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Abstract 

Remote data access from disparate sources across a wide-area net- 
work such as the Internet is problematic due to the unpredictable 
nature of the communications medium and the lack of knowledge 
about the load and potential delays at remote sites. Traditional, 
static, query processing approaches break down in this environ- 
ment because they are unable to adapt in response to unexpected 
delays. Query scrambling has been proposed to address this prob- 
lem. Scrambling modifies query execution plans on-the-fly when 
delays are encountered during runtime. In its original formulation, 
scrambling was based on simple heuristics, which although provid- 
ing good performance in many cases, were also shown to be sus- 
ceptible to problems resulting from bad scrambling decisions. In 
this paper we address these shortcomings by investigating ways to 
exploit query optimization technology to aid in making intelligent 
scrambling choices. We propose three different approaches to using 
query optimization for scrambling. These approaches vary, for ex- 
ample, in whether they optimize for total work or response-time, and 
whether they construct partial or complete alternative plans. Using 
a two-phase randomized query optimizer, a distributed query pro- 
cessing simulator, and a workload derived from queries of the TPC- 
D benchmark, we evaluate these different approaches and compare 
their ability to cope with initial delays in accessingremote sources. 
The results show that cost-based scrambling can effectively hide ini- 
tial delays, but that in the absence of good predictions of expected 
delay durations, there are fundamental tradeoffs between risk aver- 
sion and effectiveness. 

1 Introduction 

The ubiquity of wide-area connectivity has led to tremendous in- 
creases in the number, variety, and distribution of data sources that 
can be accessed from one’s desktop. At present, most such access 
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is performed in a browsing mode, either by navigating through hy- 
perlinks or by performing word-based searches via search engines. 
Distributed query processing, as developed for relational and object 
relational database systems, currently plays little role in wide-area 
data access. As a result, the benefits of declarative query process- 
ing, such as the expressive power of query languages and automated 
optimization of query plans, are largely unavailable when accessing 
wide-spread data sources across the intemet. 

The absence of declarative query processing places unneces- 
sary restrictions on the types of applications that can exploit the in- 
creased interconnectivity of data sources. The severity of such a 
limitation has been demonstrated before, most recently in the bat- 
tle between object-oriented database (OODB) and object-relational 
database (ORDB) systems. To date, navigation-oriented OODB ap- 
proaches have remained largely niche solutions, while the query- 
oriented ORDB approach has been embraced by most of the ma- 
jor database vendors [CD96]. Given the importance of declarative 
query processing for many applications, it is natural to investigate 
ways to provide such functionality over the wealth of data that is 
available across current wide-area networks. 

Query processing in wide-area distributed environments poses 
a number of difficult technical challenges. Issues such as semantic 
heterogeneity, manipulation of semi-structured data, and resource 
discovery (i.e., locating relevant sources) have been the subject of 
much research in recent years [Kim95, SADt95, TRV96]. While 
these problems are daunting in their most general forms, pragmatic 
approaches that provide useful functionality for many typical sit- 
uations are starting to appear. In particular, solutions based on 
the wrapper-mediator model and other non-traditional techniques 
(eg. [MMM97]), provide the abstractions necessary to implement 
applications that utilize multiple sources on the Internet. 

While significant effort has been placed on addressing the se- 
mantic issues of wide-area data access, relatively little effort has 
been put into solving the performance problems that are inherent 
in such access. A key performance issue that arises in wide-area 
distributed information systems is response-time unpredictability. 
Data access over wide-area networks involves a large number of re- 
mote data source, intermediate sites, and communications links, all 
of which are vulnerable to congestion and failures. Such problems 
can cause significant and unpredictable delays in the access of in- 
formation from remote sources. 

Traditional distributed query processing strategies break down 
in the wide-area environment because they are unable to adapt in 
response to unexpected delays. Query execution plans are typically 
generated statically, based on a set of assumptions about the costs of 
performing various operations and the costs of obtaining data. Due 
to the apparent randomness of delays when accessingremote data, it 
is not possible to optimize for such delays a priori. Thus, the execu- 
tion of any statically optimized query plan is likely to be sub-optimal 
in the presence of the response time problems that will inevitably 
arise during the query run-time. 
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1.1 Query Scrambling 
To address the issue of unpredictable delays in the wide-area en- 
vironment, we proposed a dynamic approach to query execution 
called query scrambling [AFTU96]. Query scrambling reacts to 
unexpected delays by rescheduling, on-the-fly, the operations of a 
query during its execution. In a remote access setting, query scram- 
bling hides delays encountered when obtaining data from the re- 
mote sources by performing other useful work, such as transferring 
other neededdata or performing query operations, such as joins, that 
would normally be scheduled for a later point in the execution. 

Query scrambling as defined in [AFTU96] consists of two dif- 
ferent phases: a rescheduling phase, in which the scheduling of the 
operators of an active query plan is changed when a delay is de- 
tected, and an operator synthesis phase in which the query plan is 
restructured, typically by creating new operators that are not in the 
current query plan. In the original algorithm, both of these phases 
were heuristic-driven, That is, the algorithm was specifiedas a setof 
heuristic rules that were activated as delays in obtaining remote data 
were detected. The heuristics described in that paper were shown to 
be very effective at hiding delays in some situations, but they were 
also shown to be prone to making poor scrambling decisions in other 
cases. In some cases, the proposed heuristics could result in perfor- 
mance that is worse than simply waiting for the delayed data to ar- 
rive. 

In this paper, we address the shortcomings of the heuristic-based 
approach by investigating ways to introduce query optimization into 
the scrambling decision making process. For simplicity, we focus 
on the problem of initial delay, in which delays are manifested as 
problems in receiving the first tuple from a particular remote source. 
Initial delays typically arise when there is difficulty in establishing a 
connection to a remote source or the source is heavily loaded. Also, 
in the absence of global query optimization (i.e., optimization that 
considers costs at both the query site and the remote sources such 
as [RAH+ 96, TRV96]), initial delays can arise if a remote source 
must perform a significant amount of work before it can return the 
first tuple. 

1.2 Making Cost-based Decisions 
There are a number of fundamental issues that arise when trying 
to exploit database query optimization technology for scrambling. 
A basic question is whether the objective function of optimization 
should be based on total work or response time. 

Relational optimizers traditionally aim to reduce total work (or 
“cost”). For example, the cost model of the classic System R-type 
optimizer includes terms for cpu and disk usage, but does not model 
the possible overlap of cpu and disk processing [SAC? 791. Like- 
wise, the distributed extensions to this optimizer for the R* system 
added additional terms for messagecosts, but also did not model the 
overlap of such costs [ML86]. In contrast, a response time-based 
optimizer predicts the overlap of work in addition to the total amount 
of work [GHK92]. Thus, a response time optimizer might choose a 
plan with higher total work but more parallelism over a plan with 
less work but higher sequentiality. 

The notion of delay, as arises in wide-area remote access is in- 
herently a response time issue. Delays incur no work but still post- 
pone the completion of a given query. We therefore investigate the 
use of response time-based optimization for query scrambling. In 
fact, a major result of our work is that if a response time-based op- 
timizer is given an estimate of an expected delay, it can place the 
access to the delayed data at the proper point in the query execu- 
tion plan. The quality of such placement of course, depends upon 
the accuracy of the delay prediction. The current state-of-the-art in 
delay prediction on the Internet is quite primitive. We therefore in- 

vestigate two approaches for integrating a response time-based opti- 
mizer into the scrambling process. One approach is very aggressive 
in its scrambling (i.e., it assumes that delays will be long), the other 
approach is more conservative. In addition, we also develop an al- 
gorithm for performing scrambling using an optimizer that is based 
on total work. 

The rest of the paper is organized as follows. Section 2 gives 
an overview of the cost based query scrambling and describes three 
approaches for integrating query optimization with scrambling deci- 
sions. Section 3 describes the environmentused in the experiments. 
Section 4 analyzes the cost based scrambling algorithms using a 
two-phase randomized query optimizer, a distributed query process- 
ing simulator, and a workload derived from queries of the TPC-D 
benchmark. Related work is discussed in Section 5. Finally Sec- 
tion 6 presents our conclusions. 

2 Cost-based Query Scrambling 

2.1 Query Scrambling Overview 
In this paper we assume a query execution environment consisting 
of query sites and a number of remote data sources. The processing 
work for a given query is split between the query source and the re- 
mote sites.’ Query plans are produced by a query optimizer based 
on its cost model, statistics, and objective functions. This an-ange- 
ment is typical of mediated database systems that integrate data from 
distributed, heterogeneous sources. 

An example query execution plan for such an environment is 
shown in Figure 1. The query involves five different base relations 
stored at four different sites, In the example, relations A and B re- 
side at separate remote sites, relation C resides locally at the query 
site, and relations D and E are co-located at a fourth site. 

Communication Link 

Figure 1: Example of a Complex Query Tree 

Using a static scheduling policy, a remote access query plan 
such as this is susceptible to delays that arise when accessing 
the remotely-stored data. For example, using an iterator ap- 
proach [Gra93], the first data access would be to request a tuple of 
Relation A (from site 2). If there is a delay in accessing that site then 
the scan of A, and hence the entire query execution, is blocked until 
the site recovers. 

Query Scrambling reacts to such delays in two ways (referred to 
as Phase 1 and Phase 2 respectively): 

l Rescheduling - the execution plan of a query can be dynam- 
ically rescheduled when a delay is detected. In this case, the 
basic shape of the query plan remains unchanged (although 

1 As currently specified, query scrambling treats remote sources as black 
boxes, regardless of how the remote data is computed. Thus, it operates 
solely at the query sites. 
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some additional “materialization” operators may be added as 
discussed in Section 2.2). 

. Operator Synthesis - new operators (e.g., a join between two 
relations that were not directly joined in the original plan) can 
be created when there are no other operators that can exe- 
cute. In this case, the shape of the query plan can be sig- 
nificantly modified through the addition, removal and/or re- 
arrangement of query operators. 

Query scrambling is an iterative process; it works by repeatedly 
(if necessary) applying these two techniques to a query plan. For 
example, assume that the query shown in Figure 1 stalls while re- 
trieving tuples of A. Instead of waiting for the remote site to recover, 
Query Scrambling could perform rescheduling, and retrieve the tu- 
pies of B while A is unavailable. These tuples would need to be 
stored temporarily at the query site. If, after obtaining B, A is still 
unavailable, then rescheduling could be invoked again, for example, 
to trigger the execution of (DME) at site 4, and to join this result with 
C. If at this point, A is still unavailable, then Operator Synthesis can 
be invoked to create a new join between B and (DWE)WC. Opera- 
tors initiated by Query Scrambling may as well experience delays, 
which may cause Scrambling to be invoked further. 

In this paper, we assume that once a scrambling step (i.e., the 
rescheduling of a query sub-tree, or the execution of a synthesized 
plan) has been started, the system does not check for the availability 
of delayed data unless the delayed data is accessed during the step. 
Once the step has been completed, the arrival of the delayed data is 
checked. If the delayed data has still not arrived, another iteration of 
the scrambling algorithm is begun. Likewise, if during scrambling, 
a delay arises when accessing a remote source, the current scram- 
bling step is abandoned, and a new one is started. 

As discussed in Section 1.1, the original formulation of scram- 
bling was heuristic-based [AFTU96]. In this paper, we address the 
shortcomings of that earlier approach by incorporating query opti- 
mization into the scrambling process. The focus of the paper is on 
Phase 2 of scrambling, but we also apply cost-based decision mak- 
ing in Phase 1. We therefore first briefly describe how cost informa- 
tion is used during Phase 1, and then describe our three approaches 
for integrating cost information into Phase 2. The comparison of 
these latter three approaches is then addressed in detail in the re- 
mainder of the paper. 

2.2 Cost-Based Rescheduling (Phase 1) 
Phase I starts by identifying runnablesubtrees, i.e., sub-trees of the 
plan that are made up entirely of operators that are not currently 
blocked. A runnable subtree can be scheduled out of order by in- 
serting a “materialization” operator between its root and the root’s 
parent. These materialization operators issue Open, Next, and Close 
calls to the root of the subtree and save the result in a temporary re- 
lation to be used when the result is needed later. 

The original scrambling algorithm rescheduled subtrees simply 
by traversing the query plan from left to right, and choosing to run 
each “maximal” runnable subtree (i.e., a runnable subtree whose 
parent operator is blocked) it encountered. This approach was taken 
because the original algorithm did not use query optimization for 
scrambling. 

In this paper, WC use a query optimizer to compute the expected 
cost (in terms of total work) of each runnable subtree. Three costs 
are associated with each runnable subtree: 1) M W, the cost of writ- 
ing the materiahzed temporary result produced by the subtree to 
disk; 2) MR, the cost of reading the temporary from disk when it 
is to be used; and 3) P, the cost of executing the subtree itself. Note 
that M W and M R represent the additional cost incurred by run- 

ning the subtree out of order.’ Also note that MW and M R can 
differ depending on the relative costs of disk writes and reads in a 
system. 

The ef#kiency of each runnable subtree is then computed as 
$$#&. Intuitively P - MR is how much work will be saved in 
the future by scheduling this subtree, and P + MW is the dura- 
tion of the scrambled operation. Thus, the ratio gives the improve- 
ment in response time per unit of scrambled execution. Phase 1 then 
chooses to re-schedule runnable subtrees in decreasing order of efli- 
ciency. Subtrees with efficiency below a certain threshold (currently 
set at 0.75) are not considered for execution during Phase 1. This ap- 
proach to using cost favors runnable subtrees that are materialized 
by the original plan (they haveefficiency = 1) and ones that produce 
small results. 

Each iteration of Phase 1 chooses a runnable subtree, runs it, and 
then checks to see if the delayed data has started to arrive. If so, 
then scrambling is terminated at this point. If the delayed data is 
still missing, then another iteration of scrambling is initiated. 

2.3 Cost-Based Operator Synthesis (Phase 2) 
Phase 2 of query scrambling is invoked after no more progress can 
be made in Phase 1. Unlike Phase 1, which simply changes the 
scheduling of existing operators, Phase 2 actually creates a new 
plan, which typically contains new operators. In this paper, we study 
three approaches to using a query optimizer during Phase 2. 

2.3.1 Optimization Strategies 

As stated in Section 1.2, an optimizer can be integrated with scram- 
bling using an objective function based on total work or response 
time. In scrambling, we deal with these two types of optimization 
differently. 

Response time-based optimizers are naturally suited for query 
scrambling because they are able to estimate not only the total work 
to be done for a query, but also how that work can be overlapped. 
The ability to consider such overlap can be exploited for query 
scrambling. Simply by telling the optimizer how long a particular 
data source will be delayed, the optimizer can be coerced into find- 
ing plans that perform other useful work that is overlapped with the 
delay. Of course, the work that the optimizer schedules to overlap 
the delay can not be in any way dependent on the delayed data. For- 
tunately, query optimizers must normally deal with such dependen- 
cies, in order to generate valid query plans. 

There is a problem with the above approach, however. It re- 
quires that the duration of the delay of a source to be known apriori. 
Of course, if such knowledge exists, then there is no need for scram- 
bling. When dealing with delays of remote sources on the Internet 
the current state of prediction is quite primitive (e.g., note the “time 
remaining” line on the bottom of your browser window). The ap- 
proach that we take in this paper is to “lie” to the optimizer by pro- 
viding it a fixed estimate of the expected delay duration when scram- 
bling is invoked. We propose two such approaches. One approach, 
called Include Delay(IN), simply chooses a very long (relative to the 
query response time) delay duration so that the optimizer will push 
any accesses to the delayed data as far back in the plan as possible. 
The other approach, called Estimated Delay (ED) initially assumes 
that delays will be brief, and subsequently increases its estimate if a 
delay turns out to be longer than the earlier guess. 

An alternative to using a response time-based optimizer is to use 
a more traditional objective function based on total work (i.e., one 
that ignores potential overlapping). Such an optimizer, however, 

2Thus, MR and MW are zero for subtrees rooted at operators that write 
their results to disk under the regular query schedule. 
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can not adequately cope with the notion of delay since delay infor- 
mation is not taken into account in the objective function. Our solu- 
tion to this problem is to simply remove the accesses to the delayed 
data from the query. In this paper we explore an approach called 
Pair, which has the optimizer generate plans for individual joins one 
at-a-time. This policy is a cost-based analogue to the heuristic-based 
Phase 2 of the original scrambling algorithm. In the following sec- 
tions we briefly describe these three approaches: Pair, IN, and ED. 

2.3.2 Pair 

The Pair approach uses a total work-based optimizer to construct a 
query plan containing only a single join using two relations that are 
not currently known to be blocked. The optimizer analyzes each pair 
of non-blocked relations that share a join predicate (i.e., it avoids 
Cartesian products) and calculates the cost of the best way of joining 
them. It then chooses the join with the least total cost and executes 
it. The cost computation includes costs associated with materializ- 
ing the result. The result of this join is materialized to disk, and is 
available for use in later scrambling iterations. In addition to avoid- 
ing Cartesian products, the pair policy also avoids joins that produce 
a result that takes longer to read from disk than it would take to com- 
pute from scratch later. At the end of eachjoin, the policy checks for 
the arrival of delayed data. If the data has not yet arrived, another 
iteration is begun. If Pair runs out of qualified joins before the delay 
terminates, scrambling simply halts and waits for the delayeddata to 
arrive. When all the blocked relations become available the Pair pol- 
icy constructs a single query tree that computes the result before the 
normal execution resumes. This is necessary because during scram- 
bling the Pair policy does not try to maintain a complete query plan 
that represents the final result, but rather works on pairs of relations. 
This phase, which is called reconstructionphase, utilizes the opti- 
mizer to find the optimal query plan. 

2.3.3 Include Delayed (IN) 

In contrast to the Pair approach, IN uses a response time-based op- 
timizer, and thus, each iteration of scrambling generates a complete 
alternative plan. For all delayed data sources, the optimizer is told 
that the delay duration will be very large (i.e., many times longer 
than the expected response time of the non-delayed plan). This 
approach results in delayed accesses being pushed far back in the 
plan schedule. It is interesting to note however, that the optimizer 
does not always push such accesses to the very end of the sched- 
ule. In some cases, doing so would incur excessive work after the 
delayed data has arrived, which would result in even worse perfor- 
mance. The optimizer is naturally able to recognize such situations 
and places delayed accesses in the “right place” in the plan. 

One issue that arises when using a response time-based opti- 
mizer in this manner is that the optimizer is geared towards choosing 
the plan that ultimately results in the best response time for the delay 
value that we give it. Since we really do not know what the delay 
wiIl be however, this single-mindedness can sometimes be harm- 
ful. In general, when the scrambler decides to initiate work in order 
to hide delay, it commits to performing an entire step. We refer to 
the duration of the step as risk and to the potential improvement in 
response time as benefit. The optimizer chooses the plan with the 
greatest benefit whose risk can be overlapped with the expected de- 
lay duration. This can cause problems when the delay turns out to 
be relatively short. 

In order to address this problem, we introduce a parameter called 
the “‘risk/benefit knob” (RBknob), that prevents the optimizer from 
choosing very high-risk plans for relatively small potential gains 
over lower-risk plans. The RBknob is expressed as the ratio of the 

amount of benefit the optimizer is willing to give up for a given sav- 
ings in risk. Increasing the RBknob has the effect of making the pol- 
icy more conservative. The performance of this knob is studied in 
Section 4.3. 

2.3.4 Estimated Delay (ED) 

The Estimated Delay (ED) approach works similarly to IN except 
that rather than starting by assuming a huge delay, it first tries rel- 
atively short delays, and successively increases its delay estimates 
if necessary. The motivation behind this approach is that assuming 
a large delay initially may cause the optimizer to pick a risky plan 
that has high payoff for long delays, but hurts performance for short 
delays. Likewise, if the delay estimate is too small, scrambling may 
be rendered ineffective for larger delays because the optimizer will 
refuse to run high risk/high pay ofi plans. 

ED works as follows: It starts by picking an estimated delay 
value equal to the 25 % of the original query response time. Until 
the delayed data arrives, iterations are repeated with this estimated 
delay value as long as some progress is being made by each itera- 
tion. When this value becomes too small to allow any progress, it is 
increased to 50 % of the original query response time. Finally when 
this becomes insufficient, we use a value of 100 % of the original 
response time. This scheme allows scrambling to first perform it- 
erations with low risk, but still make progress. Thus, in the event 
that a delay turns out to be short, scrambling has helped rather than 
hurt. In the event of longer delays, ED becomes more aggressive, 
which allows it to attempt higher-risk plans. Note that the RBknob 
described for the IN policy is also used for ED, but in general it has 
less impact here, because ED is already a more conservative policy 
than IN. 

3 Experimental Environment 

Our experiments are performed using a detailed simulator of a dis- 
tributed query processing environment, a two-phase randomized 
query optimizer, and a workload based on queries from the TPC-D 
benchmark. We describe each of these in the following sections. 

3.1 Simulation Environment 
To study the performance of the cost-based scrambling approaches 
we implemented them on top of a simulator that models a dis- 
tributed, peer-to-peer database environment and that is capable of 
realizing iterator-based or process-based scheduling of query oper- 
ators. In this study, we used only a single join method, namely, hy- 
brid hash [Sha86]. 

Table 1 shows the main parameters for configuring the simula- 
tor and the main settings used for this study. There are two types 
of sites. Data sources, which store base data that will be used in 
queries, and Query sites, which execute queries. Every site has a 
CPU whose speed is specified by the Mips parameter, NumDisk~ 
disks, and a main-memory buffer pool of size SourceMemor QSite- 
Mem. For the current study, the simulator was configured to have a 
single query site and six remote data source sites. In all the exper- 
iments described in this paper, we placed no additional load on the 
source sites beyond what was generated by the query requests. 

The simulator charges for all the functions performed by query 
operators like hashing, comparing, and moving tuples in memory, 
as well as for system costs such as disk I/O processing and network 
protocol overhead as described below. 

Disks are modeled using a detailed characterization and settings 
adapted from the ZetaSim model [Bro92]. The disk model includes 
costs for random and sequential physical accesses and also charges 
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I I I Parameter 
NumSources 
Mips 
NumDisks 
DskPqeSize 
WrifeByfSize 
RequestSize 
NetPageSize 
Compare 
Hashlnst 
Move 
QSiteMem 

1 Value 
6 

200 
I 

4096 
4 

40 
4096 

4 

I 

25 
2 

300, 1,000 
or 10,000 

10,000 
12 

20000 
3 

5000 

Description 
number of data source sites 
CPU speed (lo6 instr/sec) 
number of disks per site 
size of a disk page (bytes) 
size of disk write buffer (pages) 
size of a data request (bytes) 
size of a data transfer (bytes) 
instr. to apply a predicate 
instr. to hash a tuple 
instr. to copy 4 bytes 
Query site memory size (pages) 

SourceMem 
NetBw 
Msglnst 
PerSizeMI 
Disklnst 

Data source memory size (pages) 
network bandwidth (Mbits/set) 
instructions to send or receive a message 
instructions oer bvte sent 
instructions io reid a page from disk 

Table 1: Simulation Parameters and Main Settings 

for software operations implementing I/OS. The unit of disk I/O for 
the database is pages of size DskPageSize. The disks prefetch pages 
when reads are performed. In the current version of the simulator, 
4 pages are obtained for each read access request made to the disk. 
In addition to the disk costs, there is a charge of Disk(nsrinstructions 
for each disk access. In our experiments, disks were seen to deliver 
data at an average rate of approximately 10 Mbits/set with sequen- 
tial I/OS, and a rate of approximately 3 Mbits/set with random I/OS. 

In this study, the disk at the query site is used mostly to temporar- 
ily store intermediate query results and data obtained from remote 
sources during a query execution. In addition, some small base rela- 
tions can also be permanently stored at the query site. The other base 
relations are stored on disk at the sources as described in Section 3.3. 
Although sources are configured with memory, the workload used 
in the experiments here is performed such that the server memory 
is not useful (i.e., there is no caching across queries and relations 
at the remote sites are accessed once per query). Thus, in the ex- 
periments that follow, base relations are always read (sequentially) 
from the sources’ disks for each query execution. In addition, any 
selections or projections on base data that are required by a query 
are performed at the sources before the data is shipped to the query 
site. 

At the query site, when scrambling is being used, the buffer 
manager uses a special policy that pins any memory-resident data 
that will be used in the next scrambling iteration. Any other cached 
data is unpinned, and is managed using an LRU policy. In the case 
that the amount of pinned data prevents the query from allocating the 
additional buffer space it needs, some of the pinned data is released. 
In particular, memory-resident relations, which do not have an im- 
age on the local disk and are accessed early in the plan are given 
preference to remain in memory over other relations. Disk writes for 
intermediate results are buffered in groups of WriteBufSize in order 
to increase the amount of sequential I/O. For join partitions, where 
memory is at a premium, writes are done one page at-a-time. 

The network is modeled as point to point connections between 
each source and the query site. As such, link failures are indepen- 
dent of each other. The speed of each link (NetBw Mbits/set) is set 
to be slightly higher than speed of sequential disk access at the data 
sources, in order to make sure that network speed is not the bot- 
tleneck in these experiments. The details of a particular network- 
ing technology (e.g., Ethernet, ATM) are not modeled. The cost 
of sending messages, however, is modeled as follows: the simu- 
lator charges for the time-on-the-wire (depending on the message 
size and the network bandwidth) as well as CPU instructions for net- 
working protocol operations, which consist of a fixed cost per mes- 

sage (Msglnst) and a per-byte cost based on the size of the message 
(PerSizeMI). The CPU costs for messagesare paid both at the sender 
and the receiver. 

The query execution model uses a page-at-a-time (i.e., non- 
streaming) approach to remote data access. That is, when an opera- 
tor running at the query site needs data from a remote source, it sends 
a request (of RequestSize bytes) to that source and waits for the re- 
ply. A source responds with a block of TransferSize bytes of data. 
Thequery site employs prefetching (of one page) to reduce network 
latency. 

In the experiments, delays are modeled by simply blocking the 
link between a remote source and the query site. Such delays could 
also be modeled by suspending processing at the source. Since we 
use point-to-point connections between the sources and the query 
site, these two methods are equivalent. 

3.2 The Query Optimizer 
In the study, we use a two-phase randomized optimizer similar to the 
one described in [IK90, IW87]. The optimizer first runs Iterative 
Improvement (II) algorithm for some time, followed by Simulated 
Annealing (SA). It is possible to trade off the quality of the chosen 
query plan vs. the optimization time by changing two parameters, 
OptTries and OptMoves, which control the number of starting points 
in the search space and the number of iterations performed on each 
starting point during the II phase. These variables (shown in Ta- 
ble 2) are scaled with the number of relations used in the query. Thus 
the number of plans generated by the optimizer increases quadrat- 
ically with the number of relations. The search space for the opti- 
mizer includes left deep, right deep and bushy plans. 

Parameter Value Description 
10 x NR # of starting points in search space 

1 x NR # of iterations performed on 

.s.,.6; Number of relations m the query 

Table 2: Optimizer Parameters and Main Settings 

The optimizer canuse any provided objective function to rate al- 
ternative query plans. We use two such functions in this study: one 
based on total work, and one based on response time. Our response 
time model is derived from the one defined in [GHK92]. It calcu- 
lates expected response times by considering potential parallelism 
in addition to the work done by query operators. 

The optimizer takes the following input: 1) information about 
the relations that participate in the query including cardinalities, 
fields, and the data source, etc.; 2) thejoin predicates between the re- 
lations; and 3) the selection predicates on the relations together with 
a selectivity factor for the predicate. Depending on the scrambling 
approach used, information on all or only a subset of the relations 
may be given to the optimizer. The Estimated Delay and Include 
Delayed approaches also provide information about which relations 
are delayed and an estimate of how long the delay is expected to last. 
Recall that, as described in Section 2.3, the response time-based ap- 
proaches also use a special “knob” to control the risklbenefit trade- 
offs made by the optimizer. The default value of this knob is 0.01, 
which is a very aggressive setting. The effect of more conservative 
settings is investigated in Section 4.3. 

3.3 Workload 
As stated previously, we examine the performance of the cost-based 
approaches using queries and a database derived from the TPC-D 

134 



benchmark. The database is based on a TPC-D Scaling Factor (SF) 
of 1, and is described in Table 3. The table shows several different 
data sizes for each relation. In the experiments, we model the ef- 
fect of projections on the tuples processed at the query site by reduc- 
ing the size of all projected tuples sent to that site to a fixed amount 
(40 bytes). Selections and projections are pushed to the data sources 
where possible. As a result, remote sources read TuplePuges pages 
from disk when scanning a relation but transmit only Projected- 
Pages pages to the query source when a projection is applied at the 
source (and possibly fewer if a selection predicate is also applied). 
We also use 40 bytes as the size of the tuples produced by a join. 

Table nples tiple Pages Projected Primary Key 1 

Region 5 120 
Nation 25 120 
Supplier 10K 160 
Customer t50K 180 
Order 1,500 K 100 
Part 200 K 160 
Lineitem 6.000 K 120 

PartSupp 800 K 140 

1 
1 

400 
6818 

37500 
8000 

181818 

28571 

Pages 
1 
1 

100 
1486 

14852 
1981 

59406 

7921 

regionkey 
nationkey 
suppkey 
custkey 
orderkey 
partkey 
orderkey+ 
linenumber 
suppkey+ 
partkey I 

Table 3: Database schema and data sizes 

Two of the relations (REGION and NATION) are very small 
“detail tables” that change very infrequently, so copies of these are 
maintained and accessed at the query site. The remaining base ta- 
bles are each placed at a separate remote server. 

In terms of queries, we have chosen three of the TPC-D queries 
(Q5, Q8, and Q9) for our experiments. These queries were chosen 
because they are fairly complex (6 to g-way joins) so they provide 
significant opportunities for interesting scrambling behavior. Be- 
cause our simulator does not model aggregate functions, GROUP 
BY and ORDER BY clauses, or sub-queries, we have modified the 
original queries slightly. The modified versions are described in 
Section 4. It should be noted that our goal in using TPC-D queries 
as a starting point is to allow us to examine the approaches using re- 
alistic join graphs, cardinalities, and selectivities; we do not claim 
to draw any conclusions about performance on an actual TPC-D 
benchmark. 

3.4 Experimental Methodology 
All the graphs shown in the following section plot the duration of 
an initial delay of a remote source vs. the response time achieved 
with each of the scrambling approaches. The results for all of the 
approaches tend to exhibit a step behavior due to the iterative nature 
of the scrambling process. The graphs were generated as follows. 

First, for each combination of query, memory allocation, and de- 
layed relation, we ran each scrambling approach with a very long 
delay to find the delay duration (i.e., the point on the x-axis) where 
each iteration would occur for that approach. For all the delay du- 
rations in the interval between two such points, the query response 
time will be the same. This run, however does not show what the 
value of that response time will be. We therefore pick one delay 
value within each interval and run the scrambling approach to ob- 
tain the response time with a delay of that duration. This response 
time is the response time for the entire interval. 

Because we are using a randomized optimizer, we needed to be 
careful that both the initial plans and the scrambled plans that were 
generated were good plans. Otherwise, particularly bad plans could 
result in spurious effects that were not due to the scrambling ap- 
proaches. To ensure that we had good plans we did the following: 

First, we generated the intervals using higher values for the II pa- 
rameters to increase the thoroughness of the search. These runs were 
repeated three times to ensure the repeatability of the scrambling it- 
eration intervals. Then, we also ran each data point (i.e., combina- 
tion of delay interval, scrambling approach, query, memory alloca- 
tion, and delayed relation) at least three times (using the normal op- 
timizer parameter settings), and checked that the plans generated at 
each point conformed to the intervals found initially, and that the 
generated response times were accurate to within plus or minus 2%. 

Table 4: Optimization times for various numbers of base rela- 
tions. 

The results that we report in Section 4 do not include the time re- 
quired for running the query optimizer. The goal was to avoid mix- 
ing numbers from the real query optimizer with those from a sim- 
ulated system. As can be seen in Table 4, the optimization times 
obtained with our optimizer (on an IBM RS/6000 42T PowerPC) 
are quite small compared to the 750+ second-response times of the 
queries. These times were obtained using an optimizer that was not 
tuned to reduce optimization time. Thus, we would expect to be able 
to lower them even further if necessary, for example, in order to han- 
dle queries larger than g-way joins. 

4 Experiments and Results 

4.1 Experiment 1 - National Market Share 
We begin by studying the performance of the three cost-based ap- 
proaches when delays are encountered during the execution of a 
modified version of TPC-D Query QS, the National Market Share 
Query (referred to as MQ8). The SQL statement for MQ8 is shown 
in Figure 2. 

SELECT O.ORDERDATE, L.EXTENDEDPRICE, N2.NAME 
FROM PART, CUSTOMER, ORDER, LINEITEM, 

SUPPLIER, NATION Nl, NATION N2, REGION 
WHERE P PARTKEY = L.PARTKEY 

AND L.SUPPKEY = S.SUPPKEY 
AND O.ORDERKEY = L.ORDERKEY 
AND C.CUSTKEY = O.CUSTKEY 

AND C.NATIONKEY = Nl.NATIONKEY 
AND Nl.REGIONKEY = R.REGIONKEY 
AND R.NA.ME z 'EUROPE' 
AND S.NATIONKEY = N2.NATIONKEY 
AND O.ORDERDATE BETWEEN '94-01-01' 

AND '95-12-31' 
AND P.TYPE = 'SMALL PLATED STEEL' 

Figure 2: Modified National Market Share Query (MQS) 

MQ8 is an g-way join query, with selections on the REGION, 
ORDER, and PART relations. Figure 3 shows the query graph cor- 
responding to this query. In the 

9 
uery graphs, we abbreviate rela- 

tion names using their first letters. An edge between two relations 
indicates a join predicate between those relations in the query; the 
edge is labeled with the join attribute(s). Selection predicates are 

31n this query the detail relation NATION, which is kept at the query site 
is used twice. We refer to these uses as Nl and N2. 
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Figure 3: Query graph for query MQS 

indicated by boxes containing the selection attribute(s) and the se- 
lectivity of the predicate is listed as a fraction below the selection 
box. 

We run the query using each of the three different memory al- 
locations identified in table 1. Because we assume that selections 
and projections (where appropriate) are applied at the remote data 
sources, the amount of data that must be processed at the query site 
is significantly less than the sumof the raw relation sizes. In this ex- 
periment, a memory allocation of 1000 pages is more than sufficient 
to run MQ8 with no hash partitioning. When the smaller memory al- 
location (300 pages) is used, the two largest (intermediate) relations 
(the result of PARTWLINEITEM and ORDER) must be partitioned 
in order to be joined. 

The initial query plans generated by the optimizer for the 1000 
page and 300 page allocations are shown in Figures 4(a) and 4(b), 
respectively (the initial plan for a memory size of 10,000 is identical 
to that of Figure 4(a)). All binary operations shown in the figures 
are hashjoins, and the bold edges indicate joins which require the 
relations to be partitioned. 

We now turn to the results of the experiment. Figures 5 and 6 
show the results for MQS with 1000 page and 300 page memory al- 
location, respectively. In all of the graphs shown in this paper the 
x-axis indicates the initial delay (in seconds) of a remote relation (in 
this case, the PART relation) and the y-axis indicates the query re- 
sponse time (in seconds). In addition to the curves for each of the 
scrambling approaches, the graphs also contain two parallel diag- 
onal lines. The lower line simply indicates the magnitude of the 
delay. Since a query cannot complete until all of the relevant data 
has been accessed, this “delay” line represents a lower-bound on re- 
sponse time. The higher diagonal line, labeled “No Scr” represents 
the response time that would be obtained if scrambling is not used. 

In both cases, we delay PART, which is the left-most relation of 
the optimized query plan. PART is a very valuable relation in this 
plan for two reasons. First, since the iterator execution model ac- 
tivates operators in a pre-order manner, delaying the left-most re- 
lation leaves the most possible remaining work to be done in the 
absence of scrambling. Second, in query MQS, the PART relation 
plays the role of a reducer for LINEITEM, the largest relation in 
the schema. That is, because of its selection predicate and the fact 
that it participates in a functional join with LINEITEM (and assum- 
ing uniform distribution and independence of the join attribute val- 
ues), the selection on PART reduces the size of the intermediate re- 
sult, PARTWLINEITEM by the selectivity of its selection predicate. 
Thus, the presence of PART is important here, because it signifi- 
cantly reduces the number of tuples that must be processed later in 
the query. 

4.1.1 Query MQ8 - Large Memory Allocations 

Turning to the 1000 page case (Figure .5), it can be seen that all three 
of the cost-based scrambling approaches are very effective at hiding 
the delay of PART. In fact, IN and ED are able to effectively hide 

P L R Nl P L R Nl 

(a) (b) 

Figure 4: Query plans for (a) memory21000 and (b) mem- 
ory=300 

nearly 100% of the delay here; when the delay is 706 seconds or 
less (i.e., up to the knee in the curve) the response time is virtually 
unchanged from the non-delayed value of 730.5 seconds. In other 
words, the two approaches are able to effectively hide a delay that 
is nearly equal to the original response time of the entire query in 
this case. Beyond a delay of 706 seconds, scrambling has run out 
of additional work to perform, so the response time increases paral- 
lel to the delay. The difference between the response time lines and 
the delay line represents the amount of work that must be done after 
the delayed tuples begin to arrive. Note that the Pair approach also 
does well here; it performs slightly worse than IN and ED because 
it materializes some intermediate results to disk.4 

In this case the first phase is run when scrambling starts, materi- 
alizing the subtree that contains relation REGION, NATION1 and 
CUSTOMER. After this iteration the second phase begins. In this 
case, all of the approaches are able to find alternative plans that per- 
form well. As shown in Figures 3 and 4, the initial plan basically 
traverses the graph from left to right. When PART is delayed this 
traversal becomes impossible. It is, however, possible to start at the 
other end of the query graph and traverse from right to left. This 
traversal picks up the other reducers in the query (the result com- 
puted in the first phase which contains the reducers REGION, and 
ORDER) before accessing the large LINEITEM relation. 

In contrast to the cost-based approaches, the original heuristic- 
based scrambling algorithm [AFI’U96] follows the policy of exe- 
cuting the left-most runnable sub-tree of the query plan, which in 
this case, results in joining LINEITEM and ORDER in the absence 
ofthe other reducer, REGION (the heuristic-based algorithm is not 
shown in the figure). With 1OOOpages of memory, this join requires 
partitioning, which results in a large performance hit. For this ex- 
periment, the response time obtained with the heuristic-based ap- 
proach jumps to 1621 seconds, for delays between 23 and 1542 sec- 
onds long. Thus, for many delay values, that algorithm performs 
significantly worse than simply waiting for the delayed relation to 
arrive. 

We also ran this experiment for a memory allocation of 10,000 
pages (not shown). In this case all of the cost-based approaches 
performed identically to the 1000 page case (because 1000 pages 
is sufticient to run the scrambled plans without partitioning). The 
main difference was that with this large memory (i.e., approximately 
33 times more than what was allocated to the original query plan), 
the heuristic-basedalgorithm performed roughly as well as the cost- 
based approaches.5 Its better performance here is due to the fact 
that the extra memory allows even the inefficient joins that it picks 
to run without partitioning. In this environment, the CPU costs are 
a negligible portion of the query execution time so avoiding par- 

4The extra materializations are due to our particular implementation of 
Pair on our simulator, and could be avoided by using a more sophisticated 
memory management approach in the simulator. 

‘Actually, in this case the original heuristic based algorithm works well 
with as few as 5000 pages, or 16.67 times more memory than allocated to 
the original query. 
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Figure 5: MQS, PART delayed, Memory=1000 

titioning leads to reasonable performance. The tradeoffs for the 
heuristic-based algorithm are similar for the rest of the experiments 
in this study, so we do not show any further results for that algo- 
rithm. Rather, we focus on the tradeoffs among the three cost-based 
approaches. 

4.1.2 Query MQ8 - Small Memory Allocation 

With the smaller memory allocation (300 pages, shown in Figure 6) 
the story changes significantly. 300 pages is sufficient to run the 
query when there are no delays with reasonable efficiency (the re- 
sponse time here is 790.5 seconds, only slightly higher than in the 
larger memory case). The smaller memory, however, causes prob- 
lems when scrambling is required and results in different perfor- 
mance for the various approaches. Query scrambling starts by run- 
ning the first phase on the subtree containing REGION, NATIONl, 
and CUSTOMER. This result will be used by the subsequent steps of 
the different scrambling algorithms. 

The IN approach is the most aggressive - it assumes that the 
delay of PART will be long, so it is willing to initiate a lot of scram- 
bling work in order to be able to hide more delay. In this case, the 
IN approach simply pushes PART to the far right of the query plan, 
and joins the remaining relations in the same order as in the previ- 
ous case. These joins are more expensive here, however, because 
the lack of memory results in more partitioning and thus, more lo- 
cal I/O. For delays less than 970 seconds, IN has the worst perfor- 
mance of the scrambling approaches, even performing worse than 
not scrambling for much of that range. Ultimately, however, at a de- 
lay of 1576 seconds, IN manages to perform nearly all of the work 
of the query during the delay, so its performance becomes nearly the 
same as the delay. 

The ED approach is more conservative here. It begins by 
joining the result computed during the first phase (i.e. REGION 
W NATION1 W CUSTOMER) with ORDER, and NATION2 with 
SUPPLIER (this is the second step in the curve). It then brings 
LINEITEM over, writes it to the local disk, and waits for PART 
to arrive (at this point, its curve goes diagonal). This more con- 
servative behavior results in better performance than IN for shorter 
delays, but ultimately worse performance for longer delays, since 
more work remains to be done when the tuples of PART eventually 
begin to arrive. Finally, Pair initially performs the same steps as ED, 
but at 953 seconds (roughly when ED stops scrambling) it chooses 
to perform ajoin that includes LINEITEM, which requirespartition- 
ing, and hence, is quite expensive. Given a long enough delay, this 
additional join will eventually pay off, with Pair having similar per- 
formance to IN after a delay of 2022 seconds. It is interesting to note 
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Figure 6: MQS, PART delayed, Memory=300 

that while Pair performs the same joins as IN, it has worse perfor- 
mance than IN in the delay range of 953 to 2022 seconds. This worse 
performance arises because Pair does not generate a complete plan, 
but rather, makes local decisions one pair at a time. It is not able to 
make intelligent decisions on how to partition the results of its joins, 
becauseit does not know if or how those results will be usedin a sub- 
sequent operation. In other words Pair policy does not recognize in- 
teresting orders and therefore cannot asses the future savings due to 
executing a slightly more expensive plan which generates an inter- 
estingorder. As a result, Pair simply materializes its intermediate re- 
sults, and re-reads them to partition them later if necessary. This re- 
partitioning is expensive, because it generates significant amounts 
of random I/O. 

4.2 Experiment 2 - Local Supplier Volume 
We now turn to our second set of experiments, which uses a modi- 
fied version of TPC-D Query 5 that we call MQ.5. The SQL for this 
query is shown in Figure 7. This query is a 6-way join with two se- 
lection predicates. As shown in figure 8, the query graph of MQ5 
contains a cycle, unlike the “chain” graph of MQ8 in the previous 
experiments. 

SELECT N.NAME,L.EXTENDEDPRICE*(l-L.DISCOUNT) 
FROM CUSTOMER, ORDER, LINEITEM, 

SUPPLIER, NATION, REGION 
WHERE C.CUSTKEY = O.CUSTKEY 

AND O.ORDERKEY = L.ORDERKEY 
AND L.SUPPKEY = S.SUPPKEY 
AND C.NATIONKEY = S.NATIONKEY 
AND S.NATIONKEY = N.NATIONKEY 
AND N.REGIONKEY = R.REGIONKEY 
AND R.NAME = "AMERICA" 
AND O.ORDERDATE BETWEEN '95-01-01' 

AND '95-12-31' 

Figure 7: Modified Local Supplier Volume Query (MQS) 

Figures 9(a) and 9(b) show the initial optimized query plans for 
memory allocation of 1000 pages or greater and a memory alloca- 
tion of 300 pages, respectively. Notice that with the larger memory 
allocation, the bulk of the query execution proceeds in a counter- 
clockwisedirection around the join cycle. For the smaller allocation 
the execution proceeds in the opposite direction, and two of the joins 
require partitioning. In both memory cases we delay CUSTOMER. In 
the large memory case, the hash table for SUPPLIER will be built 
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Figure 10: MQ5, CUSTOMER delayed, Mem=lOOO Figure 11: MQS, CUSTOMER delayed, Mem=lOOOO 

in the memory and REGION C=d NATION will be computed before 
CUSTOMER is determined to be blocked. In the small memory case 
the delayed relation is encountered immediately. 

4.2.1 Query MQ5 - Large Memory Allocations 

Figure 10 shows the results for an initial delay on CUSTOMER with 
a memory allocation of 1000 pages. CUSTOMER is an important re- 
lation in the query plan because it helps transmit the selection pred- 
icates on REGION and ORDER to the large LINEITEM relation. In 
this case, all of the algorithms provide benefits over not scrambling 
beyond a delay of approximately 250 seconds, and hide nearly all of 
the delay when the duration is about 950 seconds. The Pair and IN 
approaches perform similarly here because they basically execute 
the same operations, even though Pair produces its plan one join at- 
a-time. Both of the approaches perform a join that requires partition- 
ing (becauseit involves ORDER without first reducing it by joining it 
with REGION as is done in the initial plan). As a result, the response 
time of the scrambled plan is approximately 234 seconds longer than 
that of the initial plan (with no delay). In contrast, ED performs 
better for short delays (up to 122 seconds) due to its conservative 
approach. It first brings ORDER from the remote site and stores it 
on the local disk before committing to any other scrambling moves. 
Fetching ORDER has little risk for short delays; if CUSTOMER ar- 
rives during this time, ORDER can be used later in the query. ED’s 
slight performance penalty between delays of 122 seconds and 908 
seconds results from the fact that ORDER needs to be repartitioned 
if CUSTOMER does not arrive in time and ED re-scrambles. Thus, 
ED pays a small penalty for its conservative approach in this delay 
range in order to win its advantage for small delays. 

The results for the 10,000 memory allocation are shown in Fig- 
ure 11. In this case the same initial plan is used, but in the presence 

Pair + 
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Delay 
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of delay, different scrambling plans are produced. Because of the 
larger memory, these scrambled plans can be executed with no par- 
titioning. Thus, they all provide excellent protection from delays of 
CUSTOMER, up to approximately 683 seconds (or 97% of the non- 
delayed query response time). As was seen in the experiments with 
MQ8, Pair pays a slight penalty due to unnecessary materializations 
of temporary results to the local disk. 

4.2.2 Query MQ.5 - Small Memory Allocation 

We also experimented with query MQ5 using the small (300 pages) 
memory allocation when CUSTOMER is delayed (not shown). In 
this case all of the scrambling approaches perform well (i.e., the 
response time is basically flat for delay durations up to the re- 
sponse time of the non-delayed query). This is because the first 
phase of scrambling (i.e., rescheduling) is able to perform all of the 
joins except the one involving CUSTOMER (see Figure 9(b)) with- 
out needing to create any new operators. That is, the entire sub-tree 
which computes ORDER W REGIONW NATION W SUPPLIER W 
LINEITEM is simply executed by rescheduling. Thus, the differ- 
ent cost-based approaches do not come into play here. 

4.3 Experiment 3 - Product Type Profit Mea- 
sure 

The third (and final) set of experiments we describe were performed 
using a modified version of TPC-D Q9, shown in Figure 12. The 
query graph for this query is shown in Figure 13. In this case, we ob- 
tained similar results for all three memory sizes, so we show results 
only for the 10,000 page allocation. The initial query plan in this 
case is shown in Figure 14. For this experiment, we delay PART, 
the only reducer in the query. 
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SELECT N.NAME, O.ORDERDATE.YEAR, 
L.EXTENDEDPRICE*(l-L.DISCOUNT) - 

(PS.SUPPLYCOST * L.QUANTITY) 
FROM PART, SUPPLIER, LINEITEM, PARTSUPP, 

ORDER, NATION 
WHERE S.SUPPKEY = L.SUPPKEY 

AND PS.SUPPXEY = L.SUPPKEY 
AND PS.PARTKEY = L.PARTXEY 
AND P.PARTKEY = L.PARTKEY 
AND O.ORDERKEY = L.ORDERKEY 
AND S.NATIONXEY = N.NATIONKEY 
AND P.NAME LIKE '%magenta%' 

Figure 12: Modified Productvpe Profit Measure Query (MQ9) 

The performance of the scrambling approaches for varying de- 
lays of PART is shown in Figure 15. The IN approach joins all rela- 
tions other than PART, which in query MQ9, results in intermediate 
results that are 20 times larger than if PART had been used. These 
intermediate results propagate through the entire plan, resulting in 
a very high-risk move. The Pair approach performs the same joins 
as IN, but performs them one-at-a-time. This has two effects: it re- 
duces risk for short delays, but also incurs additional overhead for 
long delays, due to the need to partition intermediate results that it 
has saved to the local disk (a similar effect was seen in query MQ8). 
The more conservative ED approach performs much better than IN 
and as good as the Pair policy for delays up to about 2000 seconds 
(i.e., more than twice the non-delayed response time). ED avoids 
joining large relations, choosing rather to simply wait for the de- 
layed relation beyond a certain point. As usual this conservatism 
results in a penalty for longer delays, but in this case, the penalty 
is quite small, and is more than outweighed by the advantages for 
shorter delays. 

The preceding experiment demonstrated clearly the potential 
benefits of making conservative scrambling decisions. Recall that 
the ED and IN approaches both incorporate a “risk/benefit” knob 
(which is used by the response time based optimizer), that prevents 
the policies from choosing very high-risk plans for relatively small 
potential gains over lower-risk plans. In all of the experiments de- 
scribed so far, this knob was set at 0.01 (as described in Table 2), 
which means that the optimizer is willing to give up 0.01 units (e.g., 
seconds) of potential benefit for long delays to get a plan whose to- 
tal work is 1 unit less, which results in less risky behavior for short 
delays. 

To study the effect of the setting of this knob, we repeated this 
experiment using several different values (0, 0.10,0.20, and 0.30). 
The results using 0 and 0.10 were similar to the results using the de- 
fault setting (0.01). The more conservative settings did have an im- 
pact however. The results with a setting of 0.30 are shown in Fig- 
ure 16 (the ones using 0.20 are similar). First, the knob has no effect 
on the Pair approach, because that approach is based only on total 
work; it has no notion of risk vs. benefit. In contrast, both the ED 
and IN approaches are effected, but the more conservative setting 
has a greater impact on IN. Overall, the conservative setting results 
in substantially better performance for IN with short delays. For ex- 
ample for delays between 1 second and 837 seconds, the response 
time using IN is 1184 seconds, and for delays between 837 and 1073 
seconds the response time using IN is 1300 seconds, compared to 
2263 seconds for these ranges with the aggressive setting. For these 
additional benefits, IN pays only a 46 second cost in terms of the 
amount of delay that it can hide for long delays, and this cost only 
arises for delays over 2000 seconds. Thus, the advantages for short 
delays clearly outweigh the costs at higher delays. It is interesting 
to note that with the conservative knob setting, IN requires a second 
scrambling iteration (for delays greater than 837 seconds), because 

its first iteration produces a plan that leaves work remaining to be 
done, even without the delayed relation. 

The more conservative setting has a lesser effect on the ED ap- 
proach. This is because ED already favors conservative decisions 
for small delays. In this case, the higher knob value prevents ED 
from performing its last iteration, which has an ultimate benefit of 5 
seconds, at a risk of 472 seconds. This results in ED having better 
performance here for delays between 1072 and 1539 seconds than 
it did with the more aggressive knob setting. 

4.3. I Summary of Results 
The experiments we have described in this section demonstrate sev- 
eral important results for cost-based query scrambling. We briefly 
summarize those results here. First, the experiments showed that 
with sufficient memory, all of the cost-based approaches are able to 
effectively hide initial delays for realistic data processing queries. 
When the delayed relation is encountered early in the query exe- 
cution, a delay as long as the normal (non-delayed) response time 
of the query can be almost completely absorbed. In contrast, the 
original heuristic-based algorithm can actually perform significantly 
worse than simply waiting for the delay to end unless substantial ex- 
tra memory is dedicated to scrambling. 

Second, for the cost-based approaches, in the absence of a rea- 
sonable prediction of delay duration there is a tradeoff between con- 
servative approaches, which are safer for short delays, and more ag- 
gressive approaches which lead to bigger savings in the event of 
long delays. In general, the amount of delay that can be hidden by 
scrambling (in the absence of creating additional parallelism, as is 
discussed in [AFT98]) is limited by the normal response time of the 
query. This is because scrambling hides delays by performing other 
useful work, so its ability to hide delay is limited by the amount of 
useful work that can be done. Thus, as the delay increases beyond 
the normal response time of the original query, the benefits of scram- 
bling as apercentageof total execution time begin to decrease. This 
argument would lead towards favoring more conservative policies 
rather than taking larger risks. 

Third, as the memory available for scrambling is reduced, 
scrambled plans in general become more expensive and hence, a 
longer delay duration may be required in order for scrambling to pay 
off. Thus, in a low-memory situation scrambling becomes less con- 
servative, and therefore, in the absence of predictions of delay du- 
rations, more dangerous. 

Fourth, we showed how the aggressiveness of the IN and ED 
policies can be adjusted through the use of a parameter that tells the 
optimizer to give up potential gains for long delays in order to reduce 
risk for short delays. As stated above, this tradeoff makes sense in 
the absence of reasonably accurate predictions of delay durations. 

A final important result from these cases, is that approaches that 
lack a global view of the scrambled plan (e.g., Pair) may perform un- 
necessary work. By considering only pairs of relations the Pair pol- 
icy, is unable to pick slightly suboptimal plans that generate interest- 
ing orders. In order to have a complete (and reasonable) scrambled 
plan, however, one must use an optimizer that uses response time 
as its objective function. A response time-based optimizer allows 
the delayed relation to be placed at its proper point in the plan (for 
a given predicted delay), which allows a complete alternative query 
plan to be generated. 

We have also conducted experiments using more than one de- 
layed relation on synthetically generated queries. We have found 
that when more relations are delayed, the risk associated with each 
scrambling decision is increased, favoring more conservative algo- 
rithms. 
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Figure 13: Query graph for query MQ9 
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Figure 15: MQ9, PART delayed, Mem=lOOOO,RBknoh = 0.01 Figure 16: MQ9, PART delayed,Mem=lOOOO, RBknob = 0.30 

5 Related Work 

We now briefly discuss related work. The Vol- 
cano optimizer [CG94, Gra931 provides dynamic query scheduling 
by introducing choose-plan operators into a query plan above a set of 
alternative subplans in order to compensate for the lack of informa- 
tion about system parameters at compile time. At query startup time 
the appropriate subplan is chosen depending on the current value of 
the parameters. [INSS92] proposes a related approach that gener- 
ates multiple alternative plans, and chooses among them when the 
query is initialized. Neither of these approaches, however, can adapt 
to changes in the system parameters that occur during the query ex- 
ecution. 

RdbNMS uses a different approach as described in [Ant93]. In 
this approach, multiple different executions of the same logical op- 
erator are started at the same time. When one execution of an op- 
erator is determined to be better, the other execution is terminated, 
and the winner is executed to completion. 

The work most closely related to ours is the MIND heteroge- 
neous database project [ONK+ 971, which performs optimization 
during the query execution. A query is divided into subqueries and 
each subquery is sent to a participating site for execution. The re- 
sults are then composed incrementally by dynamically introducing 
operators that process them as the results arrive. As such, their algo- 
rithm resembles our Pair algorithm with a different set of heuristics 
that rely on statistical techniques in order to avoid bad decisions. 

In [DSD95] the response time of queries is improved by reorder- 
ing left-deep join trees into bushy join trees and creating subtrees 
without increasing the cost. Several reordering algorithms are pre- 
sented. Although this work is limited to left-deep queries and as- 
sumes that reordering is done entirely at compile time, one can still 
use it to bushily the plans during run time, possibly at the expenseof 
a slight increase in total work. Bushy plans are generally less vul- 
nerable to delays since different branches of tree can be found that 
are not directly affected by the delayed relations; such subtrees can 
be executed independently. 
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Figure 14: Query plan generated for memory=10000 
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The research prototype Mermaid [CBTY89] and its commer- 
cial successor InterViso [THMB95] are heterogeneous distributed 
databases that perform dynamic query optimization. Mermaid con- 
structs its query plan entirely at run-time, thus each step in query 
optimization is based on dynamic information such as the intermedi- 
ate relation cardinalities and system performance. Mermaid neither 
takes advantage of a statically generated plan nor does it dynami- 
cally account for a source which does not respond at run-time. 

6 Conclusions and Future Work 

In this paper, we proposed and investigated three different ap- 
proaches to using a query optimizer to help make intelligent choices 
during query scrambling. Two of the approaches used an optimizer 
with an objective function based on response time, while the other 
approach used a more traditional optimizer based on total work. In 
general, the use of a response time optimizer has the advantage of 
being able to construct complete query execution plans that include 
access to delayed data. Based on an estimate of the expected de- 
lay duration, the optimizer places the accesses to delayed data to the 
proper place in the plan. 

Given the poor state of current estimation techniques for wide- 
area data access, we proposed two different ways of using a 
response-time optimizer. We demonstrated that these approaches 
exhibit fundamental tradeoffs between risk aversion (for short de- 
lays) and the ability to hide large delays. However, we also showed 
that in many cases the algorithms were very effective at hiding de- 
lays over a wide range. In the best cases, the approaches were able 
to hide delays of a duration equal to the response time of the query 
in a non-delayed situation. 

Due to the growing importance of wide-area data access, partic- 
ularly in chaotic environments such as the Internet, there is much fu- 
ture work that can be done on scrambling and related dynamic tech- 
niques. First, although not discussed in this paper, the scrambling 
techniques we have described here can be adapted for use with other 
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types of delay, such as bursty arrival, in which sites repeatedly stall 
and recover. As described in [AFr98] such delays introduce a num- 
ber of scheduling and memory management issues that must be ad- 
dressed by scrambling. In addition, we would like to investigate the 
use ofdelay prediction techniques in the scrambling approaches. Fi- 
nally, as described in [ABFS 971, additional techniques are required 
for dealing with very long periods of outage. Unlike scrambling, 
these techniques necessarily change the answer that is returned to 
the user, and thus, raise a number of interesting semantic questions 
in addition to the performance-oriented questions that we have ad- 
dressed here. 

Our current focus is on incorporating the cost based query 
scrambling into the query engine of PREDATOR [SLR97] and ex- 
tending it by adding remote access capability. We plan to use this 
system as a test bed for query scrambling over the Internet. 
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