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Abstract. The analytic prediction of buffer hit probability, based on the charac- 
terization of database accesses from real reference traces, is extremely useful for 
workload management and system capacity planning. The knowledge can be help- 
ful for proper allocation of buffer space to various database relations, as well as for 
the management of buffer space for a mixed transaction and query environment. 
Access characterization can also be used to predict the buffer invalidation effect in 
a multi-node environment which, in turn, can influence transaction routing strate- 
gies. However, it is a challenge to characterize the database access pattern of a real 
workload reference trace in a simple manner that can easily be used to compute 
buffer hit probability. In this article, we use a characterization method that distin- 
guishes three types of access patterns from a trace: (1) locality within a transaction, 
(2) random accesses by transactions, and (3) sequential accesses by long queries. 
We then propose a concise way to characterize the access skew across randomly 
accessed pages by logically grouping the large number of data pages into a small 
number of partitions such that the frequency of accessing each page within a par- 
tition can be treated as equal. Based on this approach, we present a recursive 
binary partitioning algorithm that can infer the access skew characterization from 
the buffer hit probabilities for a subset of the buffer sizes. We validate the buffer hit 
predictions for single and multiple node systems using production database traces. 
We further show that the proposed approach can predict the buffer hit probability 
of a composite workload from those of its component files. 

Key Words. Database access characterization, access skew, sequential access, ref- 
erence trace, workload management, analytic prediction. 

1. Introduction 

In a re la t iona l  da t abase  envi ronment ,  accesses to the  da t abase  come  f rom var ious  
app l ica t ion  sources.  T h e r e  are  many  shor t  t ransac t ions  tha t  r e ad  and /o r  wri te  a 
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small number of pages. There are also long queries that may sequentially access 
a large number of pages from one or more database relations. In addition, within 
both short transactions and long queries some of the pages are rereferenced, and 
are called locality sets (Chou and Dewitt, 1985). Viewed as a whole, the combination 
of transaction and query accesses generates all possib]Le access patterns (Rodriguez- 
Rosell, 1976; Smith, 1978; Hawthorn and Stonebraker, 1979; Effelsberg and Loomis, 
1984; Chou and Dewitt, 1985; Verkamo, 1985; Sacco and Schkolnick, 1986; Kearns 
and Defazio, 1989). Traditional buffer management policies (e.g., strict LRU policy 
that does not exploit the knowledge of access components such as sequential vs 
random accesses) may not provide good buffer hit probability (Smith, 1978; Effelsberg 
and Haerder, 1984; Teng and Gumaer, 1984; Chou and Dewitt, 1985; Sacco and 
Schkolnick, 1986; IBM, 1993). Alternatively, if the various access components can 
be identified and categorized, the information can be used not only to design better 
buffer management policies but also to predict the buffer hit probabilities. The 
knowledge of access patterns can also be useful to a buffer management policy that 
exerts control over the buffer space to provide different buffer hit probabilities to 
transactions and queries. It is the goal of this article; to provide a characterization 
method that can be used for the above purpose. 

In an earlier study on database reference traces (Kearns and Defazio, 1989), 
it was shown that the database access pattern of each transaction type and file 
changes very little over time. Kearns and Defazio (1.989) collected traces over five 
working days, and found the degree of stability notable, even for the least stable 
transaction types. Therefore, the characterization of access pattern in the traces from 
representative workload can be used for analytic prediction of buffer hit probability 
in various system configurations. For example, existing analytic models for the LRU 
(Dan and Towsley, 1990) and Clock (Nicola et al., 2[992) replacement policies can 
be used to predict the buffer hit probabilities of multiple relations sharing the same 
buffer pool, given the access characterizations of individual relations. Such buffer hit 
prediction capability will be extremely useful for both workload management as well 
as system capacity planning in various ways. The knowledge can be helpful for proper 
allocation of buffer space to various database relations as well as the management 
of buffer space for a mixed transaction and query environment (Faloutsos et al., 
1991; Ng et al., 1990; Yu and Cornell, 1991). In a multi-node environment, the 
access characterization of individual relations can also be used to predict the effect 
of cross-node buffer invalidation which can influence transaction routing strategies. 
However, it is a challenging problem to characterize the database access pattern 
based on a real workload reference trace in a simple manner that can easily be 
used to compute the buffer hit probability. 

There have been many earlier analytical buffer modeling works that assumed 
skewed access pattern based on independent reference model (IRM) for a transac- 
tion processing workload (Dan and Towsley, 1990; Dan et al., 1994a, 1994b; Nicola 
et al., 1992). Ability to characterize the model parameters from workload traces 
will make these models applicable to real environment. In a mixed transaction and 
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query environment, workload can not be characterized directly by the IRM model. 
Therefore,  we separate the non-IRM and IRM access components. More specifi- 
cally, our characterization method first distinguishes three types of access patterns 
from a trace: (1) locality within a transaction, (2) random accesses by transactions, and 
(3) sequential accesses by long queries. The presence of these types of access behavior 
has been shown (Rodriguez-Rosell, 1976; Hawthorn and Stonebraker, 1979; Effels- 
berg and Loomis, 1984; Verkamo, 1985; Kearns and Defazio, 1989). Each access 
component can be accounted for separately, both in terms of buffer management 
as well as buffer hit prediction. The overall buffer hit probability for transactions 
or queries is then given by the weighted average of the buffer hit probabilities of 
their access components. 

Here  we assume that the buffer manager will use prefetching for the sequentially 
accessed pages, and the LRU replacement policy for buffer management for the 
remaining pages. Prefetching provides very high buffer hit probability for sequential 
accesses. The prefetched pages are assumed to be discarded after they are used 1 
and, hence, they do not affect the performance of the LRU policy for the randomly 
accessed pages. In DB2 (Teng and Gumaer, 1984), they were placed in a separate list 
from the normal LRU chain. As the rereferenced pages of the short transactions are 
also expected to be found in the buffer since transaction working set size generally 
is much smaller than most database buffer sizes, the synchronous database I/Os will 
come mainly from the random accesses. The buffer hit prediction for the random 
access component is a non-trivial task. Our main focus here is the characterization 
of random accesses for the prediction of buffer hit probability. The random access 
is not uniform over the entire database. For example, in a banking application 
(TPC-A workload; Gray, 1991) whenever an account record is updated, a branch 
total associated with this account is also updated. Therefore, each branch record 
is accessed more often than each account record. Furthermore, some accounts 
may be updated more often than others. Also, if the database pages are accessed 
through an index, the index pages are accessed more often than the data pages. 
The resulting non-uniform access pattern is referred to as random access skew. 

In several earlier analytical models for transaction processing (Tay et al., 1985; 
Dan and Towsley, 1990; Dan et al., 1991a, 1994; Yu et al., 1993; Nicola et al., 1992), 
access skew was modeled by assuming that the database is divided into a small 
number of logical partitions (e.g., Hot-set Cold-set model) and the probability of 
accessing any page within a partition is the same. To make these models useful for 

1. Chou and Dewitt (1985) and Sacco and Schkolnick (1986) proposed various query access models. Further 
knowledge of the query access pattern from the query optimizer may be used by the buffer manager to reduce 
prefetching I/O and/or buffer space requirement. However, this kind of top-down approach using the query 
plan and the optimizer information for buffer management (Ng et al., 1990; Faloutsos et al., 1991; Cornell 
and Yu, 1989; Yu and Cornell, 1991) is beyond the scope of this article, which uses a bottom-up approach 
based on the access trace information to predict buffer hit probability. 
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real environment, we follow the above skew characterization method (i.e., we assume 
that the large number of data pages can be logically grouped into a small number 
of partitions such that the frequency of accessing each page within a partition can 
be treated as equal). This requires a small number of parameters to express the 
access skew. More specifically, the access skew in a trace is characterized by the 
number of partitions, and the access frequency and size of each of the partitions. 
For example, 80-20 access rule can be represented by 2 partitions where 80% of the 
accesses go to smaller partition (i.e., 20% of the database). Based on this approach, 
we present a recursive binary partitioning algorithm that can infer the access skew 
characterization from the buffer hit probabilities for a subset of the buffer sizes. 
This avoids explicit estimation of individual access frequencies for the large, number 
of database pages. The buffer hit prediction based on this skew characterization is 
also efficient. 2 

Therefore, our skew characterization method ..satisfies all three objectives that 
guide the characterization process: 1) economy of expression (very few parameters 
are needed to express the skew) 2) ease of skew characterization and 3) efficient 
estimation of buffer hit probability based on the characterization. Further discussions on 
alternative skew characterization methods can be found in (Dan et al., 1991). 

In Section 2, we describe the composition of a database workload that is used for 
this study in terms of access patterns (e.g., random, sequential, rereference). Section 
3 presents the details of the skew characterization algorithm that characterizes the 
skew in an access trace. Section 4 provides the validation of buffer hit prediction 
capability both for the overall database access characterization and for the random 
access skew characterization. We summarize the results in Section 5. 

2. Database Workload Description 

Two production database workloads are employed to validate our characterization 
approach. The first trace was taken on a DB2 system (Date and White, 1989; IBM, 
1993) from a long distance communication company during the peak activity period 
for a duration of 2 hours and 30 minutes (2:30 pm to 5 pm). There are 10.7 million 
page accesses recorded on the trace. We describe this workload in detail since it 
will be the primary one for presentation in this article. A second DB2 trace from 
a commercial bank is also analyzed. It was taken at peak load for an hour with 
13.3 million page accesses recorded, and it contains a substantially larger number 
of updates. It will be introduced for the validation of the predictive capability of 
the multi-node buffer invalidation effect. The buffer traces consist of a sequence 
of Getpage and Setwrite records, where a Getpage is recorded each time a page 

2. If the database of size D is logically divided into K partitions, the computational complexity of estimating 
the buffer hit probability for a buffer size of B is O(KB) under the LRU replacement policy (Dan and 
Towsley, 1990; Dan et al., 1994), where K <~ < D. 



Table 1. Size, access count, and access components of first 
database trace 

File size 

R1 

R2 

R3 

R4 

R5 

R6 

I R7 234600 (13.06%) 

1065865 (59.34%) 

Access count Random 

170700 (9.50%) 1501951 (14.01%) 0.00% 24.74% 75.26% 

36300 (2.02%) 552874 (5.16%) 92.84% 3.64% 3.52% 

60560 (3.37%) 402460 (3.75%) 80.27% 6.89% 12.84% 

83420 (4.64%) 316706 (2.95%) 0.00% 22.56% 77.44% 

15300 (0.85%) 203586 (1.90%) 0.00% 43.90% 56.10% 

12900 (0.72%) 136189 (1.26%) 0.13% 37.20% 62.67% 

6308434 (41.15%) 

I1 39875 (2.22%) 

12 7839 (0.44%) 

I3 22076 (1.23%) 

I4 26491 (1.47%) 

807981 (7.54%) 

Relation Summary 

461464 (4.30%) 

206942 (1.93%) 

91991 (0.86%) 

4410865 (58.85%) Index Summary 

10719299 (100.00%) 

Sequential Rereference 

0.03% 6.79% 93.18% 95332 (0.89%) 

0.00% 87.86% 

0.00% 79.05% 

51.19% 33.09% 

14.22% 62.33% 

12.14% 

[ II 730368 (40.66%) 

!l II 1796233 (100.00%) 

20.95% 

15.72% 

23.45% 
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Relation & Index Summary 

reference request is made to the buffer manager from the data manager in DB2, 
and a Setwrite is recorded each time the buffer manager is informed that a page 
update is requested to the data manager. These records contain information on 
the database relation, page ID, process ID (also known as ACE or Agent Control 
Element in DB2), and timing information. The system maintains some fixed number 
of processes. An incoming transaction is executed by one of these processes. The 
same process executes an entire transaction. Therefore, the process ID can be used 
to track the access string of a particular transaction. 

In the first trace, the database consists of 117 relations and 138 index files. 
Temporary work files are ignored in this study. Only 62 relations and 91 index files 
were accessed during the tracing period. These are referred to as the active files. 
Table 1 provides a summary of file size, access count, and fraction of various access 
components (random, rereference, and sequential) in each relation or index file for 
the most active ones among these files. We shortly define the access components 
and describe the algorithm that was used to identify each of the components in the 
trace driven simulations. Also indicated in parentheses in the file size column is 
the fraction relative to the total size of the active files. Similarly indicated in the 
access count column is the fraction relative to the total number of page accesses. 
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The access trace for each file (relation or index) consists of concurrent page 
accesses by multiple transactions or queries to the same file. For the identification 
of sequential accesses, the access string from each process (transaction or query) is 
tracked separately in the trace driven simulation based on the process ID. The query 
optimizer often provides explicit hints of sequential accesses to the buffer manager 
for the purpose of prefetching as well as separate handling of pages brought in by 
sequential accesses (Teng and Gumaer, 1984). Unfortunately, such hints were not 
recorded in the particular traces that we processed. Note that the primary objective 
for characterizing an access trace is to predict the buffer hit probability under the 
specific buffer management policy. Therefore, the characterization process should 
capture the behavior of the buffer management policy. In different environments, 
different methods may be used for identifying and, hence, prefetching sequential 
accesses. Here, we assume an environment where a simple dynamic prefetching 
algorithm is used by the buffer manager to identify the sequential accesses. The 
algorithm uses run length to identify sequential accesses and then triggers prefetch. 
An access is counted as a part of an ongoing run if it is to the same or the next page 
relative to the page accessed in the previous step (Smith, 1978). Once a sequential 
run up to some prespecified threshold (NT) is dete.cted, the subsequent references 
are considered to be part of a sequential access string. We assume that the dynamic 
prefetching will then be activated by the buffer manager. We further assume that 
Np pages are brought into the buffer due to each prefetch. Prefetching for a 
process is deactivated once a break in the run is detected. We like to emphasize 
here that our goal is not to design an optimal prefetching policy or to determine the 
best way to allocate buffer space among sequential and random access components 
(i.e, query and transactions), but to characterize such access components for use in 
future buffer hit prediction. 

The behavior of the buffer management policy depends on the values of control 
parameters N T and Np. Too small a value for NT will identify most access strings 
as sequential, and will cause many false prefetches, while too large a value will 
miss most sequential accesses. The choice of Np value for small values of NT 
is also an important factor in determining minirrmm false prefetch I/O overhead 
(Smith, 1978). We will seek a large enough NT to avoid substantial false prefetch 
overhead, while not affecting the buffer hit probability of the (what we identify) 
non-sequential component. Figure 2 shows the effect of recognizing and separating 
the sequential component on the buffer hit probability of the remaining component. 
Different curves correspond to different values of NT, where the sequential access 
component is identified once an ongoing run of NT is detected. Only references 
with run lengths less than NT are kept in the main buffer and the rest of the pages 
(identified as sequential component) are put into a separate buffer. The pages 
needed by the sequential component are prefetched, and therefore will be found in 
the buffer as needed (i.e., there is no synchronous I/O requirement). However, if 
the prefetch pages are not buffered in a separate buffer space or through a separate 
LRU chain as in SLRU (Teng and Gumaer, 1984), a long sequential scan can wipe 
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out the frequently accessed pages by the transactions from the buffer. 

The effect of the sequential access component on the buffer hit probability of 
the other access components is examined later in Figure 3. We assume that the 
small set of prefetched pages will be put into a separate buffer, calledprefetch buffer. 
(This is similar to the separate logical chain in DB2 buffer; Teng and Gumaer, 1984). 
The size of the prefetch buffer only needs to be large enough to keep the number 
of prefetched pages (Np) to get actually referenced during a sequential scan. (Here 
the prefetch buffer is not intended to capture rereferencing after the sequential 
scan. Optimizing buffer allocation for join queries to reduce the number of prefech 
I/Os is beyond the scope of this article (see Ng et al., 1990; Faloutsos et al., 1991; 
Yu and Cornell, 1991). This has a very small effect on the buffer hit probability 
of the non-sequentially accessed pages. 3 As shown in the figure, too large an NT 
value (>  100) is not effective in identifying the sequential component. However, 
the buffer hit probability of the non-sequential component is not very sensitive to 
the smaller values of NT. Our objective here is not how to select the best values 
of NT and Np, but to demonstrate the effectiveness of characterization process for 
any reasonable values of NT and Np. Therefore, we choose arbitrarily NT and Np 
to be 10. 

Figure 3 shows the buffer hit probabilities of the sequential and non-sequential 
components after the sequential component is identified, and/or prefetched, and/or 
put into a separate prefetch buffer. The three solid curves are the buffer hit 
probabilities (random, sequential, and overall) for the case when the prefetching is 
not activated, and both the sequential and non-sequential components are put into 
the same buffer. The dashed curves are the corresponding buffer hit probabilities 
after the sequential component is prefetched but still put into the same buffer. The 
buffer hit probability of the sequential component becomes 1.0, but that of the 
non-sequential component changes very little. If the sequential component is put 
into a separate prefetch buffer, then the buffer hit probability of the non-sequential 
component improves substantially (dotted curve). Hereafter in this article, we 
assume that the buffer manager uses a separate prefetch buffer. 

The non-sequential component is further divided into two components: (i) 
rereferenced pages within the locality set and (2) randomly accessed pages. Within 
a transaction a page may be rereferenced several times as a result of the executions 
of multiple SQL statements referencing the same page or same tuple. For example, 
in the TPC-A benchmark (Gray, 1991) an account is first updated (UPDATE 
statement), and then the result on that account is reported through a separate 
SELECT statement. Rereferencing can also occur in the small loops of the query 

3. Note that in the simulation, a page is never replicated in two separate buffer spaces. If a sequentially 

accessed page is already present in the main buffer, the page is neither prefetched nor moved to the prefetch 

buffer. However, if a random access fails on a page present in the prefetch buffer, it will be moved to the 

main buffer. 
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access string that would not be identified as sequential accesses. The rereferenced 
pages within the small locality sets are highly likely to be found in the buffer even 
for very small buffer sizes. Therefore, for the estinaation of buffer hit probability, 
this access component needs to be separately accounted for. Also, it will be shown 
later that rereferencing within a transaction has to be distinguished for accurate 
prediction of invalidation effect in a multi-system environment. Let  Nw be the 
size of a transaction (i.e., the number of pages accessed by a transaction). The 
transaction boundaries were not recorded in this particular trace. Experimentation 
with the trace showed that most of the rereferences occurred within a window of 
size 10. Therefore,  we arbitrarily chose the transaction size, (Nw), to be 10. 

The remaining accessed pages are assumed to be; random, particularly when they 
come from several concurrently executing transactions. However, the random access 
is not uniform over all database pages. Figure 4 shows the buffer hit probabilities 
of the rereference and random components for three relations and one index file in 
the first database workload. The rereference hit probability is 1.0 for most buffer 
sizes. However, the buffer hit probabilities of the random components are very 
different for the different relations and index files. The random accesses are clearly 
skewed, as buffer hit probability does not increase, uniformly with the increase in 
buffer size. In the next section, we will provide an algorithm that can determine 
the access skew in the randomly accessed pages. 

Given the fractions of various access components, and the characterization of 
the random access skew under the above described buffer management policy, the 
overall buffer hit probability can easily be compute, d. Let  AS, AL, and An be the 
access ratios for the sequentially accessed pages, re, referenced pages within locality 
sets, and the randomly accessed pages, respectively. Let  hs, hL, and hR be the 
corresponding buffer hit probabilities. Then the overall buffer hit probability is 
given by 

H = Ashs + •LhL + )~RhR (1) 

Both hs and hL will be close to 1, if sequentially accessed pages are prefetched, 
and if the combined locality sets of all concurrently executing transactions are 
small compared to the database buffer size. hR is estimated as a function of 
buffer size based on the skew characterization described in the next section. The 
characterization can also be used to predict the effect of multi-node invalidation. 
Buffer invalidation will have impact only on h R . If the transactions are routed 
randomly to all nodes then, using the analysis of :Dan et al. (1994), the buffer hit 
probability due to random access can be estimated in a multi-node environment. 

3. Recursive Binary Partitioning Algorithm 

In this section, we describe an algorithm that infers the access skew, given the 
random access component of a database access trace. As mentioned in the previous 
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section, the access skew can be characterized by logically grouping the pages into 
a smaller number of disjoint partitions such that the access frequencies to pages 
within a partition can be treated as equal. Assume that a particular database needs 
to be divided into K partitions for a desired accuracy in the prediction of buffer hit 
probability. Let o~i be the frequency that an access will go to partition i, and let 
Di be the number of pages in that partition. Then the access skew is characterized 
by [(oli,Di), i=I, . . . ,K].  Given an access trace, we have to to determine the value 
of K as well as [(oei,Di), i=l,...,K]. 

We first obtain the buffer hit probability vs buffer size curve under the LRU 
policy through trace driven simulation. Let Bj, j = l ,  ...,N be the set of buffer sizes 
for which buffer hit probabilities, sim hj , j = 1, ...,iV, are evaluated. This can be done 
in a single pass of the trace (Mattson et al., 1970). The buffer sizes selected are 
somewhat arbitrary, but they should reflect the range of buffer sizes for which we 
are interested in predicting the buffer hit probability. Let h~ ha, j = l ,  ...,N, be the 
predicted buffer hit probabilities based on the skew characterization for the buffer 
sizes Bj, j = l ,  ...,N under the LRU policy. (See Appendix for a summary of the 
buffer hit analysis, which is based on Dan and Towsley, 1990.) We say that the skew 
is well characterized if the absolute difference s i r e  ar ia  (Ihj -- hj I) between the buffer 
hit probabilities for any buffer size under the given replacement policy obtained 
through a trace driven simulation and through an analytical prediction is within some 
desired accuracy (say, 1%). In this article, we use LRU replacement policy for the 
purpose of characterization. Similar approaches can be used for other replacement 
(e.g., clock) policies. 

The above problem can be thought of as an optimization problem, where the 
optimal values of the parameter.s [(ozi, Di), i=1, ...,K] need to be determined such 
that some error function, g (h~ *m, h~ n'~, j = l ,  ...,N) is minimized. The number of 
partitions, K, is also an unknown parameter and, hence, needs to be determined 
by iterating over K (and carrying out optimization for each value of K) until some 
desired accuracy in the buffer hit probabilities is reached. For each search step in 
the optimization procedure, the computation of the predicted curve requires analytic 
solution of the LRU model for the buffer sizes B j, j = 1,..., N. Since this computational 
overhead may be significant, the efficiency of the optimization algorithm is of 
particular concern. The search space for the optimization algorithm is very large 
(e.g., range for partition size, Di, is given by 1 _< Di ~ Dmax, where Drnax is the 
maximum number of database pages), and starting anew for each iteration over K 
will make the algorithm inefficient. 

We overcome these difficulties by taking advantage of one special property 
observed for the LRU replacement policy under the IRM access pattern considered. 
The observation is that in estimating the buffer hit probability for a given buffer 
size, the "relatively" hotter partitions (with total size much smaller than the buffer 
size) can be lumped together and treated as one partition with little effect on the 
accuracy of the estimate. This is due to the fact that the pages of the hotter 
partitions are mostly retained in the buffer for larger buffer sizes. This property 
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Figure 1. Recursive binary partitioning algorithm 

(1,D) 
Recursioa Step 1 

((1 - cat), D~) 

Recursion Step 2 

• (ar  + an- i  + a/c-z), IYK_2~ 

Recursion Step (K - 2) / 
((OtK + OtK-t), Ok_l),, ] / 

I Recursi°n Step (K - 1) I / 

(a/c, D/c) (aK-t,DK-t) (CtK-2, DK-:Z) (a~, D:) (tat, Dr) 

is referred to as the property of insensitivity of the buffer hit probability for large 
buffer sizes to the differences in access frequency of the hotter partitions. We can 
thus devise a recursive algorithm that uses a two-partition model to match the 
simulated curve for the large buffer sizes first, and then increase the number of 
partitions to improve the accuracy for smaller buffer sizes. Each recursion step 
solves only a two-partition problem (details are described later in this section), by 
dividing the hotter partition (frequency and size) from the previous recursion step 
into two smaller partitions. The colder partitions derived in the earlier steps of the 
recursion need not be revised due to the insensitivity property (i.e., very few pages 
of the colder partitions are retained in the buffer for smaller buffer sizes). 

3.1 Overview of the Algorithm 

Figure 1 illustrates the algorithm through a schematic diagram. At the beginning, 
the undivided database consists of D pages and the relative access frequency to the 
whole database is assumed to be unity. At recursion step 1, the database is divided 
into two partitions such that the frequencies of the two new partitions add up to the 
frequency of the undivided database, oq and D 1 are the size and access frequency 
of the coldest partition. Here, the smaller partition represents the union of all other 
(hotter) partitions. The recursion step also deterrnines the size of this equivalent 
partition, D~, that minimizes the error function at recursion step 1. At recursion 
step 2, the hotter partition is subdivided into two new partitions with frequency and 
size (0~2, D2) and ((1 -- ( a l  + a2), D~), respectively. The partitioning process 
is repeated and at each subsequent recursion step the error function is further 
minimized. In general, at recursion step I, the smallest partition (which is the 
partition to be split) represents the equivalent partition corresponding to the union 
of the ( K -  1) hottest partitions and the frequencies and the corresponding sizes of 
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all colder partitions determined in earlier recursion steps, (cti, Di), i < l, are kept 
unchanged. The algorithm terminates either when the desired accuracy or some 
specified limit on the maximum number of partitions is reached. The choice of 
error function as well as the selection of the associated optimization algorithm are 
non-trivial problems and the issues are discussed below. 

Choice of  Error (Objective)Function: We choose the area between the simu- 
lation and the prediction curves as the objective function to be minimized. 
Let sl and s2 be the points on the simulated curve for buffer sizes bl and 
b2, respectively. Let Pl  and P2 be the corresponding points (for the same 
buffer sizes) on the predicted curve. Then the area enclosed by the 4 points 
between the two curves can be approximated as (b2-- b l ) ( ( s l - -  P l )  + (s2-- 
p2))/2. To put an ordering on the search space, we do not allow in any search 
step the predicted and simulated curves to intersect each other. Without 
any loss of generality, we assume that the predicted curve always lies below 
the simulation curve (i.e., sl > Pl  and s2 _> p~. One could devise a similar 
scheme by assuming the predicted curve always lies above the simulated 
curve.) As the objective is to match the curves at the large buffer sizes 
first and then to improve the accuracy on smaller buffer sizes at subsequent 
recursive steps, we do not seek uniform discrepancies over all buffer sizes at 
all recursion steps. The better match at the higher end can be achieved by 
assigning higher weights (Section 3.2) to the areas at the higher end. Note 
also that the least square error estimation reduces the maximum error (since 
square of error translates to higher weight) rather than the errors we seek 
to minimize, and therefore is not appropriate for our objective. 

Constraint on Search Space." Under the IRM access pattern and the LRU 
replacement policy, the buffer hit probability vs buffer size curve is concave 
(i.e., with smaller marginal improvement of buffer hit probability for larger 
buffer size; Van den Berg, 1993). The buffer locations near the LRU stack 
top will have a higher probability of holding a hot page than the locations 
near the stack bottom. Therefore, the increase in buffer hit probability for 
an additional buffer allocation will be smaller for larger buffer sizes (i.e., 
will have diminishing return). For this type of buffer hit curve, we can use 
similarly shaped concave curves to match it from below. This restriction will 
greatly simplify the search space. Note that ordering in our matching process 
(higher-end of the buffer size first), as described earlier, further restricts the 
search space. A one step approach to match the curves would have a far 
more complex search space to go through. 

Non-Concave BufferHit Curve: As mentioned above, the buffer hit probability 
for an IRM access pattern is a concave function. However, in the access 
trace, the presence of sequential and looping sequential behavior will cause 
the buffer hit probability vs buffer size curve to violate this property. As 
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Figure 2. Effect of separation of sequential access on the 
buffer hit probability of remaining (R3) 
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discussed before, we use some simple rules to identify and filter out these 
non-random components. Still the process is not perfect and some of them 
may continue to be present in the trace and make the curve non-concave. 
Although in this study we rarely observe any non-IRM points, the following is 
included to make the methodology complete. Figure 5 shows a hypothetical 
buffer hit probability vs buffer size curve. As marked in the figure, point p l  
violates the IRM property, as the slope of the curve on the right is larger than 
the slope of the curve on its left. The best we can hope for is to match the 
envelope of the buffer hit probability curve. In this case, our characterization 
algorithm ignores any points that violate the IRM property. We refer to the 
points on the curve that do not violate the IRM property, as IRM points, 
and the others as non-IRM points. In the above example, there are many 
such non-IRM points. Note that after the non-IRM point p2 is eliminated, 
point p3 also becomes non-IRM and should be eliminated. The elimination 
process continues, and at the end we are left only with the IRM points. 4 

• Effective Characterization Range: For some access skew a very accurate char- 

4. Note that  in Figure 5, there are no points on the left of point p2  that  satisfy the IRM property. We 

therefore, have two choices: either to eliminate completely all the  points to the left of  pointp2,  or to include 

the leftmost point that will capture the upper  envelope of the sim~tlation curve as the  curve to match. We 
have chosen the  second alternative, since the first alternative results in characterization that  gives larger 

error in buffer hit prediction for smaller buffer sizes. 
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Figure 3. Effect of prefetching on buffer hit of sequential 
a n d  n o n - s e q u e n t i a l  a c c e s s e s  
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Figure 4. Random and reference buffer hit probabi l i t ies 
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acterization may require a large number of partitions. Given a fixed number 
of partitions to choose, an effective characterization will choose only those 
points that result in minimum error in the prediction of buffer hit probability 
in some specified range. For example, if the minimum allocation of buffer 
space is large (say, 1,000 pages), small partitioning sizes that have significant 
effect only for small buffer sizes (say, < 500 pages) are not very important 
due to the insensitivity property. 

3.2 Details of the Algorithm 

We will now detail the algorithm. Assume that the buffer hit probabilities, h~ ira, for 
the buffer sizes, B j, j = 1, ..., N, are obtained from the trace driven simulation. In the 
case that there are points violating the IRM property, the algorithm removes these 
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Figure 5. Illustration of recursive binary partitioning 
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points to construct an envelope of the simulated buffer hit curve for matching with 
the predicted curve. In the following, we still refer to this curve as the simulated 
buffer hit curve. The algorithm then tries to match the predicted curve to the 
simulated curve at the higher end through minimization of the weighted area. The 
weight assignment is as follows. Let M be the number of IRM points to be matched. 
The M points and the origin can be used to divide the buffer size axis and, hence, 
the area between the simulated and the predicted curves into M regions. We will 
refer to the region closest to the origin as region 1, and the region between the 
points (j -- 1) and j as region j. As the algorithm tries to match the higher end 
first, higher weights should be given to the areas of the higher region. However, a 
very large weight for the higher region will make the algorithm insensitive for the 
lower buffer sizes. Since we merely want to express the preference of matching at 
the higher end, without making the algorithm insensitive for the lower end, a linear 
weight assignment (value of weight for each region is its index) seems to be a good 
compromise. We will show in the validation section that this weight assignment 
works well for a wide range of skewed access patterns. 

Recall that at the l th recursion step, the ( K -  l) hottest partitions are grouped 
g (i.e., together into an equivalent partition of size DI+ 1 and frequency ~i=/+1 o~i 

l 1 -- ~]i=z c~i). The frequencies and their corresponding sizes, (ozi, D i ) ,  i < l, of 
all colder partitions determined in the earlier recursion steps are kept unchanged. 
However, the smallest partition of the previous step (i.e., I th partition) is divided 
into two new partitions, such that the frequencies of the two new partitions add 
up to the frequency of the undivided partition (Figure 1). The sizes of the two 
new partitions (DI+ 1 and Dl) however, are allowed to vary independently (since, 
the size of the equivalent partition, D~, is always smaller than the total size of the 
new partitions, DI+ 1 and Dl). Hence, at each recursion step l the optimization 
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Figure 6. Validation of random buffer hit probability (R1) 
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procedure determines only the three new parameters (D~+i, Di and olt) such that 
the weighted area is minimized further than the previous step. The algorithm is 
illustrated through an example. In Figure 6, the predicted buffer hit probability 
after each recursion step, as well as the simulated buffer hit probabilities, are shown 
for Relation 1. As can be seen from the figure, after the first step the predicted 
curve matches well with the simulated curve for larger buffer sizes (>  10,000 pages). 
After the subsequent recursion steps, the predicted buffer hit probability matches 
for a longer and longer range of buffer sizes. Also, partitioning of the smallest 
partition does not affect the match at the higher end. Further validation will be 
shown in Section 4.1. 

We will now describe a few ways to improve the efficiency of the optimization 
algorithm used at each recursion step. 

. Efficient LRUEstimation: The analytic estimation of the buffer hit probability 
under the IRM access pattern and LRU replacement policy for a buffer size 
of B and for a workload consisting of K partitions is given in the Appendix 
and is of order O(KB) (Dan and Towsley, 1990). The computation overhead 
can be easily reduced for very large buffer sizes (say, > > 1,000) by scaling 
down the database and the partition sizes (by the same scale down factor) 
such that the buffer size is of the order of 1,000 pages. We note from our 
experience that this introduces very little error. 

2. Starting Value for Parameters: Good starting values of D t /+1, Dl and at  at 
each recursion step l are of extreme importance to reduce the number of 
search steps needed by the optimization procedure at each recursion step. 
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For recursion step 1, we note that the asymptote to the buffer hit probability 
curve will intersect the buffer hit probability aids at the point (1 --Oel) (i.e., 
the intersection point, 11, represents the total :frequency of accessing all but 
the coldest partition; see Figure 5). 5 Let irm(M) represent the M th IRM 
point on the simulated curve. The asymptote is then approximated as the 
line passing through the highest two IRM points on the buffer hit curve 
(i.e., points irrn(M) and irm(M -- 1)). Therefore, (1 - I1) is taken to be 
the starting value of eel. At each subsequent recursion step l, the starting 

K value of ~ i = t + l  O~i is taken to be the intersection point (Iz) on the buffer 
hit probability axis of the line passing through the highest two IRM points 
for which the predicted curve of the previous step differ from the simulated 
curve by an amount greater than the desired accuracy (Figure 5). 

The starting values of D'l+ 1 and Di are chosen as follows. Let Bts be the 

smallest buffer size for which the buffer hit probability hs sire > It. This 
implies that the total size of the smallest ( K -  l) partitions, DI+i,  is at most 

Bls. 6 Therefore, Bls is a good starting value for D~+ 1. The starting value for 
Dl is (D' t -  DIt+l). Note that for l = 1, D~ is the size of the total active 
database (D), which is approximated as 

D = Birm(M) + 

(1 h s i m  ~(l~sirn t~sim 
- ' ~irm(M) J ~' ~irm(M) -- 'virtu(M-- 1) J 

( Birm(M) -- Birm(M-1)  ) 

The above approximation linearly extrapolates the buffer hit probability curve 
to determine the buffer size for which the buffer hit probability becomes 
unity. 

. Step Size in Parameter Search: The search on any parameter can be made 
efficient by first taking progressively larger steps, and then once the predicted 
curve violates the constraint, taking progressively smaller steps (Bracketing 
and Bisection method; Press et al., 1986). 

The resulting a.lgorithm is very efficient. A summary of the algorithm is shown 
below, where g (hjs*m, hjana,j" = 1, M) represents the weighted error estimate between 

sire aria the hj and hj over M selected points. We are unable to provide estimates of 

5. If the coldest partition is much  larger than the rest, the asymptote of the buffer hit probability curve would 

be (1 - -  C~1) + O l l  B / D 1, where B is the buffer size. That  is to say for a large buffer size B, accessing the  

coldest partition has a buffer hit probability of B / D 1 while accessir~g the  hotter partitions always results in 

a hit. 

6. At buffer size Bls , not all pages in the buffer belong to the hottest  k - -  I partitions. If only pages from 

those partitions are buffered, buffer hit I l would be reached at a smaller buffer size. 
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its computational overhead. However, for most of our examples presented here, it 
took less than a minute of CPU time (7.6 - 46.3 seconds) on the IBM mainframe. 
Note that once each relation is characterized prediction of buffer hit for various 
composition of workloads (due to buffer pool allocation and load change) and buffer 
sizes can be done very efficiently through analytical models. In contrast, trace driven 
simulation for each such composition will take on the order of minutes and hours. 

l:=1; remalpha := 1.0; / *  after l th step remalpha K = E =t+l / 
D : =  B i r r n ( M ) ' J -  (1 sire sire sire -- hirm(M)) (hirm(M)-- hirm(M_l)) / (Birm(M)-- Birm(M-1)); 
D~ := D; / *  initial undivided partition * /  

• __ sire aria whtle((l <--K)&(3i lhirm(i) - -  hirm(i) I > aceura~, i E (1 ...M)) 
{ 

/ *  starting values * /  
ozt := remalpha - I t ;  /*  It is the intersection point * /  

D't+ 1 := Bts; 
Dl := D~-- D~+i; 

/ *  search for al, Dl, and J l+l  * / 
/*  (ai, Di), i < l are fixed at the l th step * /  

[ L s i m  ana ( I 
Minimize E [ ' ~ i r m ( j ) ,  h i r m ( j )  Dr+l,  Dl, Oil, (O~i, Di), i < l) ) , 

j = i , . . . , M  I (Oei, Di), i < l) ] 
remalpha = remalpha -- eel; 
l := l-q- l; 

} 

3.3 Estimation of Update Probabilities 

All database pages may not be updated with the same frequency. The knowledge 
of update probability for each of the logical data partitions is required for the 
estimation of the multi-node buffer invalidation effect (Section 4.3). As above, an 
analogous method can be devised to determine the update probabilities, '3i, i = 
1, ...,K, to each region. For this purpose, only the update (i.e., Setwrite) entries 
are used in the trace driven simulation to obtain the buffer hit probability vs buffer 
size curve only for the update operations. (Recall that in the previous subsection, 
we determine the access frequency and the size of each region from the buffer hit 
probability curve.) The partition sizes, Di, i = 1, ...,K, are already known, and the 
corresponding access frequency of Di is equal to Tiai,  where oli is also known. 
Hence, only "Yi, i = 1, ...,K, needs to be determined, such that the predicted curve 
using (Tiai,  Di), i = 1, ...,K is close to the simulated curve. 
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Figure 7. Validation of random buffer hit probability (11) 
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4. Model Validation and Applications 

In this section, we validate our algorithm extensively, based on the database workload 
described in Section 2. We then show how the characterization of individual files 
can be used to predict the buffer hit probability of the composite workload (i.e., 
more than one file sharing the same buffer space), as well as the effect of multi-node 
invalidation, with good accuracy. We will present resu]its primarily based on database 
trace 1 except in Section 4.3 where database trace 2 is used. 

4.1 Validation 

The random buffer hit probabilities of Relation 1 (R1) and Index file 1 (I1), 
obtained through prediction and trace driven simulation, are plotted in Figures 6 
and 7, respectively. The simulated curve presented in this section includes both IRM 
points and non-IRM points, if any. Multiple predicted curves refer to the predicted 
values after various recursion steps. (A small number of recursion steps is generally 
sufficient (e.g., four and three steps for R1 and I1, respectively.) The predicted 
curve after the last recursion step matches well with the trace driven simulation 
results for all buffer sizes, and the curves from the intermediate steps match only a 
portion of the simulated curve. Similar matches in buffer hit probability were found 
for many other relations and index files that we experimented with. The sizes and 
frequencies of all partitions (hottest to coldest) after all recursion steps for R1 are 
shown in Table 2. From now on, only the final predicted curves for various files 
are presented. 

4.2 Prediction of Buffer Hit Probability of Composite Workloads 

Next we consider how to predict the buffer hit probability of a composite workload 
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Table 2. Access frequencies and sizes of all partitions of Relation 1 
after various recursion steps 

Step* tl (ozi in per cent, Di in number ofpages) 

(36.3, 20) 

(55.6, 204) 

(19.3, 127) 

(98.8, 9690) (1.2, 36438) 

(75.0, 1276) (23.8, 7632) (1.2, 36438) 

(19.4, 754) 

(19.4, 754) 

(23.8, 7632) 

(23.8, 7632) 

(1.2, 36438) 

(1.2, 36438) 

from those of its component workloads. Based on the skew characterization of 
each of the files and the access fraction to each of the files, the overall random 
buffer hit probability under the LRU replacement policy can be computed using the 
analytical buffer model (Dan and Towsley, 1990; see Appendix for a summary). The 
computation uses the total number of logical partitions as the sum of the partitions 
of each file. The corresponding access frequency is given by the product of the 
original access frequency to each partition (normalized for each file) and the fraction 
of the accesses to that file. The rereference component of each relation is assumed 
to be retained in the buffer. The overall non-sequential buffer hit probability is 
the weighted sum of the components. Figure 8 shows the simulated and predicted 
curves for random, rereference, and overall non-sequential buffer hit probabilities 
for the composite workload of R1 and R4. 7 As can be seen in the figure, all three 
buffer hit components are well predicted. The composite workload is created by 
filtering out the accesses to all other files except to R1 and R4 from the original 
database access trace. The fraction of the accesses of the composite workload that 
goes to each of the files is computed from the trace. 

The validation process is repeated for various compositions of workloads (mul- 
tiple files, and various types of files). Figure 9 shows the overall non-sequential 
buffer hit probabilities of the combinations (R1 & R4) and (R1 & I1). Also shown 
are those of R1, R4, and I1, respectively. The predicted values of the composite 
workloads (dotted curves) show excellent agreement with the simulation values. 
Note that the shapes of the composite buffer hit probabilities are very different for 
the two cases. 

The prediction can be put to use to answer what if types of questions. As the 
fraction of the load to each of the files changes (due to change in application mix), 
the LRU analysis can also be used to predict the buffer hit probabilities for the 
new workload compositions, assuming the access skew characterization for each file 
remains unchanged (Kearns and Defazio, 1989). Figure 10 shows the changes in 

7. R4 is chosen over R2 and R3 for the purpose of presentation as there are more random accesses to this 
relation compared to the others (see Table 1). 
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Figure 8. Validation of composite buffer hit probability 
(R1 & R4) 
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Figure 9. Validation of composite (non-sequential) buffet hit 
probabilities (R1 & R4 and R1 & I1) 
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buffer hit probability of the composite workload as the transaction load to R1 and 
R4 changes. Le tL1  and L2 be the access rates to R1 and R4, respectively. The solid 
curve represents the original load mix and the dotted curves represent the predicted 
buffer hit probabilities after various load changes. Four different cases in terms of 
the ratios of L1 to L2 are presented. As the relative load to R1 decreases, the 
overall buffer hit probability decreases. The effect is significantly different for the 
combination of R1 and I1. In Figure 11, besides the original case, four additional 
cases in terms of the ratios on the load changes of R1 and I1 are presented. Note 
also that the composite buffer hit probability of the workload (R1 and I1) changes 
only for small buffer sizes in contrast to the case in Figure 10. 

The changes in relative loads to the component files can have a significant 
effect on the buffer hit probability, if the access skews of the component  files 
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are very different. This would affect the total buffer requirement or the optimal 
buffer allocations among the buffer pools in a multiple buffer pool environment 
(Effelsberg and Haerder, 1984). Dan and Towsley (1990) studied the performance 
gain of optimal file assignment and allocation of buffer pools, based on a given 
skewed access workload. Generally speaking, it would be too time consuming to try 
out various workload compositions or buffer pool assignments of files through trace 
driven simulations. To predict the effect of the load changes would be even more 
formidable. The proposed methodology provides an analytic approach to predict 
the buffer hit probability efficiently. 

4.3 Prediction of Multiple-Node Invalidation Effect 

Multi-node systems can provide the horizontal growth capability (Stickland et al., 
1982; Kronenberg et al., 1986). One way to couple multiple systems is through data 
sharing (Dan et al., 1994a, 1994b) where the database resides on a set of shared disks 
and each processing node retains in its local (memory) buffer the recently accessed 
pages. Therefore, the same page may be retained in the buffers of multiple nodes. 
When a page is updated, the other copies of the page in remote nodes need to be 
invalidated (Dan et al., 1994a). Therefore, a buffer coherency protocol is required 
to maintain the consistency across nodes. The buffer invalidation reduces the 
local buffer hit probability. Prediction of the multi-node buffer invalidation effect 
is extremely useful from the point of view of system configuration and capacity 
planning when the number of nodes changes. Of course, the invalidation effect 
depends on the transaction routing (i.e., how the files are shared by the transactions 
executing in multiple nodes). We will assume random transaction routing and, 
therefore, all files are equally likely to be accessed by all nodes. 

The invalidation effect depends not only on access skew characterization but also 
on the transaction update probability. The buffer hit probability is predicted using 
the analytical model (Dan et al., 1994a). Update probabilities may be different for 
hot and cold partitions of a relation. To obtain update probability for each partition, 
we first construct a trace consisting of only the Setwrite (update) operations. Since 
each Setwrite entry is preceded by one or more Getpage entries for the same page, 
a relationship exists between the number of Setwrite operations for each partition 
and its access frequency and update probability. Therefore, if we treat this new 
trace as any other access trace, a higher buffer hit probability in this trace implies a 
high update probability for the hottest partitions. We use the matching procedure 
outlined in Section 3.3 to obtain these update probabilities. Figure 12 shows the 
validation of Setwrite (update) buffer hit probability for Relation 2 of the second 
database trace, which is from a banking application with heavy updates. The access 
skew is characterized by three partitions and, therefore, two recursion steps are 
required to obtain the update probabilities. Step 1 shows the intermediate result 
where only the update probability of the largest partition is correctly determined. 
A large number of pages read from this relation are also updated. This will give a 
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Figure 10. Effect of load change on composite (non-sequential) 
buffer hit probability of R1 & R4 

L ..... 4 
:::::::::::::::::::::::: 

. . . . . . .  . . . . . . . . .  

/ . . . . . . . . . . . . . . . . .  
- .L ,~.-* , . a 3 " ~ j * - ' " ' . ' Z ~  .~ .. . . . . . . . .  *r .4-~.~L.~..~..--"::....~- ..... 

L ~.ar'.,,~P~"~..t['~.~" .-t... =.~ fActoR - 1-a 

" "  

_ . L _ _ _ . - . . . I . - - - .  
0 4000 8000 I ~  

BUFFER SIZE 

Figure 11. Effect of load change on composite (non-sequential) 
buffer hit probability of R1 & I 1  
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very noticeable invalidation effect (i.e., a stress case to validate the methodology). 
The Setwrite buffer hit probability matches only if the update probabilities for each 
of the logical partitions are well predicted. The curves are plotted in logarithmic 
scale since the sizes of the hot partitions are small. 

We now show by a simple example that to estimate the multi-node buffer 
invalidation effect, only the random access component needs to be considered, while 
the rereference component should be excluded. Consider the following example 
with a two-node system. Assume that each transaction only accesses one page of 
data. It rereferences the page nine times while making an update during the last 
rereference. We further assume that the first reference, which is a random access, 
has a buffer hit probability of 0.1. The overall buffer hit probability would be 0.91 
since the other nine out of the ten references are hits. In a two-node system, if the 



VLDB Journal 4 (1) Dan: Characterization of Database Access Pattern 149 

Figure 12. Validation of Setwrite buffer hit prediction 

/ /  4.-'? ~' .~, SIMULATION 

• --- PREDICTION: S'I~P 2 

, "  .1"" 

. . -o  

I " i ' l l ~ l  I I I I I I I I J  I I I I f I I I J  I I I 

1 O0 1000 10000 
BUFFER SIZE 

transactions are randomly routed between the two nodes, we expect the buffer hit 
probability of the first (random) reference to be the same at either node. A page 
update in a node causes an invalidation in the other node if a copy of that page 
resides in the buffer of the remote node. Therefore, the probability that the final 
update would cause a buffer invalidation at the other node would be the same as 
the buffer hit probability (0.1) of the initial random access, not the overall buffer 
hit probability (0.91). 

Figure 13 shows the effect of cross-node buffer invalidation on the buffer hit 
probability for the above relation. This information would be useful in predicting 
the effect of migrating from a single node to multi-node environment when database 
load increases. There is a sharp drop in buffer hit probability due to the invalidation 
effect for the multi-node case. However, this is accurately captured by the proposed 
methodology as the match between simulation and predicted curves is excellent 
both for random and overall non-sequential buffer hit probabilities (for the buffer 
sizes of 250 and 500 pages/node). Note that the buffer hit probability curves for 
250 and 500 pages are close to each other beyond a single node. This is due to 
the multi-node invalidation effect, since the effective number of hot pages that can 
be retained in the buffer becomes smaller than 250 pages (Dan et al., 1994). /Mso 
note that the invalidation effect has a stronger impact on the random buffer hit 
probability than on the overall non-sequential buffer hit probability. This is due to 
the fact that rereferenced pages are always found in the buffer since invalidation can 
only cause a buffer miss for the first reference to the page. If the two components 
(random and rereference) were not separately accounted, the invalidation effect 
will be over predicted as explained in Section 2. 
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Figure 13. Validation of buffer hit prediction for multi-node 
environment 
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Conclusions 

In this article, we showed that, from a database reference trace, the database 
accesses can be effectively categorized into three types of access patterns: (1) random 
accesses by transactions, (2) locality within a transaction due to rereferencing, and 
(3) sequential accesses by queries. For buffer managers with prefetch capability 
for sequential accesses, the synchronous database I/Os mainly come from random 
accesses. Thus, the main issue is to characterize the random access pattern and 
predict its buffer hit probabilities under different buffer sizes. We proposed a skew 
characterization method that logically groups the pages into a small number of 
partitions such that the frequency of accessing a page within a partition can be 
treated as equal. We also developed an algorithm that can be used to infer the 
access skew from the buffer hit probabilities for a subset of the buffer sizes. This 
avoids explicit estimation of individual access frequencies for a large number of 
database pages. The skew characterization algorithm is recursive. At each recursion 
step, it divides the smallest partition into two new partitions and determines the 
sizes and access frequencies to the two new partitions. The algorithm terminates 
when the maximum number of partitions is reached or the difference between the 
predicted and the simulated buffer hit probabilities is within some desired accuracy. 
We provided extensive validation of our algorithm using production database traces. 
The characterization algorithm provides excellent buffer hit estimates for both the 
random access and the overall buffer hit probabilities. 

The knowledge of database access skew is useful for both workload management 
(buffer pool allocation, transaction routing, etc.), as well as capacity planning for 
changing transaction mix and rate. We showed how the characterization of the 
individual database files can be used to estimate the buffer hit probability of a 
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composite workload where data from more than one file are buffered in the same 
buffer pool. Our estimate matched very well with the buffer hit probability obtained 
through a trace driven simulation. This approach can be used to predict the buffer 
hit probability under changing workload mix and rate. Also considered is the issue 
of predicting the buffer hit probability when migrating from a single node system 
to a configuration with multiple nodes. In a multiple node environment, cross-node 
buffer invalidation effect reduces the local buffer hit probability. The invalidation 
effect is sensitive to the skewness of the access pattern. We showed that the skew 
characterization can accurately predict this effect. 
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Appendix 

In this appendix, we outline the analysis of the LRU replacement policy (Dan and 
Towsley, 1990), which is used to derive the buffer hit probability for a database 
consisting of multiple partitions. Let the database consists of K partitions, and the 
access frequency and size of the i th partition be o~i and Di, respectively. Let B be 
the size of the buffer. To estimate the steady state buffer hit probability, we first 
estimate the average number of pages of each partition in the buffer. Let Xi( j )  
denote the average number of pages of partition i in the top j locations of the 
LRU stack. Therefore, the buffer hit probability of the i th partition is estimated as 

K Hi = Xi(B)/Di, and the overall buffer hit probability for a page as H = ~ i=1  Oil 

Xi(B)/Di. Let Pi(l') be the probability that the jth buffer location from the top of 
the LRU stack contains a page of partition i. Then, 

J 
Xi(j) = Y~pi(l). (2) 

l=l  

A recursive formulation is used to determine pi(j+l) given Pi(j) for j _> 1. 
Consider a smaller buffer consisting of the top j locations only. The buffer location 
( j+ l )  receives the page that is pushed down from location j. Let ri(j) be the rate 
at which pages of partition i are pushed down from location j. The estimation of 
Pi(]) is given as follows. 

r~(j) = a~(1 X~,j,)(~ (3) 
Di " 

(This is referred to as the conservation offlow as the rate of type i pages brought 
into the top j buffer locations must be equal to that taken out of them.) 

Pi(j  + 1) ,~ K j = 1 . . . . / 3 -  1. (4) 
~]i=1 T i ( j )  ' 

Equations 2, 3, and 4 can be solved iteratively, with the base condition ofpi(1)  
= o~i. At the point when Xi(]) is very close to its limit (Di), Xi(j) may exceed Di 
because of the approximation in the above equations. This is corrected by resetting 
Xi((j) to Di whenever Xi(j) exceeds Di and ri(j) is taken to be zero for all subsequent 
steps for that partition. 

The buffer hit probability of a composite workload can also be predicted using 
the above analysis. Assume the workload is composed of M files. Each file may 
have a different skewed access pattern. Let Km be the number of partitions in the 
m th file. Also, let o~i,m and Di,m be the frequency and sizes of the i th partition 

of the m th file. For the LRU analysis, the total number of partitions is the sum 
M of all the partitions of the component files, that is, K = ~ r a = l  Kin. Let Am be 
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the access rate (load) to the m th file. In the composite workload, a new index, 
I(i ,m),  can be defined to reference the i th partition of the the mth  file. Then the 
normalized frequency to each of the K partitions are given by 

(5) O~/(i,m) -- M 
~m=l Am" 

The above LRU analysis methodology can again be applied to estimate the buffer 
hit probability of the composite workload. 


