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Abstract 

Query optimizers that explore a search space 
exhaustively using transformation rules usu- 
ally apply all possible rules on each alterna- 
tive, and stop when no new information is pro- 
duced. A memoizing structure was proposed 
in [McK93] to improve the re-use of common 
subexpression, thus improving the efficiency of 
the search considerably. However, a question 
that remained open is, what is the complexity 
of the transformation-based enumeration pro- 
cess? In particular, with n the number of re- 
lations, does it achieve the O(3n) lower bound 
established by [OL90]? 

In this paper we examine the problem of 
duplicates, in transformation-based enumera- 
tion. In general, different sequences of trans- 
formation rules may end up deriving the 
same element, and the optimizer must de- 
tect and discard these duplicate elements gen- 
erated by multiple paths. We show that 
the usual commutativity/associativity rules 
for joins generate O(4n) duplicate opera- 
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tors. We then propose a scheme -within the 
generic transformation-based framework- to 
avoid the generation of duplicates, which does 
achieve the O(3O) lower bound on join enu- 
meration. Our experiments show an improve- 
ment of up to a factor of 5 in the optimization 
of a query with 8 tables, when duplicates are 
avoided rather than detected. 

1 Introduction 

Ono and Lohman [OL90] gave a lower bound of 0(3n), 
with n the number of relations, on the complexity of 
join enumeration, by counting how many join oper- 
ators have to be considered in the bottom-up, dy- 
namic programming enumeration algorithm of Sys- 
tem R and Starburst.’ This algorithm is efficient 
for join enumeration, and the code has been exten- 
sively tested and tuned over the years. But there is an 
advantage to reordering other operators, and choos- 
ing among new alternatives based on cost estimation. 
Although the algorithm has been extended to deal 
with other operators (e.g. aggregates [CS96], outer- 
joins [GLR96], expensive functions [HN96]), there is 
no precise characterization of the properties of oper- 
ators that can be handled by the enumeration algo- 
rithm. There is no general technique for these exten- 
sions, and no guarantee that the next extension will 
be possible. For example, to deal with subqueries, Se- 
shadri et al suggest a clever iterative process in which 
an extended bottom-up enumeration module is called 

‘A careful analysis by Vance [VMSG, Van96a] shows that 
the bottom-up enumeration algorithm doesn’t achieve this lower 
bound in all cases, having a complexity of 0(4n). 
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multiple times [SHP+96] -but we are forced beyond 
the bottom-up enumeration framework. 

Proponents of “rule-based, extensible optimizers” 
would say that the problem is a “lack of extensibility,” 
and they would point to a number of research proto- 
types that have been developed over the past 10 years. 
But the common view is that the tradeoff of extensible 
optimizers is efficiency. 

Is transformation-based enumeration as efficient as 
bottom-up enumeration? The question is relevant 
in practice as at least two companies -Tandem and 
Microsoft- are adopting a transformation-based opti- 
mization engine for new releases of their DBMSs. The 
goal is to have cost-based selection of alternatives that 
are generated via transformation rules, without per- 
formance penalties on join reordering. 

In this paper we show that join enumeration can be 
done in the lower bound given by Ono and Lohman 
[OL90], in a transformation-based system. The two 
key components for our result are the memoizing struc- 
ture proposed in Volcano [GM93, McK93], and a novel 
technique to avoid generating duplicate expressions. 

Duplicates are a major problem in transformation- 
based enumeration. To generate a complete space, the 
general algorithm is to apply all possible transforma- 
tion rules, until no new information is produced. To 
get a sense of the problem, model the search space as 
a graph, where each solution is a node, and trans- 
formation rules provide edges between those nodes. 
Now, the number of duplicates generated depends 
on the size of the number of nodes in the space, n, 
and the number of neighbors, bi of each node. The 
naive application of transformation rules until no new 
elements are generated results in the generation of 
Cy=“=, bi alternatives. For simplicity, assume that the 
number of neighbors for each alternative is the same 
(b = bl = b2 = . . . = b,), then we get b * n alternatives 
generated. Since the are only n nodes in the space, 
the number of duplicates is n * (b - 1). Only 1 out of 
every b trees generated is new, and (1 - l/b) of the 
plans generated -i.e. most of them as b increases- 
are duplicates. 

A note on terminology. 

Some terms in the “rule-based optimizer literature” 
are applied loosely to systems with different character- 
istics. In the context of this paper we contrast bottom- 
up join enumeration with transformation-based enu- 
meration. Transformation-based enumeration consists 
of generating all alternatives reachable from an initial 
algebraic expression by a set of transformation rules; 
so that their estimated cost can be used in choosing 
one of them. 

The paper is organized as follows. In Section 
2 we describe the memoizing structure of Volcano 
[GM93, McK93], and analyze its complexity. Section 
3 identifies and quantifies the problem of duplicates. 
Section 4 describes how to enumerate join orders with- 
out generating duplicates. Section 5 shows experimen- 
tally the performance improvement of avoiding dupli- 
cates. Finally our conclusions are given in Section 6. 

2 Memoizing 

Transformation-based enumeration of a space proceeds 
as follows. Keep a set of visited plans, which starts by 
containing a single input expression. Apply all trans- 
formation rules to visited plans, adding the results to 
the set if they are new. When no new plans can be 
generated, the complete search space for this set of 
transformations has been explored. 

For join reordering, the transformations commonly 
used (to generate a bushy space) are [BMG93, IW87, 
IK91, KanSl]: 

Rule set RS-BO: 

l Right Associativity: 
(A w B) w C u A w (B w C). 

l Left Associativity: 
A w (B w C) ^r) (A w B) w C. 

l Commutativity: A w B 2) B w A. 

The set is redundant, because we can drop Right 
Associativity (or Left Associativity) and still generate 
the same space. We use here the minimal set RS-Bl, 
which contains only Left Associativity and Commuta- 
tivity. 

For left linear trees, a minimal rule set based on 
[SG88] is: Rule set RS-Ll: 

l Swap: (AwB)wCw(AwC)wB. 

l Bottom Commutativity: Br w B2 u B;? w B1, 
for base tables BI , Bz. 

Since there are likely to be many common subex- 
pression among the alternatives generated, Volcano 
introduced a memory-efficient representation of the 
search space, inspired by the idea of memoizing 
[McK93]. 

2.1 The MEMO-structure in Volcano 

The MEMO structure minimizes memory require- 
ments by maximizing the sharing of common sub-trees. 
The main idea behind the MEMO-structure is to avoid 
replication of subtrees by using shared copies only. It is 
organized as a network of equivalence classes (or sim- 
ply classes). Each class is a set of operators which all 
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produce the same (intermediate) result. The inputs 
for the operators are classes, which can be interpreted 
as “any operator of that class can be used as input”. 
For more details about this structure, see [McK93]. In 
this paper we used a sightly simplified version of the 
MEMO-structure described there. 

abed = [a] w [bed]; [b] w [acd]; [c] w [abd]; 
[4 Da [abcl; LabI w [cdl ; [a4 w [bd] ; 
[adI w bl; WI w [al; [4 b-4 [bl ; 
bbdl b-4 [cl; [abcl w [4 ; WI w [4 ; 
WI w bcl; PC1 w WI. 

abc = [u] w [bc]; [b] Da [ac]; [c] w [ub]; 
PC] w [al; [UC] w PI; WI w [cl. 

abd = [u] w [bd]; [b] w [ad]; [q w [ab]; 
Pdl w bl; WI w PI; bbl w w-l. 

acd = bl Da WI; [cl Da WI; PI Da bcl; 
acd = [cdl w bl; WI w [cl; bl w PI. 
bed = [b] w [cd]; [c] w [bd]; [q w [bc]; 

b-4 c.4 PI; [W b-4 [cl; [bcl w PI. 
ab = bl w PI; PI b-4 bl. 
ac = bl w [cl; [cl w bl. 
ad = bl w Ml; 14 w bl. 
bc = PI w [cl; [cl w [bl. 
bd = bl w PI; PI txJ PI. 
cd = kl w VI ; PI w [cl. 

Figure 1: The complete MEMO-structure with bushy 
join orders for the completely connected query on 
a, h, c, d. 

Figure 1 depicts the MEMO-structure encoding the 
search space of a four-table join query. For conve- 
nience, the classes are labeled with the relations that 
are being joined. The memo structure for the join 
space corresponds closely to the structures kept by 
Vance and Maier in their work [VM96]. 

The MEMO-structure has 11 equivalence classes, 
namely “abed”, ‘lab?, “abd”, ‘(acd”, “bed”, LLab”, 
“ac77, Uad’T, ‘<bC77 , “bd”, “cd”, with the first class con- 
taining 14 join operators. An operator tree is obtained 
from a MEMO-structure by choosing a specific opera- 
tor at each level. 

Base relations are not shown as operators, although 
they are operators in an implementation. Children 
of join operators must be classes, so the base table 
operator is contained in a one-operator class. 

The MEMO-structure helps ameliorate the com- 
binatorial explosion of alternative join orders. For 
a completely connected join query with n relations, 
the number of alternative ordered bushy and linear 
join trees is known to be m and n!, respectively 

[LVZ93, GLPK95]. A completely connected query of 7 
relations then already leads to 5040 alternative linear 
join trees and 665280 bushy join trees, see Figure 2 for 
the number of join trees and operators for both linear 
and bushy evaluation orders at several query sizes. 

I Linear join trees ] Bushy join trees ] 
Rel JT ( ” Op JT”1 Op 
2 2 I 1 2 I 2 

Figure 2: Number of ordered bushy and linear join 
trees for a completely connected query of n relations. 

2.2 Size of the MEMO-structure 

In comparison to the total number of feasible evalu- 
ation orders, the MEMO-structure is an efficient way 
of encoding the seach space. The following two theo- 
rems give the number of join operators in the MEMO- 
structure to encode all bushy or left linear join trees. 
The query graph is assumed to be completely con- 
nected. The proofs are omitted due to lack of space, 
but they can be found in [PGLK96], which contains 
results for other query graph topologies. 

Theorem 1 The MEMO-structure requires 3” - 
2n+1 + 1 operators to encode the space of bushy join 
trees for a completely connected query of n relations. 

Theorem 2 The MEMO-structure requires n2cn-l) - 
n(n + 1)/2 operators to encode the space of linear join 
trees for a completely connected query of n relations, 
for n > 2. 

In [OL90] a lower bound was determined for these 
combinations of query graph topologies and join tree 
shapes by counting how many join operators had to be 
considered by their dynamic programming algorithm. 
Our findings coincide with their lower bounds.2 Also 
the other cases coverd by Ono and Lohman coincide 
with our findings and are described in [PGLK96]. 

2There is a factor of 2 difference, due to the fact that Ono 
and Lohman do not count A w B and B w A as distinct op- 
erators, i. e. they use unordered trees. Transformation-baaed 
enumeration can generate unordered trees as well [PGLK96], 
but we use ordered trees here for consistency with conventional 
rule sets (see rule set RS-BO, it requires ordered trees to work). 
In practice the difference is minor, because unordered trees will 
most likely consider both children as candidates for, say, the 
build input of hash join, in a sense delaying the commutativity 
application. 
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2.3 Exploration process 

A complete MEMO-structure - encoding a complete 
space - is constructed by recursively exploring the 
roots of operator trees, starting with an initial expres- 
sion. Exploring an operator is done by exhaustively 
applying all transformation rules to generate all al- 
ternatives. A detailed description of the exploration 
algorithm is given in [McK93]. 

In general, the application of a transformation rule 
can generate an operator that is already present in the 
MEMO-structure. The simplest example is the com- 
mutativity rule, which, when applied a second time, 
reproduces the original operator. So, before inserting 
a new operator into the MEMO-structure we have to 
make sure it is not already present. A hash table is 
used to speed-up the detection of duplicates. 

3 Duplicates 

Before quantifying the effect of duplicate genera- 
tion, we walk through the construction of a MEMO- 
structure for a completely connected query, on rela- 
tions a, b and c. Even in this small example the num- 
ber of duplicates is relatively large. 

Example 1 For the completely connected query on 
the relations “a, b, c,” Figure 3 shows the MEMO- 
structures before and after exploring operator [ab] w 
[cl. In the “before” MEMO-structure all children, “ab” 
and “c”, have been fully explored. The transformation 
rules RS-Bl (see Section 2) generate the following 
new operators, when applied to operator [ab] w [c]. 

Commutativity: ([ab] w [c]) creates ([cl w [ab]) 
which is added to the class “abc”. 

Associativity: ([ab] w [c]) does not match, the left 
child is a class and should be a tree. This is re- 
solved by extracting a partial trees for the left 
class “ab.” 

[a] w [b]: First tree (([a] w [b]) w [c]) is extracted. 
Now the rule matches and is applied. The 
new tree ([a] w ([b] w [cl)) is generated, 
and added to the MEMO-structure in class 
“abc”. The subexpression ([b] w [c]) starts a 
new class LLbc” since it didn’t appear in the 
earlier MEMO-structure. 

[b] w [a]: Second tree (([b] w [a]) w [cl) is ex- 
tracted. It matches the rule, so it is ap- 
plied. The new tree ([b] w ([u] w [cl)) is gen- 
erated and added to the MEMO-structure. 
The subexpression [a] w [c] starts a new class 
“a? . 

ab =[a] w [b]; [b] w [u] ab =[a] w [b]; [b] w [u] 

ac &j w iCj 

Figure 3: MEMO-structure before and after explo- 
ration. 

The exploration process is continued by applying 
transformation rules to the newly created operators. 
Now, duplicates are generated. Before the new op- 
erators ([cl w [ub], [u] w [bc], and [b] w [UC]) of the 
root class ‘Labc” can be explored, all their children 
( rra,, ,n 7, n ,> “ b , c ab”,“bc” and “a?‘) must be fully ex- 
plored. This results in two new operators, [c] w [b] and 
[c] w [a], which are added to the appropriate classes. 

Commutativity on the new operators produces 
[ub] w [cl, [bc] w [u] and [UC] w [b], out of which 
[ub] w [c] already exists. The new operators are added 
to the MEMO-structure and explored. Both associa- 
tivity and commutativity can be applied to the oper- 
ators [bc] w [u] and [UC] w [b], which results in 6 oper- 
ators. All these operators were already stored in the 
MEMO-structure. So, during the exploration of class 
“abc”, 5 new operators and 7 duplicates were gener- 
ated. In Figure 4 the complete “abc” class is shown 
together with the duplicates generated. The dupli- 
cates are positioned such that they are next to the 
non-duplicate operator from which they originated. 

Class abc 

bbl Da [cl 

I4 w PI 

Dunlicates in class abc 

WI Da [cl 

[al w PC]; PI w [UC]; [cl w [ab] 
PI w bl; bl w PI; [cl w WI 

Figure 4: Fully explored class “abc” and the duplicates 
generated. 

As illustrated by the previous example, the straight 
forward application of transformation rules results in 
the generation of operators which are already in the 
MEMO-structure -duplicates. The generation of du- 
plicates affects the efficiency of the join enumeration 
process considerably. For each operator generated the 
MEMO-structure has to be searched to determine if 
it already exists. The search and the time needed to 
generate duplicates are part of the search cost. 
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3.1 Bushy join trees 

The following theorem shows the number of duplicates 
generated when exploring the search space of bushy 
join trees, for completely connected query graphs. It 
assumes a minumal set of unidirectional join associa- 
tivity and commutativity rules, See 2.3. If associativ- 
ity is enabled in both direction, as is commonly sug- 
gested, we simply end up generating more duplicates. 

Lemma 1 The number of duplicates generated by 
RS-Bl during the exploration of a class that com- 
bines k relations, on a completely connected graph, is: 
3” - 3 * 2k + 4. 

Proof. In a class that combines k relations, take 
an operator [L] w [RI, with I the number of rela- 
tions in [L] and k - 1 the number of relations in [R] 
(0 < k < n). Applying commutativity and asso- 
ciativity on this operator we generate (2” - 2) + 1 
alternatives. So the total number of operators gen- 

erated in the class is Cfiil 
( > 

: (2[ - 1). Rewrit- 

ing, the summation becomes 3” - 2k+1 + 1. But 
the number of unique operators in such class is 
2” - 2 and of these elements the initial opera- 
tor is given instead of being generated. Therefore 
the number of duplicates generated in the class is: 
3k-2k+1+1-(2k-2-1)=3k-3*2k+4. H 

Theorem 3 The number of duplicates generated by 
RS-Bl during the construction of a MEMO-structure 
encoding all bushy join trees for a query with n rela- 
tions, on a completely connected graph, is: 4” - 3n+1 + 
y-+2 -n-2. 

Proof. The MEMO-structure consists of 
( ) 

i 

classes that combine k relations. In the class 
with only one relation no duplicates are generated 
since no transformation rules are applied. Using 
Lemma 1 the total number of duplicates generated 

is CL 
( ) 

; (3” - 3 * 2” + 4) . Rewriting results 

in: 4n - 3n+1 + 2n+2 - n - 2. n 

3.2 Linear join trees 

The following lemma and theorem show how many du- 
plicate join operators are generated when generating 
the MEMO-structure for all left linear join trees. 

Lemma 2 The number of duplicates generated by 
RS-Ll during the exploration of a class that com- 
bines k relations, on a completely connected graph, is: 
k” - k + 1, with k > 2 . 

Proof. In a class that combines k relations, take an 
operator [L] w [RI, with 1 the number of relations 
in [L] and r the number of relations in [R], r +1 = k 
and 0 < k < n. Since we are considering linear join 
trees for each operator either 1 = 1 or T = 1. If 
1 = 1 only the commutativity rule can be applied, 
if r = 1 also the swap rules applies and generates 
k - 1 operators. Both cases happen k times, so in 
a class k * 1 + k * (1 + k - 1) = k2 + k operator are 
generated. 
In a class there are only 2k unique operators and 
one of these, the initial operator, is already given. 
This brings the number of duplicates per class to 
k2 + k - (2k - 1) = k2 - k + 1. n 

Theorem 4 The number of duplicates generated by 
RS-Ll during the construction of a MEMO-structure 
encoding the left linear join trees for a query with n 
relations, on a completely connected graph, is: 2” + 
n(n - 1)2”-’ - 1 - n2, n > 2. 

Proof. The MEMO-structure consists of 
( ) 

E 

classes that combine k relations. In the class with 
only one relation no duplicates are generated since 
no transformation rule can be applied. In the class 
with two relations only the commutativity rule can 
be applied and results in one duplicate. Since there 

n 
are 

( > 2 
such classes, w duplicates are gen- 

erated. 
For k > 2 we use Lemma 2 so the total number of 

duplicates generated is CF==, 
( > 

; (k2 - k + 1). 

Rewriting and adding the duplicates generated by 
the classes with two relations results in: 2” + n(n - 
1)2n-2 - 1 - n2. 

I Linear join trees 
-jT&iEG 

1 
10 
47 

166 
517 

1422 

Bush 
op 

2 
12 
50 

180 
602 

1932 

ioin trees 
Duplicates 

1 
10 
71 

416 
2157 

10326 

Figure 5: Number of duplicates generated during the 
exploration of a MEMO-structure. 

Figure 5 shows concrete numbers for the size of the 
MEMO-structure and the duplicates generated (both 
buhsy and linear trees), as a function of the number 
of relations joined, for fully connected graphs. The 
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second column gives the number of operators needed 
to encode all bushy trees using the MEMO-structure. 
The number of duplicates generated during the explo- 
ration process is given in column 3. For linear join 
trees the size of the MEMO-structure and the number 
of duplicates generated is given in column 4 and 5. 

Combining the results form Section 2.2 and The- 
orem 3 shows that for buhsy join trees the ratio of 
duplicates over new elements is O(2”10s(4/3)). Also for 
linear join trees the number of duplicates outgrows the 
number of unique operators quickly. 

4 Duplicate-free join order generation 

Although the space complexity of transformation- 
based join enumeration is O(3n), by Theorem 1, the 
enumeration process itself takes 0(4”), by Theorem 
2. In this Section we show how to avoid generating 
duplicates. This makes the enumeration process as ef- 
ficient as the lower bound of 0(3n) given by Ono and 
Lohman. 

To avoid the generation of duplicates, information 
about the behavior of transformation rules is used. 
The simplest example is commutativity: If an ele- 
ment was generated by applying the commutativity 
rule, there is no point in applying that rule again, be- 
cause it will result in the original element.3 

In general, we need to keep track of the “derivation 
history” of each operator, or conversely, which rules 
are still worth applying. For example, the application 
of the commutativity rule will switch the commutativ- 
ity rule off in the rule set of the resulting operator. 

4.1 Duplicate free transformation rules for 
completely connected queries 

To generate all alternative bushy join trees for com- 
pletely connected query graphs we use the following 
transformation rules: 

Rule set RS-B2: 

RI : Commutativity z cuo y -+ y ~1 z 
Disable all rules RI, Rz, R3, R4 for application on 
the new operator wi. 

3This observation, for commutativity, was made early on in 
[GD87], where it led to the idea of “unidirectional transforma- 
tion rules.” An idea that has taken several forms in follow up 
projects. Cycles of length 2 in the search space are easy to 
avoid, but the advantage of excluding only those short cycles 
is marginal. In terms of complexity, it is easy to see that they 
introduce a constant factor slowdown, so their removal does not 
affect the complexity. In practice, we ran experiments where 
those cycles were avoided, but this never made a difference of 
more than 2% in performance, with queries of up to 8 tables. 
Most duplicates are generated by larger cycles in the search 
graph. 

Rz : Right associativity 
(x wo Y) w1z -+ 2 w2 (Y w3 z) 

Disable rules R2, R3, R4 for application on the 
new operator wz. 

R3 : Left associativity 
x wo (y Wl z) -+ (x w2 y) w3 z 

Disable rules R2, R3, R4 for application on the 
new operator w3. 

Rq : Exchange 
(w wo x) w1 (Y w2 z) + (w w3 Y) w4 (x w5 2) 

Disable all rules RI, R2, R3, R4 for application on 
w4. 

For example, consider a completely connected query 
on the relations w, z, y and Z. Using the initial element 
[WX] w [yz] of a class and the fully explored classes of 
“wz” and “yz” the four transformation rules generate 
six sets of elements as shown in Figure 6. 

b4 w [YZI 

w w [YZI 
[XYI Da bJ4 
[x4 w bYI 

Figure 6: Sets generated by the transformation rules 

Rule R2 combines each operator of class “wx” with 
the right operand [yz]. Rule R3 does a similar thing for 
the operators of class “yz”. Rule R4 combines the op- 
erators of class “wx” with the operators of class “yz” 
and rule Ri generates the mirror images for the ele- 
ments generated by rule R2, R3 and the initial element. 

Keeping a summary of the derivation history for 
each operator increases the memory requirements. 
However, the applicability of a rule can be encoded 
using a single bit. With four transformation rules 
each operator needs 4 extra bits of memory to store 
the derivation history. Alternatively, rules R2 and RJ 
could be modified so they generate two substitutes in- 
stead of only one, for each pattern, and skip a later 
application of RI. 
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Theorem 5 No duplicates are generated when the 
transformation rules, RI, Rz,Rs and Rd, are applied 
as described. 

Proof. Two operators can not be identical if they 
are both generated by the same rule - i.e. elements 
of the same set. Namely, rule RI is used to generate 
mirror images of operators, since the left and right 
operand will never be identical a duplicate can not 
be generated. Rule Rz combines the unique opera- 
tors of the left child with the right operand of the 
initial operator resulting in only unique operators. 
The same holds for rule R3. Rule Rq combines the 
unique operators of the left and right operand re- 
sulting in only unique operators. 
Also, no two derivation paths can result in the same 
operator - i.e. elements of different sets. Suppose 
the application of rule Ra generated the same ele- 
ment as rule R3; RI, then [w] w [zyz] or [x] w [wyz] 
has to be equal to [z] w [wzy] or [y] w [WZZ]. This 
can not be true since W, x, y, z are disjunct non- 
empty sets of relations. A similar argument can be 
given for any other combination of sets. n 

Theorem 6 For completely connected queries the 
transformation rules RI, Rz, Rs and Rq generate all 
valid bushy join orders. 

Proof. In a fully explored class that references n re- 
lations the number of join operators is d(n) = 2”-2 
(See proof of lemma 1). Using the initial element 
of a class, say [L] w [R] the transformation rules 
generate the following elements. Rule R2 combines 
each element of class [L] with [R] resulting in d( IL]) 
new operators. Similarly rule R3 generates d(]R() 
new elements. Rule Rd combines each element of 
class [L] with each element of class [R] which re- 
sults in d((L]) * d(]R() new elements. Finally rule 
RI generates the mirror images for the initial op- 
erator and the operators generated by rule Rs and 
R3. Adding all the newly created operators and 
the initial operator we get: 2 + 2 * d(]L]) + 2 * 
d(JR]) + d(]L]) * d(JRJ). Rewriting shows that 
2 + 2 * d()LJ) + 2 * d(]R]) + A@]) * d(JRJ) = 
A(],!,( + IRI) which is the number of elements for the 
fully explored class with IL] + [RI relations. Since, 
by Theorem 3, no duplicates are generated we must 
have generated all valid bushy join orders. n 

4.2 Example 

Given a completely connected query on five relations 
{a, b, c, d, e} and the MEMO-structure as shown in Fig- 
ure 7, where class “abcde” is about to be explored. Of 

abcde = [ab] w [cde] 
cde = kl w Id-d; [de1 w 14; VI w bl ; 

bl Da PIi H w PI ; WI w kl 
ab = bl w PI; PI Da I4 
cd = k+4~;~4~~cl 
ce = [cl b-4 [el; [el w [cl 
de = I4+M++l 

Figure 7: MEMO-structure in which [ab] w [cde] is 
about to be explored. 

the initial operator of class “abcde”, [ab] w [cde] , the 
child classes have been explored exhaustively. 

The exploration process starts by applying rules R2, 
R3 and RJ to [ab] w [cde], then RI is applied to gen- 
erate the mirror images. This results in the following 
elements. 

Each operator of the left subtree [ab], is com- 
bined with the right subtree [cde] to obtain [u] w 
[We], [b] w [acde], which are added to class 
“abcde”. 

Combines each operator of the right subtree [cde] 
with the left subtree [ab] to obtain: [abc] w 
[de], [&de] w [cl, [abd] w [ce], [abce] w [dj, [abe] w 

w ic are also added to class yl~l~~cll w M h h 

Combines the operators of the left subtree with 
each split of the right subtree, so we obtain: [a~] w 
[bde],[ade] W [bc],[ud] W [he], [ace] w [bdj,[ue] W 
[bed], [ucd] w [be] and their mirror images [bde] w 
[;4: !z! z :;tj T beI w Wl 7 b-4 w b-4 T bdl w 

Generates all the mirror images of the original 
join operator and the operator generated by Rz 
and Rs. 

Now the fully explored class “abcde” contains 30 
operators. During the exploration 20 new classes were 
created and, in turn, fully explored. 

Linear join trees 

To generate all linear trees efficiently - without dupli- 
cates - we use the following two transformation rules 
and application schema. The proofs for completeness 
and efficiency are omitted but are similar to proofs for 
the case of bushy join trees. 
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Rule RI: 
(AwoB)calC-+(AwzC)~gB. 
Disable rule Rr for application on operator ws. 
A, B and C are classes which reference one or 
more relations. 

Rule Rz: 
(Table1 w0 Tablez) -+ (Table2 wl Tablel). 
Disable rule Rz for application on operator WI. 

Table1 and Tables are classes which reference ex- 
actly one relation. 

5 Experiments 

In this section we experimentally verify the efficiency 
improvement of the duplicate free join enumeration 
process. For completely connected queries, from 3 to 8 
relations, we generated all bushy and linear join trees 
using both sets of transformation rules - the naive 
transformation rules and the duplicate-free rules. 

The measurements have been performed on a 90 
MHz Pentium PC running Windows NT. It’s main 
memory was 64Mb which was more than enough to 
contain the largest MEMO-structure - all bushy 
trees for a query of 8 relations. The measurements 
have been performed using the Cascades optimizer, 
which is a descendent of the Volcano optimizer. How- 
ever no feature was used that wasn’t already present 
in Volcano. The one modification on the domain- 
independent, transformation-rule kernel was to add 
the ability to disable transformation rules. The re- 
mainder of the logic is done completely within the 
domain-specific set of transformation rules. 

For each unique “logical” join operator we also gen- 
erated a single “physical” operator (Nested Loop). For 
each physical operator some cost estimation was done 
- i.e. cardinality - which makes the generation of a 
physical operator more expensive than the generation 
of a logical operator. However, the estimation cost are 
constant per physical operator and is only performed 
for unique operators and not for duplicates. Avoid- 
ing the generation of physical plans would make the 
improvement factor even bigger. 

Each experiment has been performed several times 
and the graphs represent the averages over these runs. 
The variation amongst the runs was very small, less 
then 0.5%, 

Bushy join trees. 

For the naive generation of bushy join trees we used 
the commutativity and associativity rules as described 
in Section 2.3. In [GD87] it was already observed that 
the performance of the join enumerator could be im- 
proved by applying the commutativity rule only once. 
This avoids all generation cycles of length two - i.e. 

cycles like (a w b) -+ (b w a) + (a w b). However 
the improvement is very small, for 8 relations the im- 
provement is less than 2%. When generating all bushy 
trees using the naive set of rules, cycles of length 2 
were avoided. 

Figure 8 shows the (scaled) time required to gen- 
erate all bushy trees for completely connected queries 
from 3 to 8 relations. The scaling of the graphs is done 
using the time to generate all bushy trees for a query 
of tree relations, as a reference. 

Figure 8: Exhaustive generation of bushy trees for 
completely connected queries. 

The experiments show that duplicate free genera- 
tion of join orders is always faster than generating and 
discarding duplicates. The performance gain increases 
from a factor 1.22 for three relations to a factor 5.67 
for eight relations. Based on the complexity analysis 
of the generation algorithms the improvement factor 
will increase further as queries get larger. 

Linear join trees. 

The naive method for generating the complete space 
of linear join trees uses Swami’s [SGSS] “Swap” rule 
- i.e. (A w B) w C + (A w C) w B -and the com- 
mutativity rule. As in the naive generation of bushy 
join trees the commutativity rule is applied only once 
to avoid cycles of length 2. 

Figure 9 shows the experimental results for gener- 
ating all linear trees using the naive method, in which 
duplicates are generated, and the efficient method that 
avoids the generation of duplicates. The time for gen- 
erating all linear join trees for a query of tree relations, 
using the duplicate-free rules, was used as reference for 
scaling the graphs. For linear trees, avoiding the gener- 
ation of duplicates shows a performance improvement 
of a factor 1.33 to 3.67 for queries from three to eight 
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Figure 9: Exhaustive generation of linear trees for 
completely connected queries. 

relations. Again the improvement factor will keep in- 
creasing with the number of relations. 

6 Conclusion 

In this paper we showed that the join enumeration pro- 
cess of transformation-based optimizers can be made 
as efficient as the lower bound of 0(3*) given for the 
problem by Ono and Lohman [OL90], as long as we 
avoid generating duplicates. We showed that the num- 
ber of duplicates is 0(4n), and it exceeds the number 
of new elements even for small queries. 

Our approach to an efficient search is to keep track 
of the transformation rules that can still be applied 
without generating duplicates. We descibed the mech- 
anism in detail, for the generation of bushy and linear 
join trees. Our experiments demonstrated a significant 
improvement in optimization time, as large as a factor 
of 5 for B-table joins. 

The implementation of our approach was rela- 
tively simple, requiring only a minor extension to the 
transformation-rule engine -the ability to turn off 
transformation rules. Of course, most of the work 
went into devising the appropriate set of transforma- 
tion rules, which is a very important task, seldom em- 
phasized in the rule-base optimization literature. 

There is considerable work left on the general prob- 
lem of duplicates and how to avoid them, and we be- 
lieve this is a promising area of research. For an arbi- 
trary set of transformation rules, it might be hard to 
transform it into an efficient, duplicate-avoiding set. 
But we suspect there are useful, tractable classes. 
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