" I
Outline

m SQL Server Optimizer
Enumeration architecture
Search space: flexibility/extensibility
Cost and statistics

m Automatic Physical Tuning
Database Tuning Advisor
New Directions

" S
Running Example (TPC-H Database)

PART (P_} PARTSUFP [P5_) LINEITEM (L_) ORDERS [0_)
SF+200,000 SF*B00,000 SF+5,000,000 SF*1,500,000
PARTKEY = [PaRTHEY ORDERKEY |-t DRDERKEY
HAME —a= | SUPPKEY }I_[: PARTKEY CUSTKEY
MFGR AVAILGTY SUPPKEY ORDERSTATUS
BRAND SUPPLYCOST LINENUMBER TOTALPRICE
TYPE COMMENT GUANTITY ORDERDATE
DROER-
size e saET D) EXTENDEDPRICE OROER
CONTAINER $F*150,000 DISCOUNT e
CUSTKEY —
RETAILPRICE TAX i
NAME
COMMENT RETURNFLAG PRIGRITY
ADDRESS
LINESTATUS COMMENT
SUPPLIER (3_) NATIONKEY
SF*10,000 SHIPDATE
_ PHONE
SUPPKEY COMMITDATE
ACCTBAL -
NAME RECEIPTDATE I Primary Index I
MKT! T
ADDRESS SHIPINSTRUCT S a4 nd
COMMENT
PyEy—— e econdary Index
PHONE NATION (N_) COMMENT
25
ACCTEAL
NATIONKEY REGION (R_)
COMMENT 5
HAME REGIONKEY
REGIONKEY -
HAME
COMMENT
COMMENT

Running Example (Query)

Sample query: Obtain information about certain ordered line-
items that are filtered by suppliers and parts.

SELECT 1_orderkey, I_linenumber, o_orderstatus
FROM lineitem JOIN orders ON 1_orderkey = o_orderkey
WHERE 1_suppkey < 2000 AND I_partkey < 2000

e

" JEE
SQL Server Query Optimizer

m Based on Cascades Framework
Transformation-based, top-down approach

Optimization = Tasks + Memo
(Programs = Algorithms + Data Structures)

m Fully cost-based

m Flexible and Extensible
Search space easy to change
New operators and rules easy to add

O KO

1 orderkey,

1 suppkey<200¢

erkey=o orderkey

em

orders

= JEE
The Memo

m Search Space Memory
Compactly stores all explored alternatives (AND-OR graph)
Groups together equivalent operator trees and their plans

Provides memoization, duplicate detection, property and cost
management, etc.

>
/

Groups —¢

N
e}
|

| Expressions

N

N

g
|

.

N\
§ g

\|N

E:/

/

(7

L]

]

" JE
Optimization Tasks

Initialize Memo

Optimize Root Group / \

1) SELECT (a<1C)

2) JOIN (x=y,
3)..

[(@<1C)

)

k>2C

1) SELECT |

S 1) GET(:

.
SQL Server Optimizer: Summary

m Transformation-based, top-down approach
No need for bottom-up interesting orders
m Fully Cost-based
No separation into phases (heuristic+cost)
m Flexible and Extensible
New operators, rules, and strategies are simple to add
m Adaptive
Automatic statistics create and refresh
Automatic optimization levels
Physical Tuning

= JEE
Problem Statement

Workload

Physical

Design Tool

Set of physical
structures (i.e.,
indexes and
Configuration views) that make
similar wotrkloads
execute as fast as

possible

" JE
Challenges

m Recommend a variety of physical structures.
Indexes, indexed views, partitions, XML indexes, etc.
m Support space constraints, update queries.
m Exceptionally large search space, especially for
materialized views and partitions.
Strong interaction among access paths.

Merging needed: Optimal solution with suboptimal
parts.

Cannot implement and test alternatives!

m Industrial-strength quality (not trivial!)

" JEE
Design Principles

m Workload-driven: Take into account database
usage.

m What-if API: Determine impact without actually
materializing physical design.

m Don’t second-guess the query optimizer!

An index is useful only if the query optimizer decides
to use it.

Don’t use external estimator of goodness, but the
optimizer-estimated cost.

m Keep tool reasonably separated from today’s
optimizer (extensibility).

Database Tuning Advisor in Yukon

Workload

Compress
Workload

|

Candidate Selection

Query

(per query) What-if

Optimizer

Tuning
Client

API

!

Metadata

| Enumeration |

Database
Server

¥
| Yes ,NO
v

- Create Hypothetical Index/View.
- Optimize Query with respect to
hypothetical configurations.

Recommendation

"
New Architecture

m Instrumenting the query optimizer.

Database
Server

Y
- - - Requests
Get Optimal Configuration iPI | deifi?iljzzsttion
(per query)
Tuning ! _ What-if Query
Client { —| Relaxation AP Optimizer
Metadata
No

m Search strategy based on relaxations.

" JE
Related Bibliography

m Surajit Chaudhuri
An Overview of Query Optimization in Relational Systems.
PODS 1998: 34-43
m Goetz Graefe
The Cascades Framework for Query Optimization.
IEEE Data Eng. Bull. 18(3): 19-29 (1995)

m Surajit Chaudhuri, Vivek R. Narasayya
An Efficient Cost-Driven Index Selection Tool for Microsoft SQL Server.
VLDB 1997: 146-155

m Sanjay Agrawal, Surajit Chaudhuri, Vivek R. Narasayya
Automated Selection of Materialized Views and Indexes in SQL Databases.
VLDB 2000: 496-505

m Nicolas Bruno, Surajit Chaudhuri
Automatic Physical Database Tuning: A Relaxation-based Approach.
SIGMOD 2005

