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Running Example (TPC-H Database)
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Running Example (Query)

Sample query: Obtain information about certain ordered line-
items that are filtered by suppliers and parts.

SELECT 1_orderkey, I_linenumber, o_orderstatus
FROM lineitem JOIN orders ON 1_orderkey = o_orderkey
WHERE 1_suppkey < 2000 AND I_partkey < 2000
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SQL Server Query Optimizer

m Based on Cascades Framework
Transformation-based, top-down approach

Optimization = Tasks + Memo
( Programs = Algorithms + Data Structures)

m Fully cost-based

m Flexible and Extensible
Search space easy to change
New operators and rules easy to add
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The Memo

m Search Space Memory
Compactly stores all explored alternatives (AND-OR graph)
Groups together equivalent operator trees and their plans

Provides memoization, duplicate detection, property and cost
management, etc.
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Optimization Tasks

Initialize Memo

Optimize Root Group / \

1) SELECT (a<1C )

2) JOIN (x=y,
3)..
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SQL Server Optimizer: Summary

m Transformation-based, top-down approach
No need for bottom-up interesting orders
m Fully Cost-based
No separation into phases (heuristic+cost)
m Flexible and Extensible
New operators, rules, and strategies are simple to add
m Adaptive
Automatic statistics create and refresh
Automatic optimization levels
Physical Tuning
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Problem Statement

Workload

Physical

Design Tool

Set of physical
structures (i.e.,
indexes and
Configuration views) that make
similar wotrkloads
execute as fast as

possible
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Challenges

m Recommend a variety of physical structures.
Indexes, indexed views, partitions, XML indexes, etc.
m Support space constraints, update queries.
m Exceptionally large search space, especially for
materialized views and partitions.
Strong interaction among access paths.

Merging needed: Optimal solution with suboptimal
parts.

Cannot implement and test alternatives!

m Industrial-strength quality (not trivial!)
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Design Principles

m Workload-driven: Take into account database
usage.

m What-if API: Determine impact without actually
materializing physical design.

m Don’t second-guess the query optimizer!

An index is useful only if the query optimizer decides
to use it.

Don’t use external estimator of goodness, but the
optimizer-estimated cost.

m Keep tool reasonably separated from today’s
optimizer (extensibility).




Database Tuning Advisor in Yukon
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New Architecture

m Instrumenting the query optimizer.
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m Search strategy based on relaxations.
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