
1

Postgres-R(SI)
Data Replication and
Snapshot Isolation

Shuqing Wu
McGill University
Montreal, Canada

Example:
Cluster Replication

 Cluster of DB replicas
 Read-one-Write-All-

Available
 Performance

• Distribute Load
• Scale

 Fault-Tolerance

2

Typical Replica Control

 Keep copies consistent
• Execute each update first at one replica
• Return to user once one update has succeeded
• Propagate updates to other replicas or execute

updates at other replicas either after return to user
(lazy) or before return to user (eager)

W(x)

x x xx

ok

x x

Replica Control
 Challenge

• Guarantee that updates succeed at all replicas
• Combine with concurrency control

 Primary Copy
• Updates executed at primary and then sent to secondaries
• Secondary only accept queries
• Easry concurrency control

 Update Everywhere
• Each replica accepts update requests and propagates

changes to others
• Complex concurrency control but flexible

W(x) W(x) W(x) W(x)

3

Middleware based
 Client submits operations (e.g., SQL

statements) to middleware
 Middleware coordinates database replicas

and where which operations are executed
Client

Middleware

Middleware based
 Many research prototypes, some commercial systems
 Pro

• No changes to DBS
• Heterogeneous setup possible

 Cons
• Each solutions has particular restriction. For example

 Transactions must be declared read-only/update in
advance (primary copy approaches)

 Transaction must declare all tables to be accessed in
advance

 Operations cannot be submitted one by one but in a
bunch

 Update must be executed on all replicas before
confirmation is returned to user

• Each operation filtered through the middleware
 Inappropriate in any WAN communication (e.g.,

client/middleware)

4

Kernel Based
 Each client connected to one replica
 Transaction executed locally
 Local replica propagates changes to other replicas
 Read-only transactions always purely local

Client Client

Kernel Based

 Many lazy solutions (commercial / research):
• Data of different replicas might be stale/inconsistent for

considerable time
 Few eager solutions
 Pro

• No restrictions on transactions
• No indirection through middleware
• Everything comes as one package

 Cons
• Challenge of integration of replica control and DBS based

concurrency control
 The solution here is kernel based

5

Postgres-R (VLDB 2000):
update everywhere

 Use total order multicast to resolve conflicts

Client

T1: w(x)T1: commit

T1 writeset: x

Group Communication: TOTAL ORDER MULTICAST

Client

T2: w(x)T2: commit

T2 Writeset: x
T2 Writeset: x
T1 Writeset: x T2 Writeset: x

T1 Writeset: x

T1 abort
(T2 commit)

T2: commit
(T1: abort)

(T2: commit
T1: abort)

T2 Writeset: x
T1 Writeset: x

xx xxx xx

A B C

Execution Overview

 Local Phase:
• Transaction executes locally at one replica

 Send Phase:
• At commit time, writeset is multicast to all

replicas in total order
 Decision Phase:

• Decide whether conflicts and abort/commit
accordingly

• VLDB-2000: Based on total order combined with
strict 2-phase-locking

• Requires additional messages

6

Snapshot Isolation

 New Challenge with PostgreSQL version 7/8
• Version 6: strict 2-phase locking and serializability
• Since version 7: multi-version concurrency control

providing snapshot isolation
 Very interesting since snapshot isolation provided

by more and more database systems (Oracle, new
SQL server)

 Principles
• Reads always read a committed snapshot as of time of

transaction starts
• If two concurrent transactions want to update the same

data object, only one may succeed, the other aborts
 Implemented via combination of multi-version (for

read) and locking+optimistic concurrency control
(for write)

PostgreSQL: record versions
 For simplicity: only look at SQL update
 Each update on record

• Invalidates valid version of record
• creates new record version

 Each version tagged with
• tmin: Transaction identifier (tid) that created version
• tmax: tid that invalidated version

 Valid version at given timepoint
• tmin is from committed transaction
• tmax is NIL or from aborted or active transaction

X1 t3 t5 values X2 t5 Nil values

7

PostgreSQL: reads

 Upon read on x by T
• Read committed vesion as of start time
• tmin committed before T started
• tmax NIL or aborted or committed after T started

 Example
• At start of T: T3 committed, T5 still running
• T reads version x1 created by T3

X1 t3 t5 values X2 t5 Nil values

PostgreSQL: writes

 Example 1:
• At start of T: T3 committed, T5 running
• T5 commits after T starts
• T gets lock and valid version x2
• T aborts since concurrent to T5

 Example 2:
• At start of T: T3 and T5 committed
• T gets lock and valid version x2
• T5 committed before T started, so T succeeds
• T invalidates X2 and creates new version x3

X1 t3 t5 values X2 t5 Nil values

X1 t3 t5 values X2 t5 t values X3 t Nil values

8

Postgres-R: Recall Example
execution

Client

T1: w(x)T1: commit

T1 writeset:x

Group Communication: TOTAL ORDER MULTICAST

Client
T2: w(x)T2: commit

T2 Writeset:x
T2 Writeset: x
T1 Writeset: x T2 Writeset: x

T1 Writeset: x

T1 abort
(T2 commit)

T2: commit
(T1: abort)

(T2: commit
T1: abort)

T2 Writeset: x
T1 Writeset: x

xx xxx xx
A B C

Local Phases at A/C

 T1 starts and updates x

A C

 T2 starts and updates x

 Both T1 and T2 multicast their writesets:
• Contain new values for x
• Indicate T0 was the creator of valid version that

was invalidated (by T1 resp. T2)

x0 t0 Nil values X0 t0 Nil values

x0 t0 t1 values

x1 t1 Nil values

x0 t0 t2 values

x1 t2 Nil values

x t0 New values

9

Execution at A
 Writeset of remote T2 arrives and T2 starts

• Conflict Check: Get valid version of x and compare tmin with
creator id T0 in writeset

• No conflict
• Request lock on x
• Local transaction T1 holds lock
• Force T1 to abort
• Get lock
• Apply change
• Commit

 Writeset of local T1 arrives and is discarded

x t0 New valuesx0 t0 t1 values

x0 t0 t2 values

x1 t1 Nil values

x2 t2 Nil values

Execution at C
 Writeset of local T2 arrives

• T2 is still alive => commit T2

 Writeset of remote T1 arrives and T1 starts
• Conflict Check: Get valid version of x and compare creator

id with creator id T0 in writeset

• Detect conflict
• Abort T1
• Note this conflict is detected although T1 and T2 do not

run concurrently at C

x0 t0 t2 values

x1 t2 Nil values

x t0 New valuesx1 t2 Nil values

10

Execution at B
 Writeset of remote T2 arrives and T2 starts

• Conflict check: Get valid version of x and compare creator id
with creator id T0 in writeset

• No conflict
• get lock on x
• Apply change
• Commit

 Writeset of remote T1 arrives and T1 starts
• Conflict check: Get valid version of x and compare creator id

with creator id T0 in writeset

• Detect conflict
• Abort T1

x t0 New valuesx0 t0 Nil values

x0 t0 t2 values

x1 t2 Nil values

x t0 New valuesx1 t2 Nil values

Challenges

 Make same abort/commit decision at
all replicas
• although start and commit at different

physical times at different replicas
• although different tids at different replicas

 Each database generates its own tids
 They are independent

11

Solution Outlines
 Serial application of writesets

• Receiving writesets, version check (if remote),
applying writesets (if remote), and committing is
serial one writeset after the other

Solution Outlines
 Global vs. Local Transaction identifiers

• At begin, a transaction receives a local identifier
• tmin and tmax in versions are local (not change

PostgreSQL)
• At writeset delivery, transaction receives global

identifier (according to global multicast order)
• Piggyback and perform check on global

identifiers
• Efficient matching of tid/gid

12

Implementation Challenges

 Writesets contain more than one transaction
• Careful when aborting local transactions

 Aborting local transactions
• Signal based
• Has to consider many critical sections in which

transactions may not be aborted
 PostgreSQL’s locking scheme for updates
 Failures and Recovery

TPC-W benchmark

 Small configuration
 Browsing with 80% reads, 20% writes
 40 concurrent clients
 The more servers, the better performance for both

queries and update transactions

13

Update intensive

 Few concurrent clients:
• Centralized system better

 Many concurrent clients
• Replicated system better since client management

distributed

Current Status

 Variation of this protocol currently
implemented by developers sponsored by
• Afilias Inc. (.net/.info domain name registry)
• RedHat
• Fujitsu
• NTT Data corporation
• And others

 Beta version to be expected in couple of
months

