1 session No. DM134:
New Optimizer:and Query’
Execution Options in"Adaptives =

.: .‘-.“'\‘..\ .

~ ‘Server Enterprise 12,0, = o

Eric Miner
Development Engineer
ESD

ASE 12.0 Changes

» Parallel and Serial Sort/Merge Joins

» Smart Transformation of WHERE Clause Predicates
» Improved Selectivity Estimation for LIKE Predicates
» Join transitive closure

» New Outer Join
Syntax and Logic

» Abstract Query Plans

» Support for up to 50
tables in a join clause

» Execute Immediate

From Query Text to Query Results

» Pre-optimization

» Join Transitive Closure

» ANSI Compliant Outer Joins
Query

» Predicate Transformation
Text

» Optimization

» Improved costing of “%XXX" like clauses
» Abstract Query Plans

» Query Execution

» Sort-Merge Joins

» 50 table limit

» Execute Immediate

Query Results

< Sybase TechWave '99 >

Work in progress

» In ASE 11.9.x the optimizer was re-
written:

» sysstatistics and systabstats replaced
distribution pages and provided a
much greater level of detail on data
distribution across the table

» In the next release of ASE, the
replacement for the query execution
engine will be fully implemented

» ASE 12.0 contains:
» first phase of the replacement of the
query execution engine - providing
new query execution possibilities

» increased intelligence in pre-
optimization processing of queries

< Sybase TechWave '99 >

What do the icon’s mean??

» New method of calculating costs in when - 3 &%
generating the query plan '1‘1- 4
» Typically due to additional information being 7_,_ b*
made available from pre-optimization processing
of the query

» Performance enhancement %
» Due to new query execution options that process

the data more efficiently

» New query execution functionality

V/\? g
2 /////» i
l\\\\\\/\\‘\\\@

» New methods of Query Execution to provide
increased efficiency in the way that data is accessed
and reduce the number of I/O’s that are required

< Sybase TechWave '99 >

Does it all go faster?

» Whilst many of the changes have been implemented
for performance reasons, some provide new
functionality that could not be supported before

» Other changes made to ensure that Partner products
are fully supported

» Some of the changes, when used, add to the time
taken to optimize queries (maybe significantly). These
are cases where Abstract Query Plans may provide
additional benefits

» Intention is that nothing that is currently implemented
should go slower

< Sybase TechWave '99 >

From Query Text to Query Results

» Pre-optimization

» Join Transitive Closure

» ANSI Compliant Outer Joins
Query

» Predicate Transformation
Text

»

»

»

Query Results

< Sybase TechWave '99 >

Join Transitive Closure

» Provide the optimizer with additional join paths and,
hopefully, faster plans.

» Example:

» select A.afrom A, B, C
where A.a=B.band B.b=C.c

» Adds “and A.a = C.c” to query
» Adds join orders BAC, BCA, ACB, CAB
» A new join order may be the cheapest
» SARG transitive closure added in ASE 11.5

» and guess what - it is still there!!!!

< Sybase TechWave '99 >

Join Transitive Closure

»

»

»

»

»

»

»

Non-equi-joins (A.a > B.b)

Joins that include expressions (A.a =B.b + 1)
Joins under an OR expression

Outer Joins (A.a =* B.b)

Joins in subqueries

» Join Transitive Closure is not considered for:

Joins used for view check or referential check constraints

Joins between different type columns (eg, int = smallint)

< Sybase TechWave '99 >

ANSI Joins

» The Pre-ASE 12.0 outer join syntax (*=, =*) does not
have clearly defined semantics

» ANSI SQL92 specifies a new join syntax with clearly
defined semantics

» ASE 12.0 implements ANSI joins such that ALL outer
joins (even those expressed in TSQL) have clearly
defined semantics

< Sybase TechWave '99 >

Example - Inner Joins

» TSQL Inner Join

» SELECT title, price FROM
titles, salesdetail
WHERE
titles.title_id =
salesdetail.title_id
AND
titles.price > 22.0

ANSI Inner Join

» SELECT title, price FROM
titles
INNER JOIN salesdetail
ON
titles.title_id =
salesdetail.title_id
AND
titles.price > 22.0

< Sybase TechWave '99 >

Example - Outer Joins

» TSQL Outer Join »

» SELECT title, price FROM
titles, salesdetail
WHERE
titles.title_id *=
salesdetail.title_id
AND
titles.price > 22.0

ANSI Outer Join

» SELECT title, price FROM
titles LEFT OUTER JOIN
salesdetail

ON
titles.title_id =
salesdetail.title_id
WHERE
titles.price > 22.0

< Sybase TechWave '99 >

ANSI Join Terminology

» Left and right outer joins

» In a left join, the outer table and inner table are the left and
right tables, respectively

» The outer table and inner table are also referred to as the
row-preserving and null-supplying tables, respectively

» In aright join, the outer table and inner table are the right
and left tables, respectively

» In both of the following, T2 is the inner table
» T1 left join T2
» T2 right join T1

< Sybase TechWave '99 >

Nested Joins

» The left or right member of an ANSI join can be another
ANSI join
» Order of evaluation is determined by the position of ON clause

» select * from tname left join taddress
N tname.empid = taddress.empid
left join temployee
ON taddress.deptid = temployee.deptid

» select * from tname left join taddress left join temployee
N taddress.deptid = temfloyee.deptid
ON tname.empid = taddress.empid

» Parentheses only improve readability - they do not affect the
order the join statements are evaluated in

» select * from (tname left join taddress
N tname.empid = taddress.empid)
left join temployee
ON taddress.deptid = temployee.deptid

< Sybase TechWave '99 >

Name Scoping Rules

» The ON clause condition can reference columns from:
» Table references directly introduced in the joined table itself
» Table references that are contained in the ANSI join

» Tables introduced in outer query blocks (i.e. - the ANSI outer
join appears in a subquery).

» The ON clause condition cannot reference:
» Tables introduced in a containing outer join
» Comma separated tables or joined tables in the from-list

» Example - the following is not allowed:

» select * from (titles left join titleauthor
on titles.title_id=roysched.title_id)
left join roysched
on titleauthor.title_id=roysched.title_id
where titles.title_id |= “PS7777”

< Sybase TechWave '99 >

Ambiguous TSQL Outer Joins

(Continued)

» In ASE 12.0, TSQL outer joins are converted to ANSI joins

» For example, the TSQL query:

» select * from T1, T2, T3
where T1.id *= T2.id
and (T1.id = T3.id)
and (T2.empno = 100 or T3.dept = 6)

» is transformed internally to:

» select * from T1 left join T2
on T1.id = T2.id, T3
where T1.id = T3.id
and (T2.empno = 100 or T3.dept=6)

» Query has same possible join orders as in pre-ASE12.0, but the
OR C?;luse will always be evaluated with WHERE clause

» In ASE 12.0, an inner table can evaluate both ON and
WHERE clause predicates < vbnie TechRave 90>

Views & Outer Joins

» Prior to 12.0, views containing outer joins and views
referenced in outer join queries might not be merged.

» Example:

» create view VOJI as
select o.c1, i.b1 from t3 o, t2 i
where o0.c1 *=i.b1
select * from t4, VOJ1
where t4.d1 = VOJ1.c1
and (VOJ1.b1 = 77 or VOJ1.b1 IS NULL)

» In 12.0, these types of queries can now be merged.
» Better Performance

» More join orders and indexing strategies possible.

< Sybase TechWave '99 >

Predicate Transformation

» Significant performance improvement in queries with
limited access paths (i.e. very few possible
SARGS/Joins/OR’s that can be used to qualify rows
in a table)

» Additional optimization achieved by generating new
search paths based on
» join conditions
» search clauses
» optimizable OR clauses

» Full cartesian joins are avoided for some of the
complex queries.

< Sybase TechWave '99 >

Example

» Example query:

» select * from lineitem, part
where (p_partkey = [_partkey and [_quantity >=10)
or (p_partkey = I_partkey and |_quantity <= 20)

» Above query is transformed to the following:

» select * from lineitem, part
where ((p_partkey = I_partkey and 1_quantity >= 10)
or (p_partkey = I_partkey and |_quantity <= 20))
and (p_partkey = 1_partkey)
and (I_gquantity >=10 or 1_guantity <=20)

< Sybase TechWave '99 >

» New processing phase introduced in the compiler

» just before the start of the optimizer

» in the “decision” module

» The main driver routine performs the following;:

» identifies whether a set of disjuncts¢ (minimum 2) are
present at the top level of a query or part of a single AND
statement

» for each set of disjuncts, the predicates within it are
classified into join, search and OR clauses

» data structures are set up to point to the relevant predicates
which are later factored out

» (*) disjuncts - clauses on either side of an OR statement

< Sybase TechWave '99 >

<& N
=

Predicate Transformation Interna

» New conjuncts are created by suitable transformation
of the collected predicates

» These conjuncts (, are then added at the top level to the
original search_condition

» Compilation is suppressed for

» any new conjuncty, added by predicate factoring and
transformation, which does not get selected as an access path
(by optimizer)

» (*) conjuncts - clauses separated by AND statements,
typically SARG and Join clauses

< Sybase TechWave '99 >

From Query Text to Query Results

»

Query
Text

» Optimization

» Improved costing of “%XXX" like clauses
» Abstract Query Plans

»

»

»

Query Results

< Sybase TechWave '99 >

LIKE

» Change to costing for LIKE clauses that are not
migrated into SARG’s

» Provides better row estimates, resulting in better
query plans.

» Example

» select ... from part, partsupp, lineitem
where |_partkey = p_partkey
and I_partkey = ps_partkey
and p_title = "% Topographic%’

< Sybase TechWave '99 >

Better Selectivity Estimates For Like

Clauses

» New scheme to improve selectivity and qualifying row
estimate

» The LIKE string is compared with histogram cell boundaries

» For every match, weight of the cell is added to selectivity
estimates

» If there are matches

» The total of selectivity estimates * the number of rows in the
table = estimated qualifying rows

» If there are no matches
» Estimated as 1 / # of cells in the histogram
» This also applies queries with LIKE clauses of the type

» like “_abc”, or like “[Jabc”

< Sybase TechWave '99 >

Abstract Query Plans

» What could go wrong with the Optimizer?
» Statistics may not apply to the data that is now in the table

» The query plan used for a stored procedure may not be
applicable to the query at hand

» The buffer cache model and the actual buffer cache usage at
run time could differ

» These issues are caused by:
» Modeling for a different data skew
» Modeling for a different usage skew
» Data distribution unknown at development time, e.g.:
» Densities
» Magic numbers
» What average for the density

< Sybase TechWave '99 >

Can Better Be Worse Than Good?

» What happens to the installed base when the
optimizer is enhanced?

» Most find it better
» Some find it worse...
» One solution to all these problems would be to
implement rules based optimization. However:

» Rule based decisions could be sub-optimal as they require the
developer to have a knowledge of the eventual data layout

» Developers very often have very little knowledge of how to
write efficient query plans

» The overhead on development of using Rules Based
Optimization is massive

» The assumed heuristics are not always right

< Sybase TechWave '99 >

Curing Unexpected Behavior

» What are the options for improving the optimizer and
getting rid of unexpected behavior?

» Implementing a better and more dynamic cost model

» Implementing some form of extremely flexible rules based
optimization

» Allowing good query plans to be captured and re-used

< Sybase TechWave '99 >

Abstract Query Plans

» An abstract query plan is a persistent, human readable
description of a query plan, that’s associated to a SQL
statement

» It is not syntactically part of the statement
» The description language is a relational algebra

» Possible to specify only a partial plan, where the
optimizer completes the plan generation

» Stored in a system catalog sysqueryplans

» Persistent across:
» connections

» Server versions (i.e. upgrades)

< Sybase TechWave '99 >

Where will AQP’s be used?

» Application providers don’t want to include vendor
specific syntax in their queries

» In general, users don’t want to modify a production
application to solve an upgrade optimizer problem
» Still, it’s possible to include them if so desired
» Example:

» select c1 from t1 where c2 =0
plan "(I_scan () t1)’

< Sybase TechWave '99 >

How are the plans created?

» Abstract query plans are captured and reused:
» set plan dump ‘new_plans_group’ on
» set plan load “new_plans_group’
» When the capture mode is enabled, all queries are

stored, together with their generated abstract query
plan, in SYSQUERYPLANS

» Abstract query plan administration commands are
available, allowing to create, delete or modify
individual plans and groups

< Sybase TechWave '99 >

What Do Abstract Plans Look Like?

» Full plan examples:
» select * from t1 where c=0 (i_scan c_index t1)
» Instructs the optimizer to

» perform an index scan on table t1 using the c_index

index.
» select * from t1, t2 where (nl_g_join
tlc=12.cand tl.c=0 (i_scan il t1) (i_scan i2 t2))

» Instructs the optimizer to:
» perform a nested loop join with table t1 outer to t2
» perform an index scan on table t1 using the il index

» perform an index scan on table t2 using the i2 index

< Sybase TechWave '99 >

What Do Abstract Plans Look Like?

(Continued)

» Partial plan examples:
» select * from t1 where c=0 (i_scan t1)
» Instructs the optimizer to
» perform an index scan on t1.

> select * from t1, t2 where (t_scan t2)
tlc=1t2.cand tl.c=0

> Instructs the optimizer to

NA

NA

» access t2 via a table scan.

> select c11 from t1, 2 (prop t1 (parallel 1))
where t1.c12 = 2.c21

> Instructs the optimizer not to access t1 in parallel.

NA

NA

< Sybase TechWave '99 >

From Query Text to Query Results

»

Query
Text

» Query Execution
» Sort-Merge Joins
» 50 table limit
» Execute Immediate

Query Results
< Sybase TechWave '99 >

Why sort-merge joins ?

» Ordered joins provide clustered access to joining rows;
result in less logical and physical I/Os.

» Can exploit indexes that pre-order rows on joining
columns.

» Sort Merge Join Algorithm - Often Better Performance
for DW/DSS Queries Than Nested Loop Join of ASE
Today

< Sybase TechWave '99 >

Example

select ... from part, partsupp, lineitem Unsorted Access

where p_partkey = ps_partkey to innermost table
and ps_partkey =1_partkey
and ps_orderkey =1_orderkey
and p_type = ‘CD’

——— b
~— e
IS LEESSEEESTEEESSS

Part
Clustered on Partsupp
p_partkey Clustered on Lineitem

ps_partkey Clustered on 1_orderkey

[

B

pe

e

Part
Clustered on Partsupp
p_partkey Clustered on f L.
ps_partkey Lineitem
Sorted Access Sorted on 1_partkey

to innermost table

Merge Join Internals

Table T1 where T1.pk

Merge Joins in ASE 12.0

» The type of Merge Join selected depends on the join
keys and available indexes

» Merge Joins in ASE 12.0 are broken into four distinct types:
» Full Merge Join
» Left Merge Join
» Right Merge Join
» Sort Merge Join

» There are actually eight Merge Joins possibilities since each
one of the above Merge Join types can also be done in parallel

< Sybase TechWave '99 >

Full Merge Join

One step process

Scan the indexes on the join keys for
both tables and merge the results

< Sybase TechWave '99 >

Full Merge Join

=
» Both tables to be joined have useful indexes on the join
keys
» No sorting is needed
» The tables can be easily merged by following the indexes

» The index guarantees that the data can be accessed in a
sorted manner by following the index leaf

» Full Merge Joins are only possible for the outermost pair of
tables in the join order

» Thus, if the join order is {R,5,T,U}, only R and S can be
joined via a Full Merge Join

< Sybase TechWave '99 >

Left Merge Join

Create and populate Sort the worktable and merge
the worktable with the outer (left) table

< Sybase TechWave '99 >

Left Merge Join

» The table the Optimizer has chosen to be the inner
does not have a useful index on the join column
» The inner (right) table must be first sorted into a worktable

» A useful index with the necessary ordering from the left
(outer) side is used to perform the merge join

» Left Merge Joins are only possible for the outermost pair of
tables in the join order

» Thus, if the join order is {R,S,T,U}, only R and S can be
joined via a Left Merge Join

< Sybase TechWave '99 >

Right Merge Join

Create and populate Sort the worktable and merge
the worktable with the inner (right) table

< Sybase TechWave '99 >

Right Merge Join

» The table the Optimizer has chosen to be the outer
does not have a useful index on the join column

» The outer (left) table must be first sorted into a worktable

» A useful index with the necessary ordering from the right
(inner) side is used to perform the merge join

Sort-Merge Join

Create and populate Sort the worktables and
the worktables merge the results

Sort-Merge Join

» Neither table has an index on the join column, or the
Optimizer’s costing algorithm has determined (based
upon its cost calculation) that it is cheaper to
“reformat”

» This involves the base table being read into a worktable
which is created with the required indexes

» This method is chosen for Merge Joins when a useful
index is not available

» The worktable is then sorted

» Subsequent joins are to the worktable, not the base table

» In the case of a Sort-Merge join, the Optimizer has
determined that the base tables must both be sorted
into worktables and then merged

< Sybase TechWave '99 >

Cost Model

» Historically, the costing for join selection set is:

» # of pgs for retrieval of a row from the inner table * number
of qualifying rows in the outer table

» For sort merge join the Logical I/O cost is estimated as
below :
» outer_lio = cost of scanning outer table

» inner_lio = # duplicates in outer *
(join selection set + index height) +
(# unique values in outer * (join selection set))

< Sybase TechWave '99 >

7 -

» Merge Join not selected for the following cases
» Subqueries (not outer query block)
» Update statements

» Outer Joins

NA

> Referential Integrity

NA

> Remote Tables

NA

> Cursor statements

< Sybase TechWave '99 >

50 Table Limit

» Number of user tables in a query has been increased to
make it possible for users to run queries with a large
number of non-flattened subqueries.

» Increase maximum number of non-RI tables per query
» from 16 user tables and 12 work tables
» to 50 user tables and 14 work tables

» Not designed for 50 tables in the “from " clause

< Sybase TechWave '99 >

Are you nesting loops 50 deep?

» In one respect the answer is yes, but this functionality
is not designed to be used this way

» Sort-merge will provide major performance
improvements if you are

» Short circuiting means that the number of tables
actually accessed is reduced in most cases

» Additional tables require configuration of auxiliary
scan descriptors
» previously these were only used for RI

» now extended to support additional tables when more than
16 are accessed

< Sybase TechWave '99 >

50 Table Limit

» What did not change?

» Pre-allocated scan descriptors per process (16 non-RI user, 12
non-RI work, 20 system, 0 RI)

» Maximum subqueries per query (16)

» Maximum RI tables per query (192 RI user and 192 RI work)
» Maximum user tables under all sides of a UNION (256)

» Default “number of aux scan descriptors” per server (200)

» Default number of tables considered at a time for 2 to 25
joining tables (4)

» Note: for 25 - 37 and 38 - 50 tables this number decreases

< Sybase TechWave '99 >

50 Table Limit

» What else changed?

» Maximum auxiliary scan descriptors per process increased
from 384 to 454 (192 RI user + 192 Rl work + 34 non-RI user +
2 non-RI work + 34 system)

» Default number of tables considered at a time by the
optimizer when generating the query plan decreased to 3 for
26 to 37 joining tables, 2 for 38 to 50 joining tables

» If you use set tablecount to change the number of tables
considered, set tablecount 0 will reset it to the above
behavior.

< Sybase TechWave '99 >

Execute Immediate

» Execute Immediate command is formed by
materialising the command string.

» The command string is materialised by concatenating
the “string literals” and the values of the variables”

» The variables can be filled at runtime as seen in the
examples above.

» Syntax

» exec ({str_constant | str_var } [+ {str_constant | str_var}] ...)

< Sybase TechWave '99 >

Enables variable syntax if required

» Can be used:

» inside procedures to query tables and columns specified as
arguments to the procedure.

» in ISQL scripts, where a batch queries tables or columns from
the database and then constructs a query on the fly using
those table and column names.

» Example

» declare @tabname char(100)
select @tabname = b.authortable
from books b
where b.publisher = “randomhouse’
exec (“ select authors from “ + @tabname)

< Sybase TechWave '99 >

Static and Dynamic Context

» Static Context :-

» The context in which queries outside of execute immediate
but within the same batch are executed.

» Dynamic context :-

» The context in which queries enclosed in an execute
immediate command are executed.

< Sybase TechWave '99 >

Static and Dynamic Context

(continued)

» Objects created in static scope can be referenced in
dynamic scope.

» create table tabl
exec (“select * from tab1”)

» Objects created in dynamic scope cannot be referenced
in static scope.

» exec (” create table tabl)
select * from tabl

» Objects created in dynamic scope can be referenced in
subsequent dynamic scope.

» exec (“ create table tabl ")
exec (“ select * from tabl “)

< Sybase TechWave '99 >

Security Issues

» Security is paramount, therefore permission checking
is

» Example
» as userl

» create proc pl
@anyquery char(255)
as
<do a pile of stuff>
exec (@anyquery)
g0
» as user2

» pl” select * from tabl”
8o
» user2 will get an error if user2 does not have -

'99 >

Restrictions

» Only char and varchar variables can be used in the
command string.
» Certain commands are disallowed :-
» transaction commands (begin, end, abort)
» database connection commands (use, connect)
» set commands

» dbcc commands

» Execute immediate is not reentrant.

< Sybase TechWave '99 >

Where/how it cannot be used?

» White spaces are not automatically added into the
string formed by concatenation.

» exec (“select” + “*” + “from” + “tabl”")
looks like “select*fromtabl”

» It does not replace select command :-
» insert into t exec (“ select * from tabl *)
» Within a quoted string, references to variables
declared in the static scope are not allowed.

» create proc p @tab char(30), @col char(30), @res int
as
exec (“select @res “ + “ from “ + * @tab ”)

< Sybase TechWave '99 >

Where it cannot be used?

(continued)

» Cursor, Temp table visibility :-

» In current implementation, cursors, temporary tables and
variables are bound to the proc_hdr.

» Execute Immediate creates a new proc_hdr to execute the
commands and destroys the proc_hdr on completion.

» Cursors, temporary tables are not carried over from the
dynamic context to the static context.

< Sybase TechWave '99 >

From Query Text to Query Results

» Pre-optimization

» Join Transitive Closure

» ANSI Compliant Outer Joins
Query
Text

» Predicate Transformation
» Optimization
» Improved costing of “%XXX" like clauses
» Abstract Query Plans
» Query Execution
» Sort-Merge Joins
» 50 table limit
» Execute Immediate

Query Results
< Sybase TechWave '99 >

Summary

» Pre-optimisation

» Intelligent and improved pre-processing of queries provides
the optimizer with more options in the production of the
optimal query plan

» Optimization
» Increased use of existing statistics

» Uncertainty over Query Plan changes when ASE is upgraded
or when new implementation performed no longer occurs

» Query Execution
» New, more efficient, join strategies available

» Much more complex SQL supported
» “On the fly” SQL now possible

. Session No. DM1348.
New Optimizerrfand Query"
Execution Options in"Adaptives =
Server Enterprise 12.00 5 =

‘:_\‘-‘*?u |
N T

-

-

Eric Miner

Development Engineer
ESD

