4) and (dm2). [] 

To extend the remainder of Lemma 7, we introduce some additional notation. 
Given a query Q and a database state S, we define M(Q,  S) to be the length of the 
shortest semi-join program to produce a full semi-join reduction of S with respect to 
Q; that is, 

M(Q, S) = min Io[. 
o c P R O G R A M S ( Q ~  

o ( S ) = S  ~ 

LEMMA 10. Let Q be a cyclic query with qualification q, let q' be a proper cyclic 
subqualification of  q, and let S be a database state decomposable with respect to q'. Let 
Sa, qd, and qb be the results o f  decomposing S and renaming q and q'. Then 
M(Q~, Sd) -< M(Qd, Sa). 
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PROOF. Let  o be  a semi-join program of  length M(Qa, Sa) such that e(Sd) = 
S ~ To prove the lemma, we will transform o into a' such that M(Q'a, Sd) d, qd • 
Io'1 -< Iol and a'(Q'a, Sa) = S~.q~,. Begin by finding the first semi-join in o, say 
(Ri A~XAj Rj), that reduces a relation in RELATIONS(q~). If (Ri~Ai = Rj.Aj) is in q~, 
then leave the semi-join as is. Otherwise, remove (Ri A~XA~ R/) from a. By (d4) and 
(din2), (RiA}XAjR~) could only reduce Sa.i if there were a chain of semi-joins 
preceding it of  the form (Ry, A~0<,~, Rk), ( Rj 2 Aj2[~Ajl g j  I ) . . . . .  Rj AjI~Ayn, R j r n ) ,  where 
(Rk.Ak = R~,4i) is the unique clause in q~t referencing Ri.4i. If  the chain exists, 
remove it from a and insert (R~A,t~Ah Rk) in o where (Ria~ O<A/Ry) used to be; this 
has exactly the same effect on R~ as the chain did. Now find the second such semi- 
join, perform the replacement if appropriate, etc., until all semi-joins reducing 
relations in RELATIONS(q~t) have been examined and/or  replaced. Now all semi- 
joins in o that reduce relations in RELATIONS(q~) correspond to clauses of q~. So 
remove from o all semi-joins that do not reference relations in RELATIONS(q~), 
since none of  these semi-joins can affect relations in RELATIONS (q'd). The resulting 
semi-join program o' is no longer than o, and it produces the same effect on relations 
in RELATIONS(q~) as o. Since a(Qd, Sd)  [RELATIONS(q~)] --- S),q~, by Lemma 
9~ p p ~ a (Qa, Sd) Sd.q~ as desired. I-1 

We can now extend Lemma 7 to all cyclic queries. 

THEOREM 2. For any query Q E CQ, there exists a database state S such that 
S" ~ S* and the fewest number of semi-joins required to obtain S~ is O(m), where m 
is the number of tuflles of  some relation in S. 

PROOF. By Lemma 8, q has a proper cyclic subqualification q'. Let S be a 
database state decomposable with respect to q" such that if Sd is the decomposed 
version of S and qd, q'a are the renamed versions of q, q', then Sa[RELATIONS(q~)] 
is a state satisfying Lemma 7. That is, S~.~ ~ S~.q~, and M(Q'd, Sd) is of size O(m). 
By Lemma 9, S),q~[RELATIONS(q~)] = S),qd[RELATIONS(q'a)], so S~,qd ~ S~,q~. 
By Lemma 10, M(Q'd, Sd) < M(Qa, Sd), SO M(Qd, Sd) is at least of  size O(m). Since 
all of these results hold on S by taking the inverse of the decomposition and renaming 
maps, the theorem is proved. [] 

5. A Fast Tree Query Membership Test 

To make use of  our result that shows tree queries to be well behaved with respect to 
semi-join, we need a procedure that tests if  a given query is in TQ. In this section we 
present such a test that runs in linear time. The test is constructive. If  the given query 
is in TQ, an equivalent query is produced whose query graph is a tree. 

Given a query with a cyclic query graph, we cannot immediately tell if the query 
is cyclic. For example, if the qualification consists of the cycle ((R1.A = R2.B) and 
(R2.B = R3.C) and (R3.C = RI.A)), we can drop any one of the clauses; the result is 
a tree tluery that is obviously equivalent to the given query. The property of the cycle 
that permits us to drop one clause is that each relation participates in the cycle with 
only one joining domain. 

There is a second situation in which a cycle can be broken without changing the 
meaning of the query. Consider the qualification ((R~.A = R2.B) and (R2.B = 1~.C) 
and (Ra.C = R1.D)), which produces a cyclic query graph with edges {(R1, Rz), 
(R2, R3), (R3, Ra)}. This qualification does not fit the form of our previous example, 
because R1 has two joining domains. Yet we can transform the qualification into 
((RI.A = R2.B) and (R2.B = R,~.C) and (R~.A = RI.D)); since RI.A must equal R:I.C 
in the first qualification, we can substitute (R~.A = R~.D) for (R:~.C = R~.D). The 
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:G. 5. A join graph and its corresponding query graph for query Q with qualifi- 
tion q = ((RIM = R2.B)  A (R2.C= Rz.D) A (Ra.E = R].A) A (R2.F = R4.G)). (a) 

Join graph Jo. (b) Query graph Go. 
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luery graph contains edges {(R1, R2), (R~, Ra)} and is now acyclic; we have 
m interrelation clause by an intrarelation clause that does not produce a 
ph edge. Intuitively, we have replaced a join between two relations by a 
within a single relation, thereby breaking the cycle. As we will now show 

Lhe transformations described by the above two examples are the only ones 

~ ¢eded to map a tree query whose query graph is cyclic into an equivalent query 
whose query graph is a tree. 
!~ To perform the above transformations on clauses, we will use another graph model 
o f  a query. For a query Q with qualification q, we define the join graph for Q, 
Io( V, E), to be a node-labeled undirected graph where 

V =  (Ri.A [A is a domain of Ri} 

i lind 

E = ((Ri.A, Ri.B)[(Ri.A = Ri.B ) is a join clause in Q}. 

r The join graph simply represents the joins in a qualification by edges in the graph 
(e.g., see Figure 5). We say that a join graph J corresponds to a query graph G if the 
query represented by J has (the unique) query graph G. Unlike query graphs, join 
graphs are not multigraphs. 

The transitive closure of Jo, denoted J~, represents all join clauses that are logically 
implied by Q's qualification. A spanning forest of J~  is defined as a minimal subgraph 
of J~ whose closure is J~. A spanning forest of J~ is in some sense a minimal 
representation_ of a query. The following lemma says that to test if Q ~ TQ we need 
only look at spanning forests of J~. 

LEMMA 11. Q E TQ iff there exists a spanning forest of J~ that corresponds to an 
acyclic query graph. 

PROOF. Since a spanning forest of J~ has the same transitive closure as Jo, the 
query represented by the spanning forest is equivalent to Q. If  the spanning forest 
corresponds to an acyclic query graph, then Q is obviously equivalent to a query 
whose query graph is a tree, and hence Q E TQ. If Q E TQ, then it is equivalent to 
some Q' whose query graph is a tree. Any spanning forest of  its join graph Jo" is a 
spanning forest of J~  and therefore satisfies the conditions of the lemma. [] 

There is a particular kind of spanning forest of J~ which is easy to compute and 
which has the property that Q E TQ iff such a spanning forest corresponds to an 
acyclic query graph. This kind of canonical spanning forest is constructed as follows 
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R$.E R4.G 

R~3.F 
(b) 

Fxc;. 6. A canonical spanning forest for query Q with qualification q = ((Rj.,4 = R._,.C) A (R..,.C = R..,.D) 

A (R_,.C = R j .B )  A (R..,.D -- R:3.F) A (R~.B = R:~,F) A (R:~.E = R.~.G). (a) Join graph Jo (b) A canonical 
spanning forest of J~* 

(see Figure 6 for an example): 

do for each connected component of JQ; 
partition the nodes according to the relations that name them; 
for each partition, connect all the nodes in the partition by a chain; 
choose one node from each partition and connect them by a chain; 

end; 

Each tree in the forest spans a connected component of J~. Since there is some choice 
in constructing each tree, canonical spanning forests are not unique for each JQ. 
However, the following lemma shows that any one of them can tell if Q ~ TQ. 

LEMMA 12. For every query Q and for every canonical spanning forest j c  of J~, 
Q ~ TQ i f f J  c corresponds to an acyclic query graph. 

PROOF. The if part follows from Lemma 11. To prove the only-if part, suppose 
j c  corresponds to a cyclic query graph G c. We will show that every spanning forest 
of  J~  corresponds to a cyclic query graph, so that by Lemma 11, Q ~ TQ. Therefore 
Q ~ TQ must imply that every j c  corresponds to an acyclic query graph. 

Consider a simple cycle in G c, i.e., a cycle in which each node is incident with at 
most two edges in the cycle. The edges of this cycle map directly into edges of jc;  
suppose this corresponding sequence of  edges of  j c  is S = [(v0, vl), (v2, v3) . . . . .  
(vz,-2, v2,-~)]. Clearly, v2i-t and v2i are labeled by domains of  the same relation for 
i --- 1 . . . . .  n (arithmetic is mod 2n). For each i, 1 _< i _< n, if v2;-~ and v2i are in 
the same connected component, then by the construction of  canonical spanning 
forests, v2;-1 -- v2i. Thus S can be represented as a sequence o f p  + 1 paths, p _> 0, 
[[(V0,0, V0,1), (VO,1, V0,2) . . . . .  (V0,mo--1, V0,mo) ] . . . . .  [(Vp,0, "Vp,1) . . . . .  (Vp,mp--l, vp,%)]], where 
each path is entirely contained in a connected component of  J~. 

We claim p ___ 1. Suppose p = 0. Since Vo.o and VO,mo are in the same connected 
component of the join graph and are in the same relation, the construction of 
canonical spanning forests requires that vo.0 = vm.0. But then the path in the canonical 
spanning forest is a cycle, a contradiction. So p > 0. 

Consider one of the paths, [(vi.0, v~,l) . . . . .  (Vi,mi-t, Vi,m,)]. Since the transitive closure 
of any spanning forest of J~  equals the transitive closure of j c ,  there must be a path 
from v~.0 to vi,,,~ in all spanning forests of J~. This holds for 0 _< i _< p. Hence for each 
spanning forest F there exists in F a sequence of p + 1 paths SF with the same 
endpoints as the p + 1 paths of S. 

To complete the proof, we must show that for each spanning forest F, the sequence 
SF produces a cycle in its corresponding query graph. Since we chose a simple cycle 
in G c, I~m i and v,,j are named by domains of different relations if i # j.  Since p > 0, 
we have at least two distinct nodes in the query graph path that corresponds to St. 
So the path is a cycle. Since all spanning forests have a cycle, by Lemma 11 Q E TQ, 
a contradiction. [] 
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THEOREM 3. Testing if Q ~ TQ can be decided in linear time. 

PROOF. The algorithm for testing if Q ~ TQ is 

I. Construct a canonical spanning forest jc ofjo" 
2. Construct the query graph G c corresponding to jc. 
3. If G c is acyclic, then answer Q E TQ; else answer Q ~ CQ. 
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By Lemma 12, the algorithm is correct. Both spanning forest and cycle detection can 
be computed in time linear in the number of edges of the graph [1]; so the algorithm 
has linear worst-case time. [] 

A tree query membership test when multiattribute semi-joins are permitted appears 

i3]. 
We conclude by proving Lemma 8 from Section 4.3 as promised. 

LEMMA 8. Query Q with qualification q is in CQ iff q has a proper cyclic 
subqualification. 

PgOOF. If. Let q' be a proper cyclic subqualification of  q. When we construct 
the canonical spanning forest, in the third step of the do-loop we choose to include 
a clause of q' as an edge in a chain whenever possible. Clearly, every clause of q' can 
be added, since they are all in q+. Also, by part (3) of the definition of  proper cyclic 
subqualification, each connected component of  the canonical spanning forest can 
contain at most one clause from q'; so, incorporating clauses from q' can never cause 
a cycle in a connected component. Since all clauses of q' are embedded in the 
spanning forest, the query graph corresponding to the forest has a cycle. By Lemma 
II, Q ~ C Q .  

Only if. Suppose Q ~ CQ. Construct a canonical spanning forest F for Q. By 
Lemma 11 there is a cycle in the corresponding query graph. Select such a cycle, and 
let C be the edges of F that correspond to the edges of the cycle. From C, construct 
a qualification q' as follows: For each path in C which is not a proper subpath of  any 
other path in C whose endpoints are, say, Ri.A and Ri.B, include (Ri.A = Ri.B) in q'. 
Clearly q' is in q+ and q' is proper cyclic. Also, i f(Ri.A = Rj.B) is in q+ and Ri.A 
and Rj.B are in DOMAINS(q'),  then (Ri.A = Ri.B ) is in q'; this follows because 
R~.A and Ri.B must be in the same connected component of F, and each connected 
component of F has at most one clause in q' by construction, so q' is a proper cyclic 
subqualification o f q  as desired. [] 

6. Conclusions 

Semi-joins are commonly used as basic operations in query processing algorithms, 
especially in a distributed environment. In these algorithms a strategy is simply a 
semi-join program. Our results show that for tree queries, as soon as a strategy 
embeds eo, a full reduction and, hence, the full potential of semi-joins are achieved. 
Consequentiy the strategies tend to be short; at worst their length is bounded by a 
linear function of the number of relations referenced. Furthermore, tree-query 
membership can be tested in linear time. This suggests that searching for optimal 
strategies is quite likely to be easier for tree queries than for cyclic ones. We therefore 
recommend that the optimization problem for tree queries be treated as an important 
(and probably more tractable) special case of  the general query processing problem. 

For cyclic queries, finding good semi-join programs is likely to be quite difficult. 
Since cyclic queries are common too, we will either need to find new tactics (other 
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than semi-joins) for solving them or will p robably  have to be satisfied with heuristi 
approaches  such as that o f  [14]. 

We emphasize,  however,  that our  results only describe worst-case behavior  o f  semi 
jo in  strategies that try to achieve f u l l  reductions. The pathological  case that show 
cyclic queries to behave badly may  rarely occur. More important ,  full reductions ar~ 
not always profitable, and a query opt imizer  should only produce the most  profitabl, 
semi-join strategies. So while we have learned much  about  the strategy space o f  semi 
jo in  programs,  the query  opt imizat ion problem on "average"  databases using th 
semi-join tactic remains open. 
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