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Abstract 

Automatic tuning has been an elusive goal for 
database technology for a long time and is be-
coming a pressing issue for modern E-services. 
This paper reviews and assesses the advances 
that have been made on this important subject 
during the last ten years. A major conclusion is 
that self-tuning database technology should be 
based on the paradigm of a feedback control 
loop, but is also bound to build on mathematical 
models and their proper engineering into system 
components. In addition, the composition of in-
formation services into truly self-tuning, higher-
level E-services may require a radical departure 
towards simpler, highly componentized software 
architectures with narrow interfaces between 
RISC-style “autonomic” components. 

1. Understanding the Problem 
Mission-critical information systems require consistently 
good performance. To this end, virtually all large data-
bases are managed by well paid system administrators 
who should be experienced in the black art of database 
tuning: adjusting the system’s tuning knobs to the specific 
workload characteristics of the applications. This involves 
hardware capacity planning, physical database design, 
settings for run-time resource management, and the man-
agement of inter-system dependencies (e.g., between 
middleware and database server). Skilled “tuning gurus” 
are scarce and expensive, and the total cost of ownership 
for a mission-critical information system becomes more 
and more dominated by the money spent on human staff. 

Furthermore, the difficulty of system tuning may incur 
additional hidden costs by forcing application developers 
to restructure their application logic in a possibly unnatu-
ral manner (e.g., coding stateful applictions into stateless 
programs) in order to ensure acceptable performance. 
This situation calls for the automation of tuning decisions 
and a new generation of self-tuning database technology.  

Over the last ten years the awareness of the problem 
has been growing [Be98] and significant progress has 
been made towards solutions [DE99]; however, there is 
no breakthrough yet. With Web-based E-services [DE01] 
such as auctions, brokerage, service outsourcing, and E-
business supply chains, the problem becomes even more 
difficult and also more pressing.  

1.1 Why is Auto-Tuning More Important Than Ever? 

The IT industry today is driven by time to market, and 
software systems are developed and deployed at an amaz-
ing pace. As a result, many Web-based E-services are 
brittle, frequently exhibit inconvenient outages, and have 
absolutely unacceptable response times during popular 
business hours (i.e., load peaks). Exceptions are those 
well administered sites that are heavily investing in their 
human support staff, to monitor workload and perform-
ance trends, identify potential bottlenecks as early as pos-
sible, and take correcting actions such as hardware up-
grades or adjustment of tuning knobs (e.g., multipro-
gramming levels).  

Most people in the IT industry are aware of the high 
cost of unavailability. According to business analysts one 
minute downtime for an E-business site causes damage 
(through bad impact on the market position) on the order 
of $ 100,000 [Ora00, PB01]. Moreover, when perform-
ance is poor potential customers are not willing to wait for 
a server's reply; these customers will be lost and are 
unlikely to ever come back to the site. So lack of per-
formance is as expensive as downtime.  

There is growing awareness of the criticality of per-
formance guarantees [BBK00, LGS00], as expressed by 
Internet performance rating companies such as Keynote or 
CDN providers such as Akamai. These kinds of compa-
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nies primarily focus on simple long-term metrics such as 
average respone time over an entire week or month. How-
ever, guarantees along these lines do not reflect the per-
formance during peak periods, the most popular business 
hours when  responsiveness matters most. In traditional 
OLTP, well-tuned systems are geared to peak load for a 
very good business reason, but Web-based E-services are 
still far away from this standard. 

1.2 Why is Auto-Tuning Becoming More Difficult in 
the E-Service Age? 

There are a number of technical reasons why tuning of a 
Web-based E-service application is even more challeng-
ing than for traditional TP systems:  
• Sophisticated multi-tier architectures: The system ar-

chitecture of a typical E-service site is more complex 
than a traditional TP system. Both are usually three-tier 
architectures, but a decisive difference in the new world 
is that the middle-tier (Web) application servers often 
manage some persistent data in application-oriented ob-
ject caches. When freshness of the data or bounded 
staleness matter these sophisticated caching architec-
tures pose additional tuning problems that are not well 
understood. 

• Service federations: Modern E-services offer very rich 
functionality, which often integrates data and functions 
from various sites both within and outside the com-
pany. For example, Internet-accessible travel services 
such as Expedia communicate with wholesalers like 
Amadeus or Sabre who are themselves full-fledged and 
autonomous E-service sites. The performance of one E-
service transitively depends on that of other systems. 
Even within a single company, where business portals 
aim to provide a unified view onto different informa-
tion sources and applications, the underlying systems 
are often operated and administered by different 
branches, departments, or subsidiaries, and thus at least 
semi-autonomous. 

• Workload diversity and variability: In modern business 
the variety of functions that need to be supported by an 
E-service site is much higher than in the traditional TP 
world. Home banking includes not just simple money 
transfers, but also portfolio analyses, personalized in-
vestment recommendations, what-if scenario simula-
tions, and so on. Whenever such highly diverse applica-
tion functions require some shared data, global tuning 
becomes a lot more difficult. A second dimension of 
workload variability lies in the fact that E-services have 
about a hundred million potential clients from all over 
the globe. Consequently, there are potentially tremen-
dous fluctuations in the  system load, and this can dra-
matically amplify the factor between average and peak 
load.  

• Long-lived applications and long-range workload de-
pendencies: In traditional OLTP and also in the first-
generation E-commerce applications, the focus has 

been on short-lived interactions that involve say order-
ing a few books and paying by credit card. In addition, 
various tricks are used to make most application func-
tions pseudo-stateless (e.g., identifying customers and 
shopping carts via cookies). This approach simplifies 
performance tuning; there are no long-term commit-
ments for serving certain requests at user-acceptable 
speed. The emerging classes of advanced B2B and B2C 
E-services will include long-lived workflows; for ex-
ample, you may subscribe to some news feed and pay 
in installments, or some service may run a personal-
ized, automated agent that acts on your behalf in the 
stock market, in auctions, and so on. These long-lived 
applications are much more difficult to configure prop-
erly and  tune, because admitting the start of a new 
workflow implies long-range commitments by the 
server to process all follow-on activities at a specified 
user-acceptable performance level.  

1.3 Message and Outline of the Paper 

This paper reviews and assesses the advances that have 
been made during the last ten years towards the elusive 
goal of self-tuning database technology.  It is largely 
based on lessons learned from the COMFORT project that 
we were working on in the early nineties at ETH Zurich. 
Our approach at that time was centered around the para-
digm of a feedback control loop.  

The quantitative nature of performance tuning requires 
mathematical models and their careful engineering into 
the system architecture. The complexity of the necessary 
models, the dependencies between different tuning issues, 
and the intricate interactions between different system 
components further call for a drastic simplification of the 
underlying system architecture. We advocate a radical 
departure from today’s monolithic architectures towards a 
library of simpler, RISC-style, components with very nar-
row interfaces and very limited interaction between com-
ponents as the basis for composing components into truly 
self-managing higher-level E-services. 

The paper is organized as follows. Sections 2 and 3 
review previous approaches towards automatic tuning in 
general and in the context of the COMFORT project. Sec-
tion 4 offers a subjective analysis of where we stand to-
day. Section 5 presents our speculative architectural con-
siderations towards the widely envisioned world of “auto-
nomic computing”. 

2. Intriguing and Treacherous Approaches 
The difficulty of the long-standing problem suggests that 
there is no easy solution, especially not for advanced E-
services. This is in contrast to some developers' thinking 
that rules of thumb or even brute-force solutions are good 
enough for automatic tuning.  

Sometimes rules of thumb do indeed work for certain 
aspects, namely, when sufficiently generic and robust 
settings for specific tuning knobs can be found without 



quantitative analysis or merely with a simple back-of-the-
envelope calculation [GS00]. A positive example would 
be choosing the size of index pages [GG97]. However, 
even seemingly simple issues such as choosing an appro-
priate database cache size for a given workload are so 
difficult that rules of thumb do not lead to viable solu-
tions. Of course, the five-minute rule dictates a certain 
minimum cache size based on cost/throughput considera-
tions, but many well-tuned applications use significantly 
larger caches for better response time (an issue that is not 
covered by the five-minute rule). Unfortunately, there is 
no quick-and-easy approach for quantifying the impact of 
the cache size on the response times of a multi-user work-
load. 

Another approach in which many practitioners believe 
so much that it is even (mis-)conceived as a panacea is the 
"KIWI method: kill it with iron", that is, upgrade your 
hardware (more disks, more memory, etc.). Given the low 
cost of hardware versus the high cost of intellectual cy-
cles, this is indeed a preferable approach, provided that it 
leads to a viable solution. However, there is a potential 
pitfall: some tuning problems cannot be solved with 
hardware upgrades alone or only with outrageously ex-
pensive upgrades. For example, an exact-match lookup 
that is processed by a sequential scan can, of course, be 
sped up by buying more disks, declustering the underlying 
table, and exploiting I/O parallelism for faster lookup. But 
in many cases a much smarter and far less expensive solu-
tion would be to create an index on the relevant col-
umn(s). Note also that every additional storage or CPU 
box inevitably creates some additional management work.  

When hardware upgrading is the right recipe for a 
given tuning problem, one needs to be able to calculate 
how much extra memory, how many additional disks, and 
other resources are needed to achieve acceptable perform-
ance. This in turn requires predicting various performance 
metrics as a function of the hardware configuration and 
workload properties. As the relationships between re-
source settings and response time are inherently nonlin-
ear, and in fact mathematically quite complex, cost-
effective use of the KIWI method does require advanced 
mathematical modeling.  

Finally, an intriguing approach that has been pursued 
in several research projects (e.g., [Br94, We94, He00, 
St01]), but to our knowledge, has not yet been seriously 
considered in products, is the concept of a feedback con-
trol loop where the settings of tuning parameters are con-
tinuously adapted to the current workload characteristics 
and the resulting performance. As this is the principle that 
we explored in the COMFORT project, it will be dis-
cussed in the next section. 

3. Lessons from the COMFORT Project 
Our methodology in the COMFORT project was twofold: 
on one hand, we wanted to identify, explore, and under-
stand general principles of automatic tuning; on the other 

hand, we worked on individual tuning problems that we 
found interesting and challenging. These issues varied in 
scope, regarding both time and scale dimension, from 
short-term online reactions regarding very specific per-
formance aspects to long-term configuration planning 
regarding global performance metrics. The idea behind 
this twofold research approach was that the work on indi-
vidual problems would help us to identify general princi-
ples and would also serve as test cases for the general 
concepts. In the following, Subsection 3.1 reviews our 
ideas about general auto-tuning principles, whereas Sub-
sections 3.2 through 3.4 look at individual tuning issues, 
in increasing order of scope. Subsection 3.5 summarizes 
our lessons learned. 

3.1 The Quest for Auto-Tuning Principles 

The main principle that we pursued in the COMFORT 
project is the concept of an online feedback control loop. 
The system continuously observes certain performance 
metrics, and whenever these exceed critical thresholds the 
system dynamically adjusts some online tuning knobs. 
While this general principle is very simple, the difficulties 
become obvious when one tries to apply it to a real sys-
tem. It is unclear which tuning knobs one should consider 
under which conditions, and it is equally unclear how 
much they should be varied. A naive feedback control 
loop could overreact to some problems and may lead to 
oscillation between equally unacceptable system states. 
To address these problems, we imposed more structure on 
our approach and divided the feedback control loop into 
three phases: observation, prediction, and reaction, an 
OPR cycle for short.  

The observation phase monitors performance metrics 
and workload parameters that can be viewed as indicators 
for a performance problem or a significant shift in the 
workload patterns. In this step, the most crucial question 
is which parameters one should look at. While throughput 
and query or transaction response times are good global 
indicators, they do not give any clues about the causes of 
a problem. So in addition to these macroscopic metrics, 
we investigated which microscopic data one should meas-
ure in order to identify the need for dynamic re-tuning. 
Furthermore, the microscopic metrics could also guide us 
in choosing the appropriate tuning knob for fixing the 
problem. Good examples that we will come back to later 
are the ratio of lock waits to lock requests and disk queue 
lengths.  

The purpose of the prediction step is to assess the hy-
pothetical adjustment of various candidate knobs in a 
quantitative manner. So it needs a quantitative and thus 
mathematical model for the function  
workload parameters × knob settings → performance metrics.  

A knob should be adjusted only when we predict a 
significant improvement and the system can be expected 
to remain operationally stable. The prediction also helps 
to choose the most effective knob if there are several can-



didates. The stability check is important, for we might 
otherwise improve only certain aspects while introducing 
a risk of degrading the system in other regards. For exam-
ple, fixing all index pages in memory would improve in-
dex lookup performance but might leave insufficient 
working space for sorting or hash-based query operators. 
It turns out that a conservative prediction step is abso-
lutely crucial for a robust feedback control loop. The 
critical role of this step and especially its need for a 
mathematical prediction model have often been underes-
timated. 

The last step in the three-phase feedback cycle is the 
reaction step. From a scientific viewpoint this is the sim-
plest of the three steps: when the prediction step gives us 
a clear recommendation on which parameter should be 
adjusted by how much, we merely have to turn the knob. 
However, this online adjustment may create engineering 
problems: it is not that easy to build a system where all 
tuning parameters can be dynamically varied while the 
system is serving its workload. For example, ten years ago 
no commercial system would have been able to change 
the amount of memory that is allocated to a hash join or a 
sort operator while the operation is being executed. Sys-
tems have made tremendous progress in this regard (see, 
e.g., [PCL93, LG98]). However, adaptable run-time 
mechanisms are merely a necessary prerequisite for dy-
namic tuning, they do not provide intelligent strategies for 
automatic tuning. 

3.2 Example: Load Control 

One of the individual tuning issues that we studied in de-
tail within the COMFORT project was load control for 
locking; see our VLDB 1992 paper [MW92] and also 
[MW91, We94]. The problem here is that excessive lock 
conflicts may lead to thrashing [TGS85]: a performance 
catastrophe where transaction throughput drops sharply 
and response times become absolutely unacceptable and 
practically approach infinity. Of course, such dramatic 
behavior may occur only with update-intensive workloads 
that exhibit an unusually high degree of data contention 
(i.e., lock contention when locking is used for concur-
rency control). Note that the thrashing behavior is not 
necessarily caused by deadlocks; it is possible with dead-
lock-free access patterns and caused by transitive lock 
waits:  transactions that are waiting for a lock may them-
selves block other transactions, and the frequency of such 
cases may abruptly increase so that all but a few transac-
tions become blocked.   

Although data-contention thrashing is certainly not a 
common everyday problem, there are real applications, 
for example, in banking and financial trading, where sys-
tem administrators are concerned about it (even when 
fine-grained, row-level locking is used). In other applica-
tions with significant data contention, the problem has 
been worked around by either restructuring the applica-
tion or by running transactions under relaxed isolation 

levels. The former incurs high costs in the application 
development, the latter bears a potential risk of overlook-
ing possibilities for incorrect application behavior.  

The run-time tuning knob that is usually considered in 
situations with high data contention is the multiprogram-
ming level (MPL), the maximum number of transactions 
that are admitted for concurrent execution. Unfortunately, 
it is not easy at all to find an appropriate setting of the 
MPL limit for a given workload. If it is set too high, the 
system becomes susceptible to thrashing; if it is set too 
low, unnecessarily many transactions wait too long in the 
system admission queue, and this waiting time is part of 
the user-perceived response time. Even worse, typical 
workloads consist of a mix of different transaction types 
with widely varying lengths, both time-wise and in terms 
of the number of accessed data items that need to be 
locked. For such mixed workloads a global MPL limit is 
actually inappropriate; rather one should limit the number 
of concurrent transactions for each transaction class and 
also critical combinations of transaction classes. Such 
sophisticated tuning options were supported by some TP 
monitors, but this is obviously a tuning nightmare. 

Our self-tuning approach to this problem was a feed-
back control loop with short-term reactivity built into the 
transaction manager. A key problem for the observation 
phase was finding an appropriate metric that would indi-
cate the level of lock contention. Our first attempt was 
based on the fraction of blocked transactions, a metric 
considered already in the analytical work of [TGS85]. 
However, it turned out that this does not sufficiently re-
flect the influence of the variability in transaction lengths. 
Our intuition led us to a metric that implicitly assigns 
weights to transactions in proportion to the number of 
locks that a transaction holds. This metric is the conflict 
ratio:  

nstransactioblockednonbyheldlocks#
nstransactioallbyheldlocks#

−
.  

We observed experimentally that, regardless of the ac-
tual transaction mix, a value for this metric around 1.3 
indicates very high thrashing danger. We coined this 
value the critical conflict ratio. Our somewhat pragmatic 
findings were later nicely confirmed by an elaborated 
mathematical model by Thomasian [Tho93].  

In the prediction step we calculate the probability that 
a newly admitted transaction would become blocked, and 
based on this value, the expectation of the conflict ratio if 
the new transaction were admitted. 

Finally, the reaction phase included three mecha-
nisms: admission control, cancellation control, and restart 
control. The admission control simply rejects new trans-
actions and places them in a transaction queue whenever 
the conflict ratio is above or is predicted to exceed the 
critical threshold. It turned out that this measure alone 
could not guarantee the avoidance of thrashing, as freshly 
admitted transactions could extremely quickly and unpre-
dictably drive the system from the safe state into the criti-



cal region. Therefore, we introduced an additional cancel-
lation control that aborts transactions and puts them in the 
queue for later restart whenever the conflict ratio is too 
high. These victims were chosen based on their numbers 
of currently held locks and previous aborts (to prevent 
starvation), and only blocked transactions that blocked 
other transactions were considered as candidates. The 
restart control re-admits a cancelled transaction only after 
the transactions for whose locks it was waiting in its prior 
incarnation have left the system.   

We carried out extensive experiments with various 
variants of the load control method including some com-
petitors [CKL90,FRT91,HW91]. Our best variants outper-
formed the competitors by a substantial margin, and the 
performance difference to setups with a static MPL 
limitation or no load control at all was dramatic. The 
bottom line was that the feedback control loop approach 
did indeed work very well for this tuning issue, but to 
make it robust a number of non-obvious, subtle and 
critical, details had to be worked out. 

3.3 Example: Dynamic Data Placement 

Another tuning issue that we looked into in more detail 
was data allocation and dynamic migration for parallel 
disk systems [WZS91,SWZ93,SWZ98]. A main goal was 
to place data onto disks such that at all times each disk 
has approximately the same load. Despite the ample lit-
erature on such load balancing problems, we hardly found 
any work that would tackle the practical problem of work-
load patterns evolving over time. So previously cold (i.e., 
infrequently accessed) data may become hot (i.e., fre-
quently accessed), and vice versa. Our approach to this 
problem, which we coined disk cooling, was again based 
on a feedback control loop. Compared to the load control 
issue this problem is of broader and mid-term scope: it 
affects the entire storage system, and the time scale for 
data migrations is hours or possibly minutes, but not sec-
onds. Algorithmically, our method may be characterized 
as an online algorithm based on greedy heuristics. 

In the observation phase we monitor the heat of files, 
extents, and blocks. Heat, originally proposed in [Co88], 
is an estimation of the access rate to a data object (i.e., the 
number of accesses per time unit). It is based on a sliding 
window that tracks the time points t1, ..., tk of the last k 
accesses to a data object. Then k / (tk - t1) is a dynamically 
adjusted maximum-likelihood estimator for the stationary 
access rate of the object. (The same principle is used in 
the LRU-k caching algorithm [OOW93].) The heat metric 
is an abstraction of the actual disk load induced by an 
object as it does not distinguish many small versus few 
large requests (e.g., random access to a single block ver-
sus sequential accesses to physically consecutive blocks). 
Its key point, however, is that it is additive: the heat of an 
entire disk simply is the total heat of the data objects that 
reside on the disk. We consider the load of a parallel disk 
system as imbalanced if the load of the hottest disk ex-

ceeds the heat of the least utilized disk by some specified 
margin. 

In the prediction step, we assess the benefit and cost 
of possible data migrations. As migration candidates we 
selected movable objects (e.g., extents) from the hottest 
disk in ascending order of temperature, where temperature 
is the quotient of heat and size [Co88]. The rationale for 
this selection criterion is to relieve the hot disk signifi-
cantly while at the same time aiming to minimize the ad-
ditional run-time cost of the migration itself. The disks 
onto which the objects are moved are chosen in ascending 
order of disk heat, subject to possible placement con-
straints. Before a data migration is actually initiated, a 
simple queuing model is evaluated to check if  the migra-
tion step would not cause undue performance degradation 
for the already overloaded source disk.  We also studied 
generalizations of the approach where the statistical pro-
file captures periodic load patterns for certain classes of 
data objects; in this case we include a more elaborate 
benefit/cost analysis before invoking a data migration 
[SWZ93]. 

 The reaction step of the disk cooling method is fairly 
straightforward. It merely requires online movement of 
data objects with proper maintenance of bookkeeping 
structures such as extent tables. In the early nineties such 
online reorganizations were still widely considered infea-
sible, but today all industrial-strength systems should 
have the necessary mechanisms [DE96]. 

 Disk cooling is applicable to the file, extent, or block 
level of a storage system, or to the level of table frag-
ments in a parallel database system. In addition to only 
migrating data, replication or caching of fragments could 
be added to the repertoire. Even generalizations to distrib-
uted data placement, say in a content delivery network, 
are conceivable and intriguing. In retrospect, however, 
one point that we underestimated and should have ad-
dressed earlier is the interaction of such self-tuning disk 
reorganizations with caching, indexing, and query proc-
essing. Some approaches along these lines have been ex-
plored in the literature (see, e.g., [Vi99, We99, KFD00, 
Lee00]), but these interactions are so complex that a com-
prehensive solution is still beyond the current state of the 
art. 

3.4 Example: Workflow Server Configuration 

A final example where we looked at the broad scope of 
configuring an entire system for long-term performance 
guarantees is our recent work on auto-tuning of workflow 
management platforms [Gi00,Gi02]. Such platforms are 
complex distributed systems that include one or more 
workflow engines, application servers, and middleware 
components like request brokers and message queue serv-
ers. For load distribution and better availability one or 
more of these servers may be replicated on different com-
puters, and this gives rise to the question of how many 
replicas of each server type one needs in order to satisfy 



specified goals for response time, throughput, and toler-
ated service downtime.  

Although the nature of this long-term system configu-
ration problem is quite different from that of the previous 
two tuning issues, our approach can be cast into the feed-
back control loop framework. The observation step col-
lects statistics about activity invocations, durations, and 
control flow path frequencies; this is the input for a 
Markov reward model from which the expected load for 
the various server types is derived. Assuming a given sys-
tem configuration, the prediction step computes the 
maximum sustainable throughput and the average turn-
around times of the various workflow types, and it uses 
queuing models to assess the expected waiting and re-
sponse times for interactive workflow steps. Similarly, the 
expected downtime is computed from a Markov availabil-
ity model, based on estimated failure and restart rates of 
the different server types. Finally, the reaction step iter-
ates over possible hypothetical configurations, uses the 
prediction models to assess each of these candidates, and 
searches the lowest-cost configuration that satisfies all 
performance and availability goals. The result is sug-
gested to the system administrator as a recommended re-
configuration (typically involving hardware upgrades or 
re-allocation of software servers on the existing com-
puters). 

Compared to the examples of the previous two subsec-
tions, mathematical models play a much bigger role here; 
the long-term nature of the problem allows us to use much 
more sophisticated and computationally expensive tech-
niques. Furthermore, the metrics that we aim to optimize 
are end-to-end performance measures, as opposed to the 
low-level metrics of the previous examples. In addition to 
user-perceived response times and availability, we also 
consider the so-called performability metric [HLR00] as 
an optimization goal, reflecting the impact of performance 
degradation caused by transient outages of some server 
replicas. This takes into account even planned outages for 
maintenance. A technical difficulty in this regard is to 
capture such regular events with the exponentially distrib-
uted state residence times that underlie a Markov model; 
the solution expands states into subnets such that the state 
residence time follows a generalized Erlang distribution 
and can thus approximate constant times as well.  

3.5 Lessons Learned 

Summarizing the discussion of individual tuning issues, 
here are the most important lessons that we learned: 
+ The feedback control loop is indeed an appropriate 

framework for developing self-tuning algorithms and 
system components. However, it is far from being a 
panacea. While the framework provided general guid-
ance, working out the details for the specific tuning is-
sue at hand was the most difficult part. 

+ Mathematical models are a key asset for making feed-
back-driven methods robust, aiming to minimize the 

risk of overreacting to fluctuations. Even fairly crude 
models were helpful, but for strategic tuning decisions 
such as adding servers to an E-service platform more 
sophisticated models seem to be in order. In contrast, a 
prediction step solely based on rules of thumb or with-
out any quantitative extrapolation at all does not seem 
to be viable. 

+ Gathering statistics about workload properties and per-
formance metrics is another key asset. Ten years ago, 
the associated overhead seemed to be prohibitive, but 
today extensive statistics are affordable. However, this 
does by no means imply that the implementation details 
of the statistics management are second-order issues.  

+ Even if some tuning decision such as re-configuring an 
entire system is not completely automated, having ob-
servation and prediction components in the spirit of 
self-tuning methods is of great value. Alerting a system 
administrator about increasing load or significant 
changes in workload patterns as early as possible can 
often save days of unacceptable performance degrada-
tion before the admin has realized and analyzed the 
problem. In addition, automatically narrowing down 
the possible bottlenecks and recommending appropriate 
remedies can drastically simplify the admin’s job. So 
even a partial solution to automatic tuning is a big gain.  

+ In a similar vein, there is benefit in replacing a delicate 
tuning parameter for which appropriate settings are 
hard to find by another tuning parameter that has more 
robust settings that are acceptable across a wide range 
of workloads. Our load control method can be viewed 
this way: we substituted the highly workload-sensitive 
MPL limit by the fairly robust critical conflict ratio.   

The above positive results need some words of caution, 
however: 
! Mathematical models may become extremely complex 

and computationally intractable. In such cases two 
complementary ideas can be pursued. 
First, we can aim at conservative approximations of the 
quantitative behavior by modeling strategies that yield 
(reasonably tight) upper bounds for the performance of 
the actual implementation. For example, when we in-
vestigated quality-of-service guarantees for the sched-
uling policy of a mixed-workload media server 
[NMW99], we developed a stochastic model for a dif-
ferent, analytically tractable, scheduling policy whose 
performance was consistently (slightly) worse than that 
of our best policy. Alternatively, we can resort to simu-
lation (with proper statistical confidence) for submod-
els, and then use their results for the derivation of 
higher-level metrics. The simulation could even be an 
online component if its overhead is sufficiently low; a 
possible example could be a cache hit rate estimator 
that is dynamically fed by actual access traces and may 
suggest cache resizing. 
Second, we can aim to simplify the workload and thus 
the behavior of the component that we study, typically 



by introducing dedicated resources for a workload class 
rather than aiming to exploit dynamic resource sharing 
to the largest possible extent. Placing different catego-
ries of data on separate disk or servers is an example. 
This consideration can be viewed as an instance of the 
“pick the low hanging fruit” engineering rule: try to 
achieve a 90-percent solution with 10 percent of the in-
tellectual effort and complexity. 

! It is often crucial to limit the space and time overhead 
of the observation and prediction steps, whenever sta-
tistics consume memory (e.g., the heat bookkeeping for 
disk cooling) or computations fall into time-critical in-
ner loops of the system (e.g., the estimation of the con-
flict ratio). So precomputation techniques, incremental 
evaluation, and efficient approximations are key to vi-
able solutions. In addition, the overhead of the statistics 
management must be predictable; we do not want the 
overhead to vary heavily with load bursts. 

! The reaction phase bears an inherent risk of overreact-
ing and ending up with unstable (e.g., oscillating) ad-
justments of tuning knobs, especially after major shifts 
in workload patterns. For the individual tuning issues 
that we studied we managed to make the feedback-
driven iterative adjustments robust. However, this was 
achieved by additional techniques and tricks on a case 
by case basis (e.g., introducing the critical conflict ra-
tio). It would be desirable to obtain better insight in this 
issue from a control-theoretic viewpoint and be able to 
guarantee fast convergence to stable settings after 
workload shifts. 

Finally, we also gained some essential negative insight: 
− Even if we fully understand a specific tuning issue and 

know how to automate it, our understanding of how 
different components and their tuning knobs interact 
with each other is extremely limited, and the same 
holds for the possible interference of different workload 
classes. This interaction can make the entire system un-
predictable and unstable, and is the key problem to be 
addressed much more intensively in future work. We 
believe that progress along these lines requires also re-
thinking the architecture of database and information 
systems, and will address this point in Section 5.  

4. Where Do We Stand Today? 
In the last ten years academia has detected automatic tun-
ing as an interesting research topic and the database in-
dustry has intensified its efforts on manageability aspects. 
So, although the topic is still way underappreciated rela-
tive to popular megathemes such as XML, there has been 
steady and incremental progress. Today a number of im-
portant tuning issues are sufficiently understood while 
others still pose major challenges. In the following we 
offer our subjective assessment of the state of the art. We 
divide this discussion into obvious, simple, difficult but 
solved, and still challenging issues. 

Among the obvious improvements we can observe: 

+ Second-order tuning knobs, those that have only mi-
nor performance effects (e.g., group commit timers or 
log buffer sizes), have been largely eliminated from 
the admin interfaces offered by products. This in-
cludes virtually all logging- and recovery-related 
knobs  (see, e.g., [La01]). 

+ A growing number of tuning knobs come with rea-
sonable default values (e.g., extent sizes, prefetching 
sizes for table scans) that may even be automatically 
calibrated based on the underlying hardware (and 
OS) configuration. 

As for the second category of relatively simple recipes, 
most systems have adopted the following approaches: 
+ Employ robust rules of thumb where existing. For ex-

ample, there is no need for having the page size as an 
application-specific tuning option, and even striping 
units can be robustly chosen such that the resulting disk 
performance, say page access throughput, is within ten 
percent of the optimum. This has been realized in virtu-
ally all commercial systems.  

+ Employ the KIWI method wherever applicable. This 
holds mostly for disk I/O bottlenecks. When adding 
disks or increasing memory can improve performance 
proportionally to the added resources, then this is a 
very cost-effective tuning measure. It is important, 
however, to realize the limitations of this approach, too. 
In this regard, mathematical models are crucial to pre-
dict the cost-effectiveness of additional hardware. 

+ Remove tuning options that offer only marginal gains 
even under the best possible conditions. A candidate 
along these lines could be dropping hash indexes or 
join indexes from the repertoire of the database systems 
(i.e., provide only B+ tree indexes on single tables).  
This aggressive simplification is obviously debatable. 
In particular, it is in the eye of the beholder to define 
“marginal gains”: for some this is a factor of two (and 
then hash indexes should be dropped), for others even 
ten percent improvement is worthwhile.  

+ Remove tuning options that require black magic any-
way. This refers to knobs that even experienced system 
administrators find almost impossible to cope with in 
an adequate manner. A candidate would be indexes on 
multi-table clusters. Although this option looks intrigu-
ing for certain access patterns, it is very difficult to as-
sess the adverse impact that it may have on other pat-
terns. In our teaching experience with practical assign-
ments on physical database design, no student could 
ever make good use of multi-table clustering.  

None of the above points requires deep scientific research. 
In contrast, some advanced tuning problems were diffi-
cult, but are now solved, leveraging research achieve-
ments of the last decade, most notably, in the area of 
physical database design: 
+ The tuning issues at the disk storage level are essen-

tially solved, based on a mix of rules of thumb (e.g., for 
striping units), the KIWI principle (e.g., mirror every-



thing), mathematical performance models, and some 
adaptive techniques that came out of research (see, e.g., 
[Al00]). 

+ Index selection is a solved problem [DE99]. By com-
bining exact optimization for subproblems with heuris-
tics for search space pruning, the problem has become 
tractable even for large databases with many tables and 
complex workloads.  Virtually all commercial database 
systems have an indexing wizard that recommends 
which indexes one should create, and it is very hard for 
a system admin to outsmart these tools. Note, however, 
that such wizards completely disregard the impact that 
the index selection may have on concurrency control 
and resource contention (and they may also ignore ex-
otic features such as multi-table clustering and other 
fancy join indexes). 

+ The selection of materialized views is mostly solved. 
Here the interaction of the physical database design 
with the query optimizer is more sophisticated, as one 
should consider only candidate views that will be ex-
ploited by the optimizer-generated execution plans. 
Physical design assistants that come with database sys-
tem products have adopted recent research results on 
these problems (e.g., [TS97, ACN00]). Some assistants 
also provide advice on data partitioning for parallel da-
tabase systems (e.g., [Ra02]).  

+ The proper choice and organization of statistical data 
that a database system should maintain for the query 
optimizer, say histograms of some type or more general 
kinds of data synopses, now appears to be sufficiently 
understood [CN01,Ja01,KW02]. There are remaining 
open issues of the kind when exactly wavelets are supe-
rior to some alternative transform or other representa-
tion, but these issues are not likely to have a first-order 
impact. The main problem of deciding on which attrib-
ute combinations synopses should be built and how 
much memory they should be given is mostly solved. 
Nevertheless, it will take a while for products to adopt 
these results, and there is surely a nontrivial engineer-
ing part for integrating the best techniques into the da-
tabase engines. 

Despite these significant advances, we are still left with a 
number of challenging and largely unsolved tuning issues: 
? Sufficiently accurate predictions of query run times and 

result sizes, and the generation of approximate query 
results with bounded errors and guaranteed confidence. 
This is important beyond selectivity estimations for 
choosing the best query execution plan, as it affects the 
scheduling and prioritization of concurrent queries, the 
choice of data sources for queries posed to a mediator, 
and even user interface issues about fast approximative 
results versus complete and exact results with non-
interactive response times (e.g., in a scientific data 
analysis environment). 

? Query optimization in general is still a big problem. 
Even with better statistics (see above) there are many 

potential error sources that can lead to poor execution 
plans, in particular, the complex interplay of a large 
number of (heuristic) rewriting rules, the inaccuracy of 
cost models for modern computer architectures with 
cache hierarchies, and the uncertainty about the avail-
able run-time resources and possible resource conten-
tion. 

? Memory management. Flexible mechanisms for 
dynamically adjusting the size of query working spaces 
and cache areas are in place, but good policies for 
online optimization are badly missing. 

? Transaction isolation levels. Although it is customary 
to use sub-serializability levels, hardly anybody really 
knows all the possible implications that the "relaxed" 
options could possibly have (with very low but non-
zero probability). Despite some interesting work in this 
direction [Iso01], a comprehensive theory for when it is 
safe to use which isolation level is badly missing. 

? MPL limitation, admission control, and scheduling in 
general are solved for conventional OLTP workloads, 
but are still widely open for mixed workloads with both 
OLTP and OLAP parts and potential contention on data 
as well as memory, disks,  and processors. This holds 
also for memory management, including shared caches 
as well as query workspaces, where significant concep-
tual progress has been made (see, e.g., [BCL96,We99]), 
but advanced issues still remain open. 

? Hardware resource configuration is still challenging 
unless one has a detailed and precise characterization of 
a static workload as input for appropriate capacity 
planning tools. For dynamic re-configuration because 
of evolving workloads there is little support. 

? Finally, at the meta level, we are missing a theory, or at 
least some principles, of how to cope with tuning knob 
interactions. How can we ensure that knob settings in 
one component do not have undesired side effects on 
another component? 

5. Where Do We Go From Here? 

5.1 The Vision of Autonomic Computing 

Despite various attempts to promote automatic tuning and 
enhanced system manageability as key objectives on our 
community's research agenda (see, e.g., [Be98]), the sub-
ject has mostly been underappreciated and not well cov-
ered. These days a new bold vision of "autonomic" com-
puting is emerging as a new strategic goal for computer 
science and the IT industry (see, e.g., [IBM01]). In the 
envisioned world of automatic and autonomous compo-
nents all  building blocks and entire systems should be 
self-organizing, self-configuring, self-inspecting, self-
optimizing, self-protecting, and self-healing. So this 
theme is even broader than the goal of automatic tuning 
and encompasses issues such as dealing with denial-of-
service attacks and other forms of sabotage or maintaining 
and adapting software for billions of embedded devices in 
the anticipated world of "ambient intelligence". Auto-



nomic computing aims at end-to-end service assurance 
and spans many areas from storage systems and grid 
computing to multi-agent technology and Web services.  

Of course, one may argue that this new wave merely 
advertises old wine in new bottles. On the other hand, the 
attention that the topic is receiving also demonstrates the 
growing awareness about system manageability problems. 
The potential danger that lies in such broadening is, how-
ever, that research overly focuses on high-level "big pic-
ture" approaches such as biological computing or agent 
technology as if they were panaceas, and again underes-
timates the difficulties that lie in the technical details. In 
the next subsection, we suggest a more mundane rationale 
for addressing the tuning-related parts of the great vision. 

5.2 The Case for RISC-style Components 

On the path to the bold vision of trouble-free, autonomic 
systems the following question arises: is the goal feasible 
at all with the high complexity of today’s information 
systems, or do we need a radical departure from current 
system architectures as they might be inherently inappro-
priate for automatic tuning? In this subsection, we con-
sider, in the sense of a Gedankenexperiment, the second 
alternative, following arguments from [CW00]. 

Database systems have become extremely complex 
and overloaded with features. Furthermore, they are typi-
cally packaged as monolithic systems (although they are 
componentized internally). This poses serious manage-
ability problems for application classes like ERP, OLAP 
and data mining, and also Web-based E-services. Data-
base systems have a very poor gain/pain ratio: they create 
much pain about having to install, administer, and operate 
the system, whereas the gain of simplifying the applica-
tion development by using a full-fledged database system 
is sometimes questionable. Note, for example, that SAP 
R/3 considers the underlying database system more or less 
as a mere storage manager [Mu99].  

Following role models such as automobiles or aircrafts 
where dependable engineering appears to be much more 
advanced, we should consider a radical departure along 
the lines of the RISC paradigm shift in computer architec-
ture back in the eighties.  The key to understanding such 
complex artefacts as computers (i.e., the hardware) or 
aircrafts and making their construction and deployment 
manageable lies in three principles: 1) these artefacts are 
highly componentized, 2) the components have limited 
and relatively simple, i.e., “RISC-style”, functionality so 
that the behavior of a component is predictable, including 
its timing behavior (i.e., performance properties), and 3) 
the interfaces of the components are designed as narrow 
as possible so that the interaction complexity between 
components is kept to a minimum. These principles 
would, for example, suggest replacing the ubiquitous SQL 
language by a suite of much simpler APIs. To a limited 
extent, research and industry is pursuing this approach 
already, e.g., in the form of light-weight or specialized 

data management engines such as SleepyCat (aka Berke-
ley DB) or TimesTen, but this is not exactly the main-
stream in the database software industry. Of course, com-
ponents in this system philosophy would be relatively 
large-grained rather than fine-grained objects; for exam-
ple, a storage manager (including concurrency control and 
recovery), a select-project-join engine, or a text document 
manager would be components, but a universal database 
system would be against the spirit of this approach. Also, 
all components should apply Occam’s razor to their inter-
faces as well as their internals, and should avoid features 
that are rarely used or implementation techniques that 
improve performance only marginally or only under spe-
cial circumstances (e.g., no hash structures as B-tree in-
dexes are good enough in most situations). 

In the context of self-tuning E-services, the key point 
of components is their predictability that falls out from 
their (relative) simplicity. The simpler an interface and the 
underlying internals are, the fewer tuning knobs need to 
be exported and the easier it becomes to mathematically 
analyze and predict the component’s performance. For 
example, query result size and runtime estimations for a 
select-project-join engine becomes more tractable if the 
complexity of the search predicates is limited (e.g., disal-
lows user-defined functions or arbitrary multidimensional 
predicates, which are rarely needed in E-business applica-
tions). For OLAP or GIS applications, on the other hand, 
we could build a specialized multidimensional query en-
gine and construct a separate performance prediction 
model for this engine, which should again be much more 
tractable than for a universal database system. The 
(mathematical) performance model for a component 
should be developed together with the component soft-
ware, which is much easier than doing performance mod-
eling in retrospect. Such a performance model would be 
parameterized, as the component’s performance depends 
on the underlying hardware configuration and workload 
properties. When the component is bound to a specific 
hardware and application environment (with a known 
workload profile), the performance model would become 
a performance (or service quality) contract by which cer-
tain guarantees are given about metrics of interest (e.g., 
the 95th percentile of the response time distribution for a 
specific class of user requests). 

Of course, the highly componentized approach to data 
management and E-service software is viable only if mul-
tiple components can be composed into value-added ser-
vices without re-introducing a poor gain/pain ratio. Again, 
the RISC-style simplicity of component interfaces and the 
cross-component interactions would be the key asset for 
low-effort composability. This argument includes the per-
formance contracts: the value-added service should in turn 
provide a performance model and contract that are de-
rived from the models of the underlying components. Of 
course, this line of thinking about system architecture 
bears the risk that value-added services exhibit very high 
overhead for component interaction (e.g., for copying data 



across interfaces). However, this would  be only constant 
overhead, say a slow-down factor of 2. We can make up 
for this performance loss by proportionally adding (inex-
pensive) hardware resources; this is a case where the 
KIWI method makes perfect sense. The true gain would 
lie in the fact that such systems and E-services composed 
from RISC-style components would have predictable per-
formance, so that automatic tuning could finally move 
from wishful thinking to viable engineering. 

5.3 Why Does RISC Simplify Automatic Tuning? 
A major incentive for moving towards RISC-style com-
ponents is to enable auto-tuning of information services. 
Tuning must consider the relationship between workload 
characteristics, knob settings, and the resulting perform-
ance in a quantitative manner. Therefore, mathematical 
models (in combination with online feedback control) are 
crucial. Unfortunately, these models work only in a lim-
ited context, i.e., when focusing on a particular knob (or a 
small set of inter-related knobs). Attempting to cover the 
full spectrum of tuning issues with a single, comprehen-
sive model is bound to fail because of the lack of suffi-
ciently accurate mathematical models or the intractability 
of advanced models.  This is why limiting ourselves to 
using only RISC components is so important: we no 
longer need to aim for the most comprehensive, elusive 
performance model, and there is hope that we can get a 
handle on how to auto-tune an individual service. It is 
much easier to tune a system with a less diverse workload 
and less dynamic resource sharing among different data 
and workload classes. Of course, the global tuning prob-
lem is now pushed one level above: how do we tune the 
interplay of several RISC components? Fortunately, a 
hierarchical approach to system tuning  appears to be 
more in reach than trying to solve the entire complex 
problem in one shot. In the following we outline the main 
steps of such a hierarchical auto-tuning framework: 
• Identify the need for tuning: Each RISC data manage-

ment component must include a self-inspection module. 
This module should be in charge of monitoring long-
term workload and performance metrics, comparing 
their values to some target settings for relevant metrics 
such as average response time for a given pair of user-
request class and user category or the 90th percentile of 
the response time distribution. If one of these applica-
tion-level metrics degrades significantly, this indicates 
the need for tuning and should turn on a ”DBA atten-
tion” red light or, much better, trigger an auto-tuning 
procedure. The rationale for this self-inspection and 
alerting approach is that information systems typically 
run reasonably well when they are initially deployed 
and start suffering performance problems as workloads 
undergo long-term evolution (e.g., when a Web site be-
comes more popular). It is crucial to react quickly, 
hence automatically, to the performance degradation, as 
poor performance is often perceived as equivalent to 

service unavailability by users (e.g., because of many 
timeouts in Web connections). 

• Identify the bottleneck: When performance is unsatis-
factory, a bottleneck analysis is mandatory. In the hier-
archical world of components and higher-level services, 
a first approximation would be to identify the most per-
formance-critical building block (i.e., RISC data server 
or higher-level application server). This can be done 
quite easily by hypothetically adding infinite resources 
to each server, one at a time, and computing (using 
mathematical models or fast simulation) whether this 
would improve the currently unacceptable application-
level response times. 

• Analyze the bottleneck: Once the bottleneck component 
is determined, a more detailed analysis is necessary to 
understand which tuning knobs within the component 
might help alleviating the performance problem. This 
analysis should again proceed in a top-down manner by 
estimating the performance of the workload’s most 
dominant transactions/queries/requests on a hypotheti-
cally modified configuration. So an auto-tuning wizard 
would consider what if the server had more memory, 
more disks, a faster CPU or more processors, no lock 
contention, or simply a higher multiprogramming level, 
to name the most important possible bottlenecks. This 
assessment again needs mathematical models (or very 
fast online simulators), e.g., an analytic model for the 
disk system. However, by considering one potential 
bottleneck at a time, each of these models can focus on 
an individual aspect, and such limited-scope models 
are, to a large extent, available.  

• Estimate performance changes: Once the primary bot-
tleneck is known, the analysis procedure should be re-
fined and remedies should be considered. For example, 
if the bottleneck were the disk system, we should assess 
possible remedies like adding a disk, increasing the 
cache size in memory, creating an index, rearranging 
data on one disk (e.g., to reduce seek times), rearrang-
ing data across disks (to reduce load imbalances), etc. 
Finally, the wizard should then determine which one is 
the best in terms of cost, risk of making something else 
in the operational system unstable, and possibly further 
aspects. The result could be alerting a responsible per-
son to spend a few hundred dollars on extra memory or 
disks, or it could be an internal measure such as creat-
ing an index or rearranging data across disks. In either 
case, a few hours later the system would ideally be in 
good shape again. Note that for selection of which tun-
ing measure should be applied, the wizard needs to es-
timate the anticipated performance improvement. This 
is needed because some of the possible tuning options 
are parameterized, and we need to determine an appro-
priate parameter value to make sure the performance 
improvement is significant but to avoid spending too 
much money. For example, when the wizard decides to 
increase the cache size, we need to know how much 



additional memory we should purchase. Again, this 
step crucially relies on mathematical models or fast but 
accurate simulation (e.g., to estimate the cache hit ratio 
for a hypothetical cache size). 

• Adjust tuning knob: The final step is mere mechanics. 
Once the decision about the best tuning option is made, 
the corresponding knob has to be adjusted. As men-
tioned before, this may require interaction with a hu-
man person to add hardware resources. For availability, 
it is highly desirable that the adjustment takes place 
online without having to shut down the operational sys-
tem. This is feasible for most kinds of tuning steps 
these days (including adding disks and rearranging data 
across disks). 

The hierarchical nature of the outlined auto-tuning proce-
dure is in line with good practice for manual/intellectual 
tuning [SB02]. In particular, our approach also adopts a 
”think globally, fix locally” regime. Mathematical models 
have been and remain to be key assets also in the practical 
system tuning community [MA98]. The key to making the 
mathematics sufficiently simple and thus practical lies in 
the reduced complexity of the component systems and 
their interfaces and interplay. We believe that there is a 
virtue in engineering system components such that their 
real behavior can be better captured by existing mathe-
matical modeling techniques, even if this may lead to 
some (tolerable) loss of high-end features and efficiency. 
The benefit of this engineering-for-predictability para-
digm lies in the improved manageability of systems. 

6. Conclusion 
When we started the COMFORT project in 1990, we had 
the hope that automatic tuning can be achieved with a few 
simple principles. This was clearly wishful thinking. 
While the feedback control loop framework provides use-
ful guidance, the difficult problems are in the details of 
the various tuning issues. For robust solutions workload 
statistics and mathematical models are key assets, and for 
viable engineering these must be carefully designed so as 
to ensure acceptable overhead. Our field in general has 
made significant progress towards self-tuning database 
technology, but there is no breakthrough.  

The biggest challenges that our research community 
should address as high-priority problems are the interac-
tions of different system components and their tuning 
knobs and the interference between different workload 
classes. For tackling this complexity we believe that a 
drastic simplification of today's overly complex system 
architectures is overdue. Assuming that we are able to 
build individually self-tuning components, the composi-
tion of these building blocks into higher-level E-services 
with service-quality guarantees seems feasible only with 
sufficiently simple component interfaces and radical 
minimization of cross-talk. 

On the technical side a fundamental issue to investi-
gate is how to cope with multi-class workloads, at both 

the database and the middleware level, such that we can 
provide differentiated quality of service, say guarantees 
about the 95th percentile of the response time distribution, 
on a per class basis. For example, in seemingly simple 
home banking, we can observe different request classes 
such as account lookups, brokerage orders, or sophisti-
cated portfolio analyses, different customer classes such 
as premium customers, regular customers, and guests (i.e., 
potential customers who might be offered hypothetical 
portfolios to play with), and different connection types 
such as cell phones or other gizmos, high-speed Internet 
access from a PC, or local access from a call center. 
Combining all these options yields a large number of dif-
ferent workload classes with specific performance goals. 
Orthogonal to this complexity is the need to capture work-
load behavior in a more context-sensitive manner. Today, 
tuning is mostly driven by stationary frequencies of state-
less request types, but the contextual patterns that are ex-
hibited in query execution plans or entire user sessions do 
matter, and likewise long-term periodicity of certain load 
patterns (e.g., Monday morning peaks) needs to be con-
sidered as well.  

Given the paramount importance of the manageability 
of modern information services, our community should 
intensify its efforts both on the technical issues posed by 
individual aspects and the strategic dimension of system 
architectures that are more amenable to automatic tuning. 
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