
1

Outline

SQL Server Optimizer
Enumeration architecture
Search space: flexibility/extensibility
Cost and statistics

Automatic Physical Tuning
Database Tuning Advisor
New Directions

Running Example (TPC-H Database)

Primary Index

Secondary Index

2

Running Example (Query)

SELECT l_orderkey, l_linenumber, o_orderstatus
FROM lineitem JOIN orders ON l_orderkey = o_orderkey
WHERE l_suppkey < 2000 AND l_partkey < 2000

Sample query: Obtain information about certain ordered line-
items that are filtered by suppliers and parts.

SQL Server Query Optimizer
Based on Cascades Framework

Transformation-based, top-down approach
Optimization = Tasks + Memo

(Programs = Algorithms + Data Structures)

Fully cost-based
Flexible and Extensible

Search space easy to change
New operators and rules easy to add

3

The Memo
Search Space Memory

Compactly stores all explored alternatives (AND-OR graph)
Groups together equivalent operator trees and their plans
Provides memoization, duplicate detection, property and cost
management, etc.

Groups
Expressions

Initialize Memo
Optimize Root Group

Optimization Tasks

4

SQL Server Optimizer: Summary

Transformation-based, top-down approach
No need for bottom-up interesting orders

Fully Cost-based
No separation into phases (heuristic+cost)

Flexible and Extensible
New operators, rules, and strategies are simple to add

Adaptive
Automatic statistics create and refresh
Automatic optimization levels
Physical Tuning

Problem Statement

Workload Database

Configuration

Physical
Design Tool Set of physical

structures (i.e.,
indexes and

views) that make
similar workloads
execute as fast as

possible

5

Challenges
Recommend a variety of physical structures.

Indexes, indexed views, partitions, XML indexes, etc.
Support space constraints, update queries.
Exceptionally large search space, especially for
materialized views and partitions.

Strong interaction among access paths.
Merging needed: Optimal solution with suboptimal
parts.
Cannot implement and test alternatives!

Industrial-strength quality (not trivial!)

Design Principles

Workload-driven: Take into account database
usage.
What-if API: Determine impact without actually
materializing physical design.
Don’t second-guess the query optimizer!

An index is useful only if the query optimizer decides
to use it.
Don’t use external estimator of goodness, but the
optimizer-estimated cost.

Keep tool reasonably separated from today’s
optimizer (extensibility).

6

Database Tuning Advisor in Yukon
Workload

Compress
Workload

Candidate Selection
(per query)

Enumeration

Time?
Yes

No

Merging

Recommendation

Tuning
Client

…

Query
Optimizer Database

Server
What-if

API Metadata

- Create Hypothetical Index/View.
- Optimize Query with respect to
hypothetical configurations.

New Architecture

…

Query
Optimizer

Database
Server

What-if
API

Metadata

Relaxation

Time?Yes

No

Recommendation

Tuning
Client

Workload

Request
IdentificationGet Optimal Configuration

(per query)

Instrumenting the query optimizer.
Search strategy based on relaxations.

Requests
API

7

Related Bibliography
Surajit Chaudhuri
An Overview of Query Optimization in Relational Systems.
PODS 1998: 34-43
Goetz Graefe
The Cascades Framework for Query Optimization.
IEEE Data Eng. Bull. 18(3): 19-29 (1995)
Surajit Chaudhuri, Vivek R. Narasayya
An Efficient Cost-Driven Index Selection Tool for Microsoft SQL Server.
VLDB 1997: 146-155
Sanjay Agrawal, Surajit Chaudhuri, Vivek R. Narasayya
Automated Selection of Materialized Views and Indexes in SQL Databases.
VLDB 2000: 496-505
Nicolas Bruno, Surajit Chaudhuri
Automatic Physical Database Tuning: A Relaxation-based Approach.
SIGMOD 2005

