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Abstract

Many declarative query languages for object�oriented �oo� databases allow nested
subqueries� This paper contains ��� the �rst algebra which is capable of handling
arbitrary nested queries and ��� the �rst complete classi�cation of oo nested queries
and the according unnesting strategies�

For unnesting� a two�phase approach is used� The �rst phase	called dependency�

based optimization	transforms queries at the query language level in order to treat
common subexpressions and independent subqueries more e
ciently� The trans�
formed queries are translated to nested algebraic expressions� These entail nested
loop evaluation which may be very ine
cient� Hence� the second phase unnests

nested algebraic expressions to allow for more e
cient evaluation�
The paper also discusses the di�erences between unnesting in the relational

and unnesting in the oo context� Since the �rst phase is rather simple� the paper
concentrates on the second phase�

� Introduction

Many declarative query languages for object�oriented database management systems have

been proposed in the last few years 
e�g� �
� 	� �� �� 
�� 
���� To express complex conditions�
access nested structure� or produce nested results� an essential feature found in these
languages is the nesting of queries� i�e�� the embedding of a query into another query�

The optimization of object�oriented 
oo� queries has been intensively studied using

algebraic rewriting ��� �� ��� 	�� 	�� 	�� or rewriting of path expressions ��� ��� ��� 
���
However� in spite of the importance of nested queries �
��� there exists only little research
on their optimization ���� 
��� Translating nested queries into nested algebraic expressions

requiring nested loop evaluation still seems to be the prevailing method�
To a lesser extent� relational query languages also feature nested queries and their

optimization has been considered� Clearly� the optimization of nested queries in the oo

�



context should make use of this body of knowledge� Departing from the evaluation of
nested SQL queries through nested loops ���� Kim proposed unnesting of SQL queries at
the SQL level �
��� The main motivation was a demonstrated substantial gain in e�ciency
due to unnesting� In order to eliminate some bugs which where subsequently detected�

outer�joins were used ��	� ��� 
�� ��� 	��� Reordering of outer�joins became an important
topic ��	� 	�� 	
�� Lately� a unifying framework for di�erent unnesting strategies was
proposed in �	���

Nevertheless� the reader should notice that there exist some signi�cant di�erences
between oo and relational nested queries� First� the result of an oo nested query is not
always �at� Second� in relational nested queries� the selection clause 
e�g�� where clause�
plays a key and dual role� it is where the nesting is located� and where dependencies


i�e�� references to variables of an outer block� may be expressed� In the oo context� all
clauses are of equal importance and nesting may occur or dependency be expressed in any
clause� projection 
e�g�� select clause�� range 
e�g�� from clause� or selection� As we will
see� this has a major impact on the unnesting possibilities� Third� nested queries in the

oo context do not always correspond to algebraic operations 
consider� e�g�� method calls�
path expressions�� and an appropriate treatment for these nested expressions is needed as
well� While the above considerations seem to complicate the issues� there also exists one
essential di�erence that will somehow simplify the problem� set�valued attributes can be

represented explicitly� In particular� a consequence is that the introduction of null values
can be avoided in most cases�

As mentioned above� some relational techniques are easily adapted to the oo context�

For instance� the whole idea of using joins and outer�joins for unnesting nested queries
will be successfully applied throughout the paper� However� the di�erences between the
two models lead us to consider new optimization techniques� We adopt the two�phase
optimization approach of ����� The �rst phase addresses a new challenge related to the

third di�erence stated above� During this phase we apply dependency�based optimization
which transforms queries by factoring out constant or locally constant nested queries as
well as common subexpressions� Although not new in the oo context ���� 
�� 
	�� this
factorization is essential for �nding a good evaluation strategy� Then� the resulting queries

are translated in a straightforward manner into nested algebraic expressions�
The algebra we introduce is an extension of the GOM algebra �

� 
	� and features

some nice properties most oo algebras lack 
e�g�� associativity of join operations�� The
most important feature for us is that the algebra is capable of expressing all kinds of

nesting occurring in object query languages� This new feature of an algebra allows us
to perform unnesting at the algebraic rather than at the source level� This is important
since it is our believe that the errors encountered in unnesting in the relational context

are due to the fact that unnesting is done at the source level�
The second phase�called algebraic optimization�exploits new opportunities brought

by the possibility to represent non�atomic attributes� More speci�cally� the applied al�
gebraic equivalences will make extensive use of two powerful grouping operations� one of

them introduced in ����� Although the problems implied by the �rst and second di�er�
ences stated above are solved by a combination of the two phases� we here concentrate on

�To a limited extent� relational nested queries can also be found in range clauses� when views are
queried� In these cases� the inner query is always constant�






a more complete treatment of nested algebraic expressions within the second phase� For
the �rst phase� the reader is referred to �����

The paper is organized as follows� The next section introduces the algebra� Further� it
gives some basic algebraic equivalences holding within the algebra� These should demon�

strate the viability of the algebra for optimization purposes since algebraic equivalences
are at the core of any optimization process� Section 	 contains a short review of the
�rst phase by means of an example� The core of the paper is contained within Section �

where we use an extension of Kim�s classi�cation �
��� to introduce the according algebraic
equivalences necessary to unnest nested algebraic expressions� Here� we repeat some of
the results of ���� and introduce new unnesting techniques for those cases which could not
be unnested so far� This section is concerned with unnesting of one level nested blocks� In

Section � we go further in the optimization by considering quanti�ers� unnesting d�joins�
complex cases of multi�layered nested queries as well as outer restrictions� Section � in�
troduces a simple but e�cient method to handle outer restrictions� Section � concludes
the paper�

� The Algebra

The Data Model Our underlying data model is similar to the O����� or GOM �
��

model� It features objects that have an identity� that are manipulated through user�
de�ned methods� whose structures are complex and that belong to classes that may be
re�ned into subclasses� Each class has an extension which is a set containing the object
identi�ers of all its instances� The model also features complex values with no identity�

that are manipulated by standard operators and do not belong to classes� Hence� there
are no extensions for them�

General Remarks on the Algebra The algebra is an extension of the GOM algebra
�

� 
	�� The most predominent features of the algebra we introduce are�

� All operators are polymorphic and can deal with complex input arguments�

� The operators take arbitrary complex expressions as subscripts� This includes alge�
braic expressions�

� The algebra is redundant since some special cases of the operators can be implement�
ed much more e�ciently� In some of these cases� the special cases are introduced as
abbreviations�

For the purpose of the paper� the main feature of this algebra is that it can cope with
arbitrary nested queries�

The remainder of this section is organized as follows� The next subsection introduces
the operators of the algebra� While some of the operators are easy extensions of standard
operators� others are quite new� This forces us to reconsider existing algebraic equivalences
as well as to discover new ones� The main question here is reorderability of operators

since reorderability is fundamental to any optimization process� Hence� the remaining
subsections discuss reorderability results� Thereby� we discover general reorderability

	



laws in subsection 
�
 for all operators which are linear� The reorderability features of
operators that are not linear 
d�join and grouping� are discussed subsection 
�	� Since
the join remains the most expensive operator in our algebra� subsection 
�� discusses
simpli�cations of expressions containing joins�

Summarizing� this section introduces a powerful algebra capable of capturing all com�
monly used oo query languages including excessive nesting� Further� the basics for build�
ing an optimizer based on this algebra are introduced in the form of algebraic equiva�

lences� Only after this section� we concentrate on the very speci�c issue of unnesting
nested queries�

��� The Operators

The core of the algebra consists of the following operators that are all de�ned on set
values� union 
��� intersection 
��� di�erence 
n�� selection 
��� join
��� semi�join 
 ����
anti�join 
 ��� left�outer join 
 � �� d�join 
� � ��� mapping 
��� unnest 
��� and grouping

���

The set operators as well as the selection operator and the di�erent join operators

except for the d�join� are known from the relational context� As we will see� the only
di�erence in their de�nition is that they are tuned to handle nested queries� For this�

we allow the subscripts of these operators to contain full algebraic expressions� Further�
to adjust them to the oo context� they do not only deal with relations� but with sets of
tuples where the tuples can be of arbitrary complexity� This means� that the attribute
values are in no way restricted to atomic types but can carry also objects� sets� lists and

so on�
The left�outer join additionally needs some tuning in order to exploit the possibility

to have sets as attribute values� For this� it carries a superscript giving a default value for
some attribute for those tuples in the left argument for which there is no matching tuple

in the right argument� The d�join operation is used for performing a join between two
sets� the second one being dependent on the �rst� It is left�associative and will be applied
in post order� This operator can be used for unnesting and is in many cases equivalent
to a join between two sets with a membership predicate �	��� In some cases 
as we will

see later on�� it corresponds to an unnest operation� We introduced the d�join in order
to cope with the values of types that do not have extensions 
i�e� there exist no sets on
which a join could be applied��

The mapping operator � 
�

�� is well�known from the functional programming lan�
guage context� A special case of it� where it adds derived information in form of an added
attribute with an according value 
by object base lookup or by method calls� to each
tuple of a set has been proposed in �
�� 

�� Lately� this special case was given the name

materialization operator ����
The unnest operator is known from NF� �	�� 		�� It will come in two di�erent �avors

allowing us to perform unnesting not only on nested relations but also on attributes
whose value is a set of elements which are not tuples� The last operator�the grouping

operator�generalizes the nest operator quite a bit� That is why we renamed it� In fact�
there exist two grouping operators� one unary grouping operator and one binary grouping
operator� The unary grouping operator groups one set of tuples according to a grouping

�



condition� Further� it can apply an arbitrary expression to the newly formed group� This
allows for e�cient implementation by saving on intermediate results� The binary grouping
operator adds a group to each element in the �rst argument set� This group is formed
from the second argument� The grouping operator will exploit the fact that in the oo

context attributes can have set�valued attributes� As we will see� this is useful for both�
unnesting nested queries and producing nested results�

Preliminaries As already mentioned� our algebraic operators can deal not only with
standard relations but are polymorphic in the general sense� In order to �x the domain

of the operators we need some technical abbreviations and notations� Let us introduce
these �rst�

Since our operators are polymorphic� we need variables for types� We use � possibly
with a subscript to denote types� To express that a certain expression is of type e� we

write e �� � � Starting from concrete names for types and type variables� we can build type
expressions the standard way by using type constructors to build tuple tupes 
����� set
types f�g� and list types 
� � ��� Having two type expressions e� and e�� we denote by
e� � e�� that e� is a subtype of e�� It is important to note that this subtype relationship is

not based on the sub��superclass hierarchy found in most oo models� Instead� it denotes
that the type
s� e� stands for provide at least all the features that those of e� provide�

Most of our algebraic operators are tuned to work on sets of tuples� The most im�
portant information here is the set of attributes provided by a tuple or a set of tuples�

For this we introduce A� The function A is de�ned as follows� A
e� � fa�� � � � � ang if
e �� f�a� � ��� � � � � an � �n�g or e �� �a� � ��� � � � � an � �n�� Giving a set of attributes A� we are
sometimes interested in the attributes provided by an expression e which are not in A�

For this complement we use the notation A
e� de�ned as A
e� nA� When e is clear from
the context� we use A as a shorthand�

Often� we are not only interested in the set of attributes an expression provides� but
also in the set of free variables occurring in an expression e� For this� we introduce F
e�

denoting the set of all free variables of e�
Since the subscripts of our algebraic operators can contain arbitrary expressions� they

may contain variables or even free variables� Then� there is a need to get bindings for these
variables before the subscript expression can be evaluated� These bindings are taken from

the argument
s� of the operator� In order to do so� we need a speci�ed binding mechanism�
The 	�notation is such a mechanism and can be used e�g�� in case of ambiguities� However�
for the purpose of the paper� it su�ces if we stick to the following convention�

� For an expression e with free variables F
e� � fa�� � � � � ang and a tuple t with
F
e� � A
t� we de�ne e
t� � e�a� � t�a�� � � � � an � t�an��� Similarily� we de�ne
e
t�� t�� for binary operations� Note that the attribute names of t� and t� should be

distinct in order to avoid name con�icts�

� For an expression e with only one free variable x� we de�ne e
t� � e�x� t��

�
e�v� � e�� � � � � vn � en� denotes a substitution of the variables vi by the expressions ei within an

expression e�

�



The mechanism is very much like the standard binding for the relational algebra� Consider
for example a select operation �a��
R�� then we assume that a� the free variable of the
subscript expression a � 	 is bound to the value of the attribute a of the tuples of the
relation R� To express this binding explicitly� we would write for a tuple t � R 
a � 	�
t��

Since a is an attribute of R and hence of t� by our convention a is replaced by t�a� the value
of attribute a of tuple t� Since we want to avoid name con�icts right away� we assume
that all variable�attribute names used in a query are distinct� This can be achieved in a

renaming step�
Application of a function f to arguments ei is denoted by either regular 
e�g�� f
e�� � � � � en��

or dot 
e�g�� e��f
e�� � � � � en�� notation� The dot notation is used for type associated meth�
ods� only�

Often� conjunctions of predicates occur� As an abbreviation for a conjunction of
predicates of the form a�
b�� � � � � an
bn 
x�a�
�y�b�� � � � � x�an
ny�bn� we often use A
B


x��A�
y��B�� if A � fa�� � � � � ang and B � fb�� � � � � bng�
Last� we introduce the heavily overloaded symbol 	� It denotes function concatenation

and 
as a special case� tuple concatenation as well as the concatenation of tuple types to
yield a tuple type containing the union of the attributes of the two argument tuple types�

Operator Signatures We are now ready to de�ne the signatures of the operators of
our algebra� Their semantics is de�ned in a subsequent step� Remember that we consider

all operators as being polymorphic� Hence� their signatures are polymorphic and contain
type variables�

� � f�g� f�g 
 f�g
� � f�g� f�g 
 f�g
n � f�g� f�g 
 f�g
�p � f�g 
 f�g

if p � � 
 B
�p � f��g� f��g 
 f�� 	 ��g

if �i � ��� p � ��� �� 
 B� and

A
��� � A
��� � �
��p � f��g� f��g 
 f��g

if �i � ��� p � ��� �� 
 B
�p � f��g� f��g 
 f��g

if �i � ��� p � ��� �� 
 B
�

g�c
p � f��g� f��g 
 f�� 	 ��� g

if �� � ��� c �� � � �� � �g � � ��

� just adds a null value to the domain of ���

if it does not already contain one�

p � ��� �� 
 B
� � � � f��gjjf��g 
 f�� 	 ��g

if �i � ���

�



A
��� � A
��� � �
�f � f��g 
 f��g

if f � �� 
 ��

�g��A�f � f�g 
 f� 	 �g � � ��g
if � � ��� f � f�g 
 � �

�g��A�f � f��g� f��g 
 f�� 	 �g � � ��g
if �� � ��� f � f��g 
 � �

�g � f�g 
 f� �g
if � � �a� � ��� � � � � an � �n� g � f��g��
�� � ���

� � � �a� � ��� � � � � an � �n� 	 ���
�g�c � f�g 
 f� �g

if � � �a� � ��� � � � � an � �n� g � f��g��
�� �� ���

� � � �a� � ��� � � � � an � �n� 	 �c � ����

flatten � ff�gg 
 f�g
maxg�m�a��f � f�g 
 �m � �a� g � �f �

if � � �a � �a�� f � f�g 
 �f

The semantics of the set operators is standard and omitted here� We start with the
selection and then go through all the operators thereby commenting on them� In the
subsequent de�nitions� the ei�s denote both expressions 
in the left hand side� and their

evaluation 
in the right hand side��

Selection Operator Note that in the following de�nition there is no restriction on

the selection predicate� It may contain path expressions� method calls� nested algebraic
operators� etc�

�p
e� � fxjx � e� p
x�g

Join Operators The algebra features �ve join operators� Besides the complex join
predicate� the �rst four of them are rather standard� join� semi�join� anti�join and left�
outer join are de�ned similarly to their relational counterparts� One di�erence is that the

left�outer join accepts a default value to be given� instead of null� to one attribute of its
right argument�

e� �p e� � fy 	 xjy � e�� x � e�� p
y� x�g
e� ��p e� � fyjy � e��
x � e�� 
p
y� x��g
e� �p e� � fyjy � e���
x � e� p
y� x�g

e� �
g�c
p e� � fy 	 xjy � e�� x � e�p
y� x�g �

fy 	 zjy � e���
x � e� p
y� x��A
z� � A
e��� g � A
e���

z�g � c��a � A
e��
z �� g �� z�a � NULL�g

�



Remember that the function A used in the last de�nition returns the set of attributes of
a relation�

The last join operator is called d�join 
� � ��� It is a join between two sets� where
the evaluation of the second set may dependent on the �rst set� It is used to translate

from clauses into the algebra� Here� the range de�nition of a variable may depend on
the value of a formerly de�ned variable� Whenever possible� d�joins are rewritten into
standard joins�

e� � e� � � fy 	 xjy � e�� x � e�
y�g

Map Operator �and Projection� Renaming� These operators are fundamental to
the algebra� As the operators mainly work on sets of tuples� sets of non�tuples 
mostly
sets of objects� must be transformed into sets of tuples� This is one purpose of the map

operator� Other purposes are dereferenciation� method and function application� Our
translation process also pushes all nesting into map operators�

The �rst de�nition corresponds to the standard map as de�ned in� e�g�� �

�� The
second de�nition concerns the special case of a materialize operator �
�� ��� The third

de�nition handles the frequent case of constructing a set of tuples with a single attribute
out of a given set of 
non�tuple� values�

�e�
e�� � fe�
x�jx � e�g
�a�e�
e�� � fy 	 �a � e�
y��jy � e�g

e�a� � f�a � x�jx � eg

Note that the oo map operator obviates the need of a relational projection� Sometimes
the map operator is equivalent to a simple projection 
or renaming�� In these cases� we

will use � 
or �� instead of ��

Grouping Operators Two grouping operators will be used for unnesting purposes�

The �rst one � called unary grouping � is de�ned on a set and its subscript indicates

i� the attribute receiving the grouped elements 
ii� the grouping criterion� and 
iii� a
function that will be applied to each group�

�g�A��f 
e� � fy�A 	 �g � G�jy � e�

G � f
fxjx � e� x�A
y�Ag�g

Note that the traditional nest operator �	�� is a special case of unary grouping� It is

equivalent to �g�A��id� Note also that the grouping criterion may be de�ned on several
attributes� Then� A and 
 represent sequences of attributes and comparators�

The second grouping operator � called binary grouping � is de�ned on two sets�

The elements of the second set are grouped according to a criterion that depends on the
elements of the �rst argument�

e��g�A��A��fe� � fy 	 �g � G�jy � e�� G � f
fxjx � e�� y�A�
x�A�g�g

In the sequel� the following abbreviations will be used� �g�A�f for �g�A��f � �g�A for �g�A�id�

�



New implementation techniques have to be developed for these grouping operators�
Obviously� those used for the nest operator can be used for simple grouping when 
 stands
for equality� For the other cases� implementations based on sorting seem promising� We
also consider adapting algorithms for non�equi joins� e�g� those developed for the band�

width join ����� A very promissing approach is the use of 
�tables developed for e�cient
aggregate processing ��
��

Unnest Operators The unnest operators come in two di�erent �avor� The �rst one is
responsible for unnesting a set of tuples on an attribute being a set of tuples itself� The

second one unnests sets of tuples on an attribute not being a set of tuples but a set of
something else� e�g�� integers�

�g
e� � fy��A
y� n fgg� 	 xjy � e� x � y�gg
�g�c
e� � fy��A
y� n fgg� 	 �c � x�jy � e� x � y�gg

Flatten Operator The �atten operator �attens a set of sets by unioning the elements
of the sets contained in the outer set�

flatten
e� � fyjx � e� y � xg

Max Operator The Max operator has a very speci�c use that will be explained in the
sequel� Note that an analogous Min operator can be de�ned�

Maxg�m�a��f 
e� � �m � max
fx�ajx � eg�� g � f
fxjx � e� x�a
mg��

This de�nition is a generalization of the Max operator as de�ned in ����� Since the
equivalences don�t care whether we use Max or Min� we write Agg to denote either of
them�

Remarks Note that� apart from the � and flatten operations� all these operations
are de�ned on sets of tuples� This guarantees some nice properties among which is the

associativity of the join operations� Note also that the operators may take complex
expressions in their subscript� therefore allowing nested algebraic expressions� This is the
most fundamental feature of the algebra when it comes to express nested queries at the
algebraic level� Unnesting is then expressed by algebraic equivalences moving algebraic

expression out of the superscript�
The �� flatten and Max operations are mainly needed for optimization purposes� as

we will see in the sequel� but do not add power to the algebra� Note that a Min operation
similar to the Max operation can easily be de�ned�

The algebra is de�ned on sets whereas most OBMS also manipulate lists and bags�
We believe that our approach can easily be extended by considering lists as set of tuples
with an added positional attribute and bags as sets of tuples with an added key attribute�

�



��� Linearity and Reorderability

����� Linearity of Algebraic Operators

As already mentioned� the core argument for optimizability of algebraic expressions is
the reorderability of their operators� One could discuss the reorderability of each two
operators resulting in n� investigations if the number of operators in the algebra is n� In
order to avoid this� we introduce a general argument covering most of the cases� This

argument is that linearity of operators implies their reorderability easily� Hence� let us
�rst look at the linearity property�

A unary mapping f � f�g 
 f� �g is called linear � i�

f
�� � �
f
A �B� � f
A� � f
B�

An n�ary mapping

f � ��� � � � � �i��� f�g� �i��� � � � � �n 
 f� �g
is called linear in its i�th argument � i� for all e�� � � � � en� e�i

f
e�� � � � � ei��� �� ei��� � � � � en� � �
f
e�� � � � � ei��� ei � e�i� ei��� � � � � en� � f
e�� � � � � ei��� ei� ei��� � � � � en�

�f
e�� � � � � ei��� e
�
i� ei��� � � � � en�

It is called linear � if it is linear in all its arguments� Note that if an equivalence with linear
mappings on both sides has to be proven� it su�ces to proof it for disjunct singletons� i�e�

sets with one element only�
The following summarizes the �ndings on the linearity of the algebraic operators�

�f is linear�

�f
�� � �
�f
e� � e�� � ff
x�jx � e� � e�g

� ff
x�jx � e�g � ff
x�jx � e�g
� �f
e�� � �f
e��

� is linear 
for a proof see �	���

�p is linear 
for a proof see �	���� Similarly� �� is linear� � is linear in its �rst argument
but obviously not in its second�

��



� is linear in its �rst argument�

� � g�c
p e � �


e� � e�� �
g�c
p e � fy 	 xjy � e� � e�� x � e� p
y� x�g �

fy 	 zjy � e� � e���
x � e p
y� x��A
z� � A
e��

�a a �� g � z�a � NULL� a�g � cg
� 
e� �

g�c
p e� � 
e� �

g�c
p e�

To see that � is not linear in its second argument consider

e� �
g�c
p � � � i� e� � �

� � is linear in its �rst argument�

� � e � � �

e� � e�� � e � � fy 	 xjy � e� � e�� x � e
y�g

� fy 	 xjy � e�� x � e
y�g � fy 	 xjy � e�� x � e
y�g
� 
e� � e �� � 
e� � e ��

Note that the notion of linearity cannot be applied to the second 
inner� argument

of the d�join� since� in general� it cannot be evaluated independently of the �rst
argument� Below� we summarize some basic observations on the d�join�

�g�A�f is not linear�

Consider the following counterexample�

�g�a
f�a � �� b � ��� �a � �� b � 
�g�
� f�a � �� g � f�a � �� b � ��� �a � �� b � 
�g�g
�� f�a � �� g � f�a � �� b � ��g�g � f�a � �� g � f�a � �� b � 
�g�g
� �g�a
f�a � �� b � ��g� � �g�a
f�a � �� b � 
�g�

�g is linear�

�g
�� � �
�g
e� � e�� � fx��g� 	 yjx � e� � e�� y � x�gg

� fx��g� 	 yjx � e�� y � x�gg � fx��g� 	 yjx � e�� y � x�gg
� �g
e�� � �g
e��

�g�c is also linear� This is shown analogously to the linearity of �g�

flatten is linear�

flatten
e� � e��

� fxjy � e� � e�� x � yg
� fxjy � e�� x � yg � fxjy � e�� x � yg
� flatten
e�� � flatten
e��

��



Note that the notion of linearity does not apply to the max operator� since it does not
return a set�

The concatenation of linear mappings is again a linear mapping� Assume f and g to
be linear mappings� Then

f
g
��� � �
f
g
x � y�� � f
g
x� � g
y��

� f
g
x�� � f
g
y��

����� Reorderability Laws

From the linearity considerations of the previous section� it is easy to derive reorderability

laws�
Let f � f� f� g 
 f� f� g and g � f� g� g 
 f� g� g be two linear mappings� If f
g
fxg�� �

g
f
fxg�� for all singletons fxg then

f
g
e�� � g
f
e�� 
��

For the linear algebraic operators working on sets of tuples� we can replace the seman�

tic condition f
g
fxg�� � g
f
fxg�� by a set of syntactic criterions� The main issue here
is to formalize that two operations do not interfere in their consumer�producer�modi�er
relationship on attributes� In the relational algebra we have the same problem� Never�
theless� it is often neglected there� Consider for example the algebraic equivalence

�p
R � S� � 
�p
R�� � S

Then� this algebraic equivalence is true only if the predicate p accesses only those at�
tributes already present in R� Now� for our operators we can be sure that f
g
e�� �
g
f
e�� for singleton sets e� if g does not consume�produce�modify an attribute that f
is going to access and if f is not going to consume�produce�modify an attribute that is

accessed by g� In fact� most of the conditions attached to the algebraic equivalences given
later on concern this point�

We now consider binary mappings� Let f� be a binary mapping being linear in its �rst
argument� f� a binary mapping being linear in its second argument� and g a unary linear

mapping� If f�
g
fxg�� e�� � g
f�
fxg� e��� for all x and e� then

f�
g
e�� e�� � g
f�
e� e
��� 

�

for all e� Again� we can recast the condition f�
g
fxg�� e�� � g
f�
fxg�� e�� into a syntac�
tical criterion concerning the consumer�producer�modi�er relationship of attributes�

Analogously� if f�
e� g
fxg�� � g
f�
e� fxg�� for all x and e then

f�
e� g
e��� � g
f�
e� e
��� 
	�

for all e��
Since the outerjoin is not linear in its second argument� we state at least some reorder�

ability results concerning the reordering of joins with outerjoins since much performance

�




can be gained by chosing a 
near�� optimal evaluation order� The results are not original
but instead taken from �	
� and repeated here for convenience�


e� �p��� e�� � p���e� � e� �p��� 
e� � p���e�� 
��


e� � p���e�� � p���e� � e� � p���
e� � p���e�� 
��

if p��� is strong w�r�t� e�


e� � p���e�� � p���e� � e� � p���
e� � p���e�� 
��

where an outer join predicate p is strong w�r�t� some expression e�� if it yields false if all
attributes of the relation to be preserved are NULL�

��� Basic Equivalences for d�Join and Grouping

The d�join and the grouping operators are not linear� Thus� so far� we do not have any
reorderability results of these operators� Since they are further quite new� we give some
algebraic equivalences which hold despite the fact that they are not linear� This shows

that there exist still some kind of optimization which can be performed in the presence
of these operators�

Already at the beginning of this section� we mentioned that d�join and unnest are
closely related� To be more precise� we state the following�

e� � e� � � �g
�g�e�
e��� 
��

�A	e�
e� � e� � � �g
��g�e��
e��� 
��

Between �atten and the d�join there also exists a correspondance�

flatten
�e�
e��� � �A	e�

e� � e� �� 
��

The following summarizes basic equivalences on the d�join�

e � e � � e 
���

e� � e� � � e� � e� 
���

if F
e�� � A
e�� � �
e� � e� � � e� � 
e� � e� �� 
�
�

e� � e� �� e� � � e� � e� �� e� � 
�	�

if 
A
e�� n F
e��� � F
e�� � �
�A	e�

e� � e� �� � �e�
��
e�� 
���

e� � e� � � e� �A��A� 
e�� � e� �� 
���

if F
e�� � fa�� � � � � ang and

e� � �A��A� 
e����� and

Ai � A
ei�

Unnesting of operations burried in the d�join can be performed by applying the fol�
lowing equivalence�

e� � �p
e�� � � �p
e� � e� �� 
���

�	



e� � �A��A� 
e�� � � e� �A��A� e� 
���

if F
e�� � P
e�� � �� Ai � A
ei�

�A��A
e� � f
�A�A�
e�� � � �g
�A�A�
�g�A�f 
e��� 
���

e� � e� � e� � � 
e� � e� �� � e� 
���

e� � �f 
e�� � � �f
e� � e� �� 

��

if f extending

�A
e� � �f 
e�� �� � �A
�f
e� � e� ��� 

��

if A � A
�f
e���� and f restricting

e� � �g
e�� � � �g
e� � e� �� 


�

e� � �g�c
e�� � � �g�c
e� � e� �� 

	�

For a linear f� and the non�linear unary � we still have

f�
�g��A�f�
e� � �g��A�f�
f�
e�� 

��

if F
f�� � 
A � A
f�� � fgg� � �� 
A � F
f��� � A
f�
e��

This equivalence should� e�g�� be used form left to right for selections� in order to reduce
the cardinality for the � operator� For the binary � we have

f�
e��g�A��A��fe�� � f�
e���g�A��A��fe�� 

��

since the binary � is linear in its �rst argument�
Lately� work has been reported on the reordering of grouping and join operations

despite the fact that grouping is not linear ��� �
� ��� �	�� Since pushing grouping inside
join operations can result in a tremendious speed up� let us sketch at least the most basic

equivalence�

�g�A�agg	e

e� � e�� � e� � 
�g�A�agg	e

e���

This sketched equivalence only holds under certain conditions� For details on the condi�
tions and the correctness proof see ��	��

��� Simplifying Expressions Containing Joins

Since the join operation is very expensive� it makes sense to investigate expressions con�
taining joins very intensely in order to discover optimization potential� In this subsection�
we do so�

Sometimes� redundant joins can be eliminated�

�A	e�

e� �A��A� e�� � e� 

��

if A� � A
e��� �A�
e�� � �A� �A�
e��

e� �
g�c
A��A���


e� �A��A� e�� � e� �
g�c
A��A�

e� 

��

if A� � A
e��� A� � A
e��� A� � A
e���

A��� � A
e�� � A
e��� A�
� � A
e�� � A
e���

��



�A��A��

e� �A��A� e�� � e�

e��g�A��A��� �f
e� �A��A� e�� � e��g�A��A��fe� 

��

if A� � A
e��� A� � A
e��� A� � A
e���

A��� � A
e�� � A
e��� A�
� � A
e�� � A
e���

�A��A��

e� �A��A� e�� � e�

Equivalences 
� and 
� bear similarity to equivalence EJA of �	�� 
p� ����� where the

outer�aggregation is used instead of semi�join and binary grouping� respectively� Note
that for checking conditions of the form �A�
e�� � �A��A�
e�� subtyping implying subse�
trelationships on type extensions plays a major role in object bases�

The following shows how to turn an outerjoin into a join�

e� �
g�c
p e� � e� �p e� 

��

if �p
c�
�ps
e� �

g�c
pj
e�� � �ps
e� �pj e�� 
	��

if �ps
c�
�f��f�
e� �

g�c
pj
e�� � �f��f�
e� �pj e�� 
	��

if �
f�
f��
c�

We can easily check these conditions if some predicate 
f�
f��
c� yields� e�g�

i 
 � 
i constant�

f� � �

or has a similar form� An application of these equivalences can sometimes be followed by
a removal of the join�

Note� that the latter equivalence depends on the knowledge we have on the selection
predicate� Note also� that the outerjoin is only introduced by unnesting nested � opera�
tions� Hence� we could combine the equivalences introducing the outerjoin and replacing
it by a join into one� In case we have even more information on the selection predicate

than above� more speci�cally� if it depends on a max or min aggregate� we can do so in a
very e�cient way�

�a�m
e���m � agg
�b
e���� � Aggg�m�a
e���g 
	
�

if �a
e�� � �b
e��

�g��a�m	e�

�m�agg	e�

e�� � ��Aggg�m�a	e�

e� 
		�

if �a
e�� � �b
e��

This will save some scans as will be demonstrated in Section ������

� Dependency�Based Optimization

Throughout the paper we use O�SQL �
� for the examples� However� the techniques that
we present are not restricted to this language and can easily be applied to other languages

��



like GOMql �
��� Maybe it is more important to note that O�SQL is a subset of the oo
standard query language OQL as de�ned in ���� We do not give an introduction into the
query language but assume the reader to be familiar with O�SQL or OQL� Further� the
schema we will use for our example queries will not be given explicitly since we are sure

that it can be inferred easily from the queries�
In the relational context� a nested query is one containing a block nested inside� In the

object�oriented context� things are di�erent� Operations inside a block may be method

calls� long path expressions� set operations on attributes� etc� Hence� we have to consider
the optimization of nested expressions�which are also queries by de�nition�which are
not blocks�

We brie�y review the �rst phase called dependency�based optimization� This phase

factors out common subexpressions by introducing appropriate de�nitions collected within
an extra de�ne clause� We illustrate the phase by repeating an example of �����

select tuple
name�emp�name�
sale�emp sale�description�
month� emp sale�date�month�

from emp in Employee�

emp sale in Sale
where emp sale in emp�best sales
� and

emp sale�amount � avg
select sale�amount

from sale in Sale
where sale�date�month � emp sale�date�month�

The method call to best sales is used in the join predicate� We consider this as a
nested query� A good optimization will push it out of the join operation such that it is
not evaluated more often than necessary� The emp sale�date�month path expression in
the nested block is also a nested query that should be pushed out of 
i� its nesting block

and 
ii� the join performed in the higher level block�
The dependency�based optimization is performed at the O�SQL level� This kind of

optimization� although vital� is simple enough and requires mainly one traversal of the
syntax tree of the query� Since it had been presented elsewhere ����� we will not detail it�

We merely present the transformed above O�SQL query and comment on it�

select tuple
name�en� sale�esd� month� esdm�
from emp in Employee�

emp sale in ebs

where esa � as
de�ne en � emp�name�

esd � emp sale�description�

esdm � emp sale�date�month�
ebs � emp�best sales
��
esa � emp sale�amount�
as � avg
select sa

from sale in Sale
where sdm � esdm

��



de�ne sa � sale�amount
sdm � sale�date�month

The transformed query features a new de�ne clause in each block� It is used to intro�
duce variables representing expressions dependent on its owner block only� Note that the

outer block de�ne clause contains a variable for the emp sale�date�month that is refer�
enced twice 
common subexpressions factorization�� once in the inner block 
constant
subexpression factorization� and once in the outer block�

Translation into the Algebra The translation of a SFWD�block into the algebra
proceeds as follows� First� all the entries in the from clause are connected via d�joins�
This results in an expression e�f � If possible� they will be replaced by cross products

resulting in an expression ef not necessarily di�erent from e�f � Next� all entries vi � e�i of
the de�ne clause are translated into �vi�ei expressions� where ei is the translation of e�i�
The third step consists in translating the where clause into a selection �p with p being
the translation of the where clause predicate� The fourth and last step consists of adding

a last �es where es is the translation of the expression in the select clause� Hence� the
total result of the translation process is

�es
�p
�v��e�
� � � 
�vn�en
ef�����

This normal form has been called MCNF �

� in case only crossproducts and no d�joins
occur in ef � The next sections show plenty of examples� Hence� we don�t give one here�

If some entries in the de�ne clause of the outermost block are not dependent on the
entries in the from clause of that block� than they can be factored out and be evaluated

only once� This then results in a translation of the form �v � e� for constant expressions
vj � ej in the de�ne clause� If e is the translation of the rest of the block� then the result
is an expression e
�v� � e�� � � � � vk � ek��� The tuple constructed just serves to bind the vj
within the expression e�

Remark It is important to note that each nested block B will be replaced by a new
variable VB whose de�nition VB � B is added to the de�ne clause� This convention

mostly results � via the translation process � in expressions of the form �VB�B
e� where
e is the translation of 
part of� the surrounding block� Note that evaluating this expression
results in a nested loop� This is rather ine�cient� To avoid nested loop evaluation� the
main issue is to move B outside the subscript� This is what unnesting boils down to

when � as in this paper � performed at the algebraic level� Moving B outside cleverly
such that the result can be e�ciently evaluated is far from trivial� But if we succeed� we
replace the nested loop evaluation by some more e�ciently evaluable operation 
e�g�� a

join��

� Classi�cation and Algebraic Optimization

In this section we present a classi�cation of oo nested queries along with appropriate
algebraic optimization techniques� In order to better understand the analogies between

��



relational and oo environments� we extend the relational classi�cation of nested queries
as given in �
��� Hereby� we restrict ourselves to a single nested block� This is relaxed in
the next section� Kim�s classi�cation introduces �ve types of nested queries one of which
is not used here 
Type D�� The reason for this will be found in the sequel� They can be

treated in a more uniform way than in the relational case 
see subsection ����
�� The four
remaining types are

� Type A nested queries have a constant inner block returning single elements�

� Type N nested queries have a constant inner block returning sets�

� Type J nested queries have an inner block that is dependent on the outer block
and returns a set�

� Type JA nested queries have an inner block that is dependent on the outer block
and returns a single element�

Obviously� the need for extending the relational classi�cation arises from the richness
of the oo model compared to the relational one and its impact on the query language�

The classi�cation we propose has three dimensions� the original one plus two that are
required by the following oo characteristics� In the oo context� as opposed to the relational�

i� nested blocks may be located in any clause of a select�from�where query and 
ii� a
dependency 
i�e�� reference to a variable of the outer block� may be expressed in any clause

of a query inner block� The organization of this section follows the three dimensions� We
start by presenting nested queries of type A�N�J�JA with nesting and dependency 
J�JA
only� in the where clauses� This will allow us to show the di�erences and similarities

between relational and oo context� We continue by explaining the treatment required by
other locations of nesting 
i�e�� select and from clauses�� We end with the optimization
of type J�JA queries with range 
from clause� or projection 
select clause� dependencies�

As in the relational context� the optimization of nested queries is done by unnesting�

using di�erent kinds of joins and group operators� There are two good reasons for unnest�
ing nested queries� The �rst is that the underlying evaluation plan of a nested query relies
on nested loops that� as shown in �
��� can be very ine�cient� On the other hand� we
know of good algorithms for joins and group operations 
using indexes� sorting� hashing��

The second reason is that algebraic operators have nice properties that can be used for
further rewriting whereas nested algebraic expressions don�t have them a priori�

��� Di�erent Types of Nesting

	���� Queries of Type A

For queries of this kind� we rely on a technique similar to that of �
��� The �rst phase of

the optimization process factors out constant subqueries� Thus� as for relational queries�
the inner block of a type A query is evaluated �rst and its result is used for the evaluation
of the outer block�

In special though frequent cases� it is possible to do better than just pushing out the

constant block to evaluate type A queries� if the function applied on the inner block is
eithermin or max and if the inner and outer blocks have a common domain ����� The last

��



condition seems rather restrictive but retrieving the element exhibiting the min�max value
implies just this� For these queries� the scan needed for the evaluation of the aggregate
function on the inner block can also be used to compute the outer block� Let us illustrate
this by means of a max query�

select x�
from x� in Employee
where x��TotSales �

max 
select x
�TotSales
from x
 in Employee�

de�ne m 
 max
select x
s
from x
 in Employee�
de�ne x
s 
 x
�TotSales

select x�
from x� in Employee
where x�s � m
de�ne x�s � x��TotSales

The original query is on the left�hand side� The rewritten query after the �rst phase is

shown on the right�hand side�a convention holding throughout the paper� Note that the
�rst de�ne entry is independent of the second block� Hence� it is written before it�

Translation into the algebra yields

q � �x�
�x�s�m
�x�s�x��T otSales
Employee�x������

m � Max
�x�s
�x�s�x��T otSales
Employee�x
���

� Max
�x��T otSales
Employee�x
���

where a block with one variable in the from clause is translated by 
i� a map operation for
constructing tuples whose single attribute represents the variable 
e�g�� Employee�x���� 
ii�

a map operation for evaluating the expressions depending on the block 
e�g�� �x�s�x��T otSales��

iii� a selection when needed 
e�g�� �x�s�m� and �nally 
iv� a map operation for building
the �nal result 
e�g�� �x��� Of course� all the tuple constructions implied by this trans�
lation do not have to be performed 
e�g�� Employee�x�� can be interpreted as a scan on

Employee with variable x���
We may now apply the following equivalence which is a slightly generalized version of

the one found in �����

f
�a�max	e�

e��� � Maxg�m�a��f
e���g 
	��

if e� � �a
e��

Remember that the Maxg�m�a��f
e� operation returns a tuple containing 
i� an attribute

m representing the maximum value for the attribute a in the set e and 
ii� an attribute g
representing the result of f applied to the set of elements of e satisfying a
m� The above
equivalence applied to the query yields�

q � Maxg�m�x�s��x�
�x�s�x��T otSales
Employee�x�����g

Note that the Max operator can be computed within a single pass 
linear time� for
Maxg�m��f � if f is linear� Also note that an equivalent treatment for Min can be applied�
Furthermore� although the equivalence we used can easily be adapted to the relational
context� we are not aware of any such optimization�

��



	���� Queries of Type N

An important di�erence between relational and oo type N queries concerns the connection
predicate between the two blocks� In SQL� this predicate is built using either the IS IN or

an atom based comparator� In the latter case� the relation resulting from the inner block
has to contain one tuple with one unique attribute and the comparison is made on the
value of this attribute� SQL type N queries are transformed using a semi�join operation�
An atom based predicate requires some additional mechanisms 
e�g�� based on functional

dependencies ��	�� for checking the uniqueness of the element returned by the inner block�
In O�SQL� things are di�erent� Since the object model does not require a �rst normal

form� comparing an attribute with the result of a block is not restricted to a membership

test but can be any set comparison operation� Furthermore� in O�SQL� atomic comparison
implies the use of the element operation on the inner block� This operation extracts the
element of a singleton set� Since it returns a single element� we consider these queries as
being of type A�

We distinguish three di�erent kinds of predicates occurring within the outer where
clause�

�� f

x� in select � � �


� not 
f

x� in select � � � �

	� f

x� � 
�� �� � � � � select � � �

where 
x represents variables of the outer block� f a function 
or subquery� on these

variables and ������ � � � are set comparisons�
The techniques for unnesting the �rst two cases are adapted from the relational context

��� �	� 
�� and� hence� we will only brie�y cast these techniques into algebraic equivalences�

�� Type N queries with an in operator can be transformed into a semi�join by using
the following equivalence inspired by relational type N unnesting�

�A���A�
	e�
e� � e� ��A��A� e� 
	��

if Ai � A
ei�� F
e�� � A
e�� � �

The �rst condition is obvious� the second merely stipulates that expression e� must
be independent of expression e�� The interest for having this equivalence and the

following is obvious� As stated previously� semi�joins and anti�joins can be imple�
mented e�ciently and they allow further rewriting�


� Also inspired by the relational type N unnesting is the following equivalence which

turns a type N query with a negated in operator into an antijoin�

�A� ���A�	e�

e� � e� �A��A� e� 
	��

if Ai � A
ei�� F
e�� � A
e�� � �

The third case does not have a counterpart in SQL� However� if we formulate the cor�
responding queries on a relational schema using the non�standard SQL found in �
��� they
would be of type D � resolved by a division� Using a standard SQL� they would require


�



a double nesting using EXISTS operations� Treating Type D queries by a relational
division can only treat very speci�c queries where the comparison predicate corresponds�
in our context� to a non�strict inclusion as in the example below� The query returns the
employees who have sold all the expensive products�

select x
from x in Employee
wherex�SoldItems � select i

from i in Item

where i�price � 
����

de�ne ExpItems � select i
from i in Item
where p � 
����
de�ne p � i�price

select x
from x in Employee
wherexsi � ExpItems

de�nexsi � x�SoldItems

One solution to evaluate this query is to use a technique similar to that of �
�� and
add to our algebra an object division� If the set of expensive items is important� a well

implemented division operation could do much compared to a nested loop evaluation�
However� we voted against this operation for three reasons� The �rst reason is� as we
stated before� that the division is based on a non strict inclusion of the divider set� There
are no more reasons to have this inclusion than any other set comparison 
�� �� � � ���

Accordingly� to be coherent� we would have to introduce one operation per set comparator

as a matter of fact� this also holds for the relational context�� The second reason is that
division does not have particularly nice algebraic properties that we would like to exploit�
The third reason is that� since object models feature set attributes� it seems more natural

to add good algorithms for dealing with selections involving set comparisons than to
add new algebraic operators� Further� there already exist proposals to treat restriction
predicates involving set comparison operators �	��� Thus� we prefer not to rewrite the
following algebraic expression which corresponds to the translation of the above query�

q � �x
�xsi�ExpItems
�xsi�x�SoldItems
Employee�x����

ExpItems � �i
�p������
�p�i�price
Item�i����

The set ExpItems will be evaluated �rst� independently of query q� The result of its
evaluation will be used by the selection �xsi�ExpItems in the outer block� The selection

itself can be evaluated using an algorithm similar to that of a relational division�
Note that there is no need to consider the negation of set comparisons� since it is

possible to de�ne for each set comparison an equivalent negated counterpart� Consider for

example�
e� � e�� and the set comparison operator �� de�ned as 
e� �� e�� �� 
e�ne� �� ���

	���� Queries of Type J

For Type J queries� we distinguish the same three cases as for Type N queries� Again�
queries with in 
not in� as the connection predicate are transformed� as in the relational�
using semi�joins 
anti�joins�� However� as we will see in short� there exists another unnest�

ing possibility for these kind of queries� Nevertheless� we adapt the traditional unnesting
technique �rst� This is done by recasting the technique into algebraic equivalences�


�



��

�A���A�	�p	e�


e� � e� ��A��A��p e� 
	��

if Ai � A
ei�� F
p� � A
e� � e��� F
e�� � A
e�� � �

This equivalence is similar to the one used for type N queries� It just takes into
account a predicate p relying on both e� and e� 
second condition��


�

�A� ���A�	�p	e�


e� � e� �A��A� 
e� ��p e�� 
	��

if Ai � A
ei�� F
p� � A
e� � e��� F
e�� � A
e�� � �

Type J not in queries cannot be translated directly using an anti�join operation� a

semi�join has to be performed �rst�

Now� let us consider the third case� The query below returns the employees who have
sold all the items with a high�tech degree larger than the sales speciality of the employee�

select x
from x in Employee
wherex�SoldItems � select i

from i in Item
where i�hTD � x�speciality

select x
from x in Employee
wherexsi � SpecialItems

de�nexsi � x�SoldItems
xs � x�speciality
SpecialItems � select i

from i in Item
where ihTD � xs
de�ne ihTD � i�hTD

The algebraic translation of the query is splitted for reasons of clarity�

q � �x
�xsi�SpecialItems
q���

q� � �SpecialItems��i	�ihTD�xs	q�


q��

q� � �xsi�x�SoldItems�xs�x�speciality
Employee�x��

q� � �ihTD�i�hTD
Item�i��

The problem here is that the nested query is not constant� In order to unnest the query and
avoid several costly scans over the set of items� we have to associate with each employee
its corresponding set of special items� For this� we rely on the following equivalence�

�g�f	�A��A�	e�



e�� � e��g�A��A��fe� 
	��

if Ai � A
ei�� g �� A� �A�� F
e�� � A
e�� � �

Applying this equivalence on q� results in

q � �x
�xsi�SpecialItems
q��SpecialItems�ihTD�xs��iq���







The binary grouping operation can be implemented by adapting standard grouping algo�
rithms� There is another alternative to this operation that will be given in the sequel�

Two remarks� First� note that the selection with set comparator � is now evaluated
between two attributes� As for type N queries� we rely on good algorithms for such

selections� Second� note that the application of the equivalence did not depend on the
set comparison of the predicate in the outer where block but on the comparison of the
correlation predicate within the inner block� We will come back to this point� soon�

Eqv� 	� is the most general equivalence for the considered type of queries� There exist
two other equivalences which deal more e�ciently� using simple grouping� with two special
cases� The equivalence

�g�f	�A��A� 	e�



e�� � �A�


e� �
g�f	�

A��A�


�g�A��f 
e���� 
���

if Ai � A
ei�� F
e�� � A
e�� � �� A� �A� � �� g �� A
e�� � A
e��

relies on the fact that the comparison of the correlation predicate is equality� The super�
script g � f
�� is the default value given when there is no element in the result of the

group operation which satis�es A� � A� for a given element of e�� The equivalence

�g�f	�A��A�	e�



e�� � �A��A�
�g�A���f 
e��� 
���

if Ai � A
ei�� F
e�� � A
e�� � ��
g �� A
e�� � A
e���

e� � �A��A�
e�� 
this implies that A� � A
e���

relies on the fact that there exists a common range over the variables of the correlation
predicate 
third condition�� We believe that these two cases are more common than the

general case� We will show one application of Eqv� �� in this section� In the next one� we
will give an example using an equivalence derived from Eqv� ���

Eqv� 	�� ��� and �� are not only useful for unnesting type J nested queries occurring
within the where clause in a predicate utilizing set comparison� As already remarked

above� applying these equivalence solely depends on the presence of a correlation predicate�
Hence� they enable the derivation of alternative unnested expressions for the in and not

in cases� To see this� consider �A�e�
e�� � �A�B
�B�e�
e���� Further� as demonstrated in
the next Section� they play a major role in unnesting type JA nested queries� That is

why they should be considered the core of unnesting nested queries in the oo context�
Further� alternative unnested evaluation plans avoiding the binary grouping operator

can also be achieved by applying the following equivalence which produces an intermediate
�at result and then groups it

�g�f	�A�
�
�A�

�
	e�


e�� � �g�A��f��A�

��A� ���A�

e� � A���A

�
�
e�� 
�
�

if Ai � A
ei�� A�
i � Ai� g �� A� �A�� F
e�� �A� � �

where �A is a tuple with attributes A and null values only� Which of the Eqns� 	���
 to
apply is a matter of costs�

Last� there is a variant of Eqn� 	� in case no selection is present�

�g�f	e�

e�� � e��g�true�fe� 
�	�

if g �� A
e�� � A
e���F
e�� � A
e�� � �


	



	���	 Queries of Type JA

In the relational context� the treatment of type JA queries is radically di�erent from
that of type J� N or A� It requires joins� grouping and sometimes outer�joins ��	� ���


remember� from the previous subsections� that type N�J SQL queries required anti�joins
and semi�joins�� In the oo context� there is no di�erence between type J and type JA
queries� The reason is that� in order to deal with set comparison� we already introduced
outer�joins and grouping operations� The grouping operators have been de�ned to allow

the application of functions to the sets of grouped elements� This function might as well
be an aggregate function� Thus� by applying Eqv� 	���
 aggregated type JA queries are
treated in exactly the same manner as type J queries�

Note that� if the applied function of the unary � in Equivalence �� is an aggregate
function 
as implied by type JA queries�� then its right�hand side is equivalent to the
generalized aggregation of ��	��

��� Di�erent Locations of Nesting

	���� Nesting in the select Clause

Although nothing forbids it� type A or N nesting rarely occurs in select clauses� Indeed�

there is not much sense in associating a constant 
set or element� to each element of a
set� Should that happen� we rely on the �rst phase of the optimization process to factor
out the constant block� Thus� it will only be evaluated once�

For type J�JA queries� nesting in the select clause is equivalent to nesting in the

where clause� Remember that the application of Eqns� 	���
 did not depend on the
predicate in the outer where block but on the correlation predicate within the inner
block� The same kind of correlation predicates is used when type J�JA nesting occurs in

the select clause� We illustrate this with the following type JA query that associates to
each department its number of employees�

select tuple
dept� d�
emps� count
 select e

from e in Employee
wheree�dept�d��

from d in Department

select tuple
dept� d� emps� ce�
from d in Department

de�ne ce � count
 select e
from e in Employee
where ed�d

de�ne ed�e�dept�

Translating this expression into the algebra yields

q � ��dept�d�emps�ce�
�ce�q�
Department�d���

q� � count
�e
�ed�d
�ed�e�dept
Employee�e�����

Eqv� �� can be applied yielding�

q � ��dept�d�emps�ce�
�ed
Department�d� � ce��
d�ed
�ce�ed�count��e 
�ed�e�deptEmployee�e�����

� �ed
Department�d� � ce��
d�ed
�ce�ed�count��e
�ed�e�deptEmployee�e����


�



The zero value in the superscript ce � � corresponds to the result of the count function
on an empty set� The transformed query can be evaluated e�ciently using� for instance�
a sort or an index on Employee�dept �

There exists one type J case where another more powerful technique can be applied�

a �atten operation is performed on the outer block� and there is no tuple constructor
within the outer block�s select clause� As shown in ����� these queries can be optimized
by pushing the �atten operation inside until it is applied on stored attributes thus elim�

inating the nesting� For completeness� we repeat the example� The example query is
�atten
select

select tuple
name�c�name�age�c�age�
from c in e�children

where c�age � ���
from e in employee�

�atten
select g
from e in employee
de�ne ec � e�children

g � select tuple
name�n�age�a�
from c in ec
where a � ��
de�ne n � c�name

a � c�age �

The standard translation gives

q � flatten
�g
�g�e�
�ec�e�children
Emp�e�����

e� � ��name�n�age�a�
�a���
�a�c�age�n�c�name
ec�c����

In order to push the �atten operation inside� we have to eliminate the redundant tuple
extension for the attribute g�

q � flatten
�e�
�ec�e�children
Emp�e�����

e� � ��name�n�age�a�
�a���
�a�c�age�n�c�name
ec�c����

Now� we know that for linear f � f�g 
 f� �g that

flatten
�f
e�� � f
flatten
e�� 
���

Hence�

q � ��name�n�age�a�
flatten
�e���
�ec�e�childrenEmp�e���

e�� � �a���
�a�c�age�n�c�name
ec�c���

q � ��name�n�age�a�
�a���
flatten
�e��� 
�ec�e�childrenEmp�e������

e��� � �age�c�age�n�c�name
ec�c��

q � ��name�n�age�a�
�a���
�a�c�age�n�c�name
flatten
�ec�c�
�ec�e�childrenEmp�e������

� ��name�n�age�a�
�a���
�a�c�age�n�c�name
flatten
�e�children�c�
Emp�e������

� ��name�n�age�a�
�a���
�a�c�age�n�c�name
flatten
�children�c�
Emp�����

� �age���
��name�n�age�a�
��a�age�n�name�
flatten
�children
Emp�����

� �age���
��name�name�age�age�
flatten
�children
Emp�����

where redundant tuple constructions were eliminated in the last steps� Note that the
�atten operation is now applied on stored data�


�



	���� Nesting in the from Clause

Although rare� types A and JA nesting may occur in from clauses if they are combined
with another operation� For instance� one may extract a set attribute in a tuple returned

by a type A query� Type A queries are always treated in the same way independent of
the position in the block� Type JA queries can be treated in a way equivalent to that of
type J given below�

Type N nesting in the from clause may occur� as in the relational context� when

querying a view� SQL queries involving views are considered in ���� where the view
and the query have their own query graph model 
QGM� representation� The Starbust
technique is to merge the two QGM�s when possible 
problem when distinct is involved�

in order to have more optimization opportunities� Our query representation is di�erent
but the result is equivalent� Translation of the from clause results in a d�join� For type
N queries this is equivalent to a crossproduct� Predicates which might occur in the outer
where clause can be used to turn the cross product into a join which often turns out to

be a semi�join� We do not elaborate on this since it has been described in �����
Type J nesting in the from clause is also treated easily� To understand this� consider

the following equivalence�

e� � �p
e�� �� �p
e� � e� �� 
���

In the current context 
i�e�� a dependency in the where clause only�� once the selection
is pushed out� the inner argument of the d�join is constant� Thus� we can transform the

d�join coupled with selection into a regular join�

��� Di�erent Kinds of Dependency

As stated above� we distinguish three kinds of dependency� projection dependency 
a
reference to an outer variables occurs in the select clause�� range dependency 
� � � in the

from clause� and predicate dependency 
� � � in the where clause�� Above� we studied
queries with predicate dependency� In the sequel� we concentrate on optimization tech�
niques required for range and projection dependencies�

	���� Range Dependency

Consider the following query exhibiting a range dependency� It returns the set of employ�

ees having the same name than one of their children�

select x

from x in Employee
where x�name in select c�name

from c in x�children

select x

from x in Employee
where xn in CN
de�ne xn � x�name

xc � x�children

CN �select cn
from c in xc
de�ne cn � c�name


�



The algebraic translation is�

q � �x
�xn�CN
�CN �nq
�xn�x�name�xc�x�children
Employee�x�����

nq � �c�name
xc�c��

In terms of unnesting� there is nothing one can do� Nevertheless� the where clause of
the above query is equivalent to the application of the path expression x�children�name

which passes through a set� Hence� in this case� already known optimization techniques
for optimizing path expressions can be applied�

However� there exist cases where we are able to advantagely reduce range dependencies
to predicate dependencies and� hence� can unnest these queries by the above introduced

techniques� The reduction relies on the existence of type extents and uses type based
rewriting ���� ��� 
�� 
�� 
��� Since it has already been described� we merely present its
usage as a reduction technique useful for enabling further unnesting of range dependent
subqueries� The example query is

select tuple 
e� x�name� c� select s�customer�name

from s in � x�sales
where s�customer�city

� !Karlsruhe"�
from x in Employee

select tuple 
e� xn� c� SCN�

from x in Employee�
de�ne xn � x�name

xs � x�sales
SCN �select scn

from s in xs
where scc � !Karlsruhe"
de�ne sc � s�customer

scn � sc�name

scc � sc�city

Translation to the algebra yields

q � ��e�xn�c�SCN �
�SCN �nq
�xn�x�name�xs�x�sales
Employee�x����

nq � �scn
�scc��Karlsruhe�� 
�scn�sc�name�scc�sc�city 
�sc�s�city
xs�s�����

Relying on the fact that the elements of the attribute sales of an employee belong to the
extent of the class Sale� the inner block of the query can be rewritten as

nq � �sc�name
�scc��Karlsruhe�� 
�sc�s�customer�scc�sc�city 
�s�xs
Sale�s�����

Type based rewriting can be performed again using the extent of class Customer� This
allows us� for instance� to use indexes on Customer�city and Sale�customer to evaluate
the query� However� since our goal is unnesting and not general optimization� we do not

detail on this� Concerning unnesting� it is important to note that the dependency no
longer speci�es the range 
xs�s�� but now represents a predicate 
�s�xs�� Herewith� the
algebraic expression is of the same form as one resulting from a predicate dependency�
Hence� our unnesting techniques apply�

	���� Projection dependency

Queries of this kind should be rare� If they occur� they do so in two di�erent �avors� One
nice one and one nasty one� The �rst occurs if� within the expression forming the select


�



clause� an expression occurs whose variables all depend on the outer block� Then� this
expression has to be computed only once for each variable combination resulting from the
evaluation of the outer block� Besides this expression� the evaluation of the inner block
is independent of outer variables� Hence� it can be factored out resulting in a halfway

e�cient evaluation plan� The nasty case� where the expression contains variables from the
outer and the inner block� requires in general the nested loop evaluation or cross product�

Remark Nothing restricts variables of the outer block to occur only at one place within
the inner block� If there exist several dependencies� all the corresponding unnesting

techniques can be applied alternatively� Hence� if for example a range and a predicate
dependency occur� the latter should be used for unnesting if the range dependency cannot
be resolved by type based rewriting�

� More Unnesting Techniques

��� Several Nested Blocks

Queries containing several nested blocks of the same level are unnested by successive
rewritings as in the relational context� Note that if the nesting occurs in a disjunctive
where clause� the query has to be transformed �rst into a union�

Queries containing several levels of nesting are more complex� In the simple case�
we can start the rewriting by the lower level and go up� However� when queries contain
non�neighbor predicates� it is not always possible to apply the equivalences we introduced

in the previous section� We will see below what has to be done then�
Finally� note that some queries may be left nested� This happens when� as stated in

the previous section� range dependency cannot be transformed into predicate dependency�
This also occurs when boolean methods are used as a correlation predicate between inner

and outer block�

��� Quanti	ers

In the relational context� quanti�ers are always used in the where clause of a select�

from�where 
SFW� block� In ��	�� existential quanti�ers are considered as special aggre�
gate functions 
i�e�� checking the existence of one element in a set�� This opens the road
for e�cient evaluation but cannot be adapted to universal quanti�ers� In ����� queries

involving quanti�ers are rewritten using the count� min or max aggregate functions�
Due to the fact that� as opposed to quanti�ers� the aggregate operations require a full
scan on their set argument� the latter technique is less e�cient�

In O�SQL and OQL���� quanti�ers are independent functions� They would correspond

in SQL to the combination of a quanti�er and a SFW block� They can be used anywhere
and even form the outer block of a query� This is why we introduced two special operators
to deal with these� �p
e� 
resp� 
p
e�� returns true if all 
resp� at least one� elements in
e satisfy p� else it returns false�

Nested queries with quanti�ers come in three �avors� The nested block may de�ne
the quanti�er domain� be part of the quanti�er condition or the quanti�er may be nested


�



in another block�


���� Nesting Within a Quanti�er Range De�nition

Due to the de�nition of O�SQL quanti�ers� a nested block de�ning the domain is always
constant� This kind of query is optimized easily as demonstrated by the following example�

exists x
in select emp

from emp in Employee
whereemp�TotSales � 
����

where 
x�address�city�!Paris"�

de�ne EMP � select emp
from emp in Employee
where s � 
����
de�ne s � emp�TotSales

exists x
in EMP
where 
c � !Paris"�
de�ne c � x�address�city

The algebraic translation yields

q � 
c��Paris��
�c�x�address�city
EMP �x���

EMP � �emp
�s������
�s�emp�TotSales
Employee�emp����

It is transformed in the following way�

q � 
c��Paris��
�c�x�address�city
�x
�s������
�s�x�TotSales
Employee�x������

� 
c��Paris��
�c�x�address�city
�s������
�s�x�TotSales
Employee�x�����

� 
	c��Paris���s������

�c�x�address�city
�s�x�TotSales
Employee�x����

The �rst transformation results from the variable binding convention and renaming� The
second one eliminates an unnecessary � operation and pushes another one before a selec�

tion� Finally the last one is based on the following equivalence which allows us to push a
selection inside an 
 operation�


p�
�p�
e�� � 
p��p�e 
���

With this rewriting� the scan on the set of employees may be stopped when encoun�

tering one living in Paris and having the right amount of sales� An index on Employ�
ee�address�city can also be used to evaluate the 
 operation�

The example we considered was based on an exists block� Things are rather the same

with forall blocks� The only di�erence is in the last equivalence� We would have to use
the following with a � block�

�p�
�p�
e�� � �p�	
p�e 
���


�




���� Nesting Within a Quanti�er Predicate

When the nested block is part of the condition of a quanti�er� a treatment similar to
that of SFW blocks with nesting in the where clause can be applied� This should be

obvious for type A�N queries� Concerning type J�JA queries� remember that applying
Equivalences 	�� ��� or �� did not rely on the predicate in the outer where block 
in this
case a quanti�er� but on the correlation predicate within the inner block�

Another technique can also be used for special cases� It consists in transforming the

quanti�er into a set comparison� using one such equivalence�

�	x	x�e�

e�� � e� � e� 
���

Note that the opposite approach� that is converting set operations into quanti�ers has
been proposed in �	���


���� Nested Quanti�ers

Nested quanti�ers require new equivalences� These equivalences are derived from Eqvs� 	��

�
� The di�erence is that the selection in the inner block used to de�ne the grouping in
the previous cases is here replaced by a quanti�er�

We illustrate this with the query below� It corresponds to the simple case that has not
been illustrated thus far� the domain is shared by the inner and the outer blocks� The

query returns those employees having the same name as some other employee�

select x�

from x� in Employee
where exists x


in Employee
wherex
�name � x��name and x���x
�

select x�

from x� in Employee
where EE
de�ne x�n � x��name

EE � exists x


in Employee
wherex�n�x
n and x���x

de�ne x
n � x
�name

The algebraic translation yields

q � �x�
�EE
�EE�nq
�x�n�x��name
Employee�x������

nq � 
x�n�x�n�x���x�
�x�n�x��name
Employee�x
���

The equivalence we use is given below� It works on existential quanti�ers but the same
can be de�ned for universal quanti�ers�

�g��A��A�
	e�


e��� � �A��A�
�g�A��A���true	e�

e��� 
���

if Ai � A
ei�� g �� A
e�� � A
e��� F
e�� � A
e�� � �� 
���

e� � �A��A�
e�� 
implies A� � A
e����

The resulting query is then�

q � �x�
�EE
�x�n�x�n�x��x�
�EE�	�x�n���x�
��true
�x�n�x��name
Employee�x
������

	�



This query can be e�ciently evaluated by� for instance� using an index on the employees
name or by sorting the employees on their name and identi�er�

��� Unnesting of d�Joins

For the ��operator we already had a bunch of unnesting algebaic equivalences� These
allowed us to reformulate the implicit loop by some kind of join for which several evaluation
techniques 
besides nested�loop join� exists� The following equivalence allows us to unnest

the d�join�

e� � e� � � �g
�g�e�
e��� 
���

The application of this equivalence generates a term containing a �g�e�operator� Hence�
we can subsequently apply the unnesting techniques of the previous sections� Although�

by applying the unnest operator �g� the existing unnesting equivalences for �ge can be
somewhat simpli�ed� More speci�cally� since tuples which have under the attribute g the
empty set are eliminated� a regular join su�ces� i�e�� we can get rid of the outer join�

�g
�g�f	�A��A� 	e�



e���� � �g
�A�


e� �A��A� 
�g�A��f
e������� 
�
�

falls Ai � A
ei��F
e�� � A
e�� � ��
A� � A� � �� g �� A
e�� � A
e��

The above equivalence is a modi�cation of Eqvs����

��� Superscripts

The only reason� why terms of the form �g�f	�p	e�


e�� and �g�f	e�

e�� cannot be unnested
maybe the failure of F
e�� � A
e�� � � since g �� A
e�� � A
e�� can be made valid
easily through the right choice of g� Terms which do not ful�ll F
e�� � A
e�� � � steam

from queries� whose nesting depth is larger than two and which contain non�neighbor
predicates� As an example consider

select r�a
from r in R

where r�b 
�
count
select s

from s in S
where r�c � s�e and

s�f 
�
count
select t

from t in T

where s�g � t�h and

r�d � t�i��

	�



This query contains a non�neighbor predicate r�d � t�i in the where�clause of the
inner block� The introduction of the de�ne clause results in

select a

from r in R
where b 
� c�
de�ne a � r�a

b � r�b
c � r�c
d � r�d
c� � count
select s

from s in S
where c � e and

f 
� c�
de�ne e � s�e

f � s�f
g � s�g
c� � count
select t

from t in T

where g � h and

d � i
de�ne h � t�h

i � t�i��

Translation into the algebra yields�

q � �a
�b��c�
�c��e�
�a�r�a�b�r�b�c�r�c�d�r�d
R�r�����

e� � count
�s
�c�e
�f��c�
�c��e�
�e�s�e�f �s�f�g�s�g
S�s�������

e� � count
�t
�g�h
�d�i
�h�t�h�i�t�i
T �t������

Unnesting of q and e� at �c��e� and �c�e is not possible with the equivalences introduced
thus far� Every possible unnesting fails due to the failure of

F
�f��c�
�c��e�
�e�s�e�f �s�f�g�s�g
S�s����� � A
�a�r�a�b�r�b�c�r�c�d�r�d
R�r��� � �

Since d is referenced by e�� we have

F
�f��c�
�c��e�
�e�s�e�f �s�f�g�s�g
S�s����� � fdg
A
�a�r�a�b�r�b�c�r�c�d�r�d
R�r��� � fa� b� c� d� rg

The selection with the non�neighbor predicates r�d � t�i hinders the unnesting process�
Also� complete unnesting of the term fails when starting with unnesting at �c��e� � To

illustrate this� we apply Eqv 	� which results in

	




q � �a
�b��c�
�c��e�
�a�r�a�b�r�b�c�r�c�d�r�d
R�r�����

e� � count
�s
�c�e
�f��c�
�e�s�e�f �s�f�g�s�g
S�s���c��g�h�count��t�d�i
�h�t�h�i�t�i
T �t�������

Then� unnesting stops since the condition

A
�a�r�a�b�r�b�c�r�c�d�r�d
R�r��� � F
e�� � ��

fails� or since the subterm �d�i is no longer available for unnesting due to the fact that it
is burried within a non�unary operator 
here� binary grouping�� It is easy to verify� that
all unnesting stops at this point�

To remedy this situation� all algebraic operators are enhanced by a superscript con�
taining a path expression similar to one used in the NF� data model to access nested
relations� The superscripts allow a separation of operators and there arguments� For ex�
pressing that an operator f is applied to an argument e� one would normally write f
e��

With superscripts the inner operators can be moved to the outside�

fg�

e� � �g�g�
�g
�g��f�	g

e��� 
�	�

For binary operators� superscripts only apply to the �rst argument�

e�op
g�
e� � �g�g�
�g
�g��gop�e�
e���� 
���

Superscripts enable us to apply the regular unnesting equivalences� The general idea

is to use superscripts in order to introduce more unnesting possibilities� This procedure
consists of three di�erent steps�

�� push disturbing operators to the outside


� apply unnesting equivalences

	� push the operators back to the inside

where the last step is optional�
By using this trick� the example query can be unnested� The original term for the

query is

q � �a
�b��c�
�c��e�
�a�r�a�b�r�b�c�r�c�d�r�d
R�r�����

e� � count
�s
�c�e
�f��c�
�c��e�
�e�s�e�f �s�f�g�s�g
S�s�������

e� � count
�t
�g�h
�d�i
�h�t�h�i�t�i
T �t�����

Step � yields

		



q � �a
�b��c�
�
c��c�
d�i 
�c��e�
�a�r�a�b�r�b�c�r�c�d�r�d
R�r�����

e� � count
�s
�c�e
�f��c�
�c��e�
�e�s�e�f �s�f�g�s�g
S�s�������

e� � count
�t
�g�h
�h�t�h�i�t�i
T �t�����

We moved �d�i to the outermost block� Hence� the unnesting at �c��e� and �c�e are no
longer hindered by this selection�

Step 
 yields

q � �a
�b��c�
�
c��c�
d�i 
e��c� �c�e�count��se�

e� � �a�r�a�b�r�b�c�r�c�d�r�d
R�r��

e� � �f��c�
�c��e�
�e�s�e�f �s�f�g�s�g
S�s����

e� � count
�t
�g�h
�h�t�h�i�t�i
T �t�����

Also� �c��e� and �g�h can now be unnested�

q � �a
�b��c�
�
c��c�
d�i 
e��c� �c�e�count��se�

e� � �a�r�a�b�r�b�c�r�c�d�r�d
R�r��

e� � �f��c�
�e�s�e�f �s�f�g�s�g
S�s���c��g�h�count��t�h�t�h�i�t�i
T �t���

The example term could have been unested if no second anchor �g�h would have been
present within the inner block� Without this selection� a term of the form �f	e�

e�� would
have been derived� Now� Eqv� �	 can be applied�

The next example shows the application of this equivalence� Therefore� we eliminate

s�g � t�h from the query� On the algebraic side this results in the vanishing of �g�h� �h�t�h
and �g�s�g�

q � �a
�b��c�
�c��e�
�a�r�a�b�r�b�c�r�c�d�r�d
R�r�����

e� � count
�s
�c�e
�f��c�
�c��e�
�e�s�e�f �s�f
S�s�������

e� � count
�t
�d�i
�i�t�i
T �t����

Again� direct unnesting is impossible� We apply the superscripts by moving all selections
as far to the outside as possible�

q � �a
�b��c�
count
c�
�c�s 
�c�c�e
�

c�
f��c�


countc��c�
�c��c�t 
�c��c�d�i 
�c��e�
e�����������

e� � �c��e�
�a�r�a�b�r�b�c�r�c�d�r�d
R�r���

e� � �c��e�
�e�s�e�f �s�f 
S�s�������

e� � �i�t�i
T �t�����

	�



Then� we apply Eqv� �	 at �c��e� resulting in

q � �a
�b��c�
count
c�
�c�s 
�c�c�e
�

c�
f��c�


countc��c�
�c��c�t 
�c��c�d�i 
e����������

e� � �c��e�
�a�r�a�b�r�b�c�r�c�d�r�d
R�r���

e� � �e�s�e�f �s�f
S�s���c����i�t�i
T �t��

Now� we can unnest �c��e� by applying Eqv� �	�

q � �a
�b��c�
count
c�
�c�s 
�c�c�e
�

c�
f��c�


countc��c�
�c��c�t 
�c��c�d�i 
e����������

e� � �a�r�a�b�r�b�c�r�c�d�r�d
R�r���c���e�

e� � �e�s�e�f �s�f
S�s���c����i�t�i
T �t��

Now� the term is unnested completely� The decision whether the operators are moved

back to their original position is dependent on the resulting costs and� hence� a matter of
the query optimizer�

More equivalences on superscripts can be found in ����

� Outer Restrictions

Outer restrictions are boolean expressions which occur within an inner block 
typically in
thewhere�clause� refering only to variables de�ned in outer blocks� If the outer restriction
is satis�ed� the block where the outer restriction occured can be evaluated ignoring the
outer restriction� If the outer restriction evaluates to false� the result of the block with

the outer restriction will be the empty set� Similarly to non�neighbor predicates� simple
unnesting is impossible� Consider the following example�

select i

from i in Item
where i in


select d�store
from d in Dept

where i�producedBy � d and

i�value � ����

select i

from i in Item
where i in st
de�ne iv � i�value

ip � i�procducedBy

st � 
select ds
from d in Dept
where ip � d and

iv � ���

de�ne ds � d�store�

Within this example query� the predicate iv � ��� is an outer restriction� The trans�

lation of the query to the algebra yields�

�i
�i�st
�st�e�
�ip�i�producedBy
�iv�i�value
Item�i������

	�



e� � �ds
�ip�d
�iv����
�ds�d�store
Dept�d�����

None of the simple unnesting equivalence can be applied to the term �st�e�� The reason
is that

F
�iv����
�ds�d�store
Dept�d���� � A
�ip�i�producedBy
�iv�i�value
Item�i���� � �

Opposedly� the more complex binary grouping can be applied� Eqv� �	 yields

�i
�i�st
�ip�i�producedBy
�iv�i�value
Item�i����
�st���ds��ip�d��iv����

�ds�d�store
Dept�d��

Also� the application of superscripts is possible to move the outer restriction to the outside
enabling the application of the simple unnesting equivalences�

Yet another possibility to handle outer restriction is the usage of a special operator�
The block containing an outer restriction is enclosed by an if where the if �operator is
de�ned as follows� For some f � � 
 bool�

if � f��g 
 f��g

iff	e�

e�� �

�
e� � if f
e�� � true

� � sonst

���

The if operator is only applied� if F
e�� � A
e�� � ��
��	� proposes to add the outer restriction to the predicate of some outer join� This

method seems elegant at a �rst sight� But leads to the side e�ect that the block is also

evaluated� if the outer restriction fails� If the outer restriction is satis�ed� it is nevertheless
evaluated for all the tuples involved in the outer join� Hence� we decided not to adopt
this method�

Introduction of the if �operator into the above example yields�

�i
�i�st
�st�e�
�ip�i�producedBy
�iv�i�value
Item�i������

e� � ifiv����
�ds
�ip�d
�ds�d�store
Dept�d������

Let us state that the if �operator is linear and reorderable� Hence� it does not hinder

optimization or unnesting�

	 Conclusion

Opposed to the relational unnesting where unnesting is performed at the SQL�level� we
have introduced an unnesting technique which allows unnesting at the algebraic level� For

	�



this purpose� an algebra capable of capturing all kinds of unnesting occurring in a query
language as complex as OQL has been developed� The main idea to capture nested queries
was to introduce subscripts which can hold arbitrary complex algebraic expressions� Given
the fact that nested queries now result in nested algebraic expressions� unnesting boils

down to moving expressions outside subscripts of algebraic operators� Several equivalences
to do so have been introduced� The main advantages of this approach are

�� Unnesting strategies are expressed at the algebraic level� that is� they are indepen�
dent of the query language chosen�


� Correctness proofs of unnesting techniques become more feasible� This is an impor�
tant issue witnessing all the tiny mistakes found in relational unnesting�

There remain two topics for further research� The �rst topic concerns the implemen�
tation� Therefor� good implementations for the extended operators have to be invented
and existing cost models have to be extended to include these� A good starting point

might be sorting based grouping operations� Special techniques like 
�tables ��
� might
be helpful�

The second topic involves the extension of the current approach in order to incorporate
bags and lists� As already indicated� a simple strategy is coding of these data structures

with sets but it still unclear whether this is the optimal approach�

Acknowledgements� The authors thank Serge Abiteboul and Victor Vianu for many
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A Proofs of Selected Equivalences

This appendix contains proofs of selected unnesting equations�

Eqv� �	� e� � �a�
e�� �

f
�a��m
e���m � agg
e���� � 
aggg�m�a��f 
e����g

Proof

lhs � f
�a��agg	e�

e���

� f
�a��agg	fx��a�jx��e�g

e���

� f
fxjx � e�� x�a� � agg
fx��a�jx� � e�g�g�
� 
aggg�m�a��f 
e����g

� rhs

�

Eqv� 	��

�g�f	�A��A�	e�



e�� � �A��A�
�g�A���f 
e���

ife� � �A��A�
e���F
e�� � A
e�� � ��
Ai � A
ei�� g �� A
e�� � A
e��

Proof

lhs � fy 	 �g � G�jy � e�� G � f
fxjx � e�� y��A��
x��A��g�g
� fy 	 �g � G�jy � �A��A�
e��� G � f
fxjx � e�� y��A��
x��A��g�g
� fy��A� � A�� 	 �g � G�jy � e�� G � f
fxjx � e�� y��A��
x��A��g�g
� �A��A�
fy 	 �g � G�jy � e�� G � f
fxjx � e�� y��A��
x��A��g�g�
� rhs

�

Eqv� 	��

�g�f	�A��A� 	e�



e�� � �A�


e� �
g�f	�

A��A�


�g�A��f 
e����

ifAi � A
ei��F
e�� � A
e�� � ��
A� �A� � �� g �� A
e�� � A
e��

��



Proof

rhs � fz��A��jz � fx 	 y��jx � e�� x��A�� � y����A��� y
�� � fy���A�� 	 �g � G�jy� � e��

G � f
fyjy � e�� y��A�� � y���A��g�ggg
�
fz��A��jz � fx 	 y�jx � e�� � 
y� � e� x��A�� � y���A��� y

��g � f
��� y��g� � NULLgg
� f
x 	 y�����A��jx � e�� x��A�� � y����A��� y

�� � fy���A�� 	 �g � G�jy� � e��

G � f
fyjy � e�� y��A�� � y���A��g�gg
�
fz��A��jz � fx 	 y�jx � e�� � 
y� � e� x��A�� � y���A��� y

��g � f
��� y���g� � NULLgg
� f
x 	 
y���A�� 	 �g � G�����A��jx � e�� y

� � e�� x��A�� � y���A���

G � f
fyjy � e�� y��A�� � y���A��g�g
�
fz��A��jz � fx 	 y�jx � e�� � 
y� � e� x��A�� � y���A��� y

��g � f
��� y���g� � NULLgg
� fx 	 �g � G�jx � e�� y

� � e�� x��A�� � y���A��� G � f
fyjy � e�� y��A�� � y���A��g�g
�
fz��A��jz � fx 	 y�jx � e�� � 
y� � e� x��A�� � y���A��� y

��g � f
��� y���g� � NULLgg
� fx 	 �g � G�jx � e�� G � f
fyjy � e�� y��A�� � x��A��g�g
� lhs

�

Eqv� 
��

e� � e� � � �g
�g�e�
e���

Proof

�g
�g�e�
e��� � �g
fy 	 �g � e�
y��jy � e�g�
� �g
fy 	 �g � G�jy � e�� G � e�
y�g�
� fy 	 xjy � e�� x � G�G � e�
y�g
� fy 	 xjy � e�� x � e�
y�g
� e� � e� �

�

Eqv� ���

�g�f	�A��A�	e�



e�� � e��g�A��A� �fe�

ifA� � A
ei�� g �� A
e�� � A
e���F
e�� � A
e�� � �

�




Proof

rhs � fy 	 �g � G�jy � e�� G � f
fxjx � e�� y��A��
x��A��g�g
� fy 	 �g � G�jy � e�� G � f
�A��A�
fxjx � e�g��g

� wobei Ai � A
ei�

� fy 	 �g � G�jy � e�� G � f
�A��A�
e���g
� fy 	 �g � f
�A��A� 
e����jy � e�g
� lhsifAi � A
ei�

�

Eqv� 	��

�g�f	�A��A�	e�



e�� � �g��A	e�
�f��A�e��

��A�e�����A�e��

e� � A��A�e��

ifAi � A
ei��F
e�� � A
e�� � ��
A� �A� � �� g �� A
e�� � A
e��

Proof

lhs � fx 	 �g � G�jx � e�� G � f
fyjy � e�� x��A
�
��
y��A

�
��g�g

� fx 	 �g � G�jx � e��

G � f
�A�

fx 	 yjx� � e�� x

� � x� y � e�� x��A
�
��
y��A

�
��g��g

� fx 	 �g � G�jx � e��

G � f
�A�

fx 	 yjx� � e�� y � e�� x��A

�
��
y��A

�
��� x��A�� � x���A��g��g

� fx 	 �g � G�jx � e��

G � f
�A�

fx 	 yjx� � e�� y � e�� x��A

�
��
y��A

�
��� x��A�� � 
x� 	 y���A��g��g

� fx 	 �g � G�jx � e��

G � f
�A�

fuju � fx 	 yjx � e�� y � e�� x��A

�
��
y��A

�
��g� x��A�� � u��A��g��g

� fx 	 �g � G�jx � e�� G � f
�A�

fuju � V� x��A�� � u��A��g��g

where

V � fx 	 yjx � e�� y � e�� x��A
�
��
y��A

�
��g

� fx 	 �g � G�jx � e��
y � e� x��A
�
��
y��A

�
���

�	



G � f
�A�

fuju � V� x��A�� � u��A��g��g

�
fx 	 �g � G�jx � e�� � 
y � e� x��A

�
��
y��A

�
���

G � f
�A�

fuju � V� x��A�� � u��A��g��g

where

V � fx 	 yjx � e�� y � e�� x��A
�
��
y��A

�
��g

� f
x 	 y���A�� 	 �g � G�jx � e�� y � e�� x��A
�
��
y��A

�
���

G � f
�A�

fuju � V� 
x 	 y���A�� � u��A��g��g

�
f
x 	 z���A�� 	 �g � G�jx � e�� � 
y � e� x��A

�
��
y��A

�
��� z � �A��

G � f
�A�

fuju � V� 
x 	 z���A�� � u��A��g��g

where

V � fx 	 yjx � e�� y � e�� x��A
�
��
y��A

�
��g

� fv��A�� 	 �g � G�jv � fx 	 yjx � e�� y � e�� x��A
�
��
y��A

�
��g�

G � f
�A�

fuju � V� v��A�� � u��A��g��g

�
fv��A�� 	 �g � G�jv � fx 	 zjx � e�� � 
y � e� x��A

�
��
y��A

�
��� z � �A�g�

G � f
�A�

fuju � V� v��A�� � u��A��g��g

where

V � fx 	 yjx � e�� y � e�� x��A
�
��
y��A

�
��g

� fv��A�� 	 �g � G�jv � V�G � f
�A�

fuju � V� v��A�� � u��A��g��g

�
fv��A�� 	 �g � G�jv � V �� G � f
�A�


fuju � V� v��A�� � u��A��g��g
where

V � fx 	 yjx � e�� y � e�� x��A
�
��
y��A

�
��g

and

V � � fx 	 zjx � e�� � 
y � e� x��A
�
��
y��A

�
��� z � �A�g

� fv��A�� 	 �g � G�jv � V � V �� G � f
�A�

fuju � V� v��A�� � u��A��g��g

where

V � fx 	 yjx � e�� y � e�� x��A
�
��
y��A

�
��g

and

V � � fx 	 zjx � e�� � 
y � e� x��A
�
��
y��A

�
��� z � �A�g

��



� fv��A�� 	 �g � G�jv � V � V ��

G � f
�A�

�A� ���A�


fuju � V � V �� v��A�� � u��A��g���g
where

V � fx 	 yjx � e�� y � e�� x��A
�
��
y��A

�
��g

and

V � � fx 	 zjx � e�� � 
y � e� x��A
�
��
y��A

�
��� z � �A�g

� rhs

�

Eqv� 
�

�g
�g�f	�A��A� 	e�



e��� � �g
�A�


e� �A��A� 
�g�A��f 
e������

�if Ai � A
ei��

F
e�� � A
e�� � ��
g �� A
e�� � A
e��

Proof

�g
�g�f	�A��A� 	e�



e���

� �g
fz 	 �g � f
�A��A�
e����jz � e�g�
� �g
fz 	 �g � f
fxjx � e�� z��A�� � x��A��g��jz � e�g�
� fz 	 wjz � e�� w � f
fxjx � e�� z��A�� � x��A��g�g

�g
�A�

e� �A��A� 
�g�A��f
e������

� �g
�A�

e� �A��A� fy��A�� 	 �g � G�jy � e�� G � f
fxjx � e�� x��A�� � y��A��g�g��

� �g
�A�

fz 	 y��A�� 	 �g � G�jz � e�� y � e�� z��A�� � y��A���

G � f
fxjx � e�� x��A�� � y��A��g�g��
� �g
fz 	 �g � G�jz � e��
y � e�� z��A�� � y��A��� G � f
fxjx � e�� x��A�� � y��A��g�g�
� fz 	 wjz � e��
y � e�� z��A�� � y��A��� w � f
fxjx � e�� x��A�� � y��A��g�g
� fz 	 wjz � e�� w � f
fxjx � e�� x��A�� � z��A��g�g

�

Binary Grouping is linear in the �rst argument�


e� � e���g�A��A� �fe� � 
e��g�A��A��fe�� � 
e��g�A��A� �fe��

��g�A��A� �fe� � �

��



Proof


e� � e���g�A��A��fe�

� fy 	 �g � G�jy � e� � e�� G � f
fxjx � e�� y��A��
x��A��g�g
� fy 	 �g � G�jy � e�� G � f
fxjx � e�� y��A��
x��A��g�g �

fy 	 �g � G�jy � e�� G � f
fxjx � e�� y��A��
x��A��g�g
� 
e��g�A��A� �fe�� � 
e��g�A��A��fe��

��g�A��A��fe�

� fy 	 �g � G�jy � �� G � f
fxjx � e�� y��A��
x��A��g�g
� �

�

Next� the equations for superscripts follow�

e��g��A��A�
e��g��A��A�e�� � 
e��g��A��A�e���
g�
g��A��A�

e� 
���

Proof

rhs � �g��g��
�g�
�g���g��g��A��A�e�

e��g��A��A�e����

� �g��g��
�g�
�g���g��g��A��A�e�

fy 	 �g� � G��jy � e�� G� � fxjx � e�� y��A��
x��A��gg���

� �g��g��
�g�
fz 	 �g�� � G��g��A��A�e��j
z � fy 	 �g� � G��jy � e�� G� � fxjx � e�� y��A��
x��A��ggg��

� �g��g��
�g�
fy 	 �g� � G�� 	 �g�� � G��g��A��A�e��jy � e��

G� � fxjx � e�� y��A��
x��A��gg��
� �g��g��
fy 	 �g�� � G��g��A��A�e��jy � e�� G� � fxjx � e�� y��A��
x��A��gg�
� fy 	 �g� � G��g��A��A�e��jy � e�� G� � fxjx � e�� y��A��
x��A��gg
� fy 	 �g� � fw 	 �g� � G��jw � G�� G� � fvjv � e�� w��A��
v��A��gg�jy � e��

G� � fxjx � e�� y��A��
x��A��gg
� fy 	 �g� � fw 	 �g� � G��g�jy � e�� w � G�� G� � fxjx � e�� y��A��
x��A��g�

G� � fvjv � e�� w��A��
v��A��gg

lhs � e��g��A��A�fz 	 �g� � G��jz � e��

G� � fvjv � e�� z��A��
v��A��gg
� fy 	 �g� � G��jy � e�� G� � fxjx � fz 	 �g� � G��jz � e��

G� � fvjv � e�� z��A��
v��A��gg� y��A��
x��A��gg

��



� fy 	 �g� � G��jy � e�� G� � fz 	 �g� � G��jz � e��

G� � fvjv � e�� z��A��
v��A��g� y��A��
z 	 �g� � G����A��gg
� fy 	 �g� � fz 	 �g� � G��g�jy � e�� z � e��

G� � fvjv � e�� z��A��
v��A��g� y��A��
z 	 �g� � G����A��g
� rhs

�

e��g��A��A�
e��

�
g��A��A�

e�� � 
e��g��A��A�e���
g��
�
g��A��A�

e� 
���

Proof

lhs � fy 	 �g� � G��jy � e�� G� � fxjx � fe��
�
g��A��A�

e�g� A�
A�gg

rhs � fy 	 �g� � G��jy � e�� G� � fxjx � e�� y��A��
x��A��gg�g��
�
g��A��A�

e�

� �g��g��
�g�
�g���g��
��
g��A��A�

e�

fy 	 �g� � G��jy � e�� G� � fxjx � e�� y��A��
x��A��gg���

� �g��g��
�g�
fy 	 �g� � G�� 	 �g�� � G�
��jy � e�� G� � fxjx � e�� y��A��
x��A��g�

G�
� � fG��


�
g��A��A�

e�gg��
� �g��g��
fy 	 �g�� � G�

��jy � e�� G� � fxjx � e�� y��A��
x��A��g� G�
� � fG��


�
g��A��A�

e�gg�
� fy 	 �g� � G�

��jy � e�� G� � fxjx � e�� y��A��
x��A��g� G�
� � fG��


�
g��A��A�

e�gg
� lhsif Ai � A
ei�

�

�g�f	e�

e�� � fg
�g�e�
e��� 
���

Proof

lhs � fy 	 �g � f
e�
y���jy � e�g

rhs � �g�g�
�g
�g��f	g

�g�e�
e�����

� �g�g�
�g
�g��f	g

fy 	 �g � e�
y��jy � e�g���
� �g�g�
�g
fy 	 �g � e�
y�� 	 �g� � f
e�
y���jy � e�g��
� �g�g�
fy 	 �g� � f
e�
y���jy � e�g�
� fy 	 �g � f
e�
y���jy � e�g
� lhs

��



�

�g��A�f��f�
e� � f
g
� 
�g��A�f�
e�� 
���

Proof

lhs � fy��A� 	 �g � G�jy � e�G � f�
f�
fxjx � e� x��A�
y��A�g��g

rhs � f
g
� 
fy��A� 	 �g � G��jy � e�G� � f�
fxjx � e� x��A�
y��A�g�g�

� �g�g�
�g
�g��f�	g

fy��A� 	 �g � G��jy � e�G� � f�
fxjx � e� x��A�
y��A�g�g���
� �g�g�
�g
fy��A� 	 �g � G�� 	 �g� � f�
G

���jy � e�G� � f�
fxjx � e� x��A�
y��A�g�g��
� �g�g�
fy��A� 	 �g� � f�
G

���jy � e�G� � f�
fxjx � e� x��A�
y��A�g�g�
� �g�g�
fy��A� 	 �g� � G�jy � e�G � f�
f�
fxjx � e� x��A�
y��A�g��g�
� fy��A� 	 �g � G�jy � e�G � f�
f�
fxjx � e� x��A�
y��A�g��g
� lhs

�

e��g�A��A� �f��f�e� � f
g
� 
e��g�A��A� �f�e�� 
���

Proof

lhs � fy 	 �g � G�jy � e�� G � f�
f�
fxjx � e�� y��A��
x��A��g��g

rhs � f
g
� 
fy 	 �g � G��jy � e�� G

� � f�
fxjx � e�� y��A��
x��A��g�g�
� �g�g�
�g
�g��f�	g

fy 	 �g � G��jy � e�� G

� � f�
fxjx � e�� y��A��
x��A��g�g���
� �g�g�
�g
fy 	 �g � G�� 	 �g� � f�
G

���jy � e�� G
� � f�
fxjx � e�� y��A��
x��A��g�g��

� �g�g�
fy 	 �g� � f�
G
���jy � e�� G

� � f�
fxjx � e�� y��A��
x��A��g�g�
� fy 	 �g � f�
G

���jy � e�� G
� � f�
fxjx � e�� y��A��
x��A��g�g

� fy 	 �g � G�jy � e�� G � f�
f�
fxjx � e�� y��A��
x��A��g��g
� lhs

�

�gp
e��g�A��A��fe�� � e��g�A��A� �p�fe� 
���

��



Proof

rhs � fy 	 �g � G�jy � e�� G � f
fxjx � e�� y��A��
x��A��� pg�g

lhs � �gp
fy 	 �g � G��jy � e�� G
� � f
fxjx � e�� y��A��
x��A��g�g�

� �g�g�
�g
�g���p	g

fy 	 �g � G��jy � e�� G
� � f
fxjx � e�� y��A��
x��A��g�g���

� �g�g�
�g
fy 	 �g � G�� 	 �g� � �p
G
���jy � e�� G

� � f
fxjx � e�� y��A��
x��A��g�g��
� �g�g�
fy 	 �g� � �p
G

���jy � e�� G
� � f
fxjx � e�� y��A��
x��A��g�g�

� fy 	 �g � �p
G
���jy � e�� G

� � f
fxjx � e�� y��A��
x��A��g�g
� fy 	 �g � G���jy � e�� G

�� � �p
f
fxjx � e�� y��A��
x��A��g��g
� fy 	 �g � G���jy � e�� G

�� � f
�p
fxjx � e�� y��A��
x��A��g��g
if f and �p reorderable

� fy 	 �g � G�jy � e�� G � f
fxjx � e�� y��A��
x��A��� pg�g
� rhs

�

�
g�f	e�

e�� � f
�g
�
g�e�
e��� 
�
�

Proof by induction over j�j�

induction start� j�j � �
p

presupposition� Equivalence holds for arbitraty � with j�j � n�

induction step� n � � � n

Let �� � ����

�

�

g�f	e�

e��

� �
��

g�f	e�



e��

� �
��
��

�
�
�
�����g	f�e��	
�

e����

� �
��
��

�
�
fy 	 ���� � �
g�f	e�

y�����jy � e�g��

I�V�� �
��
��

�
�
fy 	 ���� � f
�g
�
g�e�
y������jy � e�g��

� fy
� 	 ��� � f
�g
�
g�e�
y������jy � e�g

f

� �g
�


�

g�e�
e���

��



� f
��
�g
�
��

g�e�


e���

� f
��
�g
�
��
��

�
�
�
�����g	e�	
�

e�����

� f
��
�g
�
��
��

�
�
fy 	 ���� � �
g�e�
y�����jy � e�g���

� f
��
�g
�
��

�
�

fy
� 	 ���� � �
g�e�
y�����jy � e�g��

� f
��
�g
fy
� 	 ��� � �
g�e�
y�����jy � e�g�
� f
��
�g
fy
� 	 ��� � �
g�e�
y�����jy � e�g�
� �
��


�
�

�
�
�
���f��g	
�

fy
� 	 ��� � �
g�e�
y�����jy � e�g���

� �
��

�
�

�
�
fy
� 	 ��� � �
g�e�
y����� 	 ���� � f
�g
�
g�e�
y������jy � e�g��

� �
��
��

fy
� 	 ���� � f
�g
�
g�e�
y������jy � e�g�

� fy
� 	 ��� � f
�g
�
g�e�
y������jy � e�g

�

�
�gp 
e��


g�A��A��f

e�� � e��


g�A��A��p�f

e� 
�	�

Proof by induction over j�j�

induction start� j�j � �
p

presupposition� Equivalence holds for arbitraty � with j�j � n�

Induktionsschritt� n � � � n

Let �� � ����� j��j � n � �

�

��g

p 
e��

�

g�A��A� �f
e��

� �
��
�g
p 
e��


��

g�A��A��f

e��

� �
��
�g
p 
�
��
��


�
�
�
���
���g�A��A��f
e�
e�����

� �
��
�g
p 
�
��
��


�
�
fy 	 ���� � y����


g�A��A��fe��jy � e�g���

� �
��
�g
p 
�
��
��


fy
� 	 ���� � y����


g�A��A��f

e��jy � e�g��
� �
��
�g

p 
fy
� 	 ��� � y����


g�A��A��f

e��jy � e�g�
� �
��
�g

p 
fy
� 	 ��� � y����


g�A��A��fe��jy � e�g�

� �
��
��

�
�
�
����

��g
p 	
�

fy
� 	 ��� � y����



g�A��A��f

e��jy � e�g���
� �
��
��


�
�
fy
� 	 ��� � y����


g�A��A��fe�� 	 ���� � �
�gp 
y����



g�A��A� �fe���jy � e�g��

� �
��
��

fy
� 	 ���� � �
�gp 
y����



g�A��A��fe���jy � e�g�

� fy
� 	 ��� � �
�gp 
y����


g�A��A��fe���jy � e�g

I�V�� fy
� 	 ��� � y����


g�A��A� �p�f

e��jy � e�g

��



e��

�

g�A��A��p�f
e�

� e��

��

g�A��A��p�f

e�

� �
��
��

�
�
�
���
���g�A��A��p�f

e�
e����

� �
��
��

�
�
fy 	 ���� � y����



g�A��A��p�fe��jy � e�g��

� �
��

�
�

fy
� 	 ���� � y����



g�A��A� �p�fe��jy � e�g�

� fy
� 	 ��� � y����


g�A��A��p�f

e��jy � e�g

�

�

g��A�f��f�


e� � f
�g� 
�

g��A�f�


e�� 
���

Proof by induction over j�j�

induction start� j�j � �
p

presupposition� Equivalence holds for arbitraty � with j�j � n�

induction step� n � � � n

Let �� � ����� j��j � n � �

f

��g
� 
�
�

g��A�f�

e��

� f

��
�g
� 
�
��


g��A�f�

e��

� f
��
�g
� 
�
��
��


�
�
�
�����g��A�f�
	
�

e����

� f

��
�g
� 
�
��
��


�
�
fy 	 ���� � �

g��A�f�
y�����jy � eg���

� f

��
�g
� 
�
��
��


fy
� 	 ���� � �

g��A�f�
y�����jy � eg��

� f
��
�g
� 
fy
� 	 ��� � �


g��A�f�

y�����jy � eg�

� �
��
��

�
�
�
���f

��g
� 	
�

fy
� 	 ��� � �


g��A�f�
y�����jy � eg���
� �
��
��


�
�
fy
� 	 ��� � �

g��A�f�
y����� 	 ���� � f
�g� 
�


g��A�f�
y������jy � eg��
� �
��
��


fy
� 	 ���� � f
�g� 
�

g��A�f�
y������jy � eg�

� fy
� 	 ��� � f
�g� 
�

g��A�f�


y������jy � eg
I�V�� fy
� 	 ��� � �


g��A�f��f�
y�����jy � eg

�
�

g��A�f��f�
e�

� �
��

g��A�f��f�
e�

��



� �
��
��

�
�
�
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