Recent Research on Database System
Performance

Advanced Research Topics in Databases

Eda Baykan
28.06.2005

Abstract

Performance of databases highly depend on how data is stored and
accessed. It is a challenging task to design a data layout scheme that
gives good performance results under different query types and changing
workloads when concurrent queries are given to the system. In this report,
our aim is to present recent research proposals that aim to overcome
performance bottlenecks in databases.

1 Introduction

DBMS bring data from secondary storage(I/O) to processor in order to execute
queries. Data passes through the memory hierarchy which consist of I/O, main
memory, L2 cache, L1 cache respectively. The number of disk I/O operations
effect the performance of DBMS because disk seek time and transfer rate from
disk to main memory constitutes the major part of time that ellapses during
data transfer. As presented in Asilomar Report [4], cost of RAM is getting
smaller and its capacity is becoming larger when compared to past. That’s
why reducing number of accesses to RAM is being studied as well as reducing
number of disk I/O by database performance researchers. In order to reduce
RAM accesses, caches are used between main memory and processor. As shown
in Ailamaki et al. [2], misses in L2 cache is the main reason for bad performance
in DBMS when data is kept only in main memory (when there is no access to
disk).

Traditional DBMS use pool of threads to handle concurrent incoming queries
to the system. Multithreading enables serving multiple clients simultaneously
by using available resources in an efficient way. However this approach has some
drawbacks. Firstly, it is not possible to estimate the number of threads that
enables highest performance. Secondly, when context-switches occur between
threads, the working set of the suspended thread is evicted from the cache.
With this approach, the resumed thread can not get benefit of the suspended
thread’s work even they have some common work to do. This leads to waste of
time and resource. Thirdly, the resumed thread loses time by redoing the work
it has done before it has been suspended.

In this report we have aimed to present different approaches which are pro-
posed to increase DBMS performance. This paper is organized as follows. We

give definitions of different query types and main approaches for improving
database performance in Section 2. In Section 3, we explain and compare dif-
ferent Data Storage Models proposed for overcoming performance bottleneck.
In Section 4, we present the work of Ailamaki et al. [3] who proposes a modular
design which aims to give good performance results under multiple concurrent
queries. Finally in Section 5, we conclude.

2 High Performance DBMS

In this report, we focus on papers that propose below techniques to have high
performance DBMS.

e Cache-conscious data layouts
e Query adaptive data layouts
e Modular/Pipelined Design for Parallelism

Most of the papers in database performance research, focus on smart data stor-
age techniques in secondary storage and in L2 cache. Data storage schemes
can be classified as static and dynamic. Static data layouts can not give good
performance under changing query workloads since they are designed a priori
for predetermined query workload. Dynamic data schemes are prepared accord-
ing to queries that are being executed. That’s why these schemes give good
performance when query workload changes during. In [9] is given a page layout
technique, called Clotho, that gives good performance results under dynamic
workload. Moreover queries can be classified as full-record access and partial
record access. Full-record access queries require most of the attributes of a
tuple while partial record-access queries only need a subset of the attributes.
Some data schemes like DSM [5] are designed for partial-record access queries.
DSM can not handle fast query executions under full record ones. Clotho [9],
Data Morphing[6] and Fractured Mirror [8] are some of the proposed schemes
for enabling DBMS work fast under each type of query. Another strategy for
using memory efficiently is, to have a modular design that avoids the problems
encountered during context switching. A solution that divides query execution
steps into stages, is given in [3]. This approach aims at maximum use of utilities
by assigning works that require same resources to the same stage.

3 Data Storage Models

In this section we give a comparison of data layouts which are proposed to
increase DBMS performance. They can be classified as below:

e N-ary Storage Model (NSM)

e Decomposition Storage Model (DSM)

e Partition Attributes Across Model (PAX)
Data Morphing (DM)

Clotho Storage Model (CSM)

Fractured Mirrors

3.1 NSM

Commercial databases use N-ary Storage Model (NSM) [7]. All attributes of
a record are stored consecutively in one page as (record_id, attribute_set). At
the end of the page there exists an array holding pointers to the beginning of
each record on that page. NSM storage model enables good performance for
full-access queries however it does not perform well for partial access queries.
When a cache miss occurs, a full record will be brought to the cache. For a
partial-access query, all attributes are unnecessary. That’s why unreferenced
attributes cause inefficient usage of cache.

3.2 DSM

Decomposition Storage Model [5] stores each attribute of a record in a different
page as (record_id, attribute) format. In one page, same type of attributes from
different records are placed consecutively. For a partial-access queries DSM is a
good data layout technique because it enables spatial locality. On the other hand
for full-access queries, that require multiple attributes from the same record, join
operation must be applied between different pages. This can lead to an increase
in query response time, in other words lead to decrease in system performance.

3.3 Partition Attributes Across Model(PAX)

| Jane | John | Tim | Susan_

30[52]45) 20

Authors of [1] aim to improve performance of NSM against partial-access
queries. PAX, a data layout scheme proposed for L2 cache, stores all attributes
of a record in the same page like NSM. However it reorganizes the records
in a page. Given a record that consists of n attributes, PAX partitions each
page into n mini pages and puts each attribute of the record into different
minipages such as putting n'* attribute in the n‘* minipage [1]. With this
approach, PAX reduces cache misses against partial-access queries because it
imitates DSM behavior by putting attributes of a record into different mini
pages. In the above figure on the right side is the NSM page layout where
attributes of records are stored contiguously on the other hand, in PAX one
page is divided into minipages.

3.4 DM

PAX, NSM and DSM are schemes that perform better on specific type of queries.
They are designed before query execution. Hankins et al. [6] proposes a cache-
conscious data scheme, named as Data Morphing, for L2 cache taking into con-
sider query workload. In other words, Data Morphing technique prepares data
layout schemes according to queries that will be executed. Main idea in DMS is
to place the attributes, which will be accessed together by the query, consecu-
tively in memory. These attributes form groups. Data Morphing arranges data
layout schemes according to query demands. After calculating cache efficient
data layout, data is rearranged into partitions,sets of groups. Working principle
of Data Morphing can be explained with the below example.

Given

e Relation R(priority : int,location : int, usage : int)

o Query
SELECT location, usage
FROM R WHERE priority < 12

Suppose selectivity of priority attribute is %12.5. This means that the frequency
at which attributes location and usage will be accessed is %12.5. Let’s calculate
the cache miss cost for the below group.

g = {priority, usage}

When the size of cache line is taken as 32 bytes, 4 instants of this group can
be fetched in one cache miss (since the size of group is 8 bytes). This group
is accessed for every record because selection is done over priority attribute.
Briefly cost of a query on this group is 0.25 cache misses per record. Following
this logic, in the below table is given the cache miss costs for all possible groups.

Group Cost,
{priority} 0.125
{location} 0.125
{usage} 0.125
{priority, location} 0.25
{priority, usage} 0.25
{location, usage} 0.25
{priority,location, usage} | 0.375
Partition Cost
{priority}, {location}, {usage} | 0.375
{priority,location},{usage} 0.375
{priority, usage},{location} 0.375
{priority},{location, usage} 0.25
{priority, location, usage} 0.375

e If NSM were used as data model partition would have one group of at-
tributes such as: {priority, location, usage}

e If DSM were used as data model partition would have three group of
attributes such as: {priority}, {location} , {usage}

As it can be seen from the above tables, partitions with NSM and DSM
do not give the minimum cache miss cost. Calculating the optimum group
of attributes that minimize cache misses is a challenging task. Authors of [6]
propose algorithms which calculate the cost of cache misses for all possible
groups and for all queries in the query workload. The partition that gives
minimum cost is chosen as page layout. According to the above table, partition
that gives minimum cost is {priority},{location,usage} for the given query
workload. Data layout scheme will be prepared so that location and usage
attributes will be stored on the same page while priority attributes will be
stored on a different page.

le=08 1 N-ary]
{@ PAX :

; 8e+05 —|ll DM 7
.z] 7 v
= ¥ .
 Jet0a o 4 o
= F '
z 7| /
' 203 ’ ; ;
ﬂ o

¢ 10 0N

Number of Attributes

As it can be seen from figure Data Morphing causes fewer cache misses when
compared to NSM and DSM under all types of workloads. The drawback of this
technique is that, if the query workload changes dynamically reorganizing data
according to new data layout can take time and make performance decrease.

3.5 CSM

Authors of [9] make critics of above mentioned data schemes because of their
assumption which say that pages in secondary storage and main memory have
same content. As mentioned in [9], different data layouts must be designed for
different levels of memory hierarchy by taking into consideration memory level
specific properties. They propose below data layout schemes for different levels
of memory hierarchy.

e A-page: Data layout scheme for disk
e C-page: Data layout scheme for RAM

A-page stores records like PAX model[1] on the other hand C-page(CSM) con-
tains attributes according to queries’ demands. In other words attributes which
are needed for query execution are transfered from disk to main memory. CSM

can easily adapt to changing workloads and performs well for both full-access
and partial-access queries because C-page layout is designed during query ex-
ecution. Furthermore, if queries need common attributes of records, Clotho
buffer pool manager does not create a C-page from scratch. Instead it merges
the new schema with the most overlapping one in the memory [9].

Storage format Memory format
PAGE 1 PAGE HDR (ID, Age)
1237 4322|I563 ?658'
SELECT ID \ 1237|4322]1563[7658
FROM R

Jane | John | Jim | Susan

WHERE Age>30

Table R

ID | Name | Age
1237] Jane 30
4322| John | 52 PAGE 2
1563] Jim | 45 865] 1015 [2534[8791 Pa
7658 | Susan | 20
2865| Tom | 31
1015] Jerry | 25

305245]20] |af30]52]45)20

2865]1015 353413?‘)1

Tom lJcrry]Jcml Kate

2534 | Jean | 54 3112515433
8791 | Kawe | 33

3125154133

Unused space

A-page C-page

As it can be seen from the above figure, only id and age attributes are brought
into RAM since query includes only those attributes. This dynamic selection of
which attributes to bring into RAM is the key idea of Clotho.

In [9] is given a comparison of different storage model under different queries
of TPC-H Benchmark. As it can be seen from the below figure, Clotho gives
better performance results under each type of query when compared to NSM,
DSM and PAX.

Runtime relative o NSM

e] a2 Q14

3.6 Fractured Mirrors

Authors of [8] propose to store data in NSM format as well as DSM format to
have small query execution time under both partial and full access queries. Main
idea in this approach is to be able to switch between NSM and DSM format
when type of queries change. This is achieved by storing tables in both NSM and

DSM format in secondary storage. The easy approach would be to store tables
which are in NSM format on one disk and store the tables in DSM format onto
other disk. However this approach can lead to unfair utilization of disks when
query workload has a skew towards one type of query. In order to remedy this
problem following approach is proposed: NSM representation of table is divided
into two equal size segments, lets call them as NSMy and NSM;. Also DSM
representation of table is divided into two equal size segments, lets call them
as DSMy and DSM;. On one disk NSM, and DSM; and on the other disk
NSM; and DSM, is stored. With this approach disk accesses will be uniformly
distributed among the two disks. Disk read requests are partitioned between
mirrors based on expected seek times during query execution. The drawback of
Fractured Mirrors design is duplication of space.

4 Modular Database Design

In order to have high performance traditional Database Systems use parallel
threads while executing queries. Each thread is assigned to execute different
queries. When CPU gives turn to a thread by preempting the running thread,
the query being executed is quited. Even threads use common data, when
context switching takes place all data is evicted from memory. In other words
context switching is done without taking into consideration efficient use of mem-
ory in current DBMS. In [3] is given a modular design that aims to overcome the
drawbacks introduced by context switching. Authors of [3] propose a modular
design based on staged server programming which is introduced by Operating
System researchers. In this design there are two levels of thread scheduling:

e Global scheduling across stages

e Local thread scheduling within a stage.

Each stage has its own server code, resource management and thread schedul-
ing. The main idea in Staged Database Design is to break execution into mod-
ules so that cache misses are minimized and query response time is decreased.
Keeping accesses to the same data structures is one of the reasons for breaking
execution into stages.

Stages

e Connect
e Parse
e Optimize

Execute

e Disconnect

Stages communicate with each other through queues where packets are kept.
Packets carry pointers to query’s data structures and private states. When CPU
gives turn to a stage, threads of that stage dequeue packets from stage’s queue
and restores the corresponding query’s state. After that stage runs its code.
As indicated in [3] the implementation of this design has not been completed.

IN
g connect Himi; execute disconnect

I new Xaction

stage scheduling
threads thread

sit—merge
]nL'iJI—jd]l

mhu.n
graup I:l.

Figure 1: DBMS with Stages

Like all staged designs, staged design for DBMS has the drawback of scheduling
too. There is a possibility of increase in response time because queries that
need to access other stages are postponed until the rest of queries in that stage
complete execution. In order to clarify this issue, [3] presents an experiment
that compares prevailing scheduling and modular design in terms of response
time.

As it can be seen in figure2 below, modular designs decrease the query
response time by %40 when compared to processor-sharing policy(PS) which
does not reuse cache contents because of context switching between threads.

95% system load

3 T T -
"T-gated(2)' ——
= "D-gated” —=—
% 2.5 %‘ "non-gated’ -
8 : "FCFS' —e—
@ 2 bk PR a—
E
& 15 \ .
@ 17 .
&
@D - 4
2 0.5
U 1 1 1 1 1 1
0 10 20 30 40 50 B0 70

2% of execution time spent fetching common data+code

Figure 2: Staged vs. Traditional

5 Conclusion

In this paper we have aimed to give a survey of proposed techniques to overcome
database performance. All proposed techniques aim efficient use of memory
hierarchy to decrease query response time. NSM, DSM and PAX decide on
the data layout before query execution. On the other hand Clotho and Data
Morphing gives good performance results under changing workloads. In our
opinion if Clotho uses for storing data in secondary storage the algorithm that
Data Morphing uses, better results can be taken under each type of workloads.
Staged Server Programming which suggests to break query execution into stages
enables efficient use of memory by assigning query execution steps which require
same resources to the same stage.

References

[1] A. Ailamaki, D. J. Dewitt, M. D. Hill, and M. Skounakis. Weaving Relations
for Cache Performance. In Proc. VLDB, 2001

[2] A. Ailamaki, D. J. Dewitt, M. D. Hill, and D. A Wood. DBMSs on a Modern
Processor: Where does time go? Weaving Relations for Cache Performance.
In Proc. VLDB, 1999

[3] A. Ailamaki and S. Harizopolous. A Case for Staged Database Systems. In
Proc. CIDR Conference, 2003

[4] P. Bernstein, M. Brodie, S. Ceri, D. DeWitt, M. Franklin, H. Garcia-Molina,
J. Gray, J. Held, J. Hellerstein, H. V. Jagadish, M. Lesk, D. Maier, J.
Naughton, H. Pirahesh, M. Stonebraker, and J. Ullman. The Asilomar Report
on Database Research. SIGMOD Record, 1998

[6] G.P. Copeland and S. F. Khoshafian. A Decomposition Storage Model. In
Proc. ACM Sigmod Conference on Management of Data, 1985

[6] R. Hankins and J. Patel. Data Morphing : An Adaptive,Cache-Conscious
Storage Technique In Proc. VLDB, 2003

[7] R. Ramakrishnan and J. Gehrke. Database Management Systems.
WCB/McGraw-Hill, second edition, 2000.

[8] R. Ramamurthy, D. J. Dewitt, and Q. Su. A Case for Fractured Mirrors In
Proc. VLDB, 2002

[9] M. Shao, J. Schindler, S. Schlosser, A. Ailamaki, and G. Ganger. Clotho:
Decoupling Memory Page Layout from Storage Organization In Proc. VLDB,
2002

