
On the Complexity of Database Queries

�Extended Abstract�

Christos H� Papadimitriou

Division of Computer Science� U� C� Berkeley� Berkeley� CA �����

Mihalis Yannakakis

Bell Laboratories� Lucent Technologies� Murray Hill NJ �����

Abstract

We revisit the issue of the complexity of database queries� in the light of the recent
parametric re�nement of complexity theory� We show that� if the number of variables in
the query �or the query size� is considered as a parameter� the familiar query languages
�conjunctive� positive� �rst order� Datalog� are classi�ed at appropriate levels of the
so�called W hierarchy of Downey and Fellows� These results strongly suggest that the
query size is inherently in the exponent of the data complexity of any query evaluation
algorithm� with the implication becoming stronger as the expressibility of the query
language increases� On the positive side� we show that this exponential dependence
can be avoided for the extension of acyclic queries with �� �but not �� inequalities�

� Introduction

The complexity of query languages has been �next to expressibility� one of the main
preoccupations of database theory ever since the paper by Chandra and Merlin twenty years
ago ��	
 see ��� �	 for extensive overviews of the subject� It has been noted rather early
���	 that� when considering the complexity of evaluating a query on an instance� one has to
distinguish between two kinds of complexity Data complexity is the complexity of evaluating
a query on a database instance� when the query is �xed� and we express the complexity as
a function of the size of the database� The other� called combined complexity� considers
both the query and the databse instance as input variables
 the combined complexity of a
query language is typically one exponential higher than data complexity�� Of the two� data
complexity is widely regarded as more meaningful and relevant to database research� since

�A third kind� expression complexity assumes that the database instance is �xed� and is rarely di�erenti�

ated from the combined complexity�

�

the query is typically of a size that can be productively assumed to be �xed� and is in any
event much smaller than a typical database�

For a broad range of important query languages �relational laguages like conjunctive
queries� �rst�order� Datalog� �xpoint logic� as well as constraint languages� i�e�� extensions
with constraints such as arithmetic comparisons� linear and polynomial inequalities etc��
data complexity predicts that the query evaluation problem is perfectly tractable the com�
plexity classes spanned by these query languages range from AC� to P� well within what is
considered satisfactory in complexity theory� These tractability results are often quoted in
the literature to suggest that the corresponding computational problems are tractable� well�
understood� solved� under control� This implication is based on the thesis� broadly accepted
in the theory of algorithms� that� as a rule� polynomial algorithms that arise in practice are
usually fast� practical� with tolerable constant coe�cient and reasonable exponents� Is this
conclusion justi�ed in the context of database query processing�

It seems to us that neither of the two notions of complexity is completely satisfactory�
On the one hand� combined complexity is rather restrictive because it treats queries and
databases as part of the input the same way� even though the size q of queries is typically
orders of magnitude smaller than the size n of the database� Indeed it is for this reason that
the study of the complexity of query languages has mostly concentrated on data complexity�
However� on the other hand� polynomial time in the context of data complexity means time
nq� and in fact the known algorithms that place the above mentioned languages in P have
precisely such a running time� Even though q �� n� it is not reasonable to consider q
�xed� because even for small values of q� a running time of nq hardly quali�es as tractable�
especially in view of the fact that n is typically huge� What should the notion of complexity
be then� What we would like to have is a running time in which n is not raised to a
power that depends on q� i�e� the dependence on n is of the form nc where c is a constant
independent of the query �and hopefully very small��

Let us draw an analogy with the computer�aided veri�cation area� The basic problem
there is the model checking problem does a given program P �the �model�� satisfy a de�
sired property � �expressed in some speci�cation language such as LTL� propositional linear
temporal logic�� There have been signi�cant advances in recent years in the development
of algorithms and tools in this area� especially for �nite�state programs� which cover an im�
portant set of critical applications� The model checking problem for �nite state programs P
and LTL speci�cations � is PSPACE�complete� However� usually speci�cations are rather
small �like queries� and programs are quite large �like databases�� Fortunately� it turns out
that the model checking problem for LTL speci�cation � and program P can be solved in
time exponential in j�j and linear in jP j ��	� Can we hope for such algorithms in the query
evaluation of the important query languages �such as the ones mentioned above�� What are
natural classes of queries that possess this type of algorithms�

Parametric complexity provides the framework to examine these problems� We now know
that there is a class of reasonably natural problems that do not fall into this mold parametric
problems� such as �does graph G have a clique of size k�� This problem� like many others like

�

it� is currently solvable only by algorithms of complexity nk� Query evaluation problems lie
ominously within the scope of this category� with query length being the obvious analog of k
in the parametric clique problem above� Researchers in complexity have recently developed
a theory of limited nondeterminism and �xed�parameter tractability ��� ��� �	 which seeks to
make important distinctions� along the lines suggested above� between problems below NP�

In particular� parametric problems with input� say� �G� k� which are solvable in polyno�
mial time when k is �xed� can be subdivided into two broad categories Those for which the
polynomial is of the form nf�k� �i�e�� �has k in the exponent�� and those for which it is
of the form g�k�nc for some constant c� It is of great interest to distinguish between these
two categories� and to develop rigorous tools that classify problems with respect to them�
Downey and Fellows have introduced a sequence of complexity classes of parametric prob�
lems� collectively called the W hierarchy� which capture reasonably well this important issue
��	� The classes of the W hierarchy are indexed by the numbers �� �� � � �� plus two limiting
classes W�SAT	 and W�P	� These classes are quite rich in complete problems
 the higher the
W class� the less likely that the problem has a polynomial algorithm with time bound of the
form g�k�nc�

The main point of this paper is that parametric complexity theory is a productive frame�
work for studying the complexity of query languages� In particular� our goal is to put the
well�known tractability results of the query languages mentioned above under a di�erent
perspective� which renders them perhaps less confusing and misleading� In particular� we
prove that the parametric versions of the query evaluation problem for conjunctive queries�
positive queries� �rst�order queries� and Datalog queries� are hard for higher and higher levels
of the W hierarchy� Therefore� it is likely that any algorithm for the corresponding query
languages must have the parameter inherently in the exponent
 furthermore� this likelihood
increases measurably with the expressibility of the language�

We analyse the complexity for two types of parameters the query size q and the number
of variables v that appear in the query� The latter parameter is motivated by recent work
of Vardi ���	� who studied the complexity of queries assuming that the number of variables
v is �xed� while the size of the query can grow along with the database� He found that this
assumption brings the combined complexity closer to data complexity� namely polynomial
time for the above languages� although the polynomial now has v in the exponent of n instead
of q� Our analysis for the two parameters yields generally similar results �with some subtle
di�erences��

In the next section we give the necessary de�nitions from the �evolving� �eld of parametric
complexity� In Section � we give the necessary de�nitions for applying this theory to query
problems� In Section � we prove our classi�cation results� Finally� in Section � we show
a parametric tractability result which generalizes the main tractability result known so far
in database theory� namely� that acyclic queries can be evaluated e�ciently �even with
respect to combined complexity�� We show that acyclic conjunctive queries extended with
inequalities �conjuncts of the form x �� y� are parametrically tractable� in that they can be
evaluated in time almost linear in the size of the database and the output� and exponential

�

in the size of the query or the number of variables �this exponential dependence on the
parameter is unavoidable� as the inequalities turn the combined complexity of the problem
from polynomial to NP�complete�� Trying to extend this further to � constraints leads
however to parametric hardness�

� Parametric Complexity Theory

We introduce next the main concepts from the complexity theory of parametric problems�
Our de�nitions generally follow ��	� A parametric problem is a set L of pairs �x� k�� where x
is a string and k an integer parameter� A parametric problem is called �xed parameter �f�p��
tractable if there is an algorithm A that determines whether �x� k� � L in time bounded by a
function of the form f�k� � jxjc for some constant c
 we will say that A runs in f�p� polynomial
time�

Several NP�complete problems when supplied with a meaningful� natural parameter yield
parametric problems that are f�p� tractable� Examples Given a graph and k pairs of nodes�
are there node�disjoint paths between all pairs of nodes� ���	 Given a graph and an integer
k� is there a path of length k in the graph� ���� �	 Both problems� and many others like
them� have algorithms with running time f�k� �nc� where n is the input size and c a constant�

In contrast� several other NP�complete problems do not seem to be tractable when con�
sidered as parametric problems with the natural parameter
 examples include important
problems such as clique� dominating set� bandwidth� etc� All these problems are solvable in
time growing as O�nk� or a similar function� where n is the input length and k the parameter
�desired clique size� dominating set size� and bandwidth size in the three examples above��
and� despite considerable e�ort to this end� no algorithm for each one of them is known with
running time without k appearing in the exponent�

It would be very interesting to develop a re�nement of NP�completeness theory that an�
ticipates this sophisticated form of apparent intrectability� Such a theory has been emerging
from the work of many people� but most recently and notably Downey and Fellows ��	� There
appears to be a hierarchy of parametric problems� called the W hierarchy� which classi�es
many of these problems� We �rst need to introduce an appropriate notion of reduction �in
the literature one �nds several more general kinds of reductions� but the one given next turns
out to be the more useful one� certainly for the purposes of this paper��

A parametric reduction between two parametric problems A and B is an algorithm which
solves any instance �x� k� of A using the answers to several instances �yi� �i� of B� where
��� all �i are upper bounded by g�k� �independent of x� for some function g� and ��� the
instances of B and the �nal answer can be constructed in time h�k�jxjs� for some function
h and integer s� Such reductions are often parametric transformations� producing for any
instance �x� k� of A an equivalent instance �y� �� of B� and running in time h�k�jxjs for some
recursive function h and integer s�

Consider a Boolean circuit with AND� OR� and NOT gates and one output� We allow
OR and AND gates of unbounded fan�in� The depth of a circuit is the longest path from

�

any input to the output� Let us now de�ne depth�t weighted satisfiability for t � ��
to be the following parametric problem Given a depth�t circuit C and an integer k� is there
a setting of the inputs of C with k inputs set to � so that the output of C is �� For t � �
we require that the given circuit C be a ��CNF formula� Also� the �unrestricted� weighted
circuit satisfiability is the same problem with no depth restriction Given a circuit
C and an integer k� is there a setting of the inputs of C with k inputs set to �� so that
the output of C is �� Finally� the weighted formula satisfiability problem is the case
where the circuit has fan�out � �i�e� it is a Boolean formula��

We are now ready to de�ne the classes in the W hierarchy
 we give the de�nition in
terms of their complete problems� We de�ne W�t	 to be the set of all parametric prob�
lems that reduce to depth�t weighted satisfiability� The limiting classes W�SAT	 and
W�P	� are the sets of all parametric problems that reduce respectively to weighted formula

and weighted circuit satisfiability� with unlimited depth� In ��	 it is pointed out
that these classes have many natural complete problems� under parametric reductions� For
example� clique is W��	�complete and dominating set is W��	�complete� while bandwidth
is W�t	�hard for all t � �� If a parametric problem is W�t	�hard� this means that it is very
unlikely that it is tractable� The higher the t for which W�t	�hardness is proved �or� at the
limit� W�P	�hardness� the stronger the implication of intractability�

It should be noted that the W hierarchy� as de�ned in ��	� does not appear to have the
classi�cation power of� say� NP�completeness theory and of the polynomial hierarchy� in that
many natural problems are only partially classi�ed� proved hard for one class and in another�
higher one �or� as in the case of bandwidth� W�t	�hard for all t � � but not known to be in
W�P	�� This imperfect classi�cation power is apparent in our results as well�

� Parametric Complexity of Query Languages

We review brie�y �rst basic de�nitions on databases and queries� A database d � fD
R�� � � � � Rmg
consists of a domain D and a set of relations R�� � � � � Rm overD� A query Q is a function that
maps a database d to a relation Q�d� �of certain arity� over the same domain D� Queries are
speci�ed using query languages� A query language is capable of expressing a corresponding
class of queries�

We will discuss in this paper the following languages �classes of queries� conjunctive
queries� positive queries� �rst�order queries� and Datalog� Conjunctive queries correspond to
relational algebra with selection� projection� join and renaming �or calculus with conjunction
and existential quanti�cation�
 positive queries add union �disjunction in calculus� to this
list� First order queries add set di�erence �negation in calculus�� Datalog adds recursion to
the positive queries� We refer to the textbooks ���� �	 for a detailed exposition�

In the evaluation problem for a query Q� we are given database d and wish to compute
Q�d�� In the decision problem� we are given in addition to the database d a tuple t� and
wish to decide if t � Q�d�� When discussing the complexity of these problems� we assume a
standard encoding of databases and queries� The complexity of query languages is usually

�

measured in database theory via the decision problem� The combined complexity of a query
language � is the complexity of the decision problem �set� f�Q� d� t�jQ � �� t � Q�d�g� The
data complexity of a query language � is the complexity of the sets f�d� t�jt � Q�d�g� for
queries Q � �
 that is� the query is regarded as �xed� Thus for example� the data complexity
of a query language � is polynomial if there is a function f �� N from queries to positive
integers such that for every Q � �� there is an algorithm which on input a database d of size
n and a tuple t decides if t � Q�d� in time O�nf�Q���

In order to de�ne the parametric complexity of query languages� we must �rst decide on
the appropriate parameter to use� Two possible parameters come to mind The query size
q �the length of the string needed to express the query in ��� and the number of variables
v appearing in the query� In few cases it also matters if we assume that the signature �set
of relations and their arity� is �xed or can vary� We will assume in the following by default
a variable signature� and in the few cases where a �xed signature makes a di�erence we will
mention what happens�

The relationship between these four parametric problems �the query complexity problem
above parameterized with v as parameter� or with q as parameter� each with �xed or variable
signature� is as depicted in the partial order below

v� variable sig�

v� �xed sig�

q� �xed sig�

Figure �

q� variable sig�

�
�
�
�

�
�

��

Q
Q
Q
Q
Q
Q
QQ

c
c
c
c

c
c

cc

�
�
�
�
�
�
��

Proposition � If one of the four parametric problems in Figure � is hard for a class in the
W hierarchy� then all problems above it are also hard� If a problem is in some class in the
W hierarchy� then all problems below it are also in the same class�

Proof�The identity map is a valid parametric reduction for all four arcs in the partial order�

�

� A Classi�cation of Query Languages

We consider the following four query languages ��� Conjunctive queries
 ��� Positive queries

��� First�order queries
 ��� Datalog queries� All these query languages are known to have
query complexity AC� �the �rst three� and P �Datalog��

Theorem � The parametric versions of the query evaluation problems correponding to these
four query languages are classi�ed as described in the table�

query parameter
language query size q number of variables v
conjunctive W��	�complete W��	�hard� in W��	
positive W��	�complete W�SAT	�hard
�rst�order W�t	�hard� all t W�P	�hard
Datalog W�P	�hard W�P	�hard

Note In the case of �xed signature� all the entries are the same except that the �con�
junctive� parameter v� problem is in W��	 �and thus� W��	�complete��

Sketch of proof� �� Conjunctive queries� The lower bounds follow by a simple reduction
from the clique problem� which is known to be W��	�complete ��	� For any instance �G� k�
of clique we construct a database consisting of one binary relation G��� �� �the graph�� The
query for parameter k is simply

P �
�

��i�j�k

G�xi� xj��

The goal proposition ���ary relation� P is true i� G has a clique of size k� The query size is
q � O�k��� while the number of variables is v � k� so this is a reduction to both problems�
Note that this query is just a join of a set of binary relations�

For the upper bounds� in the case of parameter q� we can express any conjunctive query
in ��CNF by having Boolean variables that express the mapping from atoms of the query
to tuples in the database� In the case of the parameter v� we have Boolean variables for the
mapping from the query variables to the database constants� We omit the details from this
abstract�

�� Positive queries� For the upper bound of W��	 �parameter q�� we transform the query
into a union of �exponentially many in q� conjunctive queries
 note that in this case we
need the full power of parametric reductions� as opposed to transformations� The W�SAT	
lower bound �parameter v� is by a reduction from the weighted formula satisfiability

problem �omitted��

�� First�order queries� The reduction is similar for the two cases� It is from the monotone
weighted circuit satisfiabilityproblem� which is W�P	�complete� We can assume that
the given circuit alternates between OR and AND gates� and that the output is an OR gate�

�

at level �t� Our database contains only a binary relation C� describing the wiring diagram
�dag� of the given circuit
 the constants are gates �and therefore the variables will stand for
gates�� De�ne the following sequence of �rst�order queries� for the even �OR� levels of the
circuit

���x� � �C�x� x�� � C�x� x�� � � � � � C�x� xk�	�

��i�x� � �y�C�x� y�� �x�	C�y� x�� ��i���x�	�

Finally� the query is
Q � �x��x� � � ��xk��t�o��

where o is the constant standing for the output gate Note ��t is expanded fully using
inductively the previous formulas in the sequence
 the formula of the query has size O�t� and
uses k � � variables� Intuitively� ��i�x� means �OR gate x at level �i is true� when inputs
x�� x�� � � � � xk are set to ��� and thus the query is true if and only if the given instance of
weighted circuit satisfiability has a solution� Notice that a �xed signature �only a
binary relation� is required�

�� Datalog� The reduction is from monotone weighted circuit satisfiability for
both parameters� The database has a ternary relation AND�x� y� z� containing all triples
of gates such that x is an AND gate with inputs y and z� and a binary relation OR�x� y�
containing all pairs �x� y� such that x is an OR gate and y is one of its inputs� We also have
a unary relation I�x�� containing all input gates x� o is again the constant corresponding to
the output gate� The query is the following

P�x� v�� � � � � vk� � P�y� v�� � � � � vk�� P�z� v�� � � � � vk�� AND�x� y� z�
P�x� v�� � � � � vk� � P�y� v�� � � � � vk�� OR�x� y�
P�v�� v�� v�� � � � � vk� � I�v���� � � �I�vk�
P�v�� v�� v� � � � � vk� � I�v���� � � �I�vk�

���
P�vk� v�� v� � � � � vk� � I�v���� � � �I�vk�
G � P�o� v�� � � � � vk�

Obviously� the goal predicate G is true if and only if there is a setting of �at most� k
input gates to � so that the output gate is �� Note that the database �EDB� relations have
all �xed arity� but the IDB relation P does not �it has arity k � ��� It can be shown that if
we restrict all EDB and IDB relations to have �xed arity �independent of the parameter��
then the problem is in W��	 �and thus W��	�complete� for both parameters�

� A Tractable Case

Is there a nontrivial class of queries that is parametrically tractable� Even some simple
queries that involve joins are NP�complete in combined complexity� and probably paramet�

�

rically intractable as well� as we saw� Acyclic joins with projection and selection form the
major exception to this� We will show in this section a nontrivial extension of that result�

Consider a conjunctive query Q

G�t�� �Ri��t��� � � � � Ris�ts�

Form a hypergraph H� which has the variables of Q as its nodes and has a hyperedge for
every atom in the body of Q which contains the variables that occur in the atom� The query
Q is called acyclic if the hypergraph H is acyclic� We can evaluate Q as follows� For every
atom Rij�tj� in the body of Q� compute a relation Sj over the set of attributes corresponding
to the variables of tj such that a tuple is in Sj i� the corresponding instantiation of tj is in
relation Rij of the given database
 Sj can be computed by performing appropriate selections
and projection on Rij � Let Z be the set of attributes corresponding to the variables of the
tuple t� in the head� Compute �Z�S� � � � � � Ss� from which we can easily construct the
result of the query Q�d�� If Q is acyclic� this evaluation can be done in time polynomial
in the size of the input database d and the output Q�d� ���	� If we only want to check
whether Q�d� is empty or whether a speci�c given tuple t is in Q�d�� we can do it in time
polynomial in the size of d �substitute the constants of t in the body of the rule and evaluate
the resulting query which will be either empty or contain one tuple� t��

Suppose now that in the body of the conjunctive query we have� in addition to the re�
lational atoms� inequality atoms xi �� xj or xi �� c between the variables or variables and
constants� In this case we would normally include in the hypergraph also edges �xi� xj�
corresponding to the inequalities between the variables �see ���	�� However� inclusion of
these edges destroys acyclicity even in very simple cases� Some examples �nd the employ�
ees that work on more than one projects �G�e� �EP �e� p�� EP �e� p��� p �� p�� where EP
is the employee�project relation�
 Find the students that take courses outside their depart�
ment �G�s� �SD�s� d�SC�s� c�CD�c� d��d �� d��� Of course� in general we may have more
complicated queries with multiple relations and which may not be binary �i�e�� a genuine
hypergraph��

Suppose that we have a conjunctive query with inequalities and that the hypergraph
de�ned by considering only the relational atoms is acyclic� We call this an acyclic query
with inequalities� Is the combined complexity still polynomial� Unfortunately� not the
problem becomes NP�complete� For example� the Hamiltonian path problem can be easily
reduced to it� Given a graph �V�E�� let Q be the query

G �E�x�� x��� E�x�� x��� � � � � E�xn��� xn�� x� �� x�� x� �� x�� � � � � xn�� �� xn

The goal proposition ���ary relation� G is true i� the graph is Hamiltonian� Here the query
is as big as the database� However� in the more interesting case where the query is �small��
the problem remains tractable� but now in the �xed parameter �f�p�� sense�

Theorem � The class of acyclic conjunctive queries with inequalities is f�p� tractable� both
with respect to the query size and the number of variables as the parameter� Furthermore�
we can evaluate such a query in f�p� polynomial time in the input and the output�

�

A special case is the problem of �nding simple paths of a speci�ed length k in a graph�
This problem was proved f�p� tractable by Monien ���	� and an improved algorithm was
given in ��	 using an elegant �color�coding� �hashing� technique� Our algorithm combines
this technique with acyclic query processing techniques�

The basic idea is to hash the domain D into a smaller domain �with size bounded by the
number of variables�� and use the hash values to check inequalities� while using the original
values to check equality on the join attributes� Let Q be an acyclic query with inequalities�
and let H � �V�E� be its hypergraph� Partition the inequality atoms of Q into the set
I� of atoms xi �� xj such that the variables xi� xj do not occur together in any hyperedge
�relational atom�� and the set I� of the remaining atoms �xi �� c and xi �� xj such that
xi� xj are in a common hyperedge�� Let V� be the set of variables that occur in I� and let
k � jV�j� Let h be a function that maps D to the set f�� � � � � kg� Consider an instantiation
� of the variables� We say that � is consistent with h if for every inequality xi �� xj of I�
we have h�� �xi�� �� h�� �xj��
 clearly this implies also that � �xi� �� � �xj�� but not necessarily
vice�versa� The instantiation � is satisfying if it satis�es all the �relational and inequality�
atoms in the body of Q� Let h be the set of all consistent satisfying instantiations� and let
Qh�d� � f� �t��j� � hg�

Fix a function h D � f�� � � � � kg� We describe an f�p� polynomial time algorithm that
decides whether there is a consistent satisfying instantiation � and computes Qh�d�� First�
compute as above for each relational atom Rij�tj� of Q a corresponding relation� apply to it
selections that incorporate the inequality atoms xi �� c such that xi occurs in tj and xi �� xl
such that both xi� xl occur in tj� and let Sj be the resulting relation on set of attributes
�variables� Uj� Let V �

� be a set of new attributes corresponding to V�� If X
 V is a set
of �original� variables� we use X � to denote the set of new attributes fx�ijxi � X � V�g� If t
is a tuple over X� we can extend it to a tuple over XX � by letting t�x�i	 � h�t�xi	� for each
x�i � X �� Extend in this manner each relation Sj to a relation S

�
j over the set of attributes

UjU
�
j
 note that S

�
j has the same number of tuples as Sj and the new attributes take values

in f�� � � � � kg� For the emptiness problem� in essence what we will compute is the selection
on inequalities of the projection on V �

� of the join of the relations S
�
j� The selections and

projections can be pushed inside the join for e�ciency� In more detail we proceed as follows�

Let T be a join forest for H� Recall that this is a forest which has the hyperedges as
its nodes� and with the property that for every attribute xi� the set of nodes of T �i�e�
hyperedges of H� that contain xi form a connected subgraph �i�e� a subtree� Ti� We assume
without loss of generality in the following that T is a tree �otherwise� for example� we can
add a new dummy node corresponding to the empty hyperedge and connect it to a node in
each component��

Root the tree at some node� For each node j of T � letWj be the set of variables xi � V��Uj

such that xi appears in the subtree rooted at j � hence in a unique proper subtree rooted
at a child of node j � and there is an inequality xi �� xl of I� such that xl does not occur
in the same proper subtree
 in other words� node j separates the subtree Ti corresponding
to xi from the subtree Tl corresponding to xl� Let Yj � UjU

�
jW

�
j � It is easy to see that the

��

attribute sets Yj form an acyclic hypergraph with the same tree T as its join tree�

To test if Qh�d� � �� we perform a bottom�up pass of the tree as follows�

�� Initialize for each node j � T a relation Pj � S�j�

�� Process all the nodes except the root in bottom�up order of T as follows� To process
node j of T with parent u� compute Pu � 	F �Pu � �Yj�Yu�Pj��� where F is the
conjunction of the inequalities x�i �� x�l such that x

�
i � Yj � U �

u and x�l belongs to the
attribute set of Pu at this point but not to Yj � If Pu � � then quit and report Qh�d� � ��

�� If all nodes are processed successfully� then report Qh�d� �� ��

To compute Qh�d� �if it is not empty�� we proceed as follows� At the end of the �rst pass
we have a set of relations Pj over the attribute sets Yj� It is not hard to see that the join of
the Pj�s is a relation over the attribute set V V

�
� that consists of all tuples ��

�
� such that � is

a satisfying instantiation that is consistent with h and � �� is the extension of � to V
�
� � We do

not actually want to compute the join �it is too large�� We can reduce the relations Pj �and
Sj� S

�
j� by removing dangling tuples� i�e� tuples that do not participate in the join� using a

downward pass� We process all the nodes except the root top�down� To process node j with
parent u� set Pj � Pj
� Pu�

We then perform a second bottom�up pass to compute Qh�d� � �Z�P� � � � � Ps�� where Z
is the set of variables that appear in the tuple t� of the head� In bottom�up order we process
each nonroot node j� say with parent u� by setting Pu � Pu � �Zj�Pj�� where Zj consists of
Yj � Yu and the attributes of Z that appear in the subtree rooted at node j� At the root r
we compute �Z�Pr� which is Qh�d��

Consider a consistent instantiation � and let l be the number of distinct values assumed
by the variables� Then � is consistent with at least a fraction l!�lk � e�k of the functions h
fromD to f�� � � � � kg� Thus� trying out a set of O�ek� random functions h will determine with
high probability whether Q�d� � �� For a deterministic algorithm� we can use a k�perfect
family F of hash functions� i�e�� a family F which has the property that for every subset S
of k �or less� elements of D� there is a h � F that hashes S into distinct values� One can
construct such a family F with �O�k� log jDj hash functions that can be evaluated in constant
time �see ��	 and the references therein�� Then Q�d� � h�FQh�d�� The time complexity
of the algorithm for determining whether Q�d� � � or whether a speci�c given tuple t is
in Q�d�� is certainly bounded by O�g�k�n log� n�� where g�k� � �O�k log k� and n is the size
of the database
 one log n factor is from sorting to perform the joins and the second from
the perfect hash family� The time to compute Q�d� is bounded by O�g�k�nm log� n� where
m � jQ�d�j is the size of the output�

If the parameter is q� the query size� the same theorem holds in the case where instead of
a conjunction of inequalities in the body� we have a Boolean formula � built from inequality
atoms using � and �� If the parameter is v� the number of variables� then the problem
becomes W��	�hard if there are constants in �� i�e�� atoms xi �� c combined arbitrarily�
although it remains f�p� tractable if the atoms xi �� c appear only conjunctively�

��

Can we extend the result to acyclic conjunctive queries with comparisons �� or ��
between variables or variables and constants� Example Find the employees that have higher
salary than their manager �G�e� �EM�e�m�� ES�e� s�� ES�m� s��� s� � s�� First� note that
trivially any equality x � y can be expressed as the conjunction of the two inequalities x � y
and y � x� so the question makes sense only if we �rst identify equal variables �otherwise�
we can express trivially any conjunctive query by a set of atoms with disjoint variables and
equalities�� Given a conjunctive query Q with a set C of comparison atoms� we must �rst
determine if C is consistent and �nd the implied equalities� between variables and constants
which we then collapse� This is done �for dense orders� by forming a graph whose nodes are
the variables and constants in C� with a directed arc u� w between two nodes u�w labeled
� or � if C contains the corresponding constraint u � w or u � w or u�w are constants with
u � w� The system is consistent i� there is no strongly connected component that contains a
� arc� and the implied equalities are that all nodes of the same strong component are equal
�see eg� ��	�� Let Q� be the resulting query after collapsing equal variables and constants of
Q� and C � its set of comparison constraints �which is now acyclic�� We say that the query is
acyclic if the hypergraph corresponding to the relational atoms in the body of Q� is acyclic�
Can we evaluate such a query in f�p� polynomial time� Unfortunately� not�

Theorem � The class of acyclic conjunctive queries with comparisons is W����hard with
repsect to both parameters p and v�

We omit the proof from the extended abstract� The theorem holds even in restricted
cases �for binary relations� path queries� only � constraints etc��

References

��	 S� Abiteboul� R� Hull� V� Vianu� Foundations of Databases� Addison�Wesley� �����

��	 N� Alon� R� Yuster� U� Zwick� �Color�Coding�� J� ACM� pp� �������� �����

��	 J� F� Buss� J� Goldsmith� �Nondeterminism within P�� SIAM J� Comput�� pp� ��������
�����

��	 A� K� Chandra� P� M� Merlin� �Optimal Implementation of Conjunctive Queries in
Relational Databases�� Proc� 	th ACM Symp� Theory of Comp�� pp� ������ �����

��	 R� G� Downey� M� R� Fellows� �Fixed�parameter Tractability and Completeness I Basic
Results�� SIAM J� Comp�� pp� �������� �����

��	 P� C� Kanellakis� �Elements of Relational Database Theory�� in Handbook of Theoretical
Computer Science� J� Van Leeuwen ed�� pp� ���������� Elsevier� �����

��

��	 P� C� Kanellakis� �Constraint Programming and Database Languages A Tutorial��
Proc� �
th ACM Symp� Principles of Database Sys�� pp� ������ �����

��	 A� Klug� �On Conjunctive Queries Containing Inequalities�� J�ACM� pp� �������� �����

��	 O� Lichtenstein� A� Pnueli� �Checking that Finite State Concurrent Programs Satisfy
their Speci�cations�� Proc� ��th Annual ACM Symp� on Principles of Prog� Lang�� pp�
������� �����

���	 B� Monien� �How to Find Long Paths E�ciently�� Ann� Disc� Math�� pp� �������� �����

���	 C� H� Papadimitriou� M� Yannakakis� �On Limited Nondeterminismand the Complexity
of the VC dimension�� J� Comp� Sys� Sc�� pp� �������� �����

���	 N� Robertson� P� D� Seymour� �Graph Minors XIII The Disjoint Paths Problem��

���	 J� D� Ullman� Principles of Database and Knowledge Base Systems� Computer Science
Press� �����

���	 M� Y� Vardi� �The Complexity of Relational Query Languages�� Proc� ACM Symp�
Theory of Computing� pp� �������� �����

���	 M� Y� Vardi� �On the Complexity of Bounded�Variable Queries�� Proc� ACM Symp�
Principles of Database Sys�� pp� �������� �����

���	 M� Yannakakis� �Algorithms for Acyclic Database Schemes�� Proc� �th Intl� Conf� Very
Large Data Bases� pp� ������ �����

���	 M� Yannakakis� �Perspectives on Database Theory�� Proc� IEEE Symp� Foundations of
Comp� Sc�� �����

��

