
Self-tuning Database Technology and Information Services:
from Wishful Thinking to Viable Engineering

Gerhard Weikum1, Axel Moenkeberg2 Christof Hasse3, Peter Zabback4

1 University of Saarland 2 Swiss Re 3 UBS AG 4 Microsoft Corp.
Im Stadtwald Mythenquai 50-60 P.O. Box One Microsoft Way
D-66123 Saarbruecken CH-8022 Zurich CH-8098 Zurich Redmond, WA 98052
Germany Switzerland Switzerland USA
weikum@cs.uni-sb.de Axel_Moenkeberg@swissre.com Christof.Hasse@ubsw.com pzabback@microsoft.com

Abstract

Automatic tuning has been an elusive goal for
database technology for a long time and is be-
coming a pressing issue for modern E-services.
This paper reviews and assesses the advances
that have been made on this important subject
during the last ten years. A major conclusion is
that self-tuning database technology should be
based on the paradigm of a feedback control
loop, but is also bound to build on mathematical
models and their proper engineering into system
components. In addition, the composition of in-
formation services into truly self-tuning, higher-
level E-services may require a radical departure
towards simpler, highly componentized software
architectures with narrow interfaces between
RISC-style “autonomic” components.

1. Understanding the Problem
Mission-critical information systems require consistently
good performance. To this end, virtually all large data-
bases are managed by well paid system administrators
who should be experienced in the black art of database
tuning: adjusting the system’s tuning knobs to the specific
workload characteristics of the applications. This involves
hardware capacity planning, physical database design,
settings for run-time resource management, and the man-
agement of inter-system dependencies (e.g., between
middleware and database server). Skilled “tuning gurus”
are scarce and expensive, and the total cost of ownership
for a mission-critical information system becomes more
and more dominated by the money spent on human staff.

Furthermore, the difficulty of system tuning may incur
additional hidden costs by forcing application developers
to restructure their application logic in a possibly unnatu-
ral manner (e.g., coding stateful applictions into stateless
programs) in order to ensure acceptable performance.
This situation calls for the automation of tuning decisions
and a new generation of self-tuning database technology.

Over the last ten years the awareness of the problem
has been growing [Be98] and significant progress has
been made towards solutions [DE99]; however, there is
no breakthrough yet. With Web-based E-services [DE01]
such as auctions, brokerage, service outsourcing, and E-
business supply chains, the problem becomes even more
difficult and also more pressing.

1.1 Why is Auto-Tuning More Important Than Ever?

The IT industry today is driven by time to market, and
software systems are developed and deployed at an amaz-
ing pace. As a result, many Web-based E-services are
brittle, frequently exhibit inconvenient outages, and have
absolutely unacceptable response times during popular
business hours (i.e., load peaks). Exceptions are those
well administered sites that are heavily investing in their
human support staff, to monitor workload and perform-
ance trends, identify potential bottlenecks as early as pos-
sible, and take correcting actions such as hardware up-
grades or adjustment of tuning knobs (e.g., multipro-
gramming levels).

Most people in the IT industry are aware of the high
cost of unavailability. According to business analysts one
minute downtime for an E-business site causes damage
(through bad impact on the market position) on the order
of $ 100,000 [Ora00, PB01]. Moreover, when perform-
ance is poor potential customers are not willing to wait for
a server's reply; these customers will be lost and are
unlikely to ever come back to the site. So lack of per-
formance is as expensive as downtime.

There is growing awareness of the criticality of per-
formance guarantees [BBK00, LGS00], as expressed by
Internet performance rating companies such as Keynote or
CDN providers such as Akamai. These kinds of compa-

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct commer-
cial advantage, the VLDB copyright notice and the title of the publica-
tion and its date appear, and notice is given that copying is by permis-
sion of the Very Large Data Base Endowment. To copy otherwise, or to
republish, requires a fee and/or special permission from the Endowment
Proceedings of the 28th VLDB Conference,
Hong Kong, China, 2002

nies primarily focus on simple long-term metrics such as
average respone time over an entire week or month. How-
ever, guarantees along these lines do not reflect the per-
formance during peak periods, the most popular business
hours when responsiveness matters most. In traditional
OLTP, well-tuned systems are geared to peak load for a
very good business reason, but Web-based E-services are
still far away from this standard.

1.2 Why is Auto-Tuning Becoming More Difficult in
the E-Service Age?

There are a number of technical reasons why tuning of a
Web-based E-service application is even more challeng-
ing than for traditional TP systems:
• Sophisticated multi-tier architectures: The system ar-

chitecture of a typical E-service site is more complex
than a traditional TP system. Both are usually three-tier
architectures, but a decisive difference in the new world
is that the middle-tier (Web) application servers often
manage some persistent data in application-oriented ob-
ject caches. When freshness of the data or bounded
staleness matter these sophisticated caching architec-
tures pose additional tuning problems that are not well
understood.

• Service federations: Modern E-services offer very rich
functionality, which often integrates data and functions
from various sites both within and outside the com-
pany. For example, Internet-accessible travel services
such as Expedia communicate with wholesalers like
Amadeus or Sabre who are themselves full-fledged and
autonomous E-service sites. The performance of one E-
service transitively depends on that of other systems.
Even within a single company, where business portals
aim to provide a unified view onto different informa-
tion sources and applications, the underlying systems
are often operated and administered by different
branches, departments, or subsidiaries, and thus at least
semi-autonomous.

• Workload diversity and variability: In modern business
the variety of functions that need to be supported by an
E-service site is much higher than in the traditional TP
world. Home banking includes not just simple money
transfers, but also portfolio analyses, personalized in-
vestment recommendations, what-if scenario simula-
tions, and so on. Whenever such highly diverse applica-
tion functions require some shared data, global tuning
becomes a lot more difficult. A second dimension of
workload variability lies in the fact that E-services have
about a hundred million potential clients from all over
the globe. Consequently, there are potentially tremen-
dous fluctuations in the system load, and this can dra-
matically amplify the factor between average and peak
load.

• Long-lived applications and long-range workload de-
pendencies: In traditional OLTP and also in the first-
generation E-commerce applications, the focus has

been on short-lived interactions that involve say order-
ing a few books and paying by credit card. In addition,
various tricks are used to make most application func-
tions pseudo-stateless (e.g., identifying customers and
shopping carts via cookies). This approach simplifies
performance tuning; there are no long-term commit-
ments for serving certain requests at user-acceptable
speed. The emerging classes of advanced B2B and B2C
E-services will include long-lived workflows; for ex-
ample, you may subscribe to some news feed and pay
in installments, or some service may run a personal-
ized, automated agent that acts on your behalf in the
stock market, in auctions, and so on. These long-lived
applications are much more difficult to configure prop-
erly and tune, because admitting the start of a new
workflow implies long-range commitments by the
server to process all follow-on activities at a specified
user-acceptable performance level.

1.3 Message and Outline of the Paper

This paper reviews and assesses the advances that have
been made during the last ten years towards the elusive
goal of self-tuning database technology. It is largely
based on lessons learned from the COMFORT project that
we were working on in the early nineties at ETH Zurich.
Our approach at that time was centered around the para-
digm of a feedback control loop.

The quantitative nature of performance tuning requires
mathematical models and their careful engineering into
the system architecture. The complexity of the necessary
models, the dependencies between different tuning issues,
and the intricate interactions between different system
components further call for a drastic simplification of the
underlying system architecture. We advocate a radical
departure from today’s monolithic architectures towards a
library of simpler, RISC-style, components with very nar-
row interfaces and very limited interaction between com-
ponents as the basis for composing components into truly
self-managing higher-level E-services.

The paper is organized as follows. Sections 2 and 3
review previous approaches towards automatic tuning in
general and in the context of the COMFORT project. Sec-
tion 4 offers a subjective analysis of where we stand to-
day. Section 5 presents our speculative architectural con-
siderations towards the widely envisioned world of “auto-
nomic computing”.

2. Intriguing and Treacherous Approaches
The difficulty of the long-standing problem suggests that
there is no easy solution, especially not for advanced E-
services. This is in contrast to some developers' thinking
that rules of thumb or even brute-force solutions are good
enough for automatic tuning.

Sometimes rules of thumb do indeed work for certain
aspects, namely, when sufficiently generic and robust
settings for specific tuning knobs can be found without

quantitative analysis or merely with a simple back-of-the-
envelope calculation [GS00]. A positive example would
be choosing the size of index pages [GG97]. However,
even seemingly simple issues such as choosing an appro-
priate database cache size for a given workload are so
difficult that rules of thumb do not lead to viable solu-
tions. Of course, the five-minute rule dictates a certain
minimum cache size based on cost/throughput considera-
tions, but many well-tuned applications use significantly
larger caches for better response time (an issue that is not
covered by the five-minute rule). Unfortunately, there is
no quick-and-easy approach for quantifying the impact of
the cache size on the response times of a multi-user work-
load.

Another approach in which many practitioners believe
so much that it is even (mis-)conceived as a panacea is the
"KIWI method: kill it with iron", that is, upgrade your
hardware (more disks, more memory, etc.). Given the low
cost of hardware versus the high cost of intellectual cy-
cles, this is indeed a preferable approach, provided that it
leads to a viable solution. However, there is a potential
pitfall: some tuning problems cannot be solved with
hardware upgrades alone or only with outrageously ex-
pensive upgrades. For example, an exact-match lookup
that is processed by a sequential scan can, of course, be
sped up by buying more disks, declustering the underlying
table, and exploiting I/O parallelism for faster lookup. But
in many cases a much smarter and far less expensive solu-
tion would be to create an index on the relevant col-
umn(s). Note also that every additional storage or CPU
box inevitably creates some additional management work.

When hardware upgrading is the right recipe for a
given tuning problem, one needs to be able to calculate
how much extra memory, how many additional disks, and
other resources are needed to achieve acceptable perform-
ance. This in turn requires predicting various performance
metrics as a function of the hardware configuration and
workload properties. As the relationships between re-
source settings and response time are inherently nonlin-
ear, and in fact mathematically quite complex, cost-
effective use of the KIWI method does require advanced
mathematical modeling.

Finally, an intriguing approach that has been pursued
in several research projects (e.g., [Br94, We94, He00,
St01]), but to our knowledge, has not yet been seriously
considered in products, is the concept of a feedback con-
trol loop where the settings of tuning parameters are con-
tinuously adapted to the current workload characteristics
and the resulting performance. As this is the principle that
we explored in the COMFORT project, it will be dis-
cussed in the next section.

3. Lessons from the COMFORT Project
Our methodology in the COMFORT project was twofold:
on one hand, we wanted to identify, explore, and under-
stand general principles of automatic tuning; on the other

hand, we worked on individual tuning problems that we
found interesting and challenging. These issues varied in
scope, regarding both time and scale dimension, from
short-term online reactions regarding very specific per-
formance aspects to long-term configuration planning
regarding global performance metrics. The idea behind
this twofold research approach was that the work on indi-
vidual problems would help us to identify general princi-
ples and would also serve as test cases for the general
concepts. In the following, Subsection 3.1 reviews our
ideas about general auto-tuning principles, whereas Sub-
sections 3.2 through 3.4 look at individual tuning issues,
in increasing order of scope. Subsection 3.5 summarizes
our lessons learned.

3.1 The Quest for Auto-Tuning Principles

The main principle that we pursued in the COMFORT
project is the concept of an online feedback control loop.
The system continuously observes certain performance
metrics, and whenever these exceed critical thresholds the
system dynamically adjusts some online tuning knobs.
While this general principle is very simple, the difficulties
become obvious when one tries to apply it to a real sys-
tem. It is unclear which tuning knobs one should consider
under which conditions, and it is equally unclear how
much they should be varied. A naive feedback control
loop could overreact to some problems and may lead to
oscillation between equally unacceptable system states.
To address these problems, we imposed more structure on
our approach and divided the feedback control loop into
three phases: observation, prediction, and reaction, an
OPR cycle for short.

The observation phase monitors performance metrics
and workload parameters that can be viewed as indicators
for a performance problem or a significant shift in the
workload patterns. In this step, the most crucial question
is which parameters one should look at. While throughput
and query or transaction response times are good global
indicators, they do not give any clues about the causes of
a problem. So in addition to these macroscopic metrics,
we investigated which microscopic data one should meas-
ure in order to identify the need for dynamic re-tuning.
Furthermore, the microscopic metrics could also guide us
in choosing the appropriate tuning knob for fixing the
problem. Good examples that we will come back to later
are the ratio of lock waits to lock requests and disk queue
lengths.

The purpose of the prediction step is to assess the hy-
pothetical adjustment of various candidate knobs in a
quantitative manner. So it needs a quantitative and thus
mathematical model for the function
workload parameters × knob settings → performance metrics.

A knob should be adjusted only when we predict a
significant improvement and the system can be expected
to remain operationally stable. The prediction also helps
to choose the most effective knob if there are several can-

didates. The stability check is important, for we might
otherwise improve only certain aspects while introducing
a risk of degrading the system in other regards. For exam-
ple, fixing all index pages in memory would improve in-
dex lookup performance but might leave insufficient
working space for sorting or hash-based query operators.
It turns out that a conservative prediction step is abso-
lutely crucial for a robust feedback control loop. The
critical role of this step and especially its need for a
mathematical prediction model have often been underes-
timated.

The last step in the three-phase feedback cycle is the
reaction step. From a scientific viewpoint this is the sim-
plest of the three steps: when the prediction step gives us
a clear recommendation on which parameter should be
adjusted by how much, we merely have to turn the knob.
However, this online adjustment may create engineering
problems: it is not that easy to build a system where all
tuning parameters can be dynamically varied while the
system is serving its workload. For example, ten years ago
no commercial system would have been able to change
the amount of memory that is allocated to a hash join or a
sort operator while the operation is being executed. Sys-
tems have made tremendous progress in this regard (see,
e.g., [PCL93, LG98]). However, adaptable run-time
mechanisms are merely a necessary prerequisite for dy-
namic tuning, they do not provide intelligent strategies for
automatic tuning.

3.2 Example: Load Control

One of the individual tuning issues that we studied in de-
tail within the COMFORT project was load control for
locking; see our VLDB 1992 paper [MW92] and also
[MW91, We94]. The problem here is that excessive lock
conflicts may lead to thrashing [TGS85]: a performance
catastrophe where transaction throughput drops sharply
and response times become absolutely unacceptable and
practically approach infinity. Of course, such dramatic
behavior may occur only with update-intensive workloads
that exhibit an unusually high degree of data contention
(i.e., lock contention when locking is used for concur-
rency control). Note that the thrashing behavior is not
necessarily caused by deadlocks; it is possible with dead-
lock-free access patterns and caused by transitive lock
waits: transactions that are waiting for a lock may them-
selves block other transactions, and the frequency of such
cases may abruptly increase so that all but a few transac-
tions become blocked.

Although data-contention thrashing is certainly not a
common everyday problem, there are real applications,
for example, in banking and financial trading, where sys-
tem administrators are concerned about it (even when
fine-grained, row-level locking is used). In other applica-
tions with significant data contention, the problem has
been worked around by either restructuring the applica-
tion or by running transactions under relaxed isolation

levels. The former incurs high costs in the application
development, the latter bears a potential risk of overlook-
ing possibilities for incorrect application behavior.

The run-time tuning knob that is usually considered in
situations with high data contention is the multiprogram-
ming level (MPL), the maximum number of transactions
that are admitted for concurrent execution. Unfortunately,
it is not easy at all to find an appropriate setting of the
MPL limit for a given workload. If it is set too high, the
system becomes susceptible to thrashing; if it is set too
low, unnecessarily many transactions wait too long in the
system admission queue, and this waiting time is part of
the user-perceived response time. Even worse, typical
workloads consist of a mix of different transaction types
with widely varying lengths, both time-wise and in terms
of the number of accessed data items that need to be
locked. For such mixed workloads a global MPL limit is
actually inappropriate; rather one should limit the number
of concurrent transactions for each transaction class and
also critical combinations of transaction classes. Such
sophisticated tuning options were supported by some TP
monitors, but this is obviously a tuning nightmare.

Our self-tuning approach to this problem was a feed-
back control loop with short-term reactivity built into the
transaction manager. A key problem for the observation
phase was finding an appropriate metric that would indi-
cate the level of lock contention. Our first attempt was
based on the fraction of blocked transactions, a metric
considered already in the analytical work of [TGS85].
However, it turned out that this does not sufficiently re-
flect the influence of the variability in transaction lengths.
Our intuition led us to a metric that implicitly assigns
weights to transactions in proportion to the number of
locks that a transaction holds. This metric is the conflict
ratio:

nstransactioblockednonbyheldlocks#
nstransactioallbyheldlocks#

−
.

We observed experimentally that, regardless of the ac-
tual transaction mix, a value for this metric around 1.3
indicates very high thrashing danger. We coined this
value the critical conflict ratio. Our somewhat pragmatic
findings were later nicely confirmed by an elaborated
mathematical model by Thomasian [Tho93].

In the prediction step we calculate the probability that
a newly admitted transaction would become blocked, and
based on this value, the expectation of the conflict ratio if
the new transaction were admitted.

Finally, the reaction phase included three mecha-
nisms: admission control, cancellation control, and restart
control. The admission control simply rejects new trans-
actions and places them in a transaction queue whenever
the conflict ratio is above or is predicted to exceed the
critical threshold. It turned out that this measure alone
could not guarantee the avoidance of thrashing, as freshly
admitted transactions could extremely quickly and unpre-
dictably drive the system from the safe state into the criti-

cal region. Therefore, we introduced an additional cancel-
lation control that aborts transactions and puts them in the
queue for later restart whenever the conflict ratio is too
high. These victims were chosen based on their numbers
of currently held locks and previous aborts (to prevent
starvation), and only blocked transactions that blocked
other transactions were considered as candidates. The
restart control re-admits a cancelled transaction only after
the transactions for whose locks it was waiting in its prior
incarnation have left the system.

We carried out extensive experiments with various
variants of the load control method including some com-
petitors [CKL90,FRT91,HW91]. Our best variants outper-
formed the competitors by a substantial margin, and the
performance difference to setups with a static MPL
limitation or no load control at all was dramatic. The
bottom line was that the feedback control loop approach
did indeed work very well for this tuning issue, but to
make it robust a number of non-obvious, subtle and
critical, details had to be worked out.

3.3 Example: Dynamic Data Placement

Another tuning issue that we looked into in more detail
was data allocation and dynamic migration for parallel
disk systems [WZS91,SWZ93,SWZ98]. A main goal was
to place data onto disks such that at all times each disk
has approximately the same load. Despite the ample lit-
erature on such load balancing problems, we hardly found
any work that would tackle the practical problem of work-
load patterns evolving over time. So previously cold (i.e.,
infrequently accessed) data may become hot (i.e., fre-
quently accessed), and vice versa. Our approach to this
problem, which we coined disk cooling, was again based
on a feedback control loop. Compared to the load control
issue this problem is of broader and mid-term scope: it
affects the entire storage system, and the time scale for
data migrations is hours or possibly minutes, but not sec-
onds. Algorithmically, our method may be characterized
as an online algorithm based on greedy heuristics.

In the observation phase we monitor the heat of files,
extents, and blocks. Heat, originally proposed in [Co88],
is an estimation of the access rate to a data object (i.e., the
number of accesses per time unit). It is based on a sliding
window that tracks the time points t1, ..., tk of the last k
accesses to a data object. Then k / (tk - t1) is a dynamically
adjusted maximum-likelihood estimator for the stationary
access rate of the object. (The same principle is used in
the LRU-k caching algorithm [OOW93].) The heat metric
is an abstraction of the actual disk load induced by an
object as it does not distinguish many small versus few
large requests (e.g., random access to a single block ver-
sus sequential accesses to physically consecutive blocks).
Its key point, however, is that it is additive: the heat of an
entire disk simply is the total heat of the data objects that
reside on the disk. We consider the load of a parallel disk
system as imbalanced if the load of the hottest disk ex-

ceeds the heat of the least utilized disk by some specified
margin.

In the prediction step, we assess the benefit and cost
of possible data migrations. As migration candidates we
selected movable objects (e.g., extents) from the hottest
disk in ascending order of temperature, where temperature
is the quotient of heat and size [Co88]. The rationale for
this selection criterion is to relieve the hot disk signifi-
cantly while at the same time aiming to minimize the ad-
ditional run-time cost of the migration itself. The disks
onto which the objects are moved are chosen in ascending
order of disk heat, subject to possible placement con-
straints. Before a data migration is actually initiated, a
simple queuing model is evaluated to check if the migra-
tion step would not cause undue performance degradation
for the already overloaded source disk. We also studied
generalizations of the approach where the statistical pro-
file captures periodic load patterns for certain classes of
data objects; in this case we include a more elaborate
benefit/cost analysis before invoking a data migration
[SWZ93].

 The reaction step of the disk cooling method is fairly
straightforward. It merely requires online movement of
data objects with proper maintenance of bookkeeping
structures such as extent tables. In the early nineties such
online reorganizations were still widely considered infea-
sible, but today all industrial-strength systems should
have the necessary mechanisms [DE96].

 Disk cooling is applicable to the file, extent, or block
level of a storage system, or to the level of table frag-
ments in a parallel database system. In addition to only
migrating data, replication or caching of fragments could
be added to the repertoire. Even generalizations to distrib-
uted data placement, say in a content delivery network,
are conceivable and intriguing. In retrospect, however,
one point that we underestimated and should have ad-
dressed earlier is the interaction of such self-tuning disk
reorganizations with caching, indexing, and query proc-
essing. Some approaches along these lines have been ex-
plored in the literature (see, e.g., [Vi99, We99, KFD00,
Lee00]), but these interactions are so complex that a com-
prehensive solution is still beyond the current state of the
art.

3.4 Example: Workflow Server Configuration

A final example where we looked at the broad scope of
configuring an entire system for long-term performance
guarantees is our recent work on auto-tuning of workflow
management platforms [Gi00,Gi02]. Such platforms are
complex distributed systems that include one or more
workflow engines, application servers, and middleware
components like request brokers and message queue serv-
ers. For load distribution and better availability one or
more of these servers may be replicated on different com-
puters, and this gives rise to the question of how many
replicas of each server type one needs in order to satisfy

specified goals for response time, throughput, and toler-
ated service downtime.

Although the nature of this long-term system configu-
ration problem is quite different from that of the previous
two tuning issues, our approach can be cast into the feed-
back control loop framework. The observation step col-
lects statistics about activity invocations, durations, and
control flow path frequencies; this is the input for a
Markov reward model from which the expected load for
the various server types is derived. Assuming a given sys-
tem configuration, the prediction step computes the
maximum sustainable throughput and the average turn-
around times of the various workflow types, and it uses
queuing models to assess the expected waiting and re-
sponse times for interactive workflow steps. Similarly, the
expected downtime is computed from a Markov availabil-
ity model, based on estimated failure and restart rates of
the different server types. Finally, the reaction step iter-
ates over possible hypothetical configurations, uses the
prediction models to assess each of these candidates, and
searches the lowest-cost configuration that satisfies all
performance and availability goals. The result is sug-
gested to the system administrator as a recommended re-
configuration (typically involving hardware upgrades or
re-allocation of software servers on the existing com-
puters).

Compared to the examples of the previous two subsec-
tions, mathematical models play a much bigger role here;
the long-term nature of the problem allows us to use much
more sophisticated and computationally expensive tech-
niques. Furthermore, the metrics that we aim to optimize
are end-to-end performance measures, as opposed to the
low-level metrics of the previous examples. In addition to
user-perceived response times and availability, we also
consider the so-called performability metric [HLR00] as
an optimization goal, reflecting the impact of performance
degradation caused by transient outages of some server
replicas. This takes into account even planned outages for
maintenance. A technical difficulty in this regard is to
capture such regular events with the exponentially distrib-
uted state residence times that underlie a Markov model;
the solution expands states into subnets such that the state
residence time follows a generalized Erlang distribution
and can thus approximate constant times as well.

3.5 Lessons Learned

Summarizing the discussion of individual tuning issues,
here are the most important lessons that we learned:
+ The feedback control loop is indeed an appropriate

framework for developing self-tuning algorithms and
system components. However, it is far from being a
panacea. While the framework provided general guid-
ance, working out the details for the specific tuning is-
sue at hand was the most difficult part.

+ Mathematical models are a key asset for making feed-
back-driven methods robust, aiming to minimize the

risk of overreacting to fluctuations. Even fairly crude
models were helpful, but for strategic tuning decisions
such as adding servers to an E-service platform more
sophisticated models seem to be in order. In contrast, a
prediction step solely based on rules of thumb or with-
out any quantitative extrapolation at all does not seem
to be viable.

+ Gathering statistics about workload properties and per-
formance metrics is another key asset. Ten years ago,
the associated overhead seemed to be prohibitive, but
today extensive statistics are affordable. However, this
does by no means imply that the implementation details
of the statistics management are second-order issues.

+ Even if some tuning decision such as re-configuring an
entire system is not completely automated, having ob-
servation and prediction components in the spirit of
self-tuning methods is of great value. Alerting a system
administrator about increasing load or significant
changes in workload patterns as early as possible can
often save days of unacceptable performance degrada-
tion before the admin has realized and analyzed the
problem. In addition, automatically narrowing down
the possible bottlenecks and recommending appropriate
remedies can drastically simplify the admin’s job. So
even a partial solution to automatic tuning is a big gain.

+ In a similar vein, there is benefit in replacing a delicate
tuning parameter for which appropriate settings are
hard to find by another tuning parameter that has more
robust settings that are acceptable across a wide range
of workloads. Our load control method can be viewed
this way: we substituted the highly workload-sensitive
MPL limit by the fairly robust critical conflict ratio.

The above positive results need some words of caution,
however:
! Mathematical models may become extremely complex

and computationally intractable. In such cases two
complementary ideas can be pursued.
First, we can aim at conservative approximations of the
quantitative behavior by modeling strategies that yield
(reasonably tight) upper bounds for the performance of
the actual implementation. For example, when we in-
vestigated quality-of-service guarantees for the sched-
uling policy of a mixed-workload media server
[NMW99], we developed a stochastic model for a dif-
ferent, analytically tractable, scheduling policy whose
performance was consistently (slightly) worse than that
of our best policy. Alternatively, we can resort to simu-
lation (with proper statistical confidence) for submod-
els, and then use their results for the derivation of
higher-level metrics. The simulation could even be an
online component if its overhead is sufficiently low; a
possible example could be a cache hit rate estimator
that is dynamically fed by actual access traces and may
suggest cache resizing.
Second, we can aim to simplify the workload and thus
the behavior of the component that we study, typically

by introducing dedicated resources for a workload class
rather than aiming to exploit dynamic resource sharing
to the largest possible extent. Placing different catego-
ries of data on separate disk or servers is an example.
This consideration can be viewed as an instance of the
“pick the low hanging fruit” engineering rule: try to
achieve a 90-percent solution with 10 percent of the in-
tellectual effort and complexity.

! It is often crucial to limit the space and time overhead
of the observation and prediction steps, whenever sta-
tistics consume memory (e.g., the heat bookkeeping for
disk cooling) or computations fall into time-critical in-
ner loops of the system (e.g., the estimation of the con-
flict ratio). So precomputation techniques, incremental
evaluation, and efficient approximations are key to vi-
able solutions. In addition, the overhead of the statistics
management must be predictable; we do not want the
overhead to vary heavily with load bursts.

! The reaction phase bears an inherent risk of overreact-
ing and ending up with unstable (e.g., oscillating) ad-
justments of tuning knobs, especially after major shifts
in workload patterns. For the individual tuning issues
that we studied we managed to make the feedback-
driven iterative adjustments robust. However, this was
achieved by additional techniques and tricks on a case
by case basis (e.g., introducing the critical conflict ra-
tio). It would be desirable to obtain better insight in this
issue from a control-theoretic viewpoint and be able to
guarantee fast convergence to stable settings after
workload shifts.

Finally, we also gained some essential negative insight:
− Even if we fully understand a specific tuning issue and

know how to automate it, our understanding of how
different components and their tuning knobs interact
with each other is extremely limited, and the same
holds for the possible interference of different workload
classes. This interaction can make the entire system un-
predictable and unstable, and is the key problem to be
addressed much more intensively in future work. We
believe that progress along these lines requires also re-
thinking the architecture of database and information
systems, and will address this point in Section 5.

4. Where Do We Stand Today?
In the last ten years academia has detected automatic tun-
ing as an interesting research topic and the database in-
dustry has intensified its efforts on manageability aspects.
So, although the topic is still way underappreciated rela-
tive to popular megathemes such as XML, there has been
steady and incremental progress. Today a number of im-
portant tuning issues are sufficiently understood while
others still pose major challenges. In the following we
offer our subjective assessment of the state of the art. We
divide this discussion into obvious, simple, difficult but
solved, and still challenging issues.

Among the obvious improvements we can observe:

+ Second-order tuning knobs, those that have only mi-
nor performance effects (e.g., group commit timers or
log buffer sizes), have been largely eliminated from
the admin interfaces offered by products. This in-
cludes virtually all logging- and recovery-related
knobs (see, e.g., [La01]).

+ A growing number of tuning knobs come with rea-
sonable default values (e.g., extent sizes, prefetching
sizes for table scans) that may even be automatically
calibrated based on the underlying hardware (and
OS) configuration.

As for the second category of relatively simple recipes,
most systems have adopted the following approaches:
+ Employ robust rules of thumb where existing. For ex-

ample, there is no need for having the page size as an
application-specific tuning option, and even striping
units can be robustly chosen such that the resulting disk
performance, say page access throughput, is within ten
percent of the optimum. This has been realized in virtu-
ally all commercial systems.

+ Employ the KIWI method wherever applicable. This
holds mostly for disk I/O bottlenecks. When adding
disks or increasing memory can improve performance
proportionally to the added resources, then this is a
very cost-effective tuning measure. It is important,
however, to realize the limitations of this approach, too.
In this regard, mathematical models are crucial to pre-
dict the cost-effectiveness of additional hardware.

+ Remove tuning options that offer only marginal gains
even under the best possible conditions. A candidate
along these lines could be dropping hash indexes or
join indexes from the repertoire of the database systems
(i.e., provide only B+ tree indexes on single tables).
This aggressive simplification is obviously debatable.
In particular, it is in the eye of the beholder to define
“marginal gains”: for some this is a factor of two (and
then hash indexes should be dropped), for others even
ten percent improvement is worthwhile.

+ Remove tuning options that require black magic any-
way. This refers to knobs that even experienced system
administrators find almost impossible to cope with in
an adequate manner. A candidate would be indexes on
multi-table clusters. Although this option looks intrigu-
ing for certain access patterns, it is very difficult to as-
sess the adverse impact that it may have on other pat-
terns. In our teaching experience with practical assign-
ments on physical database design, no student could
ever make good use of multi-table clustering.

None of the above points requires deep scientific research.
In contrast, some advanced tuning problems were diffi-
cult, but are now solved, leveraging research achieve-
ments of the last decade, most notably, in the area of
physical database design:
+ The tuning issues at the disk storage level are essen-

tially solved, based on a mix of rules of thumb (e.g., for
striping units), the KIWI principle (e.g., mirror every-

thing), mathematical performance models, and some
adaptive techniques that came out of research (see, e.g.,
[Al00]).

+ Index selection is a solved problem [DE99]. By com-
bining exact optimization for subproblems with heuris-
tics for search space pruning, the problem has become
tractable even for large databases with many tables and
complex workloads. Virtually all commercial database
systems have an indexing wizard that recommends
which indexes one should create, and it is very hard for
a system admin to outsmart these tools. Note, however,
that such wizards completely disregard the impact that
the index selection may have on concurrency control
and resource contention (and they may also ignore ex-
otic features such as multi-table clustering and other
fancy join indexes).

+ The selection of materialized views is mostly solved.
Here the interaction of the physical database design
with the query optimizer is more sophisticated, as one
should consider only candidate views that will be ex-
ploited by the optimizer-generated execution plans.
Physical design assistants that come with database sys-
tem products have adopted recent research results on
these problems (e.g., [TS97, ACN00]). Some assistants
also provide advice on data partitioning for parallel da-
tabase systems (e.g., [Ra02]).

+ The proper choice and organization of statistical data
that a database system should maintain for the query
optimizer, say histograms of some type or more general
kinds of data synopses, now appears to be sufficiently
understood [CN01,Ja01,KW02]. There are remaining
open issues of the kind when exactly wavelets are supe-
rior to some alternative transform or other representa-
tion, but these issues are not likely to have a first-order
impact. The main problem of deciding on which attrib-
ute combinations synopses should be built and how
much memory they should be given is mostly solved.
Nevertheless, it will take a while for products to adopt
these results, and there is surely a nontrivial engineer-
ing part for integrating the best techniques into the da-
tabase engines.

Despite these significant advances, we are still left with a
number of challenging and largely unsolved tuning issues:
? Sufficiently accurate predictions of query run times and

result sizes, and the generation of approximate query
results with bounded errors and guaranteed confidence.
This is important beyond selectivity estimations for
choosing the best query execution plan, as it affects the
scheduling and prioritization of concurrent queries, the
choice of data sources for queries posed to a mediator,
and even user interface issues about fast approximative
results versus complete and exact results with non-
interactive response times (e.g., in a scientific data
analysis environment).

? Query optimization in general is still a big problem.
Even with better statistics (see above) there are many

potential error sources that can lead to poor execution
plans, in particular, the complex interplay of a large
number of (heuristic) rewriting rules, the inaccuracy of
cost models for modern computer architectures with
cache hierarchies, and the uncertainty about the avail-
able run-time resources and possible resource conten-
tion.

? Memory management. Flexible mechanisms for
dynamically adjusting the size of query working spaces
and cache areas are in place, but good policies for
online optimization are badly missing.

? Transaction isolation levels. Although it is customary
to use sub-serializability levels, hardly anybody really
knows all the possible implications that the "relaxed"
options could possibly have (with very low but non-
zero probability). Despite some interesting work in this
direction [Iso01], a comprehensive theory for when it is
safe to use which isolation level is badly missing.

? MPL limitation, admission control, and scheduling in
general are solved for conventional OLTP workloads,
but are still widely open for mixed workloads with both
OLTP and OLAP parts and potential contention on data
as well as memory, disks, and processors. This holds
also for memory management, including shared caches
as well as query workspaces, where significant concep-
tual progress has been made (see, e.g., [BCL96,We99]),
but advanced issues still remain open.

? Hardware resource configuration is still challenging
unless one has a detailed and precise characterization of
a static workload as input for appropriate capacity
planning tools. For dynamic re-configuration because
of evolving workloads there is little support.

? Finally, at the meta level, we are missing a theory, or at
least some principles, of how to cope with tuning knob
interactions. How can we ensure that knob settings in
one component do not have undesired side effects on
another component?

5. Where Do We Go From Here?

5.1 The Vision of Autonomic Computing

Despite various attempts to promote automatic tuning and
enhanced system manageability as key objectives on our
community's research agenda (see, e.g., [Be98]), the sub-
ject has mostly been underappreciated and not well cov-
ered. These days a new bold vision of "autonomic" com-
puting is emerging as a new strategic goal for computer
science and the IT industry (see, e.g., [IBM01]). In the
envisioned world of automatic and autonomous compo-
nents all building blocks and entire systems should be
self-organizing, self-configuring, self-inspecting, self-
optimizing, self-protecting, and self-healing. So this
theme is even broader than the goal of automatic tuning
and encompasses issues such as dealing with denial-of-
service attacks and other forms of sabotage or maintaining
and adapting software for billions of embedded devices in
the anticipated world of "ambient intelligence". Auto-

nomic computing aims at end-to-end service assurance
and spans many areas from storage systems and grid
computing to multi-agent technology and Web services.

Of course, one may argue that this new wave merely
advertises old wine in new bottles. On the other hand, the
attention that the topic is receiving also demonstrates the
growing awareness about system manageability problems.
The potential danger that lies in such broadening is, how-
ever, that research overly focuses on high-level "big pic-
ture" approaches such as biological computing or agent
technology as if they were panaceas, and again underes-
timates the difficulties that lie in the technical details. In
the next subsection, we suggest a more mundane rationale
for addressing the tuning-related parts of the great vision.

5.2 The Case for RISC-style Components

On the path to the bold vision of trouble-free, autonomic
systems the following question arises: is the goal feasible
at all with the high complexity of today’s information
systems, or do we need a radical departure from current
system architectures as they might be inherently inappro-
priate for automatic tuning? In this subsection, we con-
sider, in the sense of a Gedankenexperiment, the second
alternative, following arguments from [CW00].

Database systems have become extremely complex
and overloaded with features. Furthermore, they are typi-
cally packaged as monolithic systems (although they are
componentized internally). This poses serious manage-
ability problems for application classes like ERP, OLAP
and data mining, and also Web-based E-services. Data-
base systems have a very poor gain/pain ratio: they create
much pain about having to install, administer, and operate
the system, whereas the gain of simplifying the applica-
tion development by using a full-fledged database system
is sometimes questionable. Note, for example, that SAP
R/3 considers the underlying database system more or less
as a mere storage manager [Mu99].

Following role models such as automobiles or aircrafts
where dependable engineering appears to be much more
advanced, we should consider a radical departure along
the lines of the RISC paradigm shift in computer architec-
ture back in the eighties. The key to understanding such
complex artefacts as computers (i.e., the hardware) or
aircrafts and making their construction and deployment
manageable lies in three principles: 1) these artefacts are
highly componentized, 2) the components have limited
and relatively simple, i.e., “RISC-style”, functionality so
that the behavior of a component is predictable, including
its timing behavior (i.e., performance properties), and 3)
the interfaces of the components are designed as narrow
as possible so that the interaction complexity between
components is kept to a minimum. These principles
would, for example, suggest replacing the ubiquitous SQL
language by a suite of much simpler APIs. To a limited
extent, research and industry is pursuing this approach
already, e.g., in the form of light-weight or specialized

data management engines such as SleepyCat (aka Berke-
ley DB) or TimesTen, but this is not exactly the main-
stream in the database software industry. Of course, com-
ponents in this system philosophy would be relatively
large-grained rather than fine-grained objects; for exam-
ple, a storage manager (including concurrency control and
recovery), a select-project-join engine, or a text document
manager would be components, but a universal database
system would be against the spirit of this approach. Also,
all components should apply Occam’s razor to their inter-
faces as well as their internals, and should avoid features
that are rarely used or implementation techniques that
improve performance only marginally or only under spe-
cial circumstances (e.g., no hash structures as B-tree in-
dexes are good enough in most situations).

In the context of self-tuning E-services, the key point
of components is their predictability that falls out from
their (relative) simplicity. The simpler an interface and the
underlying internals are, the fewer tuning knobs need to
be exported and the easier it becomes to mathematically
analyze and predict the component’s performance. For
example, query result size and runtime estimations for a
select-project-join engine becomes more tractable if the
complexity of the search predicates is limited (e.g., disal-
lows user-defined functions or arbitrary multidimensional
predicates, which are rarely needed in E-business applica-
tions). For OLAP or GIS applications, on the other hand,
we could build a specialized multidimensional query en-
gine and construct a separate performance prediction
model for this engine, which should again be much more
tractable than for a universal database system. The
(mathematical) performance model for a component
should be developed together with the component soft-
ware, which is much easier than doing performance mod-
eling in retrospect. Such a performance model would be
parameterized, as the component’s performance depends
on the underlying hardware configuration and workload
properties. When the component is bound to a specific
hardware and application environment (with a known
workload profile), the performance model would become
a performance (or service quality) contract by which cer-
tain guarantees are given about metrics of interest (e.g.,
the 95th percentile of the response time distribution for a
specific class of user requests).

Of course, the highly componentized approach to data
management and E-service software is viable only if mul-
tiple components can be composed into value-added ser-
vices without re-introducing a poor gain/pain ratio. Again,
the RISC-style simplicity of component interfaces and the
cross-component interactions would be the key asset for
low-effort composability. This argument includes the per-
formance contracts: the value-added service should in turn
provide a performance model and contract that are de-
rived from the models of the underlying components. Of
course, this line of thinking about system architecture
bears the risk that value-added services exhibit very high
overhead for component interaction (e.g., for copying data

across interfaces). However, this would be only constant
overhead, say a slow-down factor of 2. We can make up
for this performance loss by proportionally adding (inex-
pensive) hardware resources; this is a case where the
KIWI method makes perfect sense. The true gain would
lie in the fact that such systems and E-services composed
from RISC-style components would have predictable per-
formance, so that automatic tuning could finally move
from wishful thinking to viable engineering.

5.3 Why Does RISC Simplify Automatic Tuning?
A major incentive for moving towards RISC-style com-
ponents is to enable auto-tuning of information services.
Tuning must consider the relationship between workload
characteristics, knob settings, and the resulting perform-
ance in a quantitative manner. Therefore, mathematical
models (in combination with online feedback control) are
crucial. Unfortunately, these models work only in a lim-
ited context, i.e., when focusing on a particular knob (or a
small set of inter-related knobs). Attempting to cover the
full spectrum of tuning issues with a single, comprehen-
sive model is bound to fail because of the lack of suffi-
ciently accurate mathematical models or the intractability
of advanced models. This is why limiting ourselves to
using only RISC components is so important: we no
longer need to aim for the most comprehensive, elusive
performance model, and there is hope that we can get a
handle on how to auto-tune an individual service. It is
much easier to tune a system with a less diverse workload
and less dynamic resource sharing among different data
and workload classes. Of course, the global tuning prob-
lem is now pushed one level above: how do we tune the
interplay of several RISC components? Fortunately, a
hierarchical approach to system tuning appears to be
more in reach than trying to solve the entire complex
problem in one shot. In the following we outline the main
steps of such a hierarchical auto-tuning framework:
• Identify the need for tuning: Each RISC data manage-

ment component must include a self-inspection module.
This module should be in charge of monitoring long-
term workload and performance metrics, comparing
their values to some target settings for relevant metrics
such as average response time for a given pair of user-
request class and user category or the 90th percentile of
the response time distribution. If one of these applica-
tion-level metrics degrades significantly, this indicates
the need for tuning and should turn on a ”DBA atten-
tion” red light or, much better, trigger an auto-tuning
procedure. The rationale for this self-inspection and
alerting approach is that information systems typically
run reasonably well when they are initially deployed
and start suffering performance problems as workloads
undergo long-term evolution (e.g., when a Web site be-
comes more popular). It is crucial to react quickly,
hence automatically, to the performance degradation, as
poor performance is often perceived as equivalent to

service unavailability by users (e.g., because of many
timeouts in Web connections).

• Identify the bottleneck: When performance is unsatis-
factory, a bottleneck analysis is mandatory. In the hier-
archical world of components and higher-level services,
a first approximation would be to identify the most per-
formance-critical building block (i.e., RISC data server
or higher-level application server). This can be done
quite easily by hypothetically adding infinite resources
to each server, one at a time, and computing (using
mathematical models or fast simulation) whether this
would improve the currently unacceptable application-
level response times.

• Analyze the bottleneck: Once the bottleneck component
is determined, a more detailed analysis is necessary to
understand which tuning knobs within the component
might help alleviating the performance problem. This
analysis should again proceed in a top-down manner by
estimating the performance of the workload’s most
dominant transactions/queries/requests on a hypotheti-
cally modified configuration. So an auto-tuning wizard
would consider what if the server had more memory,
more disks, a faster CPU or more processors, no lock
contention, or simply a higher multiprogramming level,
to name the most important possible bottlenecks. This
assessment again needs mathematical models (or very
fast online simulators), e.g., an analytic model for the
disk system. However, by considering one potential
bottleneck at a time, each of these models can focus on
an individual aspect, and such limited-scope models
are, to a large extent, available.

• Estimate performance changes: Once the primary bot-
tleneck is known, the analysis procedure should be re-
fined and remedies should be considered. For example,
if the bottleneck were the disk system, we should assess
possible remedies like adding a disk, increasing the
cache size in memory, creating an index, rearranging
data on one disk (e.g., to reduce seek times), rearrang-
ing data across disks (to reduce load imbalances), etc.
Finally, the wizard should then determine which one is
the best in terms of cost, risk of making something else
in the operational system unstable, and possibly further
aspects. The result could be alerting a responsible per-
son to spend a few hundred dollars on extra memory or
disks, or it could be an internal measure such as creat-
ing an index or rearranging data across disks. In either
case, a few hours later the system would ideally be in
good shape again. Note that for selection of which tun-
ing measure should be applied, the wizard needs to es-
timate the anticipated performance improvement. This
is needed because some of the possible tuning options
are parameterized, and we need to determine an appro-
priate parameter value to make sure the performance
improvement is significant but to avoid spending too
much money. For example, when the wizard decides to
increase the cache size, we need to know how much

additional memory we should purchase. Again, this
step crucially relies on mathematical models or fast but
accurate simulation (e.g., to estimate the cache hit ratio
for a hypothetical cache size).

• Adjust tuning knob: The final step is mere mechanics.
Once the decision about the best tuning option is made,
the corresponding knob has to be adjusted. As men-
tioned before, this may require interaction with a hu-
man person to add hardware resources. For availability,
it is highly desirable that the adjustment takes place
online without having to shut down the operational sys-
tem. This is feasible for most kinds of tuning steps
these days (including adding disks and rearranging data
across disks).

The hierarchical nature of the outlined auto-tuning proce-
dure is in line with good practice for manual/intellectual
tuning [SB02]. In particular, our approach also adopts a
”think globally, fix locally” regime. Mathematical models
have been and remain to be key assets also in the practical
system tuning community [MA98]. The key to making the
mathematics sufficiently simple and thus practical lies in
the reduced complexity of the component systems and
their interfaces and interplay. We believe that there is a
virtue in engineering system components such that their
real behavior can be better captured by existing mathe-
matical modeling techniques, even if this may lead to
some (tolerable) loss of high-end features and efficiency.
The benefit of this engineering-for-predictability para-
digm lies in the improved manageability of systems.

6. Conclusion
When we started the COMFORT project in 1990, we had
the hope that automatic tuning can be achieved with a few
simple principles. This was clearly wishful thinking.
While the feedback control loop framework provides use-
ful guidance, the difficult problems are in the details of
the various tuning issues. For robust solutions workload
statistics and mathematical models are key assets, and for
viable engineering these must be carefully designed so as
to ensure acceptable overhead. Our field in general has
made significant progress towards self-tuning database
technology, but there is no breakthrough.

The biggest challenges that our research community
should address as high-priority problems are the interac-
tions of different system components and their tuning
knobs and the interference between different workload
classes. For tackling this complexity we believe that a
drastic simplification of today's overly complex system
architectures is overdue. Assuming that we are able to
build individually self-tuning components, the composi-
tion of these building blocks into higher-level E-services
with service-quality guarantees seems feasible only with
sufficiently simple component interfaces and radical
minimization of cross-talk.

On the technical side a fundamental issue to investi-
gate is how to cope with multi-class workloads, at both

the database and the middleware level, such that we can
provide differentiated quality of service, say guarantees
about the 95th percentile of the response time distribution,
on a per class basis. For example, in seemingly simple
home banking, we can observe different request classes
such as account lookups, brokerage orders, or sophisti-
cated portfolio analyses, different customer classes such
as premium customers, regular customers, and guests (i.e.,
potential customers who might be offered hypothetical
portfolios to play with), and different connection types
such as cell phones or other gizmos, high-speed Internet
access from a PC, or local access from a call center.
Combining all these options yields a large number of dif-
ferent workload classes with specific performance goals.
Orthogonal to this complexity is the need to capture work-
load behavior in a more context-sensitive manner. Today,
tuning is mostly driven by stationary frequencies of state-
less request types, but the contextual patterns that are ex-
hibited in query execution plans or entire user sessions do
matter, and likewise long-term periodicity of certain load
patterns (e.g., Monday morning peaks) needs to be con-
sidered as well.

Given the paramount importance of the manageability
of modern information services, our community should
intensify its efforts both on the technical issues posed by
individual aspects and the strategic dimension of system
architectures that are more amenable to automatic tuning.

References
[ACN00] S. Agrawal, S. Chaudhuri, V.R. Narasayya:
Automated Selection of Materialized Views and Indexes
in SQL Databases, VLDB Conf. 2000.
[Al00] G. Alvarez, K. Keeton, A. Merchant, E. Riedel, J.
Wilkes: Storage Systems Management, Tutorial, SIGME-
TRICS Conf. 2000.
[Be98] P. Bernstein et al.: The Asilomar Report on Data-
base Research, ACM SIGMOD 27(4), December 1998.
[BBK00] N. Bhatti, A. Bouch, A. Kuchinsky: Integrating
User-Perceived Quality into Web Server Design, WWW
Conf. 2000.
[Br94] K.P. Brown, M. Mehta, M.J. Carey, M. Livny:
Towards Automated Performance Tuning for Complex
Workloads, VLDB Conf. 1994.
[BCL96] K.P. Brown, M.J. Carey, M. Livny: Goal Ori-
ented Buffer Management Revisited, SIGMOD 1996.
[CKL90] M.J. Carey, S. Krishnamurthi, M. Livny: Load
Control for Locking : the Half-and-Half Approach, PODS
1990.
[CN01] S. Chaudhuri, V. Narasayya : Automating Statis-
tics Management for Query Optimizers, IEEE Transac-
tions on Knowledge and Data Engineering 13(1), 2001.
[CW00] S. Chaudhuri, G. Weikum: Rethinking Database
System Architecture - Towards a Self-tuning RISC-style
Database System, VLDB Conf. 2000.
[Co88] G.P. Copeland, W. Alexander, E.E. Boughter,
T.W. Keller: Data Placement in Bubba, SIGMOD 1988.

[DE96] IEEE CS Data Engineering Bulletin 19(2), Spe-
cial Issue on Online Reorganization, June 1996.
[DE99] IEEE CS Data Engineering Bulletin 22(2), Spe-
cial Issue on Self-Tuning Databases and Application Tun-
ing, June 1999.
[DE01] IEEE CS Data Engineering Bulletin 24(1), Spe-
cial Issue on Infrastructure for Advanced E-Services,
March 2001.
[FRT91] P.A.. Franaszek, J.T. Robinson, A. Thomasian:
Wait Depth Limited Concurrency Control, ICDE 1991.
[Gi00] M. Gillmann, J. Weissenfels, G. Weikum, A.
Kraiss: Performance and Availability Assessment for the
Configuration of Distributed Workflow Management Sys-
tems, EDBT 2000.
[Gi02] M. Gillmann, G. Weikum, W. Wonner: Workflow
Management with Service Quality Guarantees, SIGMOD
2002.
[GG97] J. Gray, G. Graefe: The Five-Minutes Rule Ten
Years Later, and Other Computer Storage Rules of
Thumb, ACM SIGMOD Record 26(4), December 1997.
[GS00] J. Gray, P.J. Shenoy: Rules of Thumb in Data
Engineering, ICDE 2000.
[HLR00] G. Haring, C. Lindemann, M. Reiser: Perform-
ance Evaluation: Origins and Directions, Springer, 2000.
[HW91] H.-U. Heiss, R. Wagner: Adaptive Load Control
in Transaction Processing Systems, VLDB Conf. 1991.
[He00] J.M. Hellerstein, M.J. Franklin, S. Chandraseka-
ran, A. Deshpande, K. Hildrum, S. Madden, V. Raman,
M.A. Shah: Adaptive Query Processing: Technology in
Evolution, IEEE CS Data Eng. Bulletin 23(2), 2000.

[IBM01] Autonomic Computing: IBM's Perspective on
the State of Information Technology,
http://www.research.ibm.com/autonomic/manifesto/
autonomic_computing.pdf.
[Iso01] Isolation Testing Project, University of Massachu-
setts at Boston, http://www.cs.umb.edu/~isotest/
[Ja01] H.V. Jagadish, H. Jin, B.C. Ooi, K.-L. Tan: Global
Optimization of Histograms, SIGMOD 2001.
[KW02] A.C. Koenig, G. Weikum: A Framework for the
Physical Design Problem for Data Synopses, EDBT 2002.
[KFD00] D. Kossmann, M.J. Franklin, G. Drasch: Cache
Investment: Integrating Query Optimization and Distrib-
uted Data Placement, TODS 25(4), 2000.
[La01] T. Lahiri, A. Ganesh, R. Weiss, A. Joshi: Fast-
Start: Quick Fault Recovery in Oracle, SIGMOD 2001.
[LG98] P.-A. Larson, G. Graefe: Memory Management
During Run Generation in External Sorting, SIGMOD
1998.
[Lee00] M.-L. Lee, M. Kitsuregawa, B.C. Ooi, K.-L. Tan,
A. Mondal: Towards Self-tuning Data Placement in Paral-
lel Database Systems, SIGMOD 2000.
[LGS00] C. Loosley, R.L. Gimarc, A.C. Spellmann: E-
Commerce Response Time: a Reference Model, White
Paper, Keynote Systems Inc., 2000.

[MA98] D.A. Menasce, V.A.F. Almeida: Capacity Plan-
ning for Web Performance - Metrics, Models & Methods,
Prentice Hall, 1998
[MW91] A. Moenkeberg, G. Weikum: Conflict-driven
Load Control for the Avoidance of Data-Contention
Thrashing, ICDE 1991.
[MW92] A. Moenkeberg, G. Weikum: Performance
Evaluation of an Adaptive and Robust Load Control
Method for the Avoidance of Data-Contention Thrashing,
VLDB Conf., 1992.
[Mu99] R. Munz: Usage Scenarios of DBMS, Keynote,
VLDB Conf. 1999.
[NMW99] G. Nerjes, P. Muth, G. Weikum: A Perform-
ance Model of Mixed-Workload Multimedia Information
Servers, 10th German Conf. on Performance Assessment
of Computer and Communication Systems, 1999.
[OOW93] P.E. O’Neil, E.J. O’Neil, G. Weikum: The
LRU-K Page Replacement Algorithm for Database Disk
Buffering, SIGMOD 1993.
[Ora00] Oracle8i with Oracle Fail Safe 3.0, White Paper,
Oracle Corp., 2000.
[PB01] D. Patterson, A. Brown: Recovery-Oriented Com-
puting, Keynote, HPTS Workshop 2001.
[PCL93] H. Pang, M.J. Carey, M. Livny: Partially Pre-
emptive Hash Joins, SIGMOD 1993.
[Ra02] J. Rao, C. Zhang, G.M. Lohman, N. Megiddo:
Automating Physical Database Design in a Parallel Data-
base, SIGMOD 2002.
[SWZ93] P. Scheuermann, G. Weikum, P. Zabback:
Adaptive Load Balancing in Disk Arrays, 4th FODO Con-
ference, 1993.
[SWZ98] P. Scheuermann, G. Weikum, P. Zabback: Data
Partitioning and Load Balancing in Parallel Disk Systems,
VLDB Journal 7(3), 1998.
[SB02] D. Shasha, P. Bonnet: Database Tuning: Princi-
ples, Experiments, and Troubleshooting Techniques,
Morgan Kaufmann, 2002.
[St01] M. Stillger, G.M. Lohman, V. Markl, M. Kandil:
LEO: DB2’s LEarning Optimizer, VLDB Conf. 2001.
[TGS85] Y.C. Tay, N. Goodman, R. Suri: Locking Per-
formance in Centralized Databases, TODS 10(4), 1985.
[TS97] D. Theodoratos, T.K. Sellis: Data Warehouse
Configuration, VLDB Conf. 1997.
[Tho93] A. Thomasian: Two-Phase Locking Performance
and its Thrashing Behavior, TODS 18(4), 1993.
[Vi99] R. Vingralek, Y. Breitbart, M. Sayal, P. Scheuer-
mann: Web++: A System for Fast and Reliable Web Ser-
vice, USENIX Conf. 1999.
[We94] G. Weikum, C. Hasse, A. Moenkeberg, P. Zab-
back: The COMFORT Automatic Tuning Project,
Information Systems 19(5), 1994.
[We99] G. Weikum, A.C. Koenig, A. Kraiss, M. Sinn-
well: Towards Self-tuning Memory Management for Data
Servers, IEEE CS Data Engineering Bulletin 22(2), 1999.
[WZS91] G. Weikum, P. Zabback, P. Scheuermann: Dy-
namic File Allocation in Disk Arrays, SIGMOD 1991.

