
Enterprise Systems' Group. 10/20/2003

Copyright 1998-1999, Sybase, Inc. - Do Not Copy Or
Distribute 1

Session No. DM131
New Optimizer and Query
Execution Options in Adaptive
Server Enterprise 12.0

Session No. DM131
New Optimizer and Query
Execution Options in Adaptive
Server Enterprise 12.0

Eric Miner
Development Engineer
ESD
Eric.Miner@sybase.com

Ian Smart
Senior Evangelist
ESD
Ian.Smart@sybase.com

ASE 12.0 Changes

» Parallel and Serial Sort/Merge Joins
» Smart Transformation of WHERE Clause Predicates
» Improved Selectivity Estimation for LIKE Predicates
» Join transitive closure
» New Outer Join

Syntax and Logic
» Abstract Query Plans
» Support for up to 50

tables in a join clause
» Execute Immediate

Enterprise Systems' Group. 10/20/2003

Copyright 1998-1999, Sybase, Inc. - Do Not Copy Or
Distribute 2

From Query Text to Query Results

» Pre-optimization
» Join Transitive Closure

» ANSI Compliant Outer Joins
» Predicate Transformation

» Optimization
» Improved costing of “%XXX” like clauses

» Abstract Query Plans

» Query Execution
» Sort-Merge Joins

» 50 table limit
» Execute Immediate

Query
Text

Query Results

Work in progress

» In ASE 11.9.x the optimizer was re-
written:
» sysstatistics and systabstats replaced

distribution pages and provided a
much greater level of detail on data
distribution across the table

» In the next release of ASE, the
replacement for the query execution
engine will be fully implemented

» ASE 12.0 contains:
» first phase of the replacement of the

query execution engine - providing
new query execution possibilities

» increased intelligence in pre-
optimization processing of queries

Enterprise Systems' Group. 10/20/2003

Copyright 1998-1999, Sybase, Inc. - Do Not Copy Or
Distribute 3

What do the icon’s mean??

» New method of calculating costs in when
generating the query plan
» Typically due to additional information being

made available from pre-optimization processing
of the query

» Performance enhancement
» Due to new query execution options that process

the data more efficiently

» New query execution functionality
» New methods of Query Execution to provide

increased efficiency in the way that data is accessed
and reduce the number of I/O’s that are required

Does it all go faster?

» Whilst many of the changes have been implemented
for performance reasons, some provide new
functionality that could not be supported before

» Other changes made to ensure that Partner products
are fully supported

» Some of the changes, when used, add to the time
taken to optimize queries (maybe significantly). These
are cases where Abstract Query Plans may provide
additional benefits

» Intention is that nothing that is currently implemented
should go slower

Enterprise Systems' Group. 10/20/2003

Copyright 1998-1999, Sybase, Inc. - Do Not Copy Or
Distribute 4

From Query Text to Query Results

» Pre-optimization
» Join Transitive Closure

» ANSI Compliant Outer Joins
» Predicate Transformation

» Optimization
» Improved costing of “%XXX” like clauses

» Abstract Query Plans

» Query Execution
» Sort-Merge Joins

» 50 table limit
» Execute Immediate

Query
Text

Query Results

Join Transitive Closure

» Provide the optimizer with additional join paths and,
hopefully, faster plans.

» Example:
» select A.a from A, B, C

where A.a = B.b and B.b = C.c
» Adds “and A.a = C.c” to query
» Adds join orders BAC, BCA, ACB, CAB

» A new join order may be the cheapest
» SARG transitive closure added in ASE 11.5

» and guess what - it is still there!!!!

Enterprise Systems' Group. 10/20/2003

Copyright 1998-1999, Sybase, Inc. - Do Not Copy Or
Distribute 5

Join Transitive Closure

» Join Transitive Closure is not considered for:
» Non-equi-joins (A.a > B.b)
» Joins that include expressions (A.a = B.b + 1)
» Joins under an OR expression
» Outer Joins (A.a =* B.b)
» Joins in subqueries
» Joins used for view check or referential check constraints
» Joins between different type columns (eg, int = smallint)

ANSI Joins

» The Pre-ASE 12.0 outer join syntax (*=, =*) does not
have clearly defined semantics

» ANSI SQL92 specifies a new join syntax with clearly
defined semantics

» ASE 12.0 implements ANSI joins such that ALL outer
joins (even those expressed in TSQL) have clearly
defined semantics

Enterprise Systems' Group. 10/20/2003

Copyright 1998-1999, Sybase, Inc. - Do Not Copy Or
Distribute 6

Example - Inner Joins

» TSQL Inner Join
» SELECT title, price FROM

titles, salesdetail
WHERE
titles.title_id =

salesdetail.title_id
AND

titles.price > 22.0

» ANSI Inner Join
» SELECT title, price FROM

titles
INNER JOIN salesdetail
ON

titles.title_id =
salesdetail.title_id

AND
titles.price > 22.0

Example - Outer Joins

» TSQL Outer Join
» SELECT title, price FROM

titles, salesdetail
WHERE

titles.title_id *=
salesdetail.title_id

AND
titles.price > 22.0

» ANSI Outer Join
» SELECT title, price FROM

titles LEFT OUTER JOIN
salesdetail

ON
titles.title_id =

salesdetail.title_id
WHERE

titles.price > 22.0

Enterprise Systems' Group. 10/20/2003

Copyright 1998-1999, Sybase, Inc. - Do Not Copy Or
Distribute 7

ANSI Join Terminology

» Left and right outer joins
» In a left join, the outer table and inner table are the left and

right tables, respectively
» The outer table and inner table are also referred to as the

row-preserving and null-supplying tables, respectively
» In a right join, the outer table and inner table are the right

and left tables, respectively

» In both of the following, T2 is the inner table
» T1 left join T2
» T2 right join T1

Nested Joins

» The left or right member of an ANSI join can be another
ANSI join
» Order of evaluation is determined by the position of ON clause

» select * from tname left join taddress
ON tname.empid = taddress.empid
left join temployee

ON taddress.deptid = temployee.deptid
» select * from tname left join taddress left join temployee

ON taddress.deptid = temployee.deptid
ON tname.empid = taddress.empid

» Parentheses only improve readability - they do not affect the
order the join statements are evaluated in
» select * from (tname left join taddress

ON tname.empid = taddress.empid)
left join temployee

ON taddress.deptid = temployee.deptid

Enterprise Systems' Group. 10/20/2003

Copyright 1998-1999, Sybase, Inc. - Do Not Copy Or
Distribute 8

» The ON clause condition can reference columns from:
» Table references directly introduced in the joined table itself
» Table references that are contained in the ANSI join
» Tables introduced in outer query blocks (i.e. - the ANSI outer

join appears in a subquery).

» The ON clause condition cannot reference:
» Tables introduced in a containing outer join
» Comma separated tables or joined tables in the from-list

» Example - the following is not allowed:
» select * from (titles left join titleauthor

on titles.title_id=roysched.title_id)
left join roysched
on titleauthor.title_id=roysched.title_id
where titles.title_id != “PS7777”

Name Scoping Rules

Ambiguous TSQL Outer Joins
(Continued)

» In ASE 12.0, TSQL outer joins are converted to ANSI joins
» For example, the TSQL query:

» select * from T1, T2, T3
where T1.id *= T2.id
and (T1.id = T3.id)
and (T2.empno = 100 or T3.dept = 6)

» is transformed internally to:
» select * from T1 left join T2

on T1.id = T2.id, T3
where T1.id = T3.id
and (T2.empno = 100 or T3.dept=6)

» Query has same possible join orders as in pre-ASE12.0, but the
OR clause will always be evaluated with WHERE clause
» In ASE 12.0, an inner table can evaluate both ON and

WHERE clause predicates

Enterprise Systems' Group. 10/20/2003

Copyright 1998-1999, Sybase, Inc. - Do Not Copy Or
Distribute 9

Views & Outer Joins

» Prior to 12.0, views containing outer joins and views
referenced in outer join queries might not be merged.
» Example:

» create view VOJ1 as
select o.c1, i.b1 from t3 o, t2 i
where o.c1 *= i.b1

select * from t4, VOJ1
where t4.d1 = VOJ1.c1

and (VOJ1.b1 = 77 or VOJ1.b1 IS NULL)

» In 12.0, these types of queries can now be merged.
» Better Performance

» More join orders and indexing strategies possible.

Predicate Transformation

» Significant performance improvement in queries with
limited access paths (i.e. very few possible
SARGS/Joins/OR’s that can be used to qualify rows
in a table)

» Additional optimization achieved by generating new
search paths based on
» join conditions
» search clauses
» optimizable OR clauses

» Full cartesian joins are avoided for some of the
complex queries.

Enterprise Systems' Group. 10/20/2003

Copyright 1998-1999, Sybase, Inc. - Do Not Copy Or
Distribute 10

Example

» Example query:
» select * from lineitem, part

where (p_partkey = l_partkey and l_quantity >= 10)
or (p_partkey = l_partkey and l_quantity <= 20)

» Above query is transformed to the following:
» select * from lineitem, part

where ((p_partkey = l_partkey and l_quantity >= 10)
or (p_partkey = l_partkey and l_quantity <= 20))
and (p_partkey = l_partkey)
and (l_quantity >= 10 or l_quantity <= 20)

Predicate Transformation Internals

» New processing phase introduced in the compiler
» just before the start of the optimizer
» in the ‘decision’ module

» The main driver routine performs the following:
» identifies whether a set of disjuncts(*) (minimum 2) are

present at the top level of a query or part of a single AND
statement

» for each set of disjuncts(*), the predicates within it are
classified into join, search and OR clauses

» data structures are set up to point to the relevant predicates
which are later factored out
» (*) disjuncts - clauses on either side of an OR statement

Enterprise Systems' Group. 10/20/2003

Copyright 1998-1999, Sybase, Inc. - Do Not Copy Or
Distribute 11

Predicate Transformation Internals

» New conjuncts(*) are created by suitable transformation
of the collected predicates

» These conjuncts (*) are then added at the top level to the
original search_condition

» Compilation is suppressed for
» any new conjunct(*), added by predicate factoring and

transformation, which does not get selected as an access path
(by optimizer)
» (*) conjuncts - clauses separated by AND statements,

typically SARG and Join clauses

From Query Text to Query Results

» Pre-optimization
» Join Transitive Closure

» ANSI Compliant Outer Joins
» Predicate Transformation

» Optimization
» Improved costing of “%XXX” like clauses

» Abstract Query Plans

» Query Execution
» Sort-Merge Joins

» 50 table limit
» Execute Immediate

Query
Text

Query Results

Enterprise Systems' Group. 10/20/2003

Copyright 1998-1999, Sybase, Inc. - Do Not Copy Or
Distribute 12

LIKE

» Change to costing for LIKE clauses that are not
migrated into SARG’s

» Provides better row estimates, resulting in better
query plans.

» Example
» select … from part, partsupp, lineitem

where l_partkey = p_partkey
and l_partkey = ps_partkey
and p_title = ‘%Topographic%’

**

Better Selectivity Estimates For Like
Clauses

» New scheme to improve selectivity and qualifying row
estimate
» The LIKE string is compared with histogram cell boundaries
» For every match, weight of the cell is added to selectivity

estimates
» If there are matches

» The total of selectivity estimates * the number of rows in the
table = estimated qualifying rows

» If there are no matches
» Estimated as 1 / # of cells in the histogram

» This also applies queries with LIKE clauses of the type
» like “_abc”, or like “[]abc”

Enterprise Systems' Group. 10/20/2003

Copyright 1998-1999, Sybase, Inc. - Do Not Copy Or
Distribute 13

Abstract Query Plans

» What could go wrong with the Optimizer?
» Statistics may not apply to the data that is now in the table
» The query plan used for a stored procedure may not be

applicable to the query at hand
» The buffer cache model and the actual buffer cache usage at

run time could differ
» These issues are caused by:

» Modeling for a different data skew
» Modeling for a different usage skew
» Data distribution unknown at development time, e.g.:

» Densities
» Magic numbers
» What average for the density

Can Better Be Worse Than Good?

» What happens to the installed base when the
optimizer is enhanced?
» Most find it better
» Some find it worse…

» One solution to all these problems would be to
implement rules based optimization. However:
» Rule based decisions could be sub-optimal as they require the

developer to have a knowledge of the eventual data layout
» Developers very often have very little knowledge of how to

write efficient query plans
» The overhead on development of using Rules Based

Optimization is massive
» The assumed heuristics are not always right

Enterprise Systems' Group. 10/20/2003

Copyright 1998-1999, Sybase, Inc. - Do Not Copy Or
Distribute 14

Curing Unexpected Behavior

» What are the options for improving the optimizer and
getting rid of unexpected behavior?
» Implementing a better and more dynamic cost model
» Implementing some form of extremely flexible rules based

optimization
» Allowing good query plans to be captured and re-used

Abstract Query Plans

» An abstract query plan is a persistent, human readable
description of a query plan, that’s associated to a SQL
statement

» It is not syntactically part of the statement
» The description language is a relational algebra
» Possible to specify only a partial plan, where the

optimizer completes the plan generation
» Stored in a system catalog sysqueryplans
» Persistent across:

» connections
» Server versions (i.e. upgrades)

Enterprise Systems' Group. 10/20/2003

Copyright 1998-1999, Sybase, Inc. - Do Not Copy Or
Distribute 15

Where will AQP’s be used?

» Application providers don’t want to include vendor
specific syntax in their queries

» In general, users don’t want to modify a production
application to solve an upgrade optimizer problem

» Still, it’s possible to include them if so desired
» Example:

» select c1 from t1 where c2 = 0
plan ‘(I_scan () t1)’

How are the plans created?

» Abstract query plans are captured and reused:
» set plan dump ‘new_plans_group’ on
» set plan load ‘new_plans_group’

» When the capture mode is enabled, all queries are
stored, together with their generated abstract query
plan, in SYSQUERYPLANS

» Abstract query plan administration commands are
available, allowing to create, delete or modify
individual plans and groups

Enterprise Systems' Group. 10/20/2003

Copyright 1998-1999, Sybase, Inc. - Do Not Copy Or
Distribute 16

What Do Abstract Plans Look Like?

» Full plan examples:
» select * from t1 where c=0 (i_scan c_index t1)

» Instructs the optimizer to
» perform an index scan on table t1 using the c_index

index.
» select * from t1, t2 where (nl_g_join

t1.c = t2.c and t1.c = 0 (i_scan i1 t1) (i_scan i2 t2))
» Instructs the optimizer to:

» perform a nested loop join with table t1 outer to t2
» perform an index scan on table t1 using the i1 index
» perform an index scan on table t2 using the i2 index

What Do Abstract Plans Look Like?
(Continued)

» Partial plan examples:
» select * from t1 where c=0 (i_scan t1)

» Instructs the optimizer to
» perform an index scan on t1.

» select * from t1, t2 where (t_scan t2)
t1.c = t2.c and t1.c = 0

» Instructs the optimizer to
» access t2 via a table scan.

» select c11 from t1, t2 (prop t1 (parallel 1))
where t1.c12 = t2.c21

» Instructs the optimizer not to access t1 in parallel.

Enterprise Systems' Group. 10/20/2003

Copyright 1998-1999, Sybase, Inc. - Do Not Copy Or
Distribute 17

From Query Text to Query Results

» Pre-optimization
» Join Transitive Closure

» ANSI Compliant Outer Joins
» Predicate Transformation

» Optimization
» Improved costing of “%XXX” like clauses

» Abstract Query Plans

» Query Execution
» Sort-Merge Joins

» 50 table limit
» Execute Immediate

Query
Text

Query Results

Why sort-merge joins ?

» Ordered joins provide clustered access to joining rows;
result in less logical and physical I/Os.

» Can exploit indexes that pre-order rows on joining
columns.

» Sort Merge Join Algorithm - Often Better Performance
for DW/DSS Queries Than Nested Loop Join of ASE
Today

Enterprise Systems' Group. 10/20/2003

Copyright 1998-1999, Sybase, Inc. - Do Not Copy Or
Distribute 18

Example

Part
Clustered on

p_partkey
Partsupp

Clustered on
ps_partkey

Lineitem
Clustered on l_orderkey

Part
Clustered on

p_partkey
Partsupp

Clustered on
ps_partkey Lineitem

Sorted on l_partkey

select … from part, partsupp, lineitem
where p_partkey = ps_partkey
and ps_partkey = l_partkey
and ps_orderkey = l_orderkey
and p_type = ‘CD’

Unsorted Access
to innermost table

Sorted Access
to innermost table

80

79

Merge Join Internals

78

77

84

83

82

81

84

81

79

77

Table T1 Table T2

R
E
A
D

N
E
X
T

94

91

90

87

where T1.pk
= T2.pk

R
E
A
D

N
E
X
T

Enterprise Systems' Group. 10/20/2003

Copyright 1998-1999, Sybase, Inc. - Do Not Copy Or
Distribute 19

Merge Joins in ASE 12.0

» The type of Merge Join selected depends on the join
keys and available indexes
» Merge Joins in ASE 12.0 are broken into four distinct types:

» Full Merge Join
» Left Merge Join
» Right Merge Join
» Sort Merge Join

» There are actually eight Merge Joins possibilities since each
one of the above Merge Join types can also be done in parallel

MJ

Table R Table S

One step process

Scan the indexes on the join keys for
both tables and merge the results

Full Merge Join

Enterprise Systems' Group. 10/20/2003

Copyright 1998-1999, Sybase, Inc. - Do Not Copy Or
Distribute 20

Full Merge Join

» Both tables to be joined have useful indexes on the join
keys
» No sorting is needed
» The tables can be easily merged by following the indexes

» The index guarantees that the data can be accessed in a
sorted manner by following the index leaf

» Full Merge Joins are only possible for the outermost pair of
tables in the join order
» Thus, if the join order is {R,S,T,U}, only R and S can be

joined via a Full Merge Join

LMJ

Table R WorktableTable S

Worktable

Sort

Step 1 Step 2

Create and populate
the worktable

Sort the worktable and merge
with the outer (left) table

Left Merge Join

Enterprise Systems' Group. 10/20/2003

Copyright 1998-1999, Sybase, Inc. - Do Not Copy Or
Distribute 21

Left Merge Join

» The table the Optimizer has chosen to be the inner
does not have a useful index on the join column
» The inner (right) table must be first sorted into a worktable
» A useful index with the necessary ordering from the left

(outer) side is used to perform the merge join
» Left Merge Joins are only possible for the outermost pair of

tables in the join order
» Thus, if the join order is {R,S,T,U}, only R and S can be

joined via a Left Merge Join

RMJ

Worktable Table STable R

Worktable

Sort

Step 1 Step 2

Create and populate
the worktable

Sort the worktable and merge
with the inner (right) table

Right Merge Join

Enterprise Systems' Group. 10/20/2003

Copyright 1998-1999, Sybase, Inc. - Do Not Copy Or
Distribute 22

Right Merge Join

» The table the Optimizer has chosen to be the outer
does not have a useful index on the join column
» The outer (left) table must be first sorted into a worktable
» A useful index with the necessary ordering from the right

(inner) side is used to perform the merge join

SMJ

Worktable1 Worktable2Table S

Worktable2

Sort

Step 2 Step 3

Sort

Table R

Worktable1

Step 1

Create and populate
the worktables

Sort the worktables and
merge the results

Sort-Merge Join

Enterprise Systems' Group. 10/20/2003

Copyright 1998-1999, Sybase, Inc. - Do Not Copy Or
Distribute 23

Sort-Merge Join

» Neither table has an index on the join column, or the
Optimizer’s costing algorithm has determined (based
upon its cost calculation) that it is cheaper to
“reformat”
» This involves the base table being read into a worktable

which is created with the required indexes
» This method is chosen for Merge Joins when a useful

index is not available
» The worktable is then sorted
» Subsequent joins are to the worktable, not the base table

» In the case of a Sort-Merge join, the Optimizer has
determined that the base tables must both be sorted
into worktables and then merged

Cost Model

» Historically, the costing for join selection set is:
» # of pgs for retrieval of a row from the inner table * number

of qualifying rows in the outer table

» For sort merge join the Logical I/O cost is estimated as
below :
» outer_lio = cost of scanning outer table
» inner_lio = # duplicates in outer *

(join selection set + index height) +
(# unique values in outer * (join selection set))

Enterprise Systems' Group. 10/20/2003

Copyright 1998-1999, Sybase, Inc. - Do Not Copy Or
Distribute 24

Restrictions on Sort/Merge Joins

» Merge Join not selected for the following cases
» Subqueries (not outer query block)
» Update statements
» Outer Joins
» Referential Integrity
» Remote Tables
» Cursor statements

50 Table Limit

» Number of user tables in a query has been increased to
make it possible for users to run queries with a large
number of non-flattened subqueries.

» Increase maximum number of non-RI tables per query
» from 16 user tables and 12 work tables

» to 50 user tables and 14 work tables

» Not designed for 50 tables in the “from “ clause

Enterprise Systems' Group. 10/20/2003

Copyright 1998-1999, Sybase, Inc. - Do Not Copy Or
Distribute 25

Are you nesting loops 50 deep?

» In one respect the answer is yes, but this functionality
is not designed to be used this way

» Sort-merge will provide major performance
improvements if you are

» Short circuiting means that the number of tables
actually accessed is reduced in most cases

» Additional tables require configuration of auxiliary
scan descriptors
» previously these were only used for RI
» now extended to support additional tables when more than

16 are accessed

50 Table Limit

» What did not change?
» Pre-allocated scan descriptors per process (16 non-RI user, 12

non-RI work, 20 system, 0 RI)
» Maximum subqueries per query (16)
» Maximum RI tables per query (192 RI user and 192 RI work)
» Maximum user tables under all sides of a UNION (256)
» Default “number of aux scan descriptors” per server (200)
» Default number of tables considered at a time for 2 to 25

joining tables (4)
» Note: for 25 - 37 and 38 - 50 tables this number decreases

Enterprise Systems' Group. 10/20/2003

Copyright 1998-1999, Sybase, Inc. - Do Not Copy Or
Distribute 26

50 Table Limit

» What else changed?
» Maximum auxiliary scan descriptors per process increased

from 384 to 454 (192 RI user + 192 RI work + 34 non-RI user +
2 non-RI work + 34 system)

» Default number of tables considered at a time by the
optimizer when generating the query plan decreased to 3 for
26 to 37 joining tables, 2 for 38 to 50 joining tables

» If you use set tablecount to change the number of tables
considered, set tablecount 0 will reset it to the above
behavior.

Execute Immediate

» Execute Immediate command is formed by
materialising the command string.

» The command string is materialised by concatenating
the “string literals” and the values of the variables”

» The variables can be filled at runtime as seen in the
examples above.

» Syntax
» exec ({str_constant | str_var } [+ {str_constant | str_var }] ...)

Enterprise Systems' Group. 10/20/2003

Copyright 1998-1999, Sybase, Inc. - Do Not Copy Or
Distribute 27

Enables variable syntax if required

» Can be used:
» inside procedures to query tables and columns specified as

arguments to the procedure.
» in ISQL scripts, where a batch queries tables or columns from

the database and then constructs a query on the fly using
those table and column names.

» Example
» declare @tabname char(100)

select @tabname = b.authortable
from books b
where b.publisher = ‘randomhouse’
exec (“ select authors from “ + @tabname)

Static and Dynamic Context

» Static Context :-
» The context in which queries outside of execute immediate

but within the same batch are executed.

» Dynamic context :-
» The context in which queries enclosed in an execute

immediate command are executed.

Enterprise Systems' Group. 10/20/2003

Copyright 1998-1999, Sybase, Inc. - Do Not Copy Or
Distribute 28

Static and Dynamic Context
(continued)

» Objects created in static scope can be referenced in
dynamic scope.

» create table tab1
exec (“select * from tab1”)

» Objects created in dynamic scope cannot be referenced
in static scope.

» exec (“ create table tab1 “)
select * from tab1

» Objects created in dynamic scope can be referenced in
subsequent dynamic scope.

» exec (“ create table tab1 “)
exec (“ select * from tab1 “)

Security Issues

» Security is paramount, therefore permission checking
is

» Example
» as user1

» create proc p1
@anyquery char(255)

as
<do a pile of stuff>
exec (@anyquery)

go
» as user2

» p1 “ select * from tab1”
go

» user2 will get an error if user2 does not have
permissions on tab1

Enterprise Systems' Group. 10/20/2003

Copyright 1998-1999, Sybase, Inc. - Do Not Copy Or
Distribute 29

Restrictions

» Only char and varchar variables can be used in the
command string.

» Certain commands are disallowed :-
» transaction commands (begin, end, abort)
» database connection commands (use, connect)
» set commands
» dbcc commands

» Execute immediate is not reentrant.

Where/how it cannot be used?

» White spaces are not automatically added into the
string formed by concatenation.
» exec (“select” + “*” + “from” + “tab1”)

looks like “select*fromtab1”

» It does not replace select command :-
» insert into t exec (“ select * from tab1 “)

» Within a quoted string, references to variables
declared in the static scope are not allowed.
» create proc p @tab char(30), @col char(30), @res int

as
exec (“select @res “ + “ from “ + “ @tab “)

Enterprise Systems' Group. 10/20/2003

Copyright 1998-1999, Sybase, Inc. - Do Not Copy Or
Distribute 30

Where it cannot be used?
(continued)

» Cursor, Temp table visibility :-
» In current implementation, cursors, temporary tables and

variables are bound to the proc_hdr.
» Execute Immediate creates a new proc_hdr to execute the

commands and destroys the proc_hdr on completion.
» Cursors, temporary tables are not carried over from the

dynamic context to the static context.

From Query Text to Query Results

» Pre-optimization
» Join Transitive Closure

» ANSI Compliant Outer Joins
» Predicate Transformation

» Optimization
» Improved costing of “%XXX” like clauses

» Abstract Query Plans

» Query Execution
» Sort-Merge Joins

» 50 table limit
» Execute Immediate

Query
Text

Query Results

Enterprise Systems' Group. 10/20/2003

Copyright 1998-1999, Sybase, Inc. - Do Not Copy Or
Distribute 31

Summary

» Pre-optimisation
» Intelligent and improved pre-processing of queries provides

the optimizer with more options in the production of the
optimal query plan

» Optimization
» Increased use of existing statistics
» Uncertainty over Query Plan changes when ASE is upgraded

or when new implementation performed no longer occurs

» Query Execution
» New, more efficient, join strategies available
» Much more complex SQL supported
» “On the fly” SQL now possible

Session No. DM131
New Optimizer and Query
Execution Options in Adaptive
Server Enterprise 12.0

Session No. DM131
New Optimizer and Query
Execution Options in Adaptive
Server Enterprise 12.0

Eric Miner
Development Engineer
ESD
Eric.Miner@sybase.com

Ian Smart
Senior Evangelist
ESD
Ian.Smart@sybase.com

