
PERFORMANCE COMPARISON OF EXTENDIBLE
HASHING AND LINEAR HASHING TECHNIQUES

Ashok Rathi, Huizhu Lu, G.E. Hedrick

Department of Computing and Information Sciences
Oklahoma State University
S tillwater, Oklahoma 74078
Phone: (405) 744-5668

ABSTRACT

Based on seven assumptions, the following
comparison factors are used to compare the performance
of linear hashing with extendible hashing: 1. storage
utilization; 2. average unsuccessful search cost; 3. average
successful search cost; 4. split cost; 5. insertion cost; 6.
number of overflow buckets. The simulation is conducted
with the bucket sizes of IO, 20, and 50 for both hashing
techniques. In order to observe their average behavior,
the simulation uses 50,000 keys which have been
generated randomly.

According to our simulation results, extendible
hashing has an advantage of 5% over linear hashing in
terms of storage utilization. Successful search,
unsuccessful search, and insertions are less costly in linear
hashing, However, linear hashing requires a large
overflow space to handle the overflow records.
Simulation shows that approximately 10% of the sapce
should be marked as overflow space in linear hashing.

Directory size is a serious bottleneck in extendible
hashing. Based on the simulation results, the authors
recommend linear hashing when main memory is at a
premium.

I. INTRODUCTION

A number of file structures and access methods, e.g.
B+ tree [Knu73]. inverted file &nu73], heap war771,
grid file [N&34:] [Chu89], BANG file [Fre871 lLia891,
AVL data structure with persistent technique [Ver87], and
hashing are widely used in current database design.
Among those techniques, hashing is a well-known
technique for organizing direct access files. The method
is simple: Retrieval, insertion, and deletion of records is
very fast. In traditional hashing, the size of the file must
be estimated in advance, and storage space must be

Permission to copy without fee all or part of this material is granted pro-
vided that the copies are not made or distributed for direct commercial
advantage, the ACM copyright notice and the title of the publication and
its date appear, and notice is given that copying is by permission of the
Association for Computing Machinery. To copy otherwise, or to republish,
requires a fee and/or specific permission.

allocated for the entire file. To overcome these
drawbacks, several dynamic hashing schemes were
developed in late seventies and early eighties.

The dynamic hashing scheme [Lar78] and the
dynamic hashing scheme with deferred splitting [Sch81]
both keep an index in main memory. In these schemes,
the random access cost is high. A spiral storage scheme
[Mu1851 seeks to provide a uniform performance
regardless of the file size. This scheme involves a very
complex address computation to determine the appropriate
buckets. Also, the expansion process is both slow and
complex.

To overcome the shortcomings of the spiral storage
scheme, W. Litwin bit801 and Fagin et al. [Fag791
presented hashing schemes called linear hashing and
extendible hashing respectively. Later, Ellis applied
concurrent operations to extendible hashing in a distributed
database environment lEIl821. The address computation
and expansion prcesses in both linear hashing and
extendible hashing is easy and efficient [Lar82] bar851
IBra861.

Both Litwin [Lit801 and Fagin et al. Fag’W
claimed their respective hashing techniques to be efficient.
However, no comparison results of the two techniques
were reported. Hence, the objective of this paper is to
compare both linear hashing and extendible hashing.

Section II of this paper briefly reviews linear hashing
and extendible hashing. Section III discusses the
simulation setup for comparison and section IV presents
the simulation results and conclusions (Mathematical
derivations have been shown regarding search costs,
insertion cost etc. They are omitted here due to space
limitations).

II. LINEAR HASHING AND EXTENDIBLE
HASHING

The linear hashing scheme, referred to as LINHASH
hereafter, is a directory-less scheme which allows a
smooth growth of the hash table [Ram82]. The following
example is due to Larson [Lar88]. Consider a hash table

0 1990 ACM 089791-347-7/90/0003/0178 $1.50 178

consisting of N buckets with addresses O,l,..,N-1.
LINHASH splits the buckets in predetermined order; i.e.,
the first bucket has address 0, then bucket 1, and so on,
up to and including bucket N-l. In figure l(a), the table
size N is 3 and the next bucket to be split is bucket 0.
Pointer p always indicates the bucket to be split next.
Figure l(b) shows the status after bucket 0 has been split.
Notice that pointer p has moved to bucket 1. Next,
bucket 1 is split into bucket 1 and bucket 4. The current
expansion is considered complete when the last bucket of
the tabIe is split. After the split, pointer p is reset to
bucket 0. In our example, the expansion will be complete
when bucket 3 is split, as shown in figure l(d).

The extendible hashing technique, referred to as
EXHASH hereafter, was developed by Fagin et al.
[Fag79]. This scheme uses the leading (or trailing) bits,
denote by d, of the key to index into the directory.
Global depth, d, and local depth, d’, imply the depth of
the directory and the depth of a bucket, respectively.

(1) ,--$p-/n

(b) oboe

(cl mobam

W ,+--jnr;mn

Figure 1: Expansion Process in Linear Hashing

*

cuxl

owl

0010

0011

0100

0101

0110 1
0111 Bvcial

103

lCO1

1010
B&3

1011

1100

1101

1110

1111

Figure 3: Hash Table Doubled After Splitting Bucket 2 of Figure 2(b)

There are 2**d directory entries. Often more than one
directory entry points to the same bucket. Figure 2
expands this discussion. Upon expansion of the table, the
local depth of the 2 buckets involved is increased by 1.
If d’ of any bucket is greater than d, then the directory
size is doubled (shown in figure 3), and the global depth
is increased by 1.

(a) : Exrendible Hash Table Before Split (b) : After Splitting Bucket 3 of Figure 2(a)

Figure 2: An Example of Extendible Hash Table

179

III. SIMULATION PREPARATION

The performance comparison factors for simulation
are based on the following assumptions.

1. Assumptions

(1) The keys are distributed uniformly, so each key has
equal access probability.
(2) Records are of fixed length.
(3) The bucket capacity is fixed in terms of the number
of records that it can hold.
(4) Expansion takes place as soon as a bucket overflows.
(5) Enough main memory is available to handle the
expansion.
(6) EXHASH: (a) The most significant bits are extracted
from the key to find the directory entry. 04 -f’he
overflow bucket is split at most once. In other words, a
second split is not attempted even though the first split
may fail to release the overflow bucket. (c) Main
memory can hold a maximum of 1024 directory entries.
The rest of the directory must reside on the secondary
storage.
(7) LINHASH: A simple division method with modulo
arithmetic is used to find the relevent bucket.

According to assumption (l), we use a random
function that broadly satisfies the properties of a minimal
random function. Given a minimal random function “f(z)
= az mod m”, the value of “a” should pass the three tests
as defined in [Par881 such that f(z) should (i) be a full
period generating function; (ii) be random for all the
sequences generated; and (iii) be implemented efficiently
with 32-bit arithmetic. Further, the hash functions used in
the simulation also satisfy the basic properties listed by
Carter and Knuth in [Car791 [Knu73].

2. Comparison Factors

Following notations are used to define the comparison
factors:

N :

B :

b :

bs :

bu :

s :

u :
* .

I :

The number of records in the current hash table

The number of buckets in the current hash table

Bucket capacity

The number of buckets accessed for successful
search + 1 if the directory entry is not in
main memory. (only in EXHASH).

Number of buckets accessed for unsuccessful search
+ 1 if the directory entry is not found in main
memory (only in EXHASH).

Number of successful searches

Number of unsuccessful searches

Arithmetic multiplication symbol
Arithmetic division symbol

Following factors have been considered to analyze the
relative performance of LINHASH and EXHASH:

(1) Storage utilization : N /(B*b)

(2) Average unsuccessful search cost : bu / u

(3) Average successful search cost: bs / s

(4) Split cost (expansion cost): In LINHASH, a split
bucket is usually different from the bucket where insertion
took place. Hence additional accesses are needed to read
the split bucket chain.

LINHASH: 1 access to read the primary bucket
+ k accesses to read k overflow buckets
+ 1 access to write old bucket
+ extra accesses to write the overflow

buckets attached to old and new buckets
EXHASH: 1 access to write old bucket

+ 1 access to write new bucket
+ extra accesses to write the overflow

buckets attached to old and new buckets
+ accesses needed to update the

directory pointers if the directory
resides on the secondary storage

(5) Insertion cost: Unsuccessful search cost + Split cost

(6) Number of overflow buckets

The above factors have been simulated with the
bucket sizes of 10, 20, and 50 for both EXHASH and
LINHASH. In order to observe their average behavior,
the simulation uses 50,000 keys which have been
generated randomly.

IV. RESULTS & CONCLUSION

1. Simulation Results

For all bucket sizes, EXHASH produces consistently
better storage utilization than LINHASH. LINHASH gives
cyclic storage utilization since the buckets are split linearly
regardless of their load. In both EXHASH and
LINHASH, as the bucket size rises, the storage utilization
becomes more fluctuating (see figures 4,5,6). EXHASH
has an advantage of approximately 5% over LINHASH in
storage utilization. Such a performance is wholly
attributable to the way the buckets are split under the two
schemes. The corollary is that LINHASH requires more
buckets to hold the same number of records than
EXHASH does.

180

,: ! .’ I

* 1.0’
v

I .?’
E : 1 .I

1 ; I.9

L” 1.4.

g 1.3.

i I.2

n 1.1

ii.._)r. -._.---- ___- -----.- .-_____ce _-_m ------- m-o__
c

0

,.,

, n.9

s leeeD

.._.__ ~ ~ . .._.. ~

--___--*---.- - _______ em-------- .--_,-_,

r
1eQBB 28866 38888 4mee SQae

-oFREm

waw1m - EXTDO ---- LItEm

FIGWE 11. sJc(xssFu SEnRM CC61 Vs. IWeER OF RECZRDS

1.54 ,..‘...‘“,“““.“I.‘.“““I”..“..‘r
0 10&W Ewas 3ams 46868 M

-aREams

Msilno -- ---- LItEM

FI(PJIE 13. SPLIT COST US. HIBER OF RECCRDS

1.38 , _ _ . . . -

e 1W m 38888 48888 sseee

~ffI(EcoRDG

WlM -EmElm ---- LIKlR

FICUSC:4.SPLlTQISTUS.fUEERff2ECURO9

l.za ,_,,,, _.,,,.,_. ,_,,.,_,. ,,_.,,.,, ., ..___. r

e 1WW iseae sees 4ee2a s42m

RreERalEEcaaos

WalKi -D(ToO ---- LIrEM

FIwE15.s?LlTcoslus.rv.nlERw56tasrs

182

4.mj
J

fj 3.7%

c ’ 330.

f E o.es-

1 3.m.
n .

--- -______ -..-- _-- - ---__

128 _

8 lww mew 3ww 4eem

mrz(FafcutDs

WIsItIKi - EXTEIO ---- LlKCiSl

FICb!RE 17. ltiSERlI(x1 CDs1 VS. nrSra W FXfZCW

4.w

fj 3.7s

Ir 3.m

a E 3.zs

I s.BB-

s E 2.15.
R
; 2.543’

: e.F.5
b..a...--._C------_ w__c_d------ ---A--

‘0 2.63. *~
.___- e--

: 1.73.

1.w

e
T.-..““‘,‘.“‘...TT.......,.........*

lewe PBBBB xae0 48888 wem

-aacoaos

ms41m -EnEm ---- LIwim

F:KFS 18. lltSEF!lI~ CUST US. NWER Q RECfSDS

.&\..

,-’
\

‘.
I

#’
‘,

I

/
\

\
\

t4Xl&lSlZEtr.*

s
s _, -- ‘--

,-- -’ .- *--
I---......,.., v”+---..-..r

e Ifas emw 38888 48888 wwa
-0FRXCSfS

WlsHltc - .DCTElQ ---- LJm3a

FIURf 21. MrlCU BuhdE75 U.S.)ueEn ff Gf0SD-S

183

LINHASH performs better for all the bucket sizes
with an unsuccessful search becomes less costly as the
bucket size rises. On an average, an unsuccessful search
cost stays close to 1 for all the bucket sizes in LINHASH
(see figures 7,8,9). Similar observations hold true for the
cost of a successful search (see figures 10,11,12). The
successful search and the unsuccessful search are equally
costly in EXHASH. This is due to the fact that the
overflow buckets are almost non-existent in EXHASH.
Overflow buckets are mandatory in LINHASH. In
EXHASH, the search cost can be kept to 1 regardless of
the bucket size when the entire directory can be kept in
the main memory.

The splitting of a bucket is costlier in LINHASH.
This is due to the fact that an extra read access is needed
to read the bucket to be split (see figures 13,14,15). The
insertion cost is slightly higher in EXHASH for the bucket
sizes 10 and 20. However, for the bucket size 50, this
cost is slightly less in EXHASH (see figures 16,17,18).

As expected, LINHASH performed poorly with
respect to the number of overflow buckets. The number
of overflow buckets decreases as the bucket size increases.
The simulation shows that a maximum of 10% of the total
space should be marked as an overflow area in
LINHASH. Overflow buckets are almost non-existent in
EXHASH (see figures 19,20,21).

2. Conclusion

Based on simulation results, the linear hashing
technique is recommended when main storage is at a
premium since it requires no directory. This scheme is
particularly useful in a small computer environment.
However, this scheme is not devoid of its pitfalls. Since
there is no control over the length of an overflow chain,
the search cost may become high. However, the
simulation has shown that the maximum search cost is 2
for all the bucket sizes in linear hashing. Extendible
hashing could be useful if sufficient main memory is
available to hold the directory. Doubling and halving the
directory size is expensive. In both the schemes, the
bucket size does not affect the performance significantly.
However, a bucket size of 20 seems to be a good choice
since it gives fairly reasonable storage utilization and
search times.

REFERENCES

[Bra861 Bradley, J. “Use of Mean Distance between
Overflow Records of Compute Average Search Lengths
in Hash Files with Open Addressing.” Computer i., 29,
2(1986), pp. 167-170.

[Car791 Carter, J.L. and Wegman M. “Universal Class of
Hash Functions,” 1. of Camp. & SYS. Sci., 18, 1(1979),
pp. 143-154.

[Chu89] Chun, S.H., Hedrick, G.E., Lu, H., Fisher,
D.D., “A Partitioning Method for Grid File Directories,”
will appear in Proc. of the IEEE Computer Society’s 13th
Annual International Computer Software and
Applications Conference, Sept. 18-22, 1989 Orlando
applications Conference, Sept. 18-22, 1989 Orlando

[El1821 Ellis, C.S. “Extendible Hashing for Concurren
Operations and Distributed Data.” ACM SIGMOD, 1982

Fag791 Fagin, R., Nievergelt, J., Pippenger, N., and
Strong, H.R. “Extendible Hashing - A Fast Access Method
for Dynamic Files.” ACM Transactions on Database
Systems, 14, 3(Sept.1979), pp. 315-344.

l&87] Freeston, M. “The BANG file.” Proc. of ACM
SIGMOD Conf., 16, 3(Dec. 1987), 260-269.

[Knu73] Knuth, D. The Art of Computer Programming,
vol III* Sorting and Searching. Reading, MA: Addison- -* --
Wesley, 1973. -

[Lar78] Larson, P. “Dynamic Hashing.” BIT, 18(1987),
pp. 184-201.

lLar82] Larson, P. “Performance Analysis of Linear
Hashing with Partial Expansions.” ACM Transactions on
Database Systems, 7, 4(1982), pp. 566-587.

&ar85] Larson, P. “Performance Analysis of a Single-
file Version of Linear Hashing.” Computer 1.,28, 3(1985),
pp. 319-326.

II-=881 Larson, P. “Dynamic Hash Tables.”
Cm 31, 4(April 1988),
pp. 446-457.

[Lia89] Lian, T., Fisher, D., Lu, H., “Implementation and
Evaluation of Grid and Bang (Balanced and Nested Grid)
File Structures,” IEEE Proc. of Workshop 0” Applied mm-
Computing 1989, pp. 80-85.

lLit80] Kitwin, W. “Linear Hashing: A New Tool for
File and Table Addressing.” Proc. of the 6th Conference
on Very Large Databases, 1980, pp. 212-223. -

[Mar771 Martin, J. Computer Data-Base Organization
(2nd edition). Prentice-Hall, 1977:

[Mu1851 Mullin, J.R. “Spiral Storage: An Efficient
Dynamic Hashing with Constant Performance.” Computer
L, 28, 3(1985), pp. 330-334.

[Nie84] Nievergelt, J., Hinterberger, H., & Sevcik, KC.,
The Grid File: An Adaptable, Symmetric Multikey File
Structure”, ACM Transactions 0” Database Systems, Vol.
9, No. 1, 1984, pp 38-71.

[Par881 Park, S.K. and Miller, K.W. “Random Number
Generators: Good Ones Are Hard to Find.”

184

Communications of the ACM, 31, 10 (October 1988), pp.
1192-1201.

[Ram821 Rammohanrao, K. and Lloyd, J.K. “Dynamic
Hashing Schemes.” Computer J., 25, 4(1982), pp. 478-
485.

[SchSl] Scholl, M. “New File Organizations Based on
Dynamic Hashing.” m Traosactions M. m
Systems, 6, l(Mar. 1981), pp. 194-211.

Wet871 Vet-ma. V.. & Lu. H.. “A New ADDroach to
Version Management for Databases,” Proc&ings of
National Computer Conference (AFIP Conference) vol. 56,
1987, pp. 645651.

185

