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ASE 12.0 Changes

» Parallel and Serial Sort/Merge Joins
» Smart Transformation of WHERE Clause Predicates 
» Improved Selectivity Estimation for LIKE Predicates
» Join transitive closure
» New Outer Join 

Syntax and Logic
» Abstract Query Plans
» Support for up to 50 

tables in a join clause
» Execute Immediate
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From Query Text to Query Results

» Pre-optimization
» Join Transitive Closure

» ANSI Compliant Outer Joins
» Predicate Transformation

» Optimization
» Improved costing of “%XXX” like clauses

» Abstract Query Plans

» Query Execution
» Sort-Merge Joins

» 50 table limit
» Execute Immediate

Query 
Text

Query Results

Work in progress

» In ASE 11.9.x the optimizer was re-
written:
» sysstatistics and systabstats replaced 

distribution pages and provided a 
much greater level of detail on data 
distribution across the table

» In the next release of ASE, the 
replacement for  the query execution 
engine will be fully implemented

» ASE 12.0 contains:
» first phase of the replacement of the 

query execution engine - providing 
new query execution possibilities

» increased intelligence in pre-
optimization processing of queries
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What do the icon’s mean??

» New method of calculating costs in when 
generating the query plan
» Typically due to additional information being 

made available from pre-optimization processing 
of the query

» Performance enhancement 
» Due to new query execution options that process 

the data more efficiently

» New query execution functionality
» New methods of Query Execution to provide 

increased efficiency in the way that data is accessed 
and reduce the number of I/O’s that are required

Does it all go faster?

» Whilst many of the changes have been implemented 
for performance reasons, some provide new 
functionality that could not be supported before

» Other changes made to ensure that Partner products 
are fully supported

» Some of the changes, when used, add to the time 
taken to optimize queries (maybe significantly). These 
are cases where Abstract Query Plans may provide 
additional benefits

» Intention is that nothing that is currently implemented 
should go slower
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From Query Text to Query Results

» Pre-optimization
» Join Transitive Closure

» ANSI Compliant Outer Joins
» Predicate Transformation

» Optimization
» Improved costing of “%XXX” like clauses

» Abstract Query Plans

» Query Execution
» Sort-Merge Joins

» 50 table limit
» Execute Immediate

Query 
Text

Query Results

Join Transitive Closure

» Provide the optimizer with additional join paths and, 
hopefully, faster plans.

» Example: 
» select A.a from A, B, C

where A.a = B.b and  B.b = C.c
» Adds “and A.a = C.c” to query
» Adds join orders BAC, BCA, ACB, CAB

» A new join order may be the cheapest
» SARG transitive closure added in ASE 11.5

» and guess what - it is still there!!!! 
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Join Transitive Closure

» Join Transitive Closure is not considered for:
» Non-equi-joins (A.a > B.b)
» Joins that include expressions (A.a = B.b + 1)
» Joins under an OR expression
» Outer Joins (A.a =* B.b)
» Joins in subqueries
» Joins used for view check or referential check constraints
» Joins between different type columns (eg, int = smallint)

ANSI Joins

» The Pre-ASE 12.0 outer join syntax (*=, =*) does not 
have clearly defined semantics

» ANSI SQL92 specifies a new join syntax with clearly 
defined semantics

» ASE 12.0 implements ANSI joins such that ALL outer 
joins (even those expressed in TSQL) have clearly 
defined semantics
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Example - Inner Joins

» TSQL Inner Join
» SELECT title, price FROM 

titles, salesdetail
WHERE 
titles.title_id =

salesdetail.title_id 
AND

titles.price > 22.0

» ANSI  Inner Join
» SELECT title, price FROM   

titles 
INNER JOIN salesdetail
ON 

titles.title_id = 
salesdetail.title_id 

AND
titles.price > 22.0

Example - Outer Joins

» TSQL Outer Join
» SELECT title, price FROM 

titles, salesdetail
WHERE 

titles.title_id *= 
salesdetail.title_id 

AND
titles.price > 22.0

» ANSI  Outer Join
» SELECT title, price FROM 

titles LEFT OUTER JOIN 
salesdetail

ON 
titles.title_id = 

salesdetail.title_id 
WHERE

titles.price > 22.0
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ANSI Join Terminology

» Left and right outer joins
» In a left join, the outer table and inner table are the left and

right tables, respectively  
» The outer table and inner table are also referred to as the 

row-preserving and null-supplying tables, respectively
» In a right join, the outer table and inner table are the right 

and left tables, respectively

» In both of the following, T2 is the inner table
» T1 left join T2
» T2 right join T1

Nested Joins

» The left or right member of an ANSI join can be another 
ANSI join
» Order of evaluation is determined by the position of ON clause

» select * from tname left join taddress
ON tname.empid = taddress.empid
left join temployee

ON taddress.deptid = temployee.deptid
» select * from tname left join taddress left join temployee

ON taddress.deptid = temployee.deptid
ON tname.empid = taddress.empid

» Parentheses only improve readability  - they do not affect the 
order the join statements are evaluated in
» select * from (tname left join taddress

ON tname.empid = taddress.empid) 
left join temployee

ON taddress.deptid = temployee.deptid
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» The ON clause condition can reference columns from:
» Table references directly introduced in the joined table itself
» Table references that are contained in the ANSI join
» Tables introduced in outer query blocks (i.e. - the ANSI outer 

join appears in a subquery).

» The ON clause condition cannot reference:
» Tables introduced in a containing outer join
» Comma separated tables or joined tables in the from-list

» Example - the following is not allowed:
» select * from (titles left join titleauthor

on titles.title_id=roysched.title_id) 
left join roysched
on titleauthor.title_id=roysched.title_id 
where titles.title_id != “PS7777”

Name Scoping Rules

Ambiguous TSQL Outer Joins 
(Continued)

» In ASE 12.0, TSQL outer joins are converted to ANSI joins
» For example, the TSQL query:

» select * from T1, T2, T3 
where T1.id *= T2.id 
and (T1.id = T3.id)
and (T2.empno = 100 or T3.dept = 6)

» is transformed internally to:
» select * from T1 left join T2 

on T1.id = T2.id, T3
where T1.id = T3.id
and (T2.empno = 100 or T3.dept=6)

» Query has same possible join orders as in pre-ASE12.0, but the 
OR clause will always be evaluated with WHERE clause
» In ASE 12.0, an inner table can evaluate both ON and 

WHERE clause predicates
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Views & Outer Joins

» Prior to 12.0, views containing outer joins and views 
referenced in outer join queries might not be merged.
» Example:

» create view VOJ1 as 
select o.c1, i.b1 from t3 o, t2 i 
where o.c1 *= i.b1 

select * from t4, VOJ1 
where t4.d1 = VOJ1.c1 

and (VOJ1.b1 = 77 or VOJ1.b1 IS NULL)

» In 12.0, these types of queries can now be merged.
» Better Performance

» More join orders and indexing strategies possible.

Predicate Transformation

» Significant performance improvement in queries with 
limited access paths (i.e. very few possible 
SARGS/Joins/OR’s that can be used to qualify rows 
in a table)

» Additional optimization achieved by generating new 
search paths based on
» join conditions
» search clauses
» optimizable OR clauses

» Full cartesian joins are avoided for some of the 
complex queries.
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Example

» Example query:
» select * from  lineitem, part 

where (p_partkey = l_partkey and   l_quantity >= 10)
or (p_partkey = l_partkey and   l_quantity <= 20)

» Above query is transformed to the following:
» select * from lineitem, part

where ((p_partkey = l_partkey and  l_quantity >= 10)
or (p_partkey = l_partkey and l_quantity <= 20) )
and  (p_partkey = l_partkey)
and  (l_quantity >= 10  or   l_quantity <= 20)

Predicate Transformation Internals

» New processing phase introduced in the compiler
» just before the start of the optimizer
» in the ‘decision’ module

» The main driver routine performs the following:
» identifies whether a set of disjuncts(*) (minimum 2) are 

present at the top level of a query or part of a single AND 
statement 

» for each set of disjuncts(*), the predicates within it are 
classified into join, search and OR clauses

» data structures are set up to point to the relevant predicates 
which are later factored out
» (*) disjuncts - clauses on either side of an OR statement
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Predicate Transformation Internals

» New conjuncts(*) are created by suitable transformation 
of the collected predicates

» These conjuncts (*) are then added at the top level to the 
original search_condition

» Compilation is suppressed for
» any new conjunct(*), added by predicate factoring and 

transformation, which does not get selected as an access path 
(by optimizer)
» (*) conjuncts - clauses separated by AND statements, 

typically SARG and Join clauses 

From Query Text to Query Results

» Pre-optimization
» Join Transitive Closure

» ANSI Compliant Outer Joins
» Predicate Transformation

» Optimization
» Improved costing of “%XXX” like clauses

» Abstract Query Plans

» Query Execution
» Sort-Merge Joins

» 50 table limit
» Execute Immediate

Query 
Text

Query Results
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LIKE

» Change to costing for LIKE clauses that are not 
migrated into SARG’s

» Provides better row estimates, resulting in better 
query plans.

» Example
» select … from part, partsupp, lineitem

where l_partkey = p_partkey
and l_partkey = ps_partkey
and p_title = ‘%Topographic%’

**

Better Selectivity Estimates For Like 
Clauses

» New scheme to improve selectivity and qualifying row 
estimate
» The LIKE string is compared with histogram cell boundaries 
» For every match, weight of the cell is added to selectivity 

estimates
» If there are matches

» The total of selectivity estimates * the number of rows in the 
table = estimated qualifying rows

» If there are no matches
» Estimated as 1 / # of cells in the histogram

» This also applies  queries with LIKE  clauses of the type 
» like “_abc”, or like “[ ]abc”
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Abstract Query Plans

» What could go wrong with the Optimizer?
» Statistics may not apply to the data that is now in the table
» The query plan used for a stored procedure may not be 

applicable to the query at hand
» The buffer cache model and the actual buffer cache usage at 

run time could differ
» These issues are caused by:

» Modeling for a different data skew
» Modeling for a different usage skew
» Data distribution unknown at development time, e.g.:

» Densities
» Magic numbers
» What average for the density

Can Better Be Worse Than Good?

» What happens to the installed base when the 
optimizer is enhanced?
» Most find it better
» Some find it worse…

» One solution to all these problems would be to 
implement rules based optimization. However: 
» Rule based decisions could be sub-optimal as they require the 

developer to have a knowledge of the eventual data layout
» Developers very often have very little knowledge of how to 

write efficient query plans
» The overhead on development of using Rules Based 

Optimization is massive
» The assumed heuristics are not always right
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Curing Unexpected Behavior

» What are the options for improving the optimizer and 
getting rid of unexpected behavior?
» Implementing a better and more dynamic cost model
» Implementing some form of extremely flexible rules based 

optimization
» Allowing good query plans to be captured and re-used  

Abstract Query Plans

» An abstract query plan is a persistent, human readable 
description of a query plan, that’s associated to a SQL 
statement  

» It is not syntactically part of the statement
» The description language is a relational algebra
» Possible to specify only a partial plan, where the 

optimizer completes the plan generation
» Stored in a system catalog sysqueryplans
» Persistent across:

» connections
» Server versions (i.e. upgrades)
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Where will AQP’s be used?

» Application providers don’t want to include vendor 
specific syntax in their queries

» In general, users don’t want to modify a production 
application to solve an upgrade optimizer problem

» Still, it’s possible to include them if so desired
» Example:

» select c1 from t1 where c2 = 0 
plan ‘(I_scan () t1)’

How are the plans created?

» Abstract query plans are captured and reused: 
» set plan dump ‘new_plans_group’ on
» set plan load ‘new_plans_group’

» When the capture mode is enabled, all queries are 
stored, together with their generated abstract query 
plan, in SYSQUERYPLANS

» Abstract query plan administration commands are 
available, allowing to create, delete or modify 
individual plans and groups
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What Do Abstract Plans Look Like?

» Full plan examples:
» select * from t1 where c=0      (i_scan c_index t1)

» Instructs the optimizer to 
» perform an index scan on table t1 using the c_index

index.
» select * from t1, t2 where (nl_g_join 

t1.c = t2.c and t1.c = 0 (i_scan i1 t1) (i_scan i2 t2) )
» Instructs the optimizer to:

» perform a nested loop join with table t1 outer to  t2 
» perform an index scan on table t1 using the i1 index
» perform an index scan on table t2 using the i2 index

What Do Abstract Plans Look Like? 
(Continued)

» Partial plan examples:
» select * from t1 where c=0 (i_scan t1)

» Instructs the optimizer to 
» perform an index scan on t1.

» select * from t1, t2 where (t_scan t2) 
t1.c = t2.c and t1.c = 0

» Instructs the optimizer to 
» access t2 via a table scan.

» select  c11 from t1, t2 (prop t1 (parallel 1))
where t1.c12 = t2.c21

» Instructs the optimizer not to access t1 in parallel. 
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From Query Text to Query Results

» Pre-optimization
» Join Transitive Closure

» ANSI Compliant Outer Joins
» Predicate Transformation

» Optimization
» Improved costing of “%XXX” like clauses

» Abstract Query Plans

» Query Execution
» Sort-Merge Joins

» 50 table limit
» Execute Immediate

Query 
Text

Query Results

Why sort-merge joins ?

» Ordered joins provide clustered access to joining rows; 
result in less logical and physical I/Os.

» Can exploit indexes that pre-order rows on joining 
columns.

» Sort Merge Join Algorithm - Often Better Performance 
for DW/DSS Queries Than Nested Loop Join of ASE 
Today
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Example

Part
Clustered on 

p_partkey
Partsupp

Clustered on
ps_partkey

Lineitem
Clustered on l_orderkey

Part
Clustered on 

p_partkey
Partsupp

Clustered on
ps_partkey Lineitem

Sorted on l_partkey

select … from part, partsupp, lineitem
where p_partkey = ps_partkey
and ps_partkey = l_partkey
and ps_orderkey = l_orderkey
and p_type = ‘CD’

Unsorted Access
to innermost table

Sorted Access
to innermost table
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Merge Joins in ASE 12.0

» The type of Merge Join selected depends on the join 
keys and available indexes
» Merge Joins in ASE 12.0 are broken into four distinct types:

» Full Merge Join 
» Left Merge Join 
» Right Merge Join
» Sort Merge Join

» There are actually eight Merge Joins possibilities since each 
one of the above Merge Join types can also be done in parallel

MJ

Table R Table S

One step process

Scan the indexes on the join keys for
both tables and merge the results 

Full Merge Join
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Full Merge Join

» Both tables to be joined have useful indexes on the join 
keys
» No sorting is needed
» The tables can be easily merged by following the indexes

» The index guarantees that the data can be accessed in a 
sorted manner by following the index leaf

» Full Merge Joins are only possible for the outermost pair of 
tables in the join order
» Thus, if the join order is {R,S,T,U}, only R and S can be 

joined via a Full Merge Join

LMJ

Table R WorktableTable S

Worktable

Sort

Step 1 Step 2

Create and populate
the worktable

Sort the worktable and merge 
with the outer (left) table

Left Merge Join
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Left Merge Join

» The table the Optimizer has chosen to be the inner 
does not have a useful index on the join column
» The inner (right) table must be first sorted into a worktable
» A useful index with the necessary ordering from the left 

(outer) side is used to perform the merge join
» Left Merge Joins are only possible for the outermost pair of 

tables in the join order
» Thus, if the join order is {R,S,T,U}, only R and S can be 

joined via a Left Merge Join

RMJ

Worktable Table STable R

Worktable

Sort

Step 1 Step 2

Create and populate
the worktable

Sort the worktable and merge 
with the inner (right) table

Right Merge Join
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Right Merge Join

» The table the Optimizer has chosen to be the outer 
does not have a useful index on the join column
» The outer (left) table must be first sorted into a worktable
» A useful index with the necessary ordering from the right 

(inner) side is used to perform the merge join

SMJ

Worktable1 Worktable2Table S

Worktable2

Sort

Step 2 Step 3

Sort

Table R

Worktable1

Step 1

Create and populate
the worktables

Sort the worktables and 
merge the results

Sort-Merge Join



Enterprise Systems' Group. 10/20/2003

Copyright 1998-1999, Sybase, Inc. - Do Not Copy Or 
Distribute 23

Sort-Merge Join

» Neither table has an index on the join column, or the 
Optimizer’s costing algorithm has determined (based 
upon its cost calculation) that it is cheaper to 
“reformat”
» This involves the base table being read into a worktable 

which is created with the required indexes
» This method is chosen for Merge Joins when a useful 

index is not available
» The worktable is then sorted 
» Subsequent joins are to the worktable, not the base table

» In the case of a Sort-Merge join, the Optimizer has 
determined that the base tables must both be sorted 
into worktables and then merged

Cost Model

» Historically, the costing for join selection set is:
» # of pgs for retrieval of a row from the inner table * number 

of qualifying rows in the outer table 

» For sort merge join the Logical I/O cost is estimated as 
below :
» outer_lio = cost of scanning outer table
» inner_lio = # duplicates in outer * 

( join selection set + index height ) +
( # unique values in outer * (join selection set) )
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Restrictions on Sort/Merge Joins

» Merge Join not selected for the following cases
» Subqueries (not outer query block)
» Update statements
» Outer Joins
» Referential Integrity
» Remote Tables
» Cursor statements

50 Table Limit

» Number of user tables in a query has been increased to 
make it possible for users to run queries with a large 
number of non-flattened subqueries.

» Increase maximum number of non-RI tables per query
» from 16 user tables and 12 work tables

» to 50 user tables and 14 work tables

» Not designed for 50 tables in the “from . . . . “ clause
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Are you nesting loops 50 deep?

» In one respect the answer is yes, but this functionality 
is not designed to be used this way

» Sort-merge will provide major performance 
improvements if you are

» Short circuiting means that the number of tables 
actually accessed is reduced in most cases

» Additional tables require configuration of auxiliary 
scan descriptors 
» previously these were only used for RI
» now extended to support additional tables when more than 

16 are accessed

50 Table Limit

» What did not change?
» Pre-allocated scan descriptors per process (16 non-RI user, 12 

non-RI work, 20 system, 0 RI)
» Maximum subqueries per query (16)
» Maximum RI tables per query (192 RI user and 192 RI work)
» Maximum user tables under all sides of a UNION (256)
» Default “number of aux scan descriptors” per server (200)
» Default number of tables considered at a time for 2 to 25 

joining tables (4)
» Note: for 25 - 37 and 38 - 50 tables this number decreases
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50 Table Limit

» What else changed?
» Maximum auxiliary scan descriptors per process increased 

from 384 to 454 (192 RI user + 192 RI work + 34 non-RI user + 
2 non-RI work + 34 system)

» Default number of tables considered at a time by the 
optimizer when generating the query plan decreased to 3 for 
26 to 37 joining tables, 2 for 38 to 50 joining tables

» If you use set tablecount to change the number of tables 
considered, set tablecount 0 will reset it to the above 
behavior. 

Execute Immediate

» Execute Immediate command is formed by 
materialising the command string.

» The command string is materialised by concatenating 
the “string literals” and the values of the variables”

» The variables can be filled at runtime as seen in the 
examples above.

» Syntax 
» exec ( {str_constant | str_var } [+ {str_constant | str_var }] ... )
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Enables variable syntax if required

» Can be used:
» inside procedures to query tables and columns specified as 

arguments to the procedure.
» in ISQL scripts, where a batch queries tables or columns from 

the database and then constructs a query on the fly using 
those table and column names.

» Example
» declare @tabname char(100)

select @tabname = b.authortable
from books b
where b.publisher = ‘randomhouse’
exec ( “ select authors from “ + @tabname )

Static and Dynamic Context

» Static Context :-
» The context in which queries outside of execute immediate 

but within the same batch are executed.

» Dynamic context :-
» The context in which queries enclosed in an execute 

immediate command are executed.
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Static and Dynamic Context
(continued)

» Objects created in static scope can be referenced in 
dynamic scope.

» create table tab1
exec ( “select * from tab1”)

» Objects created in dynamic scope cannot be referenced 
in static scope.

» exec (“ create table tab1 “ )
select * from tab1

» Objects created in dynamic scope can be referenced in 
subsequent dynamic scope.

» exec ( “ create table tab1 “ )
exec ( “ select * from tab1 “ )

Security Issues

» Security is paramount, therefore permission checking 
is

» Example
» as user1

» create proc p1
@anyquery char(255)

as
<do a pile of stuff>
exec ( @anyquery )

go
» as user2

» p1 “ select * from tab1” 
go

» user2 will get an error if user2 does not have 
permissions on tab1



Enterprise Systems' Group. 10/20/2003

Copyright 1998-1999, Sybase, Inc. - Do Not Copy Or 
Distribute 29

Restrictions

» Only char and varchar variables can be used in the 
command string.

» Certain commands are disallowed :-
» transaction commands (begin, end, abort)
» database connection commands (use, connect)
» set commands 
» dbcc commands

» Execute immediate is not reentrant.

Where/how it cannot be used?

» White spaces are not automatically added into the 
string formed by concatenation.
» exec ( “select” + “*” + “from” + “tab1” ) 

looks like “select*fromtab1”

» It does not replace select command :-
» insert into t exec (“ select * from tab1 “)

» Within a quoted string, references to variables 
declared in the static scope are not allowed.
» create proc p @tab char(30), @col char(30), @res int

as
exec ( “select @res “ + “ from “ + “ @tab “)
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Where it cannot be used? 
(continued)

» Cursor, Temp table visibility :-
» In current implementation, cursors, temporary tables and 

variables are bound to the proc_hdr.
» Execute Immediate creates a new proc_hdr to execute the 

commands and destroys the proc_hdr on completion.
» Cursors, temporary tables are not carried over from the 

dynamic context to the static context.

From Query Text to Query Results

» Pre-optimization
» Join Transitive Closure

» ANSI Compliant Outer Joins
» Predicate Transformation

» Optimization
» Improved costing of “%XXX” like clauses

» Abstract Query Plans

» Query Execution
» Sort-Merge Joins

» 50 table limit
» Execute Immediate

Query 
Text

Query Results
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Summary

» Pre-optimisation
» Intelligent and improved pre-processing of queries provides 

the optimizer with more options in the production of the 
optimal query plan

» Optimization
» Increased use of existing statistics
» Uncertainty over Query Plan changes when ASE is upgraded 

or when new implementation performed no longer occurs

» Query Execution
» New, more efficient, join strategies available
» Much more complex SQL supported
» “On the fly” SQL now possible
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