
Caching and Database Scaling in Distributed Shared-Nothing Information

Retrieval Systems �

Published in Proceedings of SIGMOD '93

Anthony Tomasic and Hector Garcia-Molina

Stanford University Department of Computer Science

Margaret Jacks Hall, Stanford, CA 94305-2140

e-mail: tomasic@cs.stanford.edu hector@cs.stanford.edu

Abstract

A common class of existing information retrieval system

provides access to abstracts. For example Stanford Uni-

versity, through its FOLIO system, provides access to the

INSPEC database of abstracts of the literature on physics,

computer science, electrical engineering, etc. In this paper

this database is studied by using a trace-driven simulation.

We focus on physical index design, inverted index caching,

and database scaling in a distributed shared-nothing system.

All three issues are shown to have a strong e�ect on response

time and throughput. Database scaling is explored in two

ways. One way assumes an \optimal" con�guration for a sin-

gle host and then linearly scales the database by duplicating

the host architecture as needed. The second way determines

the optimal number of hosts given a �xed database size.

1 Introduction

Information retrieval systems, of the type found in
libraries, provide indexed access to the abstracts of
documents. Information vendors such as Dialog and
BRS Search also provide access to such abstracts
databases. The number of such databases is rapidly
growing, as more and more information is stored
digitally. At the same time, an increasing number
of users have access to these databases through the
networks. To handle the increased load, a distributed
architecture can be used, dispersing the data and index
structures across several computers and performing
searches in parallel. This paper studies the performance
trade-o�s in such a shared-nothing distributed system.
Our work complements an earlier paper [14] where
a full-text information retrieval system was studied
(entire document is indexed, as opposed to just its

�This research was partially supported by the Defense Ad-
vanced Research Projects Agency of the Department of Defense
under Contract No. DABT63-91-C-0025.

id: 0 author: A. System Title: Theory of System

abstract: A practical system, good for one year or one

million dollars, whichever comes �rst.

id: 1 author: B. Theory Title: Theory of Theory

abstract: A theory, might be useful, might not.

id: 2 author: C. Hardware Title: Hard Ware abstract:

A very hard piece of ware.

id: 3 author: D. Student Title: Thesis abstract: A

direct extension of my advisor's will.

Figure 1: A example set of four documents.

abstract). The study reported here also represents the
�rst time (to our knowledge) that an actual user query
trace drives the evaluation of a distributed architecture.
An abstracts database typically uses an inverted index

to speed up query processing (see [6] for a survey of
access methods for text). For each word, an inverted
list is constructed that gives all the abstracts in which
the word appears. In a multiprocessor environment, the
inverted lists can be distributed in various ways:

Disk Organization. The abstracts are logically
partitioned by physical disk, that is, each disk is
assigned a number of abstracts. An inverted index is
then constructed for the abstracts of each disk.

I/O Bus Organization. Each I/O bus controls a
subset of disks. An inverted index is constructed for
all the abstracts of the disks on each I/O bus. Each
inverted list is stored on a disk in the I/O bus group.

Host Organization. An inverted index is constructed
for the abstracts assigned to the disks of each host. The
inverted lists are spread across the disks of the host.

System Organization. In the previous organizations,
for each word, there are multiple inverted lists, one at
each disk, I/O bus, or host. In the system organization,
a single inverted list is generated for each word. Each
inverted lists is allotted to one of the disks of the system.
To illustrate these organizations, consider the four

documents in Figure 1. Each document contains four
�elds: author, title, abstract, and id. An example
hardware organization is shown Figure 2; it has two

.

LAN

d 0 d 1 d 2 d 3

CPU 0 CPU 1

cache cache

BUS 0 BUS 1

Figure 2: An example hardware con�guration.

hosts, labeled CPU 0 and CPU 1, each with a cache,
one I/O bus and two disks. Table 1 shows the various
inverted index organizations for the �gures. (The Host
and I/O Bus organization are equivalent in this example
since each host has a single I/O bus.) Note that in this
table, each entry in an inverted list is typed with the
�eld name where the word appears (\A" for author,
\T" for title, \B" for abstract).

For instance, the word \a" appears �ve times in the
example set of documents. The word appears in each
abstract and it appears in the author �eld for document
0. For the system organization, all the appearances of
a word are in the same inverted list. In the table this
inverted list in located on disk d 0. For a given keyword
and �eld designation, all the corresponding entries in
the inverted list are the postings for that keyword and
�eld designation. Thus, this inverted index organization
combines all the postings of a word for all the �eld
designations into a single inverted list. In the other
organizations, the \a" list is split. For example, in
the Host organization, there is one \a" list covering
abstracts in disks D0 and D1 (stored in d0 in this
example), and another \a" list for the d2, d3 abstracts
(stored in d2).

To answer a query originating on a host (the home
host) in the disk, I/O bus, and host index organiza-
tions, a copy of the query is made for each host. This
subquery is sent to each host which then matches the
subquery against its inverted lists. Since queries con-
sist of keyword-�eld pairs connected by boolean ANDs,
matching is accomplished by constructing the intersec-
tion of the inverted lists. The result of the intersection,
the answer to the subquery, is then transmitted to the
home host. The home host concatenates all the sub-
query answers to produce the �nal answer.

To answer a query in the system index organization,
a subquery is sent to each host relevant to the query.
(A host is relevant to a query if the inverted list for at
least one keyword in the query resides on the hosts.)
The subqueries are processed in the same manner as
the other index organizations. When the answers to

Index Disk Inverted Lists in word: (Id, Field) form

Disk d 0 a: (0, A), (0, B); theory: (0, T);
system: (0, A), (0, T), (0, B)

d 1 a: (1, B); theory: (1, A), (1, T), (1, B)
d 2 a: (2, B); hard: (3, T), (3, B)
d 3 a: (3, B);

Host & d 0 a: (0, A), (0, B), (1, B);
theory: (0, T), (1, A), (1, T), (1, B)

I/O bus d 1 system: (0, A), (0, T), (0, B)
d 2 a: (2, B), (3, B)
d 3 hard: (3, T), (3, B)

System d 0 a: (0, A), (0, B), (1, B), (2, B), (3, B)
d 1 system: (0, A), (0, T), (0, B)
d 2 hard: (3, T), (3, B)
d 3 theory: (0, T), (1, A), (1, T), (1, B)

Table 1: The various inverted index organizations for
the words \a", \hard", \system", and \theory" in
Figures 1 and 2. The �eld \A" is for author, \T' is
for title, and \B" is for abstract. (Other lists are not
shown.)

the subqueries are returned to the home host, another
intersection is performed on the answers to produce the
�nal answer.

To illustrate, consider the query �nd abstract: system
and title: theory issued to the home host CPU 0.
In the system index organization two subqueries are
issued. One is the subquery �nd abstract: system and
is sent to the host CPU 0, the other is the subquery
�nd title: theory and is sent to host CPU 1. The
subqueries are processed in parallel. CPU 0 generates
the subquery answer (the list of matching abstracts) (0)
and CPU 1 generates the answer (0, 1). Both answers
are transmitted to the home host which constructs the
intersection of the answers producing the answer (0)
indicating that document 0 matched the query. In
the host index organization two subqueries are also
issued, each consisting of the query �nd title: theory
and abstract: system. The subqueries are processed in
parallel. Host CPU 0 transmits the answer (0) and host
CPU 1 transmits the empty answer. The home host
concatenates the two answers to produce �nal answer
to the query.

In this paper we address four basic types of questions:

(1) What index organization yields best performance?
In the system organization, typically a query only
involves a subset of the hosts, leaving the irrelevant
hosts free to process other queries. On the other hand,
the other strategies allow more intra-query parallelism
and may generate more uniform loads at the hosts.
So which one leads to lower response times or higher
throughputs? Also, there are various optimizations to
the system organization, dealing with the order in which
lists are fetched and intersected (see Section 3). How do
these improve performance?

(2) What are the critical hardware resources? What
is the optimal arrangement for a given set of hardware
resources? In particular, many current information
retrieval systems run on large \mainframes." Can
we really improve performance by having instead a
collection of less expensive machines, implementing
distributed indexes?
(3) How well do the algorithms and hardware scale

as the database size grows? As mentioned earlier,
current data collections are growing rapidly, and it
is not clear what index organization scales best, or
whether it is more important to add disk or processor
or communication resources as the database grows.
(4) What is the impact of caching inverted lists in

main memory? Is there enough locality of reference
between queries to make caching worthwhile?
Our evaluation is based on query traces from the FO-

LIO library information retrieval system at Stanford
University, run against a detailed event-driven simula-
tion of the hardware and query processing. The trace
data is described in Section 2, while our processing
model is described in Section 3. The hardware model
is presented in Section 4. Our results are given in Sec-
tion 5 and conclusions in Section 6.

1.1 Previous Work

A substantial amount of work has been done in the
general area of Information Retrieval. For an overview
of implementation techniques see [7].
Not that much has been done on distributing inverted

lists and searching them in parallel. Reference [12] dis-
cusses some of the basic issues. Burkowski simulates a
shared-nothing information retrieval system [1] to study
the performance impact of the placement of documents
and inverted indexes. Jeong and Omiecinski [10] in-
dependently study for a shared-everything architecture
similar issues of the physical index design as in this
paper. Work has also been done on searching with a
variety of other architectures, e.g., processor farms [3],
�ne-grained parallelism [11], and shared-memory multi-
processors [4].
As mentioned earlier, our work is a continuation of

an earlier paper [14]. The four index organization we
have described are from that earlier paper. There are,
however, two important di�erences between the earlier
study and this one.

�Here we study an abstracts database as opposed to a
full-text system. In a full-text system, every single word
occurrence is indexed. In an abstracts system, only the
abstract is indexed. If we compare two systems with
the same number of documents, the index in the full-
text case will be much larger. Even if the volume of
raw data is equal (example: abstracts are a tenth of the
size of the full-text documents but there are 10 times
as many abstracts), the inverted lists for the abstracts
case will still be smaller. This is because repeated words

are indexed in the full-text case only. For instance, if a
word appears 10 times in a document, there will be 10
index entries (pointing to each occurrence) in the full-
text case, and only one entry in the abstracts case. As
we will see, the fact that inverted lists are shorter for
abstracts dramatically changes the relative performance
of the various organizations. Emrath [5] focuses on the
performance trade-o�s involved in partial or complete
indexing.

� Here we drive our study with real traces from
the Stanford library system. Furthermore, the traces
also give the result sizes, so we can use that in our
simulation. In [14] we modeled queries probabilistically,
assuming query terms were picked at random from a
vocabulary. Clearly, using traces (which incidentally
are hard to get from commercial information vendors)
yields more realistic results. It also lets us study caching
issues.

2 Data

Stanford University provides on-campus access to its
information retrieval system FOLIO from terminals
in libraries and from workstations via telnet sessions.
FOLIO gives access to several databases; one of these is
INSPEC, an abstracts database for technical documents
in disciplines such as physics, electrical engineering, and
computer science. A trace of all user commands for the
INSPEC database were collected from 5/3/92 to 5/9/92.
In addition, the number of postings of every word in the
INSPEC database inverted index was also collected.
To drive the simulation, only a subset of the raw

trace is considered. Only the match results of queries
consisting of boolean AND operations on simple terms
is considered. We do not consider the other features of
FOLIO such as wild-carding, thesaurus aided queries,
phrase queries, etc. Queries that have terms with no
associated inverted list (e.g. misspellings) are ignored
since the query parser would catch these queries and
reject them. Finally, the raw trace contained several
queries with a reported result size of 322,737. When
these queries were repeated by hand in an attempt
to con�rm this result, completely di�erent result sizes
were reported. We assume that this is an error in the
trace log and have thrown out these queries. The raw
trace contained 2583 query commands. The remaining
queries used to drive the simulation constitute 73.3% of
the original queries. This subset has the advantage that
the impact of the traces on performance can be easily
determined. We plan to include the remaining queries
in a future study.
One important feature of FOLIO is the designation

of the subject �eld in query matching. This �eld
designation is a syntactic shorthand for matching the
�eld designations freeterm, abstract, organization, title,
and conference simultaneously. Thus, the query �nd

Raw Trace Queries 2583
Simulation Experiment Queries 1894
Percentage Simulation Query of Raw Queries 73.3%
Total Keywords 3593
Mean Keywords per Query 1.90
Number of Subject Field Keywords 1611
Percent Subject Field of All Fields 44.8%
Mean Result Size per Query 833.8
Median Result Size 23
Unique Keywords 1551
Mean Cache Hit Percent 56.8%

Table 2: Statistical properties of the simulation trace
input.

subject: theory is a shorthand for the query �nd
freeterm: theory or abstract: theory or organization:
theory or title: theory or conference: theory. The
subject �eld designation constitutes 44.8% of all �eld
designations. Subject queries are handled by our
simulation (see Section 3).
Some statistics of the traces will be helpful in

interpreting the results of the simulation. Table 2
summarizes some properties of the query traces. To our
surprise, the mean number of keywords per query is less
than two. However, note that each use of the subject
�eld designation is a shorthand for a query with multiple
keywords. The mean size of the result of a query is large
(over eight hundred) but the median result size is small
at 23. We suspect that the queries with large results
are immediately re�ned to produce smaller results.
Issuing multiple queries to re�ne an answer set is

common in information retrieval systems. This query
re�nement behavior by a user provides an opportunity
for the caching of inverted lists. Of all the keywords
appearing in the traces, 56.8% of them are duplicate
appearances. Thus, if we cached every single read of
an inverted list in the system we would achieve a mean
cache hit ratio of 56.8% over the entire trace. (While
this �gure is not a high as those reported in the �le
system literature, Section 5 shows that caching does
have a signi�cant impact on mean throughput.)
For the database, total number of documents for

the INSPEC database is reported at approximately
1,165,059 documents. The number of bytes per doc-
ument is approximately 1,800. The total database size
can be (very roughly) estimated at 2 Gigabytes. For
more detail on this database, see [13].
To drive our simulation, we combine the information

from the trace and postings �les into a single trace �le
that is easy to use. Figure 3 shows a sample of this �nal
trace �le. For example, the �rst line of the trace shows
that user 168 issued a query which had 181 results. The
query referred to a single keyword \CARTER." The
value 449 is a hash of the keyword \CARTER" and is
used to determine the disk(s) which the inverted list(s)

168 181 (CARTER 449 1086 1222)

168 110 (CARTER 449 1086 1222)

168 3039 (MINNESOTA 686 3041 3758)

168 0 (CARTER 449 1086 1222)

168 110 (CARTER 449 1086 1222)

168 12 (OKEEFE 431 103 111)

26 12 (GAAS 284 60868 61215)

(MIS 233 3708 3751)

(ALGAAS 425 11862 11863)

Figure 3: The trace input to the simulation.

will reside for the various index organizations. The next
number, 1086, is the number of postings for \CARTER"
that have the �eld designation speci�ed in the query.
(We do not show what the �eld designation, say author,
was. All that matters is that there are 1086 documents
where \CARTER" is an author.) Note that the number
of retrieved documents is less than 1086 because FOLIO
�ltered for the author initials. The �nal number, 1222,
is the total number of postings for \CARTER," i.e., the
total number of documents where \CARTER" appears,
regardless of the �eld designation. For queries with
multiple search terms (e.g., the one by user 26), each
term is listed, together with the number of postings as
described above.

3 Query Processing

As discussed in the introduction, four physical index
organizations are considered. We found in previous
work [14] that the LAN may be the bottleneck for the
system index organization. To ameliorate this problem
we adopt one query processing optimization named
\prefetch I" that operates as follows: we divide the
processing for a query into two phases. In the �rst
phase, the home site sends a subquery to the host
holding the shortest inverted list for the query. This
host broadcasts the shortest list on the LAN to all
other hosts. In the second phase, the remaining inverted
lists are retrieved (and intersected if more than one list
resides at the same host), except that before results are
sent to the home host, they are intersected with the
�rst list broadcast. This signi�cantly reduces the data
volume on the LAN by reducing the mean subquery
answer size. (In [14] two other prefetch variations are
studied. For our current study, we evaluated all three
variations; Prefetch I was the variation with the best
performance, so to economize on space, we only describe
the winning variation and its performance.)

To simulate the processing of a query, we consider �ve
stages. The �rst stage covers the initial CPU processing
for parsing the query and generating subqueries. Sec-
ond, the subqueries are queued at the LAN for transmis-

sion to other hosts. Third, the process blocks, waiting
for the subqueries to complete. When all the answers
are returned the process wakes and simulates another
CPU processing stage for the intersecting of the inverted
lists. Finally, the process terminates, indicating that the
matching for the query is complete. (If the prefetch al-
gorithm is used, several additional stages are added to
account for the two phases.)

A subquery goes through �ve stages also. First, initial
start-up CPU processing is simulated. Second, the
cache is checked for the words which appear in the query.
For cache misses, reads are issued to the disks for the
inverted lists. The process blocks, waiting for the disk
reads to be returned through the I/O bus subsystem.
When all the reads have returned, the subquery process
wakes and simulates the intersecting of the inverted lists
into an answer by a CPU processing stage. The answer
is then queued at the LAN and the subquery terminates.

From our trace data, we can determine how many
inverted lists have to be fetched to answer a given query,
and how large the lists are. However, our simulation
also requires the sizes of the intermediate results, and
we estimate them by calculating the expected number of
answers as follows. In the case of the disk, I/O bus and
host index organizations, we make the assumption that
the answers are distributed in equal proportion across
all hosts. Thus, to compute the size of the subquery
answer we simply divide the result size reported in
the trace by the number of hosts. For the system
organization, however, each subquery generally contains
a subset of the keywords in the query. The following
example illustrates how the expected answer size is
calculated. Say the subquery is �nd title: A author:
B. The full lists for A and B are fetched from disk;
however, only the postings of the appropriate type (title
for A, author for B) are used. The number of A
postings with title designation is given in the trace, call
it n(A); the number of B author postings is n(B). The
expected size of the intersection of these lists is thus
n(A)n(B)=D, where D is the total number of documents
in the database. This assumes that each word is equally
likely to appear in any of the D documents and that
the words occur independently. (If an additional C
word were in the query, the expected size would be
n(A)n(B)n(C)=D2.)

For the disk, I/O bus and host index organizations, we
believe the model is very accurate. For the system index
organizations, we believe that this model is reasonably
accurate for a small number of query terms (it is
exact for single keyword subqueries). (Emrath [5]
reports some measurements which support this model.)
However, as the number of keywords in the query
increases, the expected number of answers approaches
zero. To compensate for this e�ect, we use the result size
(for the overall query) in the trace as a lower bound to

Parameter Value Description
Hosts 1 Hosts
I=OBusesPerHost 4 Controllers and I/O Buses

per Host
DisksPerI=OBus 4 Disks for each I/O bus

Table 3: Hardware con�guration parameter variables,
values and de�nitions.

the expected number of documents in a subquery. This
is valid since the size of the �nal answer to the match
is bounded from above by the minimum of the sizes of
the subquery answers in the system organization.

To study the e�ects of scaling the database, the
parameter DatabaseScale was added to the simulation.
This variable linearly scales the number of postings for
each inverted list, the number of answers to a query
and the number of documents in the database. While
scaling the number of postings and documents in the
database is probably reasonable, a word of caution is
in order with respect to the scaling the number of
answers. If a query matches 10 documents, a user will
simply read all 10 documents to determine which ones
are of interest. Faced with a query with a result size
of 1000, a user would probably issue a modi�ed query
to produce a smaller answer. We believe that as the
database grows in size (say, linearly) the mean result
size grows more slowly as users continue to construct
queries with manageable result sizes. However, we do
not incorporate this into the database scaling model.

4 Simulation

In this section the hardware simulation is described,
together with the parameters that specify the resources
consumed by each stage of query execution. An example
hardware organization is shown in Figure 2. Every
hardware organization consists of a local area network
(LAN) connecting several hosts together. Each host
has a CPU and memory, a number of I/O buses, and
a number of disks. Every host has the same number
of I/O buses and every I/O bus has the same number
of disks. Each host also has a cache. Table 3 lists
the variables that determine the hardware organization.
The \Value" column in the table shows the \base case"
value of each variable used in the experiments described
in Section 5. Typically an experiment systematically
varies one or more of the values to determine the e�ect
of the variables. A con�guration is the total collection
of variable-value pairs used in an experiment. The base
con�guration is the collection of variable-value pairs
given in the tables in this section.

Table 4 shows the base con�guration variables for the
hardware. The values for this table were taken from
[2]. The disks and I/O buses are simulated as follows.

Parameter Value Description
DiskBandwidth 10.4 Mbits/sec bandwidth per disk
DiskBuff 32768 Size of a disk bu�er in bytes
BlockSize 512 Bytes per disk block
SeekT ime 15.0 Disk seek time in ms
TrackToTrack 4.0 Cost to seek one track in ms
I=OBusOverhead 0.0 I/O bus transfer in ms
I=OBusBandwidth 24.0 Mbits/sec bandwidth I/O bus
LANOverhead 0.1 LAN transfer in ms
LANBandwidth 30.0 Mbits/sec bandwidth LAN

Table 4: Hardware parameter values and de�nitions.

Requests for a disk read arrive from the CPU (after
determining that they are cache misses). Each read
has a speci�ed length in bytes. The reads are queued
at the disk in a �rst-come-�rst-served (FCFS) manner.
Each request is �rst serviced by the disk by waiting an
initial SeekT ime milliseconds. The disk loads its track
bu�er at DiskBandwidth speed. When it �nishes, the
disk requests access to its I/O bus (only one disk at
a time may occupy the I/O bus). When the I/O bus
grants access both the I/O bus and disk are occupied for
the transfer at I=OBusBandwidth speed. If multiple
tracks must be loaded then the initial seek time is
extended by the needed track-to-track seeks (variable
TrackToTrack).

The LAN handles the transmission of subquery and
answer messages. Messages are serviced in a FCFS
manner (except for messages that have the same source
and destination - these are immediately returned to the
host, simulating software loop-back). Each subquery
has a length determined by SubqueryLength and each
answer has a length determined by AnswerEntry times
the number of postings in the answer. The service time
for each message is LANOverhead plus the time taken
to transmit the message at the given LANBandwidth.

Table 5 shows the parameters which a�ect the CPU
and the time taken to process a query. The overall
speed of a CPU is determined by the parameter
CPUSpeed. Varying this value proportionately varies
the rate at which instructions are executed. The number
of instructions needed to execute various stages of the
matching process are listed in the table. Note that the
multiprogramming level of the system is on a per host
bases.

Finally, Table 6 lists the variables used to determine
the size of the inverted lists. The variable EntrySize
determines the number of bits needed to record a
posting in an inverted list. The variable Compress
determines the reduction in bytes in the inverted list
due to compression.

To illustrate the use of the variables in Tables 5 and
6, consider a subquery which intersects two inverted
lists with 5 and 10 postings, respectively. The initial

Parameter Value Description
CPUSpeed 20 Relative speed in MIPS
Multiprogram 4 Multiprogramming per Host
QueryInstr 100000 Query start up CPU cost
SubqueryInstr 20000 Subquery start up CPU cost
SubqueryLength 1024 Base size of subquery message
FetchInstr 10000 Disk fetch start up CPU cost
InterInstr 20 Intersection CPU cost per byte

of a decompressed inverted list
Decompress 20 Decompression CPU cost per

byte of inverted list on disk

Table 5: Base case parameter values and de�nitions.

subquery CPU processing would be 60,000 instructions
(QueryInstr + 2 � FetchInstr) since each inverted
list read is charged a start-up cost of FetchInstr
instructions. The length of one list is 100 bits (postings�
EntrySize � Compress). The length of the other list
is 200 bits. The disk read length for both lists is
512 bytes (rounded up due to BlockSize). After the
disk data is fetched, only the bits in the actual lists
are used for subsequent computations. The number
of instructions to process the intersection combines the
costs of decompression and intersecting the lists. The
size of the uncompressed inverted lists is 600 bits or
75 bytes (postings � EntrySize). Then the number of
instructions for this part of the subquery processing is
2,250 (37:5 �Decompress + 75 � InterInstr).

The size of the inverted list cache in postings
is determined by the variable CacheSize which is
measured in number of postings. The policy for the
cache is least-recently-used. When an inverted list read
is a cache miss, it is read from disk and the number of
postings in the list is checked to determine if it will �t
in the cache. If the inverted list is smaller or equal in
size to cache, the cache removes (in a least recently used
fashion) enough inverted lists to make room for the new
list. The new list is then inserted in the cache. If the list
is larger than the cache, the list is not placed in cache
and no other lists are ushed. Both of these cases are
cache misses. When an inverted list is a cache hit, it is
moved to the end of the list of the least recently used
inverted lists. (Note that a possible improvement would
be to also cache the intermediate and �nal results from
the intersection computations.)

The number of bytes needed to represent a document
in an answer is given in AnswerEntry. The instructions
needed to concatenate the answers from the subqueries
is given by ConcatInstr. The number of documents
in the database is given by the variable Documents
and is equal to the number of abstracts in the INSPEC
database. Finally, the variable DatabaseScale permits
scaling of the database as described in Section 3.

Parameter Value Description
EntrySize 40 Bits to represent an inverted list

entry on disk (uncompressed)
Compress 0.5 Compression Ratio
CacheSize 0.0 Inverted list cache (in postings)
ConcatInstr 5 Concatenation CPU cost per

byte of an answer set
AnswerEntry 4 Bytes to represent an entry

in an answer set
Documents 1165059 Number of documents
DatabaseScale 1.0 Database scale factor

Table 6: Base case parameter values and de�nitions.

5 Result

In this section we present selected results of a set
of experiments performed by the simulation. Space
limitations prevent us from showing all the results.
In conducting these experiments sensitivity analysis of
all the variables in Section 4 were performed. An
experiment is the execution of the simulation for the
entire trace with a given con�guration. As an example
of this, Figure 4 shows the mean response time of
queries under the various index organizations as disk
seek time increases (the other simulation parameters
for this con�guration are given in Tables 3{6). The
left hand side of the graph models magnetic disks
and the right hand side models optical disks. The
graph shows that the disk index organization is most
sensitive (i.e., has the largest slope) to the change in
seek time, followed by the I/O bus, host, system and
prefetch index organizations, respectively. (The host
and system index organizations are identical because
the base con�guration has 1 host.) This ordering of the
index organizations is in decreasing number of inverted
lists reads done by each organization. For a given query,
the disk index organization does the largest number
of reads, followed by the I/O bus index organization,
etc. The increase in the number of reads leads to a
higher disk utilization and increased queuing delays at
every disk. We conclude that the seek time of the
disk dominates the cost of accessing an inverted list
as opposed to the bandwidth limitations of the I/O
subsystem. The host and system index organizations
perform identically in the base con�guration because
there is only 1 host in the base con�guration. The
prefetch I index organization performs slightly worse
than the host and system index organization because
the prefetch of an inverted list is performed sequentially
with respect to the processing of the remainder of the
query. This slightly decreases the amount of parallelism
in the processing of the query. (Recall that prefetch I
index organizations was designed to reduce LAN tra�c,
which is not an issue in a one host con�guration.)

In Figure 5 the e�ect of the rise in the multipro-

0

500

1000

1500

2000

2500

3000

0 20 40 60 80 100

q
u
e
r
y

r
e
s
p
o
n
s
e

t
i
m
e

(
m
s
)

disk seek time (ms)

disk
I/O bus

host & system
prefetch I

Figure 4: The sensitivity of response time to disk seek
time.

0

5

10

15

20

25

30

0 5 10 15 20 25 30 35

t
h
r
o
u
g
h
p
u
t

(
q
u
e
r
i
e
s

p
r
o
c
e
s
s
e
d
/
s
e
c
)

multiprogramming level (per host)

disk
I/O bus

host & system
prefetch I

Figure 5: The e�ect of the multiprogramming level on
throughput.

gramming level on the mean throughput of queries pro-
cessed is shown. The graphs shows that the disk and
I/O bus index organizations are relatively insensitive
to the change in the multiprogramming level. Other
collected data shows that these two organizations are
bottlenecked in the I/O subsystem. As the multipro-
gramming level rises, the same number of queries can
be processed per second, but each query takes longer
and longer. The host, system and prefetch I index or-
ganizations continue to improve across the range of the
multiprogramming level in the graph because the re-
sources are more evenly balanced. For a multiprogram-
ming level of 32, the response times for the disk, I/O
bus, host, system and prefetch I index organizations are
10.98 sec., 2.91 sec., 1.09 sec., 1.09 sec. and 1.09 sec., re-
spectively. Thus good response times are still available
on a heavily loaded system.
Intuitively, experiments which vary the value of one

variable in a con�guration examine the change in a

Experiment 0 1 2 3 4 5 6 7
BlockSize a a a a b b b b

DisksPerI/OBus 2 2 4 4 2 2 4 4
I/OBusesPerHost 2 4 2 4 2 4 2 4

Table 7: Enumeration of variable values. Value a is 512
B and b is 16 KB.

function along a single dimension. In some cases it
is necessary to change the value of multiple variables
in a systematic fashion in a 2k factor experiment [9].
For three variables, this can intuitively be viewed as
examining the values of a function at the corners
of a three-dimensional cube (each axis of the cube
corresponds to a variable).

To determine a reasonable base con�guration, some of
the values of the variables are provided by existing hard-
ware, but other variables such as DisksPerI=OBus
are less easily determined. We conducted a 2k fac-
tor experiment for k = 3 on the variables BlockSize,
I=OBusesPerHost and DisksPerI=OBus to deter-
mine the con�guration with the best response time. Ta-
ble 7 lists the enumeration of the values of the variables.

The result of this experiment is graphed in Figure 6.
The data points for each index organization have been
connected by lines to aid the reader in understanding
the graph. (Note that the a line connecting two points
may represent the changing of the values of several
variables.) We see that the left-hand half of the graph
(values 0-3) is the same shape as the right-hand half
(values 5-7). This means that BlockSize has little e�ect
on the response time, since it is the only variable to
change value when comparing the halves of the graph.
Next, examining each sequential pair of values (0,1),
(1,2) etc. shows an increase in the response time for
the disk and I/O bus index organizations. For each
pair the only variable to change is I=OBusesPerHost
which changes from 2 to 4. Thus, adding I/O buses (and
implicitly, disks) decreases the performance of these two
index organizations. However, the response time for
host, system, and prefetch organizations improve when
more I/O buses are added because the total resources of
the system are increased. From this graph we pick the
best combination of these variables for response time,
namely BlockSize of 512, DisksPerI=OBus of 4 and
I=OBusesPerHost of 4 as the value for these variables
in the base con�guration.

To study database scaling, we �rst maximize the size
of the database which can be e�ectively processed with
the base con�guration. We choose a 4 second mean
response time as the limit for an e�ective information
retrieval system. We scale the database on the base
con�guration (as described in Section 3) until the best
response time increases to the threshold of 4 seconds.

0

500

1000

1500

2000

2500

3000

0 1 2 3 4 5 6 7

q
u
e
r
y

r
e
s
p
o
n
s
e

t
i
m
e

(
m
s
)

blocksize (512, 16k), disks per i/o bus (2, 4), i/o buses per host (2, 4)

disk
I/O bus

host & system
prefetch I

Figure 6: A 2k factor experiment of three variables.

0

1000

2000

3000

4000

5000

6000

0 5 10 15 20 25

q
u
e
r
y

r
e
s
p
o
n
s
e

t
i
m
e

(
m
s
)

database scale

disk
I/O bus

host & system
prefetch I

Figure 7: Scaling the database up to a 4 second response
time for the best index organization.

This graph is shown in Figure 7. From this graph we
choose the value of 10.0 for the maximum scaling of the
database for a single host.
We now wish to observe the e�ectiveness of the system

as the number of hosts is increased. Increasing the
number of hosts also increases the total number of I/O
buses, disks, and queries (since the number of queries
in the entire system is determined by Multiprogram �

Hosts). In Figure 8 the increase in response time
is shown as the number of hosts is expanded. The
increase in response time is due to two factors. First,
the total load of the system is increasing in proportion
to the number of hosts. Second, as the number of
hosts increases the tra�c across the LAN increases. We
see this e�ect appear at 3 hosts where the prefetch
I index organization outperforms the system index
organization. Thus, the prefetch I organization scales
well as the number of hosts increase.
Given that the prefetch I organization does well as

the number of hosts increases, we can compare the

0

1000

2000

3000

4000

5000

6000

1 2 3 4 5 6 7 8

q
u
e
r
y

r
e
s
p
o
n
s
e

t
i
m
e

(
m
s
)

hosts, database scale (10.0)

disk
I/O bus

host
system

prefetch I

Figure 8: Increasing the number of hosts with a scaled
database.

Experiment 1 2 3
Hosts 1 2 4

I/OBusesPerHost 4 2 1
Multiprogramming 4 2 1

CPU Speed 1.0 0.5 0.25
Database Scale 10.0 10.0 10.0

Table 8: Enumeration of variable values for �xed
resources.

base con�guration of a single host to con�gurations
with more hosts but the same total resources in terms
of CPU speed, number of disks and I/O buses. This
is essentially the trade-o� between buying a single
large mainframe processor or several slower workstation
size processors. Table 8 shows a enumeration of
con�gurations which explore this trade-o� under a �xed
total system load. The main di�erence between a single
host and multiple hosts is that the fast CPU has been
replaced by several slower CPUs interconnected by a
LAN. Figure 9 shows that the best index organization
(prefetch I) has a response time of 3.44 sec., 3.59
sec., and 3.83 sec. for 1, 2 and 4 hosts respectively,
indicating about a half second loss in response time
when split among multiple hosts. Throughput for
the prefetch I index organization is 1.17 queries/sec.,
1.12 queries/sec., and 1.05 queries/sec. for 1, 2 and 4
hosts respectively. Thus a modest performance loss is
incurred by using the multiple host organization. The
results indicates that a \mainframe" is more e�ective,
but the small improvement has to be evaluated in light
of the potentially higher mainframe cost (compared to
workstations and a LAN).

Finally, we turn to the issue of caching and address
two simple questions. How rapidly does the cache hit
rate rise as the size of the cache increases? What is
the e�ect of the rising cache hit rate on performance?

0

1000

2000

3000

4000

5000

6000

1 1.5 2 2.5 3 3.5 4

q
u
e
r
y

r
e
s
p
o
n
s
e

t
i
m
e

(
m
s
)

hosts (fixed resources), database scale (10.0)

disk
I/O bus

host
system

prefetch I

Figure 9: The mainframe vs. workstation trade-o�.

Figure 10 shows the increase in the cache hit ratio
as the size of the cache increases for a four host
system (database scale 1.0). Since the total cache size
is the same regardless of the index organization, it
is suprising that the cache hit rates vary depending
on the organization. However, the behavior of the
caches under the various organizations is quite di�erent.
For the system and prefetch I index organizations an
inverted list is cached in only one place in the system.
Thus, there are e�ectively Hosts number of independent
caches. Also, suppose a list slightly larger in size than
the cache is read from disk. In the system and prefetch
I organization, the list does not �t in the cache and thus
the caches would remain unchanged. In the disk, I/O
bus, and host organizations, however, all four caches
would hold a list of quarter the size, requiring some
other lists to be removed from the cache. The �gure
shows that for the base con�guration even a small cache
has a good hit rate - achieving over 40% where the
maximum possible cache hit rate is about 56% (see
Table 2). The cache hit rates for the disk, I/O bus,
and host index organizations are the same since they
have the exact same access pattern.

6 Conclusion

Using queries from the INSPEC database on the FOLIO
system at Stanford University, we analyzed strategies
for distributing indexes across a set of processors and
for performing queries in parallel. Our main result is
that inverted lists referenced by queries in such systems
tend to be relatively short and it does not pay o� to split
them across hosts, much less across I/O subsystems or
disks. Either system index organization, or the system
index organization with the prefetch I optimization,
performs best over wide ranges of parameter values.
Prefetch I is especially good as the database size scales
up. However, the system organization does utilize the

0

0.2

0.4

0.6

0.8

1

0 200000 400000 600000 800000 1e+06 1.2e+06

c
a
c
h
e

h
i
t

r
a
t
i
o

cache size (postings), hosts (4)

disk & I/O bus & host
system

prefetch I

Figure 10: The improvement in the cache hit rate as the
cache grows in size.

LAN or processor interconnect more heavily, so it would
not be appropriate for systems with slow networks.
Our conclusion is di�erent from that of our earlier

work [14] where a full-text information retrieval system
was analyzed. In that case, inverted lists are much
longer, and striping them does pay o�. In particular,
the host organization was superior in that scenario.
In our experiments, we explored the \mainframes

vs. workstations" issue. That is, we took a speci�c
index distributed over a �xed number of disks and I/O
buses. Then we considered whether it would be best
to connect all these resources to a single fast processor,
or to connect them to n processors each of (1=n)th the
speed. The mainframe does achieve moderately higher
throughput, but the gains have to be evaluated in light
of the higher mainframe cost. In other words, one has
to take the throughput rates we report here, and divide
them by the dollar cost of each con�guration, to obtain
a query/sec/dollar measure, as is done in transaction
processing systems [8].
Our caching results indicate that a relatively small

cache can improve performance signi�cantly. For our
INSPEC database that has an index size of 308MB (129
million postings compressed) a cache of about 3.8 MB
(800,000 postings uncompressed), on the order of 1.2%
of the index, can improve throughput by about 136%
for the prefetch strategy [13] . For the other strategies,
improvements are smaller. Although not reported here,
we also experimented with various cache policies. For
example, in one case, lists above a given threshold
were not cached, even if they �t in the cache, on the
presumption that they would ush out too many useful
lists. However, we observed no signi�cant improvement
with this caching variation.
Finally, as stated in Section 2, we excluded from our

trace 26.7% of the queries. Many of these are wildcard
searches (e.g., searching for the keyword \recession*" to

cover words such as \recessionary" and \recessional".)
For each wildcard term, a number of inverted lists
have to be read. This e�ectively increases the system
load, as if simply more queries were run. Thus we
do not expect the relative performance of the index
organizations to change. As a matter of fact, the disk
and I/O bus organization may perform even worse due
to the increased disk tra�c. Furthermore, the system
organization can be tuned so that words with the same
pre�x hash to the same host (e.g., all inverted lists
for words that match \recess*" can be placed on the
same host), so that the wildcard search does not involve
sending additional lists over the LAN.

Acknowledgements: Thanks to Norman Roth who
gathered the raw trace and posting counts from FOLIO.
Ben Kao, Luis Gravano and the anonymous referees
provided several useful suggestions.

References
[1] F. J. Burkowski. Retrieval performance of a distributed

text database utilizing a parallel processor document server.
In Proceedings of the Second International Symposium on
Databases in Parallel and Distributed Systems, pages 71{79,
Dublin, Ireland, 1990.

[2] A. L. Chervenak. Performancemeasurements of the �rst raid
prototype. Technical Report UCB/UCD 90/574, University
of California, Berkeley, May 1990.

[3] J. K. Cringean, R. England, G. A. Manson, and P. Willett.
Parallel text searching in serial �les using a processor farm.
In SIGIR 1990, pages 429{453, 1990.

[4] S. DeFazio and J. Hull. Toward servicing textual database
transactions on symmetric shared memory multiprocessors.
In Proceedings of the International Workshop on High
Performance Transaction Systems, Asilomar, 1991.

[5] P. A. Emrath. Page Indexing for Textual Information
Retrieval Systems. PhD thesis, University of Illinois at
Urbana-Champaign, October 1983.

[6] C. Faloutsos. Access methods for text. ACM Computing
Surveys, 17:50{74, 1985.

[7] W. B. Frakes and R. Baeza-Yates. Information Retrieval:
Data Structures and Algorithms. Prentice-Hall, 1992.

[8] J. Gray and A. Reuter. Transaction Processing: Concepts
and Techniques. Morgan Kaufmann, 1993.

[9] R. Jain. The Art of Computer Systems Performance
Analysis. John Wiley and Sons, New York, 1991.

[10] B.-S. Jeong and E. Omiecinski. Inverted �le partitioning
schemes for a shared-everything multiprocessor. Technical
Report GIT-CC-92/39, Georgia Institute of Technology,
College of Computing, 1992.

[11] C. Stan�ll. Partitioned posting �les: A parallel inverted �le
structure for information retrieval. In ACM Special Interest
Group on Information Retrieval (SIGIR), 1990.

[12] H. S. Stone. Parallel querying of large databases: A case
study. IEEE Computer, pages 11{21, October 1987.

[13] A. Tomasic and H. Garcia-Molina. Caching and database
scaling in distributed shared-nothing information retrieval
systems. Technical Report STAN-CS-92-1456, Stanford
University, December 1992.

[14] A. Tomasic and H. Garcia-Molina. Performance of inverted
indices in shared-nothingdistributed text document informa-
tion retrieval systems. In Proceedings of the Second Interna-
tional Conference On Parallel and Distributed Information
Systems, San Diego, 1993.

