Implementation of Database Systems

236510
David Konopnicki
Taub 715
Spring 2000

Sources

* Oracle 7 Server Concepts - Oracle81 Server
Concepts. © Oracle Corp.
 Available on the course Web Site:

http://www.cs.technion.ac.il/~cs236510

 We will learn the internal structure of
Oracle7, a modern RDBMS.




Copyright

All company or product names mentioned
are used for identification purposes only
and may be trademarks of their respective
owners.

Quotations and Figures taken from Oracle
Manuals are copyrighted by Oracle Corp.
and used here for teaching purposes only.

Part I

What is Oracle?




What is a Database

A computer system that manages information.
In general, a database server must reliably
manage a large amount of data in a multi-
user environment so that many users can
concurrently access the same data. All this
must be accomplished while delivering high
performance. A database server must also
prevent unauthorized access and provide
efficient solutions for failure recovery.

Oracle Features

Client/server Controlled availability
architecture Manageable security
Large DB: up to 1 Data integrity
terabyte (240 bytes)
Many concurrent
database users

Distributed systems
Replication

High performance
High availability




The Oracle Server

* The Oracle server consists of an Oracle
database and an Oracle instance.

» Database structure:

— Physical DB struct: determined by the OS.
Three types of files: datafiles, redo log files,
control files.

— Logical DB struct: Tablespaces, Schema
objects.

The Oracle Server (2)

An Oracle Instance:

— Every time a database is started, a system
global area (SGA) is allocated and Oracle
background processes are started.

— The system global area is a an area of memory
used for database information shared by the
database users.

— The combination of the background processes
and memory buffers is called an Oracle
instance.




The Oracle Server (3)

Heer | Hser | Hser | User | - = = = User processes
System Global Area
(SGA)
o~ —

oot

Process System Datahase y . Oracle Processes
Fi(?:‘chcugger Monitor Myunimr Wiiter L(ULgﬁlf\'r%r '?ﬁc“for hackground processes)
FMOM (SMON (DEW R

The Oracle Server (4)

« If the user and server processes are on
different computers of a network, the user
process and server process communicate
using SQL*Net. SOL *Net is Oracle's
interface to standard communications
protocols that allows for the proper
transmission of data between computers.




Database Structure

Structures: Structures are well-defined objects (such as
tables, views, indexes, and so on) that store or access the
data of a database. Structures and the data contained within
them can be manipulated by operations.

Operations: Operations are clearly defined actions that
allow users to manipulate the data and structures of a
database. The operations on a database must adhere to a
predefined set of integrity rules.

Integrity Rules:Integrity rules are the laws that govern
which operations are allowed on the data and structures of
a database. Integrity rules protect the data and the
structures of a database.

Logical Database Structures

Databases, tablespaces, datafiles

Datahase

System Tahlespace

DATAT.0RA DAaTAZORA
1 Mh 1 Mb




Logical Database Structures (2)

» Schema objects: Tables

— A table is the basic unit of data storage in an Oracle
database.

— The tables of a database hold all of the user-accessible
data.

— Table data is stored in rows and columns. Every table is
defined with a fable name and set of columns.

— Each column is given a column name, a datatype and a
width.

— Once a table is created, valid rows of data can be
inserted into it. The table's rows can then be queried,
deleted, or updated.

— To enforce defined business rules on a table's data,

integrity constraints and triggers can also be defined for
a table.

Logical Database Structures (3)

* Schema Objects: Views

— A view is a custom-tailored presentation of the data in
one or more tables. A view can also be thought of as a
"stored query".

— Like tables, views can be queried, updated, inserted
into, and deleted from, with restrictions. All operations
perfo;med on a view actually affect the base tables of
the view.

— Views are often used to do the following:

e Provide an additional level of table security by restricting
acg:less to a predetermined set of rows and columns of a
table.

o Hide data complexity.
e Simplify commands for the user.

o Present the data in a different perspective from that of the
base table.

o Store complex queries.




Logical Database Structures (4)

» Schema Objects: Sequences

— A sequence generates a serial list of unique
numbers for numeric columns of a database's
tables. Sequences simplify application
programming by automatically generating
unique numerical values for the rows of a
single table or multiple tables.

— Sequence numbers are independent of tables, so
the same sequence can be used for one or more
tables. After creation, a sequence can be
accessed by various users to generate actual
sequence numbers.

Logical Database Structures (5)

» Schema Object: Program Unit

— The term "program unit" is used to refer to
stored procedures, functions, and packages.

— A procedure or function 1s a set of SQL and
PL/SQL (Oracle's procedural language
extension to SQL) statements grouped together
as an executable unit to perform a specific task.

— Stored procedures.




Logical Database Structures (6)

Schema Objects: Indexes, Clusters, Hash
Clusters

— Indexes are created on one or more columns of a table. Once
created, an index is automatically maintained and used by Oracle.
Changes to table data are automatically incorporated into all
relevant indexes with complete transparency to the users.

Clusters are groups of one or more tables physically stored
together because they share common columns and are often used

together.
Hash clusters: a row is stored in a hash cluster based on the result

of applying a hash function to the row's cluster key value. All rows
with the same hash key value are stored together on disk.

DEPTHD I
Lot

FEHR m
B0% 100 1 10
BOSTON E L »

2
E 5 0
ENAME . A 0

DEPT Table
DEPTHD | CouANE Lo

0 SALES BOSTON
2 AOMIN HEW TORX




Cluster Key

{DEPTO}

10 DHAME Lac
SALES BOSTON
EMPHO EMAME | -
1000 SMITH -
1321 JONES -
1341 WERD -

n DNAME Lac
ADMIN NEW YORK
EMPNO ENAME ‘ L
32 KEHR L
1138 WILSON .
1277 TORM AN L

Clusteved Tables

Felated data stored
toyether, mare
efficienty

EMP Tahle

EMPND | ENAME DEPTHO
932 KEHR 20

100 SMITH 10

1139 WILSON 20
1277 NORMAN | 20

1321 JOMES 10

1841 WARD 10

——
. )

DEPT Table

DEFTHO | DNAME ‘ Loc

Ll SALES
20 ADMIN

BOSTOM
NEW YORK

Unclustered Tables
Related data stored
apart, taking up

more space

Logical Database Structures (8)
Disk Space: Data Blocks

— At the finest level of granularity, an Oracle
database's data is stored in data blocks.

— One data block corresponds to a specific
number of bytes of physical database space on
disk.

— A data block size is specified for each Oracle
database when the database is created.

— A database uses and allocates free database
space in Oracle data blocks.




Logical Database Structures (9)

 Disk Space: Extents

— An extent is a specific number of contiguous
data blocks, obtained in a single allocation,
used to store a specific type of information.

Logical Database Structures (10)
 Disk Space: Segment

— A segment is a set of extents allocated for a
certain logical structure. the different types of
segments include the following:

 Data Segments: All of the table's data is stored in
the extents of its data segment.

* Index Segments:Each index has an index segment
that stores all of its data.

* Rollback Segments

* Temporary Segments




Physical Database Structure (1)

» Datafiles:

— Every Oracle database has one or more physical
datafiles.

— A database's datafiles contain all the database
data (e.g. tables and indexes).

— characteristics of datafiles:
o Associated with only one database.
o Automatically extend when the database runs out of space.

e One or more datafiles form a logical unit of database
storage called a tablespace.

Physical Database Structures (2)
 Using Datafiles:

— The data in a datafile is read, as needed, during
normal database operation and stored in the
memory cache of Oracle.

— Modified or new data is not necessarily written
to a datafile immediately. To reduce the amount
of disk access and increase performance, data is
pooled in memory and written to the
appropriate datafiles all at once, as determined
by the DBWR background process of Oracle.




Physical Database Structures (3)
* Redo Log Files:

— Every Oracle database has a set of two or more redo log
files. This is called the redo log.

— Records all changes made to data. Should a failure
prevent modified data from being permanently written
to the datafiles, the changes can be obtained from the
redo log and work is never lost.

— To protect against a failure involving the redo log itself,
Oracle allows a multiplexed redo log so that two or
more copies of the redo log can be maintained on
different disks.

Physical Database Structures (4)

e Control Files:

— A control file contains entries that specify the
physical structure of the database.

» database name

e names and locations of a database's datafiles and
redo log files

e time stamp of database creation

— Like the redo log, Oracle allows the control file

to be multiplexed for protection of the control
file.




The Data Dictionary

» An Oracle data dictionary is a set of tables
and views that are used as a read-only
reference about the database.

Stores information about both the logical
and physical structure of the database.
e the valid users of an Oracle database

¢ information about integrity constraints defined for
tables in the database

e how much space is allocated for a schema object
and how much of it is being used

Server Architecture (1)

An Oracle Server uses memory structures
and processes to manage and access the
database.

All memory structures exist in the main
memory of the computers that constitute the
database system.

» Processes are jobs or tasks that work in the
memory of these computers.




Serv

Users currently connected to an
Oracle Server share the data in
the system global area.

For optimal performance, the
entire system global area should
be as large as possible (while
still fitting in real memory)

Contain: the database buffers
(for data), redo log buffer (for
log entries), the shared pool (for
SQL), and cursors.

These areas have fixed sizes

and are created during instance
startup.

System Global Area

Reds Loy
Ealer

1 __t

Shaoed | [Dedicated
5 3
5

.wim I
LGHRA !
Eﬁgl

Databas

Lotk process
Becnver ptess
Pracess morifr
Tpstem manikr
Checkpant
achboi
Database wiler
Log wrikr

LCka | RECO | |PMDN | ‘ SMON |

R

System Glohal Area

Datahase
Buffer Gache

Redo Log

Buffer

User Shared Dedicated
Process Server Semer
Process Process

LUser Processes I L 4

Cooo | DBW R

F‘m cess

Lock process
FRecoverer process
Process monitar
System monitor
Checkpaint
Brchiver

Datahase wiiter
Loy writer

US@V -

A

Dathase
Files

Offine
Storage
Device

Fiedo Log
Files




Server Architecture (3)

A user process is created
and maintained to execute
the software code of an
application program (such
as a Pro*C/C++ program)
or an Oracle tool (such as
sqlplus). The user process
also manages the
communication with the
Server processes.

Server Architecture (4)

Oracle creates server
processes to handle
requests from connected
user processes.

Carry out requests of the
associated user process
(e.g., read data into
buffers).

Oracle can be configured
to vary the number of user
processes per server
process.




Server Architecture (5)

Background Processes

Database Writer
(DBWR) writes modified
blocks from the database
buffer cache to the
datafiles.

DBWR does not need to
write blocks when a
transaction commits

DBWR is optimized to
minimize disk writes.

Server Architecture (6)

Background Processes

Log Writer (LGWR) The Im%
Log Writer writes redo log
entries to disk.

Redo log data is generated
in the redo log buffer of
the system global area.

As transactions commit
and the log buffer fills,
LGWR writes redo log
entries into an online redo
log file.




Server Architecture (7)

Background Processes

Checkpoint (CKPT) At
specific times, all
modified database buffers

are written to the datafiles
by DBWR; this is a
checkpoint.

CKPT is responsible for
signaling DBWR at
checkpoints and updating
all the datafiles and
control files to indicate the
most recent checkpoint.

Server Architecture (8)

Background Processes

System Monitor
(SMON) performs
instance recovery at

instance startup.

SMON also coalesces free
extents within the
database to make free
space contiguous and
easier to allocate.




Server Architecture (9)

Process Monitor
(PMON) performs
process recovery when a
user process fails.

PMON is responsible for
cleaning up the cache and
freeing resources that the
process was using.

PMON also checks on
dispatcher and server
processes and restarts
them if they have failed.

Server Architecture (10)

Archiver (ARCH) copies
the online redo log files to
archival storage when they
are full.

Recoverer (RECO) used

to resolve distributed

transactions pending due
to a network or system
failure in a distributed
database.




Example of Work

An instance is currently running
on the computer that is
executing Oracle.

A computer used to run an
application runs the application
in a user process. The client
application attempts to establish
a connection to the server using
the proper SQL*Net driver.

The server is running the proper
SQL*Net driver. The server
detects the connection request
from the application and creates
a (dedicated) server process on
behalf of the user process.

The user executes a SQL
statement and commits the
transaction.

The server process receives the
statement and checks the shared
pool for any shared SQL area
that contains an identical SQL
statement. If a shared SQL area
is found, the previously existing
shared SQL area is used to
process the statement; if not, a
new shared SQL area is
allocated for the statement so
that it can be parsed and
processed.

Example of Work (2)

The server process retrieves any
necessary data values from the
actual datafile (table) or those
stored in the system global area.

The server process modifies
data in the system global area.
The DBWR process writes
modified blocks permanently to
disk when doing so is efficient.
Because the transaction
committed, the LGWR process
immediately records the
transaction in the online redo
log file.

3

If the transaction is successful,
the server process sends a
message across the network to
the application. If it is not
successful, an appropriate error
message is transmitted.

Throughout this entire
procedure, the other
background processes run,
watching for conditions that
require intervention. In
addition, the database server
manages other users'
transactions and prevents
contention between transactions
that request the same data.




®© © o 0o 0o 0o o o o o

Part 11

Database Backup and Recovery

Introduction

A major responsibility of the database administrator is to
prepare for the possibility of hardware, software, network,
process, or system failure.

If such a failure affects the operation of a database system,
you must usually recover the databases and return to
normal operations as quickly as possible.

Recovery should protect the databases and associated users
from unnecessary problems and avoid or reduce the
possibility of having to duplicate work manually.




Failures: User Error

A database administrator can do little to
prevent user errors (for example,
accidentally dropping a table).

Usually, user error can be reduced by
increased training on database and
application principles.

Furthermore, the administrator can ease the
work necessary to recover from many types
of user errors (backups).

Failures: Statement Failure

Statement failure occurs when there is a logical failure in
the handling of a statement in an Oracle program (A valid
INSERT statement cannot insert a row because there is no
space available).

If a statement failure occurs, the Oracle software or
operating system returns an error code or message.

A statement failure usually requires no action or recovery
steps; Oracle automatically corrects for statement failure
by rolling back the effects (if any) of the statement and
returning control to the application. The user can simply
re-execute the statement after correcting the problem
conveyed by the error message.




Failures: Process Failures

A failure in a user, server, or background process of a
database instance

When a process failure occurs, the failed subordinate
process cannot continue work, although the other processes
of the database instance can.

The Oracle background process PMON detects aborted
Oracle processes.

If the aborted process is a user or server process, PMON
resolves the failure by rolling back the current
transaction.If the aborted process is a background process,
you must shut down and restart the instance.

Failures: Network Failures

A network failure might interrupt normal execution of a
client application and cause a process failure to occur. In
this case, the Oracle background process PMON detects
and resolves the aborted server process for the
disconnected user process, as described in the previous
section.

A network failure might interrupt the two-phase commit of
a distributed transaction. Once the network problem is
corrected, the Oracle background process RECO of each
involved database server automatically resolves any
distributed transactions not yet resolved at all nodes of the
distributed database system.




Failures: DB Instance Failure

Database instance failure occurs when a problem arises
that prevents an Oracle database instance (SGA and
background processes) from continuing to work. An
instance failure can result from a hardware problem, such
as a power outage, or a software problem, such as an
operating system crash.

Recovery from instance failure is relatively automatic. For
example, in configurations that do not use the Oracle
Parallel Server, the next instance startup automatically
performs instance recovery. When using the Oracle
Parallel Server, other instances perform instance recovery.

Failures: Disk Failures

An error can arise when trying to write or read a file that is
required to operate an Oracle database. This occurrence is
called media failure because there is a physical problem
reading or writing physical files needed for normal
database operation.

A common example of a media failure is a disk head crash,
which causes the loss of all files on a disk drive. All files
associated with a database are vulnerable to a disk crash,
including datafiles, redo log files, and control files. The
appropriate recovery from a media failure depends on the
files affected




Failures: Disk Failures (2)

Database operation after a media failure of online redo log
files or control files depends on whether the online redo
log or control file is multiplexed.

If a media failure damages a single disk, and you have a
multiplexed online redo log, the database can usually
continue to operate without significant interruption.

Damage to a non-multiplexed online redo log causes
database operation to halt and may cause permanent loss of
data.

Damage to any control file, whether it is multiplexed or
non-multiplexed, halts database operation once Oracle
attempts to read or write the damaged control file.

Failures: Disk Failures (3)

Media failures can be divided into two categories: read
errors and write errors.

In a read error, Oracle cannot read a datafile and an OS
error is returned to the application, along with an Oracle
error. Oracle continues to run, but the error is returned
each time an unsuccessful read occurs. At the next
checkpoint, a write error will occur when Oracle attempts
to write the file header as part of the standard checkpoint
process.

If Oracle discovers that it cannot write to a datafile and
Oracle archives filled online redo log files, Oracle returns
an error in the DBWR trace file, and Oracle takes the
datafile offline automatically. Only the datafile that cannot
be written to is taken offline.




Failures: Disk Failures (4)

If the datafile that cannot be written to is in the SYSTEM
tablespace, the file is not taken offline. Instead, an error is
returned and Oracle shuts down the database.

If Oracle discovers that it cannot write to a datafile, and
Oracle is not archiving filled online redo log files, DBWR
fails and the current instance fails.

If the problem is temporary, instance recovery usually can
be performed using the online redo log files, in which case
the instance can be restarted.

If a datafile is permanently damaged and archiving is not
used, the entire database must be restored using the most
recent backup.

Recovery Structures: Backups

A database backup consists of operating
system backups of the physical files that
constitute an Oracle database.

To begin database recovery from a media
failure, Oracle uses file backups to restore
damaged datafiles or control files.




Recovery Structures: Redo Log

Records all changes made in an Oracle database.

The redo log of a database consists of at least two
redo log files that are separate from the datafiles.

As part of database recovery, Oracle applies the
appropriate changes in the database's redo log to
the datafiles, which updates database data to the
instant that the failure occurred.

A redo log can be comprised of two parts: the
online redo log and the archived redo log.

Recovery Structures: Redo Log (2)

* Every Oracle database has an associated online
redo log.

The online redo log works with the Oracle
background process LGWR to immediately record
all changes made through the associated instance.

The online redo log consists of two or more pre-
allocated files that are reused in a circular fashion
to record ongoing database changes




Recovery Structures: Redo Log (3)

* Optionally, Oracle may archive files of the online
redo log once they fill.

The online redo log files that are archived are
uniquely identified and make up the archived redo
log.

By archiving filled online redo log files, older
redo log information is preserved for more
extensive database recovery operations, while the
pre-allocated online redo log files continue to be
reused to store the most current database changes;

Recovery Structures: Rollback Segments

* Rollback segments are used for a number of functions in
the operation of an Oracle database.

In general, the rollback segments of a database store the
old values of data changed by uncommitted transactions.

Among other things, the information in a rollback segment
is used during database recovery to "undo" any
"uncommitted" changes applied from the redo log to the
datafiles.

Therefore, if database recovery is necessary, the data is in
a consistent state after the rollback segments are used to
remove all uncommitted data from the datafiles




Recovery Structures: Control Files

* In general, the control file(s) of a database
store the status of the physical structure of
the database.

Certain status information in the control
file (for example, the current online redo log
file, the names of the datafiles, and so on)
guides Oracle during instance or media
recovery

Online Redo Log

Every instance of an Oracle database has an
associated online redo log to protect the
database in case the database experiences an
instance failure.

An online redo log consists of two or more
pre-allocated files that store all changes
made to the database as they occur.




Online Redo Log (2)

Online redo log files are filled with redo entries.

Record data used to reconstruct all changes made to the
database, including the rollback segments.

Buffered in a "circular" fashion in the redo log buffer of
the SGA and are written to one of the online redo log files
by LGWR. Whenever a transaction is committed, LGWR
writes the transaction's redo entries from the redo log
buffer of the SGA to an online redo log file, and a system
change number (SCN) is assigned to identify the redo
entries for each committed transaction.

Redo entries can be written to an online redo log file
before the corresponding transaction is committed.

Online Redo Log (3)

Consists of two or more online redo log files (so one is
always available for writing while the other is being
archived).

LGWR writes to online redo log files in a circular fashion.

When the current online redo log file is filled, LGWR
begins writing to the next available online redo log file.

Filled online redo log files are "available" to LGWR for
reuse depending on whether archiving is enabled:

o A filled online redo log file is available once the checkpoint
involving the online redo log file has completed.

e [f archiving is enabled, a filled online redo log file is available
to LGWR once the checkpoint involving the online redo log
file has completed and once the file has been archived.




Log Switches

The point at which Oracle ends writing to one online redo
log file and begins writing to another is called a log switch.

A log switch always occurs when the current online redo
log file is completely filled and writing must continue to
the next online redo log file.

Oracle assigns each online redo log file a new /og
sequence number every time that a log switch occurs and
LGWR begins writing to it.

If online redo log files are archived, the archived redo log
file retains its log sequence number.

Each redo log file (including online and archived) is
uniquely identified by its log sequence number.

Checkpoints

A checkpoint occurs when DBWR writes all the modified
database buffers in the SGA, including committed and
uncommitted data, to the data files. Checkpoints are
implemented for the following reasons:

o To ensure that blocks in memory that change frequently are
written to datafiles regularly. Because of the LRU algorithm of
DBWR, a data segment block that changes frequently might
never qualify as the least recently used block and thus might
never be written to disk if checkpoints did not occur.

Because all database changes up to the checkpoint have been
recorded in the datafiles, redo log entries before the checkpoint
no longer need to be applied to the datafiles if instance
recovery is required. Therefore, checkpoints are useful because
they can expedite instance recovery.




Checkpoints: When do they occur

At every log switch.

LOG_CHECKPOINT INTERVAL
LOG CHECKPOINT TIMEOUT

When the beginning of an online tablespace backup is
indicated, a checkpoint is forced only on the datafiles that
constitute the tablespace being backed up.

If the administrator takes a tablespace offline.
If the administrator shuts down an instance.

The administrator can force a database checkpoint to
happen on demand.

The mechanics of a Checkpoint

* When a checkpoint occurs, CKPT remembers the location
of the next entry to be written in an online redo log file and
signals DBWR to write the modified database buffers in
the SGA to the datafiles on disk.

CKPT then updates the headers of all control files and
datafiles to reflect the latest checkpoint.

As a checkpoint proceeds, DBWR writes data to the data
files on behalf of both the checkpoint and ongoing
database operations. DBWR writes a number of modified
data buffers on behalf of the checkpoint, then writes the
LRU buffers and then writes more dirty buffers for the
checkpoint, and so on, until the checkpoint completes.




The mechanics of a Checkpoint (2)

* A checkpoint can be either "normal" or
"fast".

* With a normal checkpoint, DBWR writes a
small number of data buffers each time it
performs a write on behalf of a checkpoint.

« With a fast checkpoint, DBWR writes a
large number of data buffers each time it
performs a write on behalf of a checkpoint.

The mechanics of a Checkpoint (3)

» Until a checkpoint completes, all online redo log files
written since the last checkpoint are needed in case a
database failure interrupts the checkpoint and instance
recovery is necessary.

If LGWR cannot access an online redo log file for writing
because a checkpoint has not completed, database
operation suspends temporarily until the checkpoint
completes and an online redo log file becomes available. In
this case, the normal checkpoint becomes a fast
checkpoint, so it completes as soon as possible.




Archived Redo Log

Oracle allows the optional archiving of online redo log
files, which creates archived (offline) redo logs. The
archiving two key advantages :

e A database backup, together with online and archived
redo log files, guarantees that all committed
transactions can be recovered in the event of an
operating system or disk failure.

¢ Online backups, taken while the database is open and in
normal system use, can be used if an archived log is
kept permanently.

Archived
Fedo Log
Files

o (D ome
Reda Log
Log 0003 Loy 0001 | Files




Control Files
A control file contains information about a
database:
— the database name
— the timestamp of database creation

— the names and locations of associated databases
and online redo log files

— the current log sequence number

— checkpoint information

Multiplexed Control Files

Oracle allows multiple, identical control files to be open
concurrently and written for the same database.

If a single disk that contained a control file crashes, the
current instance fails when Oracle attempts to access the
damaged control file. However, other copies of the current
control file are available on different disks, so an instance
can be restarted easily without the need for database
recovery.

If all control files of a database are permanently lost during
operation (several disks fail), the instance is aborted and
media recovery is required. Even so, media recovery is not
straightforward if an older backup of a control file must be
used because a current copy is not available.




Database Backup

» There are two types of backups:
— Full Backups
— Partial Backups

Full Backups

* Online: Following a clean shutdown, all of the
files that constitute a database are closed and
consistent with respect to the current point in time.
Thus, a full backup taken after a shutdown can be
used to recover to the point in time of the last full
backup.

» Offline: A full backup taken while the database is
open is not consistent to a given point in time and
must be recovered (with the online and archived
redo log files) before the database can become
available.




Backups and Archiving Mode

The datafiles obtained from a full backup are useful in any
type of media recovery scheme:

¢ If a database is operating in NOARCHIVELOG mode
and a disk failure damages some or all of the files that
constitute the database, the most recent full backup can
be used to restore (not recover) the database (all
database work performed since the full database backup
must be repeated).

If a database is operating in ARCHIVELOG mode and
a disk failure damages some or all of the files that
constitute the database, the datafiles collected by the
most recent full backup can be used as part of database
recovery.

Partial Backups

A partial backup 1s any operating system backup
short of a full backup:

— a backup of all datafiles for an individual tablespace
— a backup of a single datafile

— a backup of a control file

Partial backups are only useful for a database
operating in ARCHIVELOG mode. Because an
archived redo log is present, the datafiles restored
from a partial backup can be made consistent with
the rest of the database during recovery
procedures.




Example of a partial backup of a datafile

Black #4
F
Block #3 Block #3
C C
Black #2 Black #2 Block #2
B B B
Black #1 Black #1 Black #1 Black #1

A A A A

| | | |

File File File

Blnck #4 Bluck #4 Block #4 Block At
D D D
Black #3 Bluck #3 Block #3 Bluck #3
C c C
Bluck #2 Block #2 Blck #2 Block #2

Binck #1 Block #1 Block #1 Block #1
E E

Data Data
File

Block #4

¢
Block #2 Block #2 Block #2
B B B

Block #1 Block #1 Block #1 Elock #1

A

I
1

Block #4 Block #4 Block #4
D D F
Block #3 Block #3
c c c
Block #2 Block #2
B B B
Block 1 Block #1 Block #1

E E E




Recovery Procedures

Recovering from any type of system failure
requires the following:

* Determining which data structures are intact and
which ones need recovery.

* Following the appropriate recovery steps.

* Restarting the database so that it can resume normal
operations.

* Ensuring that no work has been lost nor incorrect
data entered in the database.

Buffers and DBWR

Database buffers in the SGA are written to disk only when
necessary, using the LRU algorithm. Therefore, datafiles
might contain some data blocks modified by uncommitted
transactions and some data blocks missing changes from
committed transactions.Two potential problems can result
if an instance failure occurs:
— Data blocks modified by a transaction might not be written to the
datafiles at commit time and might only appear in the redo log.

Therefore, the redo log contains changes that must be reapplied to
the database during recovery.

Since the redo log might have also contained data that was not
committed, the uncommitted transaction changes applied by the
redo log (as well as any uncommitted changes applied by earlier
redo logs) must be erased from the database.




Rolling Forward

The redo log is a set of operating system files that record
all changes made to any database buffer, including data,
index, and rollback segments, whether the changes are
committed or uncommitted.

The first step of recovery from an instance or disk failure
is to roll forward, or reapply all of the changes recorded in
the redo log. Because rollback data is also recorded in the
redo log, rolling forward also regenerates the
corresponding rollback segments.

After roll forward, the data blocks contain all committed
changes as well as any uncommitted changes that were
recorded in the redo log.

Rolling Back

Rollback segments record database actions
that should be undone during certain
database operations.

In database recovery, rollback segments
undo the effects of uncommitted
transactions previously applied by the
rolling forward phase.




Rolling Forward and rolling back

O
= odh
@ |:| A |:| h
Database bl Database
0 [ ]

Database
Redo Logs VAN |:| Folback Segments
applied D& applied

Backup of Datahase with Datahase with
Database commitied and just committed
thatneeds uncommitted fransactions
recovery fransactions

D Committed

o Uncomimitted

Recovery from Instance Failure

When an instance is aborted, either
unexpectedly (for example, an unexpected
power outage or a background process
failure) or expectedly (for example, when
you issue a SHUTDOWN ABORT or
STARTUP FORCE statement), instance
failure occurs, and instance recovery is
required. Instance recovery restores a
database to its transaction-consistent state
just before instance failure.




Steps in Recovery from Instance Failure

Roll forward to recover data that has not been recorded in the datafiles,
yet has been recorded in the online redo log, including the contents of
rollback segments.

Open the database. Instead of waiting for all transactions to be rolled
back before making the database available, Oracle enables the database
to be opened as soon as cache recovery is complete. Any data that is
not locked by unrecovered transactions is immediately available. This
feature is called fast warmstart.

Mark all transactions system-wide that were active at the time of
failure as DEAD and mark the rollback segments containing these
transactions as PARTIALLY AVAILABLE.

Recover dead transactions as part of SMON recovery.

Resolve any pending distributed transactions undergoing a two-phase
commit at the time of the instance failure.

Recovery from Media Failure

Recovery from a media failure can take two forms:

o [f the online redo log is not archived, recovery from a media
failure is a simple restoration of the most current full backup. All
work performed after the full backup was taken must be redone
manually.

Otherwise, recovery from a media failure can be an actual recovery
procedure, to reconstruct the damaged database to a specified
transaction-consistent state before the media failure.

* Recovery from a media failure, no matter what form,
always recovers the entire database to a transaction-
consistent state before the media failure.




Example of Complete Media Recovery

* Assume the following:

— the database has three datafiles: USERS1 and USERS?2 are
datafiles that constitute the USERS tablespace, stored on Disk X of
the database server, SYSTEM is the datafile that constitutes the
SYSTEM tablespace, stored on Disk Y of the database server.

Disk X of the database server has crashed.

the online redo log file being written to at the time of the disk
failure has a log sequence number of 31.

the database is in ARCHIVELOG mode

* Recovery of the two datafiles that constitute the USERS
tablespace is necessary.

Complete Media Recovery (2)

Phase 1: Restoration of Backup Datafiles After Disk X has been
repaired, the most recent backup files are used to restore only the
damaged datafiles USERS1 and USERS?2.

Control fle stores Backup ofdata files-
curent log sequence log sequence is older

USERS1.0R4 | USERS2.0RA SYSTEM.ORA

Log Sequence Log Sequence
#3 ! #a1
1 1 - ’ Al rr
‘ - N 4
[} N -
' .

Cantrol File




Complete Media Recovery (3)

Phase 2: Rolling Forward with the Redo Log Oracle applies redo log

files (archived and online) to datafiles, as necessary.
Fedo log fle #12 Redo loy fles #13 - 31

(

(@«

(=

USERS1.0R4 | USERS2.0RA SYSTEMORA

Fpplied only fo the
damaged data fles Log Sequence Leg Sequence Leg Sequence

Contal File
Log Sequence

i

Complete Media Recovery (4)

Phase 3: Rolling Back Using Rollback Segments

Rollhack
Segments
Applied 0 recovered
datafles

USERS1.0RA | USERS2.0RA SYSTEMORA

Leg Sequence Leg Sequence Leg Sequence

Contol File
Loy Seguence




Incomplete Media Recovery

In specific situations (for example, the loss of
all active online redo log files, or a user
error, such as the accidental dropping of an
important table), complete media recovery
may not be possible or may not be desired.
In such situations, incomplete media
recovery is performed to reconstruct the
damaged database to a transaction
consistent state before the media failure or
user error.

Incomplete Media Recovery

There are different types of incomplete media
recovery that might be used, depending on the
situation that requires incomplete media recovery

cancel-based recovery is used when one or more
redo logs (online or archived) have been damaged
by a media failure and are not available for
required recovery procedures.

Time-Based and Change-Based Recovery
Incomplete media recovery is desirable if the
database administrator would like to recover to a
specific point in the past.




Part 111

Database Structures

Data Blocks, Extents and Segments

Segment
T12Kh




Data Blocks

Header: general block
info: block address and the
type of segment; for
example, data, index, or
rollback.

Table Directory: info
about the tables having

rows in this block.

Row Directory: row info
about the actual rows in
the block

Row Data

Database Block

PCTFREE

The PCTFREE
parameter 1s used to
set the percentage of a
block to be reserved
(kept free) for possible
updates to rows that
already are contained
in that block.

Database Block
PCTFREE = 20

m—

Common and Yariahle Header
Table Directory

Row Direclory

Free Space

Row Data

20% Free Space

Block allows row inserts
untl 80% is ocoupied,
leaving 20% free for updates
to existing rows in the hlock




PCTUSED

After a daFa block becomes full, gﬁm;;l:c:u

as determined by PCTFREE,

Oracle does not consider the

block for the insertion of new

rows until the percentage of the
block being used falls below the " Free
parameter PCTUSED. Before Space
this value is achieved, Oracle
uses the free space of the data
block only for updates to rows

already contained in the data
block.

Mo new mws are
inserted untl amount
ofused space falls
helow 40%

Database Block
PCTFAEE = 20, PCTUSED = 40

—

{ Pows aw mered up b 2 Upeaws b exing movs
anly, snes e e bee s
PCIFREE says Mat2im o
ol i bleck mest rman
apan e updie of

i s

pace & T8 ar Wi

3 Aler o amuntadwed Fws ane mspried up
o Bk bk AU any, snce
new ows can sgam be PCIPREE says hal
Isaied B0 s bisck. 30W. o e bisck must
TEman open b updaes
e
Gk cormaes .




dllaﬁase E ﬂﬁk
97 PCTFREE = 20, PCTUSED = 40

EE B

T

— —

1 Fows are inserted up fo 2 Updates to existing rows.
80% only, since use te free space
PCTFREE says that20% reserved in the block,

ofthe block must remain No hew mows can be
apen farupdates of inserted into the black
existing nws. until te amountofuzed
space is 39% or less,

— =

3 Afterthe amountofused 4 Rows are inserted up o
space falls helow 40% 20% only, since
nEw mws can again be PCTFREE says that

inseried inty this block, 20% ofthe block must
tetnain open forupdates
afexisfing mws. This
cycle confinues ...

Segments

There are four types of segments used in
Oracle databases:

e data segments

¢ index segments

e rollback segments

e temporary segments




Database Files Obhjects
(rhysical shuchures associated (stored in tablespaces—
with only one tablespace) may span several datafiles)

Databases

Database

Index

Index

Index

Index




Tables

Column names|
| |
EMPNO | ENAME | JOB | MGR | HIREDATE | SAL | COmm | DEPTND —
[ 7329 SMITH CLERK 7802 17-DEC-88 800,00 300,00 20
| 74499 ALLEN SALESMAN 7698 20-FEB-88 1600.00 300,00 30
7521 W ARD SALESMAN 7Bag 20-FEB-83 1250,00 500,00 a0
THEE JOMES MAMAGER 7839 0z-AFR-83 2975.00 20
| |
L Column not L Column
allowing nulls allowing
nulls

Row Format and Sizes

Oracle stores each g Cotnn
row of a
database table
as one or more
row pieces

. Row Overhead

D Mumber of Columns

[ ] Cluster Key 1D ot clusters)

I:l ROWID of Chained Row Pieces §f any)
I:l Calumn Length Datahase
. Column Yalue Block




Calumn Data

- Row Overhead

|:| Mumber of Calumns

L] custer key ID gf clustered

|:| ROWID of Chained Fow Pieces {f any)

|:| Column Length Database

. Coluran Yalue Block
3

Base Tahle EMP
EMPMD | ENAME JOB MGR HIREDATE SAL COMM DEPTNO
7329 SMITH CLERK 7a02 17-DEC-88 200,00 200,00 20
7499 ALLEM SALESMAN 7693 20-FEB-83 200,00 1600.00 a0
7521 W ARD SALESMAN 7693 22-FEB-83 500 1250.00 a0
7566 JOMES MANAGER 7838 02-APF-23 2875.00 20

Viiew | STAFF

EMPND | ENAME JOB MGR DEPTND
7329 SMITH CLERK 7a02 20
7499 ALLEM SALESMAN 7693 a0
7E21 W ARD SALESMAN 7E0E a0
7566 JOMES MANAGER 7838 20




Oracle uses B*-
tree indexes that
are balanced to
equalize access
times to any row

Cluster Key
(DEFTO)

10 ‘ DNAME ‘ Loc

Indexes

¢

¥ <ELAKE
BLAKE —]
JAHES

- ELAKE
CLARK
FORD

BLAKE - ROWID
CLARK - ROWID
FORD - ROWID

!

¢

KING
¥ waRTIv

{

KING
MILLER —
TURKER

P MILLER
SCOTT
SMITH

!

TLRNER
WERD

‘ SALES ‘ BOSTON

‘ DMAME

‘ADM\N

KEHR
WILSOMN
NORMAN

Clustered Tahles
FRelated data siored
tgeter, more
efiicienty

EMP Tahle

EMPNO ‘ ENAME DEPTHD

Unclustered Tables
Felaterf date stored
apart, faking up
maore gpace

BOSTON
MEW YORK




Panapronsli
I NI e

O Calimpe .

SELECT FROM Erial
WItERR trialmo=11103,

Senllis nin

TRIAL Table

187
10
1200
i

e
i

TRALND Oher Colerras ...

Llu: Ing the anle
Hash Cluster
Key Key
237 TRIALNO Other Columns . ..
12817
13021
12981
238
Pethaps oneliD 11028
with hash cluster 11021
11103
»
1}

SELECT FROM trial
WHERE trialnn=11103;

TRIALNO Index
Severalli0swith
1o
1o

use ofindex

o

e ——

TRIAL Table

TRIALNO

Other Columns . ..




Row hashkey =1

Row hashkey0,1,2

Header

Row hash key =5 l

Row hash key =7
Collision for
these hash

Row hash key =1 key values \ Row hash key =2

Row hash key =4

Row hash key =3

Row hash key =0
Row hash key =0

Size =160, 12 hash key Size =500; 3hash key
walies per blnck, values per block.
Smaller rows fitin Larger rows cannot
femaining space, even fitin remaining spaces
after collisions, after collisions,

110
Row hash key
Row hash key=3
_
Row hash key 0,1,2
Header
Stored
g 1M
" overflow
hlock
Row hash key =35
Row hash key =7
Collision for
these hash
Row hash key =1 key values Row hashkey=2
Row hash key =4
Row hash key =3
Row hashkey =0
Row hash key =0
Size =160 12 hash key Size =500; 3 hash key
values perblock, values pet hlack,
Smaller rows fitin Langer rows cannat
temaining space, even fitin remaining spaces
after collisions, after collisions,




Datatypes

Data Type Description

(Column Length (bytes)

ICHAR (size) [Fixed-length character

data of length size.

IFixed for every row in the table (with trailing
blanks);

|Variable-length
character data.

[Variable for each row, up to 2000 bytes per row.

|Variable-length numeric
data.

[Variable for each row. The maximum space
required for a given column is 21 bytes per row.

IFixed-length date and
time data

[Fixed at seven bytes for each row in the table.

|Variable-length
character data.

|Variable for each row in the table, up to 231 -1
bytes, or two gigabytes, per row.

|Variable-length raw
binary data

[Variable for each row in the table, up to 255
bytes per row.

|Variable-length raw
binary data.

|Variable for each row in the table, up to 231 -1
bytes, or two gigabytes, per row.

row addresses.

Binary data representing[Fixed at six bytes for each row in the table.

[Variable-length binary
data representing

|Variable for each row in the table, ranging from
two to five bytes per row.

loperating system labels.

Data

Tahle DEPT
DEPMO | DMAME | Loc
20 RESEARCH DALLAS
30 SALES CHICAGOD
* .
Each now musthave a vale el

for the ENAME column

Integrit
Each value in he DNAME
column must be unique

Each value in the
CEPTMO column
mustmatch a value in
the DEPTHO column
of the DEPT table

Table EMP ‘ ..l

EMPNO | EMAME | ... Other Columns ... | SAL comm | DEPTNO
GGG MULDER 5500.00 20

329 SMITH 9000.00 20

4849 ALLEM 500,00 100,00 a0

75N WARD 5000,00 200,00 a0

THEG JOMES 2475.00 400,00 a0

| |

Each row musthave a value
far the EMPO calumn, and
the value must be unique

Each value in the SAL column
musthe less than 10,000



Not Null Integrity Constraint

Tahle EMP
EMPNO | ENAME JoB | MGR

| HIREDATE SAL COmMM DEFTNO

7329 SMITH 17-DEC-B5 9,000.00

7459 ALLEN WP SALES 7329 20-FEB-90 7,500.00 100,00 30
7521 W ARD MEHAGER 7499 22-FEB-90 5,000.00 200,00 a0
TEB6 JOMES SALESMAN 751 02-AFR-30 2,875.00 400,00 a0
| |
L HOT HULL GConskraint L Ahsence of HOT
tho row may contain a null HULL Consbraint
value far this calumn) (an[y raw can contain
null for this column

Unique Key

UHIQUE Key Gonsbraint
iho row may duplicate a value
in the consfraints colmn)

Tahle DEPT
DEPND | DNAME | Loc
20 RESEARCH | DALLAS

a0 SALES MNEW YORK
40 MARKETING BOSTON

INSERT
INTD

MEW YORK —§— This row vialates the UMIQUE key constraint,
hecause "SALES™ is already presentin another
raw; therefore, itis notalowed in the fable.

BOSTONM —f— This raw is allowed hecause anull valie is
entered for the DMAME column; however, ifa
MOT MULL constraintis alzo defred on the
DNAME column, this row is notallowed,




Unique Keys

Primary Key

Primary Ke
o row may duplicate a value in the
key and no null values are allowad)

Tahle DEPT

DEPNO | DMAME | Lac

20 RESEARCH DALLAS
an SALES CHICAGO

IMSERT
IMTO

Composite UHIQUE Key Consbraint
o row may duplicate a set
ofvalues in the key)
Tahle CUSTOMER
CUSTMD | CUSTNAME ... Other Columns ... | AREA | PHONE
230 OFFICE SUPPLIES 303 506-7000
245 ORACLE CORP 418 5058-7000
267 INTERMATIOMAL SYSTEMS 303 341-8100
INSERT
INTO
268 AEA CONSTRUCTION 418 S0B-7000 —F— This row violates the UNIQUE key constraint,
hecause “4150506-7000" is already present
in another row; terefore, itis not allawed in
the tahle.
270 W R ANUFACTURING 506-7000 —f— This row is allowed because a null value is
enterad for the AREA column; hawever, if a
MOT MULL constraint is also defined on the
BREA column, then this row is notalowed,

MARKETING DALLAS ——f— This row is notallowed hecause “20% duplicates
an exising value in the primary key,

FINAMNCE MEW ¥ORK, —f— This row is notallowed because itcontains

anull walue for the primany key,




Parent Key
Primary key of
referenced table

Tahle DEPT
DEPMND | DNAME Loc

20 RESEARCH DALLAS
30 SALES CHICAGO

-

Foreign Ke

. fvalues in dependenttable must
Referenced or malch a value in unique key or
Parent Table primary key of referenced fable)

Tahle EMP
EMPND | ENAME | JOB | HREDATE | SAL | COMM | DEPTNOD

SMITH CEQ 17-DEC-85 9,000,00 20
ALLEN YP-SALES 20-FEB-50 300, 100.00 30
W ARD MANAGER 00, 200,00 a0
JONES SALESMAN 400.00 20

Dependent or Child Table This row vinlates the

referental constraint

hecause 407 is hot
present in e

ser referenced table’s

fimary key, therefore,

e rol is hotallowed

MANAGER 25 FEB-60 5£,000.00 inthe able

MANAGER 7498 23-FEB-90 45,000.00 This row i allowed in
the fable because a

nullvalue is entered in
the DEPTNO column;
however, ifa notnul
canstaint is also
defined 0 this colimn,
this rw_is notalawed.

Farent KeY
118 Frimary key of
referenced takle
Tahle DEPT
DEPND ™| DNAME | Loc
20 RESEARCH DALLAS
a0 SALES CHICAGD
- Foreign Ke
— (values in dependentfable must
Referenced or e match & valie in unigue key or
Parent Tahle el primary key of referenced fahley
Tahle EMP ‘
EMPNO | EMAME | JOB | MGR | HIREDATE | SaL ‘ COMmM | DEPTNO
7329 SMITH CED 17-DEC-85 9,000.00 o0
7409 ALLEM YP-SALES 7329 20-FEE-90 300, 100,00 30
a2 WaRD MaMAGER 7499 22-FEE-90 500, 200,00 an
TaEE JOMES SALESMAN 7\ 02-APR-90 400,00 20
Dependent or Child Table This row viola s he
referential constaint
hecause 40° is not
presentin he
}H?EHT referenced tahle’s
§1nmary key, terefore,
e row is hotaloved
7571 FORD MANAGER 459 23-FEB-90 5,000.00 200,00 40— in the table.
7571 FORD MANAGER 74a0 23-FEB-00 £,000,00 00,00 — & This row is allwed in
the table because a
null value is entered in

the DEPTNO column;
howeyer, if & notnull
canstaint is also
defined for this colmn,
this row is notallowed,




Self-referential constraint

Primary Key foreign key
freferenced tabla (values in dependenttahle must match a value in
unique key orprimary key of referenced fable)

Dependent or

o 1 or Child Table
ParentTahIe/
Tahle EMP
= EMPNO | EMNAME | JOB | MGR | HIREDATE SAL COMM DEFTHO
7329 SMITH CED 7329 9,000.00 20
7499 ALLEN YP-SALES 7329 7,500,00 100,00 30
7521 WARD MANAGER 7499 £,000.00 200,00 a0
7566 JOMES SALESMAN 7521 2,975.00 400,00 30

This row violateste
referenfialconstraint,

hecause 7331 "
notpresentin e
:H%HT refarenced tahle’s

primary key, there fore,
Itis notallowed

MANAGER 23-FEB-80 5,000.00 200,00 in the table.

Part IV

System Architecture



An Oracle Instance

Regardless of the type of computer executing Oracle and
the particular memory and process options being used,
every running Oracle database is associated with an Oracle
instance.

Every time a database is started on a database server,
Oracle allocates a memory area called the System Global
Area (SGA) and starts one or more Oracle processes.

The combination of the SGA and the Oracle processes is
called an Oracle database instance.

Oracle starts an instance, then mounts a database to the
instance.

Datahase Buffer
Cache

—

!

Oracle Processes




Single Process Instance

System Glohal Area

I

ORACLE Server

Catahasedpplicaton

Single Process

Multiple Process Instance

User | User User User | - - - - User processes

System Global Area
(SGA)

Pt

Oracle Processes
Recoverer PMmce.;s %5’9"?{3” D?\Im_t;ease Log Writer Archiver {hackground processes)
FECD) onitor onitor titer LW @RCH) A
FMON (SMON DEWR)

—
\




DBWR

When a buffer in the buffer cache is modified, it is marked "dirty". As
buffers are filled and dirtied by user processes, the number of free
buffers diminishes. If the number of free buffers drops too low, user
processes that must read blocks from disk into the cache are not able to
find free buffers. DBWR manages the buffer cache so that user
processes can always find free buffers.

LRU keeps the most recently used data blocks in memory and thus
minimizes I/0. DBWR keeps blocks that are used often, for example,
blocks that are part of frequently accessed small tables or indexes, in
the cache so that they do not need to be read in again from disk.
DBWR removes blocks that are accessed infrequently (for example,
blocks that are part of very large tables or leaf blocks from very large
indexes) from the SGA.

If the DBWR process becomes too active, it may write blocks to disk
that are about to be needed again.

DBWR (2)

The DBWR process writes dirty buffers to disk under the
following conditions:

When a server process moves a buffer to the dirty list and
discovers that the dirty list has reached a threshold length,
the server process signals DBWR to write.

When a server process searches a threshold limit of buffers
in the LRU list without finding a free buffer, it stops
searching and signals DBWR to write.

When a time-out occurs (every three seconds), DBWR
signals itself.

When a checkpoint occurs, the Log Writer process
(LGWR) signals DBWR.




LGWR

The Log Writer process (LGWR) writes the redo log buffer to
a redo log file on disk. LGWR writes all redo entries that
have been copied into the buffer since the last time it
wrote. LGWR writes one contiguous portion of the buffer
to disk. LGWR writes

a commit record when a user process commits a
transaction

redo buffers every three seconds
redo buffers when the redo log buffer is one-third full

redo buffers when the DBWR process writes modified
buffers to disk

CKPT

When a checkpoint occurs, Oracle must update the
headers of all datafiles to indicate the checkpoint.

In normal situations, this job is performed by
LGWR.

However, if checkpoints significantly degrade
system performance (usually, when there are
many datafiles), it is possible to enable the
Checkpoint process (CKPT) to separate the work
of performing a checkpoint from other work
performed by LGWR, the Log Writer process
(LGWR).




SMON, PMON

* SMON performs instance recovery at
instance start up. SMON is also responsible
for cleaning up temporary segments that are
no longer in use; it also coalesces
contiguous free extents to make larger
blocks of free space available.

* PMON performs process recovery when a
user process fails. PMON is responsible for
cleaning up the cache and freeing resources
that the process was using.

Other Processes

Reco: Distributed recovery

Arch: The archiver of redo log files
LockO: Inter instance locking
SPNO: Snapshot refresh

Dnnn: Dispatcher processes




Memory Structures

Oracle uses memory to store the following information:
program code being executed

information about a connected session, even if it is not
currently active

data needed during program execution (for example, the
current state of a query from which rows are being fetched)

information that is shared and communicated among
Oracle processes (for example, locking information)

cached information that is also permanently stored on
peripheral memory (for example, a data block)

Memory Structures (2)

The basic memory structures associated with Oracle
include:

e software code areas

e the system global area (SGA)
o the database buffer cache
o the redo log buffer
o the shared pool

e program global areas (PGA)
e stack areas
e data areas

e Sort areas




Software Code Areas

Software code areas are portions of memory
used to store code that is being or may be
executed. The code for Oracle is stored in a
software area, which is typically at a
location different from users' programs -- a
more exclusive or protected location.

SGA

A System Global Area (SGA) is a group of shared
memory structures that contain data and control
information for one Oracle database instance. The
SGA contains the following subdivisions:

the database buffer cache
the redo log buffer

the shared pool

the data dictionary cache

other miscellaneous information




The Shared Pool

@ed Pool

ﬂihrw Cache

Shared SOL Area

N—

PLISOL Procedures
and Packages

™

Diclionary Gache

R

Control Shuctures
for example:

Character Set
Canversion Memory

Metwark Security
Atrbutes

andsoon...
— S L —

Gontrol Shuchwres
for example:

Locks

Library

Cache handles
anid oo .

ﬂed Pool

u ) N
Library Cache Shared SOL Area Dictionary Cache
S — R ——
PLISOL Procedures Conlrol Skuchures
and Packages for example:
Character Set
Conversion Memory
Metwork Securiy
Atirbutes
and soon ...
S st
Conlrol Skuchures
for example:
Locks
Library
Cache handles
and soan ...
/




The Shared Pool (2)

Oracle represents each SQL statement it executes with a
shared SOL area and a private SQL area. Oracle
recognizes when two users are executing the same SQL
statement and reuses the same shared part for those users.
However, each user must have a separate copy of the
statement's private SQL area.

A shared SQL area is a memory area that contains the
parse tree and execution plan for a single SQL statement.

A private SQL area is a memory area that contains data
such as bind information and runtime buffers.

PGA PGA

Oracle witiout te Otacle with the
Mul-threaded Server Muli-threaded Semner

Stack Sessioh Stack
Infamnation Space

Session
Information

Shared SULAreas

Shared SOL Areas




Sort Areas

 Portions of memory in which Oracle sorts
data are called sort areas.

If the amount of data to be sorted does not
fit into a sort area, then the data 1s divided
into smaller pieces that do fit. Each piece is
then sorted individually. The individual
sorted pieces are called "runs". After sorting
all the runs, Oracle merges them to produce
the final result.

Part V

Concurrency Control




Transactions

A transaction is a logical unit of work that
contains one or more SQL statements.

A transaction is an atomic unit; the effects of all
the SQL statements in a transaction can be either
all committed (applied to the database) or all
rolled back (undone from the database).

A transaction begins with the first executable SQL
statement. A transaction ends when it is
committed or rolled back, either explicitly (with a
COMMIT or ROLLBACK statement) or
implicitly (when a DDL statement is issued).

Example of Transaction

Transaction Begins

UPDATE savings_accounts Decrement Savings Account
SET balance = balance - 500
WHERE account = 3Z08;

UPDATE checking accounts Increment Checking Account
SET halance = halance + 500
WHERE account = 3208;

INSERT INTO journal VALUES Fecord in Transaction Joumal
('Ziournal seq. NEETVaL, ‘1B’
309, 3208, 500);

End Transaction
COMMIT WORK;

Transaction Ends




Before Commit

Before a transaction that has modified data is
committed, the following will have occurred:

e Oracle has generated rollback segment records in
rollback segment buffers of the SGA. The rollback
information contains the old data values changed by the
SQL statements of the transaction.

Oracle has generated redo log entries in the redo log
buffers of the SGA. These changes may go to disk
before a transaction is committed.

The changes have been made to the database buffers of
the SGA. These changes may go to disk before a
transaction actually is committed.

After Commit

After a transaction is committed, the following occurs:

e The internal transaction table for the associated rollback segment
records that the transaction has committed, and the corresponding
unique system change number (SCN) of the transaction is assigned
and recorded in the table.

LGWR writes the redo log entries in the redo log buffers of the
SGA to the online redo log file. LGWR also writes the
transaction's SCN to the online redo log file. This is the atomic
event that constitutes the commit of the transaction.

e Oracle releases locks held on rows and tables.

o Oracle marks the transaction "complete".




Rolling Back

Rolling back means undoing any changes to
data that have been performed by SQL
statements within an uncommitted
transaction.

Oracle allows you to roll back an entire
uncommitted transaction. Alternatively, you
can roll back the trailing portion of an
uncommitted transaction to a marker called
a savepoint.

Rolling Back (2)

In rolling back an entire transaction, without referencing any savepoints,
the following occurs:

e Oracle undoes all changes made by all the SQL statements in the
transaction by using the corresponding rollback segments.

e Oracle releases all the transaction's locks of data.
e The transaction ends.
In rolling back a transaction to a savepoint, the following occurs:
Oracle rolls back only the statements executed after the savepoint.

The specitied savepoint is preserved, but all savepoints that were
established after the specified one are lost.

Oracle releases all table and row locks acquired since that savepoint, but
retains all data locks acquired previous to the savepoint.

The transaction remains active and can be continued.




Data Concurrency

Many users can access data at the same
time.

Users should see a consistent view of the
data, including visible changes made by the
user's own transactions and transactions of
other users.

Preventable Phenomena

dirty reads: A transaction reads data that has been written
by a transaction that has not been committed yet.

non-repeatable (fuzzy) reads: A transaction re-reads data it
has previously read and finds that another committed
transaction has modified or deleted the data.

phantom read: A transaction re-executes a query returning
a set of rows that satisfy a search condition and finds that
another committed transaction has inserted additional rows
that satisfy the condition.




Isolation Levels

Locking Mechanisms

Locks are mechanisms used to prevent destructive
interaction between users accessing the same resource.

Resources include two general types of objects:
e user objects, such as tables and rows (structures and data)

e system objects not visible to users, such as shared data structures in
the memory and data dictionary rows

In general, you can use two levels of locking in a multi-
user database:

— Exclusive locks
— Shared locks




Transaction 1 (T1)

UPDATE emp
SET sal = sal®l.1
WHERE enpno = 1000;

-y -
UPDATE emp
SET sal = sal*l.1
WHERE empno = Z000;
- o
ORA-00060:

deadlock detected while
walting for resource

N ———————————————

Deadlocks

Transaction 2 (T2)
A UPDATE enp
SET mgr = 1342
WHERE enpno = Z000;
"y -
E
UPDATE enp
SET mgr = 1342
WHERE enpno = 1000;
- o
C

on Concurrency Control

Data Blocks

o

{ I

e

Rollback Segment




Level of Consistency

Oracle always enforces statement-level read consistency. This
guarantees that the data returned by a single query is consistent with
respect to the time that the query began. Therefore, a query never sees
dirty data nor any of the changes made by transactions that commit
during query execution.

Oracle also allows the option of enforcing transaction-level read
consistency. When a transaction executes in serializable mode,all data
accesses reflect the state of the database as of the time the transaction
began. This means that the data seen by all queries within the same
transaction is consistent with respect to a single point in time, except
that queries made by a serializable transaction do see changes made by
the transaction itself. Therefore, transaction-level read consistency
produces repeatable reads and does not expose a query to phantoms.

Oracle Isolation Levels

Oracle provides three transaction isolation modes:

read committed: This is the default transaction isolation
level. Each query sees only data that was committed before
the query (not the transaction) began. A transaction that
executes a given query twice may experience both non-
repeatable read and phantoms.

Serializable transactions see only those changes that were
committed at the time the transaction began, plus those
changes made by the transaction itself.

Read only: Read only transactions see only those changes
that were committed at the time the transaction began and
do not allow INSERT, UPDATE, and DELETE.




Problems with Serialization

SET TRANSACTIOW ISOLATION
Repeated query sees the same LEVEL SERIALIZABLE
data, even if it was changed hy
another concurrent user

SELECT. ..

SELECT. ..

Fails if attempting to update a

row changed and committed by

another transaction since this UPDATE. . .
transaction hegan

IF ~can't serialize Access”
THEM ROLLBACK;
LOCP and refry

How Oracle Locks Data

The only data locks Oracle acquires automatically are row-
level locks.

Oracle does not escalate locks from the row level to a
coarser granularity.

Readers of data do not wait for writers of the same data
TOWS.

Writers of data do not wait for readers of the same data
rows (unless SELECT... FOR UPDATE is used, which
specifically requests a lock for the reader).

Writers only wait for other writers if they attempt to update
the same rows at the same time.




How Oracle Locks Data (2)

All locks acquired by statements within a
transaction are held for the duration of the
transaction.

All locks acquired by statements within a
transaction are held for the duration of the
transaction.

Oracle automatically detects deadlock situations
and resolves them automatically by rolling back
one of the statements involved in the deadlock,
thereby releasing one set of the conflicting row
locks.

Types of Locks

Data (DML) locks protect data. For example, table locks
lock entire tables, row locks lock selected rows.

Dictionary (DDL) locks protect the structure of objects.
For example, dictionary locks protect the definitions of
tables and views.

Internal locks and latches protect internal database
structures such as datafiles. Internal locks and latches are
entirely automatic.

Parallel cache management locks are distributed locks that
cover one or more data blocks (table or index blocks) in
the buffer cache. PCM locks do not lock any rows on
behalf of transactions.




Data Locks

A transaction acquires an exclusive data lock (TX) for each
individual row modified by one of the following
statements: INSERT, UPDATE, DELETE, and SELECT
with the FOR UPDATE clause.

A modified row is always locked exclusively so that other
users cannot modify the row until the transaction holding
the lock is committed or rolled back.

A transaction acquires a table lock (TM) when a table is
modified in the following DML statements: INSERT,
UPDATE, DELETE, SELECT with the FOR UPDATE
clause, and LOCK TABLE.

Table Locks




Row Share (RS) and Row Exclusive (RX)

 High degree of concurrency

* Your transaction needs to prevent a table
from being altered or dropped before the
table can be modified later in your
transaction

Share (S)

* Your transaction only queries the table and
needs transaction-level read consistency on

the table.




Share Row Exclusive (SRX)

* Your transaction requires both transaction-
level read consistency and the ability to
update the locked table.

Exclusive (X)

» Immediate update access.

» Transaction-level read consistency.




Locks Compatibility

Example of explicit locking




Part VI

Query Optimization

What 1s optimization?

 Whenever a DML statement is issued,
Oracle must determine how to execute it.

» There may be different ways to execute the
statement.

» The optimizer’s job is to choose one of
these ways.




Execution Plans
* To execute a DML statement, ORACLE
may have to perform many steps.

» Each step may:
— retrieve rows from the DB.

— prepare rows for the user in some way.

Example

SELECT ename, job,sal,dname
FROM emp,dept
WHERE emp.deptno=dept.deptno
AND NOT EXISTS
(SELECT *
FROM salgrade
WHERE emp.sal BETWEEN
Towsal AND hisal)




An Execution Plan

Join rows Filter the results

from emp |~
and dept

Read all
the rows

|
|
R\ Use the

— ROWID
to find the row

For each emp, use

Physical access — the deptno value to
to the DB search the index.

It returns a ROWID
(Access Paths)

Order of Execution

6. Return the row

For each emp... ( )
or no

5. $elect the rows

4. Join the rows

3. Find the row

1. Get all the rows and
return them, one at a
time to step 2

2. Find the
ROWID
of the dept




The explain plan command

Operation Options Object name

174 °

Two approaches to optimization

» Rule-based: » Cost-based
Choose an execution — Generate a set of

plan based on the possible access paths.

access path available

and choose the access
path using a heuristic
ranking.

— Evaluate the cost of
each access path based
on the data distribution
and statistics.

— Choose the plan with
the smallest cost.




How the optimization 1s done

Evaluation of expression and conditions
Statement transformation

View merging

Choice: rule-based or cost-based
Choice of access paths

Choice of join orders

Choice of join operation

Types of SQL statements

e Simple  Outerjoins
statements e Cartesian
« Simple queries products
* Joins « Complex
» Equijoins statements
» Nonequijoins * Compound query
 Statements
accessing views




Evaluating Expressions and conditions

* Constants:
-sal > 32000/12
-sal*12 > 1000

 LIKE:
—ename LIKE ‘SMITH’
—ename = ‘SMITH’

 BETWEEN:
—-sal BETWEEN 2000 AND 3000
-sal >= 2000 AND sal <= 3000

Evaluating Expressions and conditions (2)

Transitivity
Select *
From emp, dept
where emp.deptno = 20 and

emp.deptno = dept.deptno;

replaced with
emp.deptno = 20;




Evaluating Expressions and conditions (3)

OR’s and Compound Queries
SELECT *
FROM EMP
WHERE job

OR deptno 10;

replaced with:
UNION ALL SELECT * FROM EMP
WHERE deptno = 10;

Optimizing Complex Statements

There are two approaches to the optimization
of complex statements:

* Transform the complex statement in a join
statement and optimize the join statement.

» Optimize the complex statement as it is.




Example of Transformation

SELECT *
FROM accounts
WHERE custno IN (SELECT custno FROM
customers);
is transformed into
SELECT accounts.* customer.custno
FROM accounts,customers must be a

WHERE account.custno =  primary key
customers.custno

The corresponding execution plan




Complex Statements that are not simplified
* The query and its subqueries are optimized
independently.
» For example:
SELECT *
FROM accounts
WHERE accounts.balance >

(SELECT AVG(balance) FROM
accounts);

Statements that Access Views

There are three approaches to the optimization
of queries that access views:

Merge the view definition into the query
and then optimize the resulting query.

Merge the query in the view definition and
then optimize the resulting query.

Optimize and execute the view and then
optimize and execute the query.




Merging the view definition
* View: * Query:
CREATE VIEW SELECT empno
emp_10 FROM emp_10

AS SELECT * WHERE empno >
FROM emp 7800

WHERE deptno =
10;

I

Merging the query (1)
* View: » Statement:

CREATE VIEW emp SELECT

AS SELECT * FROM empno, ename
empl FROM emp

UNION SELECT * WHERE deptno=20;
FROM emp2;




Merging the query (2)
The query that is executed is

SELECT * FROM empl WHERE
deptno=20

UNION

SELECT * FROM emp2 WHERE
deptno=20

The execution plan




The query 1s merged in the view

If the view’s query contains:

 Set operator

* Group by

« DISTINCT

* Group Function

Example

* View: e Statement:

CREATE VIEW group SELECT * FROM
AS SELECT group

AVG(sal) _
an_Sa-I , WHERE deptnO—lo

MIN(sal) Select
min_sal, AVG(sal) avg_sal,
INAEEID N EV Ay MIN(sal) min_sal,
FROM emp MAX(sal) max_sal
FROM emp
WHERE deptno = 10 GROUP
BY deptno

GROUP BY deptno;




The execution plan

Example

o Statement:

Select
AVG(avg_sal) ,AvG(min_sal) ,AvG(max_sal)

FROM group;

Select AVG(AVG(sal)),AvG(MIN(sal)),
AVG(MAX(sal))

FROM emp

GROUP by deptno




The execution plan

Optimizing other statements that access views

* ORACLE cannot always merge definitions
and queries.

* In these cases, ORACLE issues the view’s
query, collects the rows and then access this
set of rows with the original statement as
thought it was a table.




Example

* View: * Query:

CREATE VIEW group SELECT

AS SELECT deptno, group.deptno,
AVG(sal) avg_sal, avg_sal, min_sal,
MIN(sal) min_sal, max_sal,
MAX(sal) max_sal dname, Toc

FROM emp FROM group,dept

GROUP BY deptno LinlEE
group.deptno=dept

.deptno

Execution Plan




Optimization Approach and Goal

e OPTIMIZER_MODE:

— COST: If there are statistics then cost-based else
rule-based.

— RULE: rule-based approach.
e ALTER SESSION:

— CHOOSE, ALL_ROWS (best throughput),
FIRST_ROWS (best response time), RULE

Choosing Access Path
* The basic methods.

» The access paths and when they are
available.

* How the optimizer chooses among the
access paths.




Access Methods
e Full Table Scans

— Read each row and determine of it satisfies the
statement’s WHERE clause.

— Implemented very efficiently using multi-block
reads.

— Each data block is read only once.

» Table Access by ROWID: fastest way.

Indexes, Clusters and Hash Clusters

* Indexes are created on one or more columns
of a table. Very useful for range conditions.
They are independent of the table.

* Clusters are an optional method for storing
the table. Clusters group together tables
because they share columns and often used
together.

» The related columns in a cluster is the
Cluster key (always indexed)




Example: Cluster

Indexed

Hash Clusters

 Organization like simple clusters but...

* A row is stored in a hash cluster based on
the result of applying a hash function to the
row’s cluster key value.

» All rows with the same key value are stored
together on the disk.




Example: Hash Cluster

Access Methods (2)

e Cluster Scans:

— Retrieves all the rows that have the same cluster
key value.

— ORACLE first obtains the ROWID of one of
the selected rows by scanning the cluster index.

— ORACLE then locates the rows based on this
ROWID.




Access Methods (3)

» Hash Scans:
— ORACLE first obtains the hash value by
applying the hash function.

— ORACLE then scans the data blocks containing
rows with that hash value.

Access Methods (4)

e Index Scans:

— ORACLE searches the index for the indexed
column values accessed by the statement.

— If the statement accesses only columns of the
index, ORACLE reads the values only from the
index.

— In the other case, ORACLE uses the ROWID
found in the index to read the specific row from
the table.




Access Methods (5)

» An index scan can be one of these types:

— Unique: a unique scan of the index returns only
a single ROWID.

— Range: A range scan can return more than one
ROWID.

|1 - Single Row By ROWID

» If the Where Clause 1identifies the ROWID
» Example:
SELECT *
FROM emp

WHERE
ROWID="*00000DC5.0000.0001’




2 - Single Row by Cluster Join

 For statements that join tables stored in the
same cluster if:

— the statement equates every column of the
cluster in each table.

— there is a condition that guarantees that only
one row will be returned.

Example

SELECT *

FROM emp,dept

WHERE emp.deptno =dept.deptno
AND emp.empno=7800




3 - Single Row by Hash Cluster Key
 The WHERE clause uses all columns of a
hash cluster key with equality conditions.

» The statement is guaranteed to return only
one row because the columns of the cluster
key makes also a primary or unique key.

Example

SELECT *
FROM orders
WHERE orderno = 73468376




4 - Single Row by key

 The WHERE clause uses all the columns of
a unique or primary key in equality
condition.

* ORACLE uses the index of the key to find
the ROWID and then accesses the row in
the table.

Example

SELECT *
FROM emp
WHERE empno=7800




5 - Clustered Join

» The statement joins tables stored in the
same cluster, that 1s the WHERE clause
equates the columns of the cluster columns
in the two tables.

* To execute the statement, ORACLE
performs a nested loop operation.

Example

SELECT *
FROM emp,dept
WHERE emp.deptno = dept.deptno




6 - Hash Cluster Key

« The WHERE clause uses all the columns of
the hash key in equality conditions.

 ORACLE calculates the hash value and
then performs a hash scan.

SELECT *
FROM line_items
WHERE deptno=09870897

7 - Indexed Cluster Key

* ORACLE searches the cluster index to find
the ROWID.

e ORACLE then scans the rows with the
same cluster key using this ROWID.

SELECT *
FROM emp
WHERE deptno = 10




8 - Composite Index

e All the columns of the index are in the
WHERE clause in equality conditions.

* ORACLE scans the index for the ROWIDs
and then accesses the table

SELECT *
FROM emp
WHERE job=‘CLERK’ AND deptno=30

9 - Single Column indexes
SELECT * FROM emp WHERE
job="CLERK’

 ORACLE can merge indexes if the query
conditions uses columns of many single
column indexes




10 - Bounded Range Search on Indexed Columns

» The conditions uses either a single-column
index or the leading portion of a composite

index:
column = expr

column >[=] expr AND column <[=] expr

column BETWEEN expr AND expr

column LIKE ‘c%’

 ORACLE performs a range scan on the
index and then accesses the table by
ROWID.

11 - Unbounded Range Search on Indexed Columns

column >[=] expr
column <[=] expr




12 - Sort Merge Join

e Join on non-clustered columns.

13 - Max or Min of Indexed Column

SELECT MAX(sal)
FROM emp

* ORACLE performs a range scan on the
index




14 - ORDER BY on indexed column

SELECT *
FROM emp
ORDER BY empno

15 - Full Table Scan

* For any SQL statement.

» Remark: You cannot use a index if you
have

columnl (>|<|>=|<=) column?2
column IS NULL

column IS NOT NULL

column NOT IN

column !=

column LIKE

columnl and column?2 are in the same table.




Rule-based optimization
SELECT empno
Indexed

FROM emp - —
WHERE ename = ‘CHUNG’
AND sal > 2000

\ Index

Single-Column Index (RANK 9)
Unbounded range index scan (Rank 11)
Full table scan (Rank 15)

Cost-Based Optimization

To choose among the available access paths,
the optimizer considers these factors:

 Selectivity of the query. (big % : Full scan,
small %: index scan).

e DB_FILE_MULTIBLOCK_READ_COUNT
(high: Full scan, small: index scan)




Example of cost-based opt.

SELECT * FROM emp WHERE ename = ‘JACKSON’

If ename is a unique or ¢ If ename is not a key,
primary key, the the optimizer uses the
optimizer determines following statistical
that this query is values:
hlghly Selective and USER_TAB_COLUMNS .NUM_DISTINCT
that lt must use the USER_TABLES . NUM_ROWS
index. By assuming that the
ename values are
uniformly distributed,
the optimizer can
evaluate the selectivitv

Example

SELECT * FROM emp WHERE empno < 7500

To estimate the selectivity of this query, the
optimizer uses the boundary value of 7500
the statistics HIGH_VALUE and
LOW_VALUE in the USER_TAB_COLUMNS
statistics table. It assumes that the values
are evenly distributed in the range to
estimate the selectivity of the condition.




Example

SELECT * FROM emp WHERE empno < :el

The value of the bind variable : el is
unknown at optimization time, therefore the
optimizer heuristically guesses 25% of
selectivity.

Optimizing Join Statements

To choose an execution plan for a join
statement, the optimizer must choose:

» Access Paths

 Join Operation

 Join Order

These Choices are related.

Lets examine the different possible join
operations.




Nested Loops Join
SELECT * FROM emp,dept WHERE emp.deptno=dept.deptno

The inner Table
1 - NESTED LOOPS /

O

2 - TABLE ACCESS (FULL) 3 - TABLE ACCESS (BY ROWID)
emp dept

The outer table or 4 - INDEX (UNIQUE SCAN)
the driving table pk_dept

Sort-merge Join

1 - MERGE JOIN

2 - SORT (JOIN) 4 - SORT (JOIN)

3- Table Access 5 - Table Access
(FULL SCAN) (FULL SCAN)
emp dept




Cluster Join

1 - NESTED LOOPS

TABLE ACCESS
TABLE ACCESS (FULL) (CLUSTER)

dept emp

Choosing execution plans for joins
* Rule-based vs. Cost-based

* In the two approaches, the optimizers
always:
— begins with the joins that results in a single row
(using keys).
— begin with the tables without the outer join
operators (+)




Rule-based Approach

» The optimizer generates a set of R join
orders by following the algorithm:
— Begin with a different table each time.
— Choose an access path for each table.

— Order the tables in the join from high ranked
access path to lower rank access path.

— For each table in the join, the optimizer must
decide how to join the table to the previous
results.

How to join the tables in the join

» If the access path is ranked 11 or better
(there is an index or a cluster), use nested
loops.

« If this is an equijoin, use sort-merge.
» Use nested loops.




How to decide which join to execute

The goal: maximize the number of nested
loops join where there is an index on the
inner table.

This is done using the following algorithm:

The Algorithm
Choose the table with:

 fewest nested loops where the inner table is
access with full table scan.

 If there 1s a tie, choose the fewest sort-
merge operation.

« If there is a tie, choose the plan with the
highest rank for the first table:




The Algorithm (cont)

— If there is a tie between tables accessed by
single-column index, choose the plan whose
first table is accessed with most merged
indexes.

— If there is a tie between tables accessed by
bounded range scan, the optimizer chooses a
plan whose first table is accessed with the
greatest number of leading columns.

Cost-based optimization

Generate a set of join orders, join operations
and access paths and estimate the cost of
each one.

The optimizer estimates the cost using the
following algorithm:




The Algorithm (cost-based)

» The cost of nested loops operation is based
on the cost of reading each of the selected
row of the outer table and each of its
matching rows of the inner table in
memory.

The cost of a sort-merge join is mostly the
cost of reading the sources in memory and
sorting them

The Algorithm (cost-based)

* The influencing factors are:
— SORT_AREA_SIZE
—DB_FILE_MULTIBLOCK_READ_COUNT




Compound queries
» Execute each query separately and then
apply the operator used in the compound
query.
SELECT part FROM ordersl
UNION ALL

SELECT part FROM orders?2

Part VII

Security




Database Security

 Database security involves allowing or
disallowing users from performing actions
on the database and the objects within it.

A privilege is permission to access a named
object in a prescribed manner; for example,
permission to query a table.

Because privileges are granted to users at
the discretion of other users, this 1s called
discretionary security.

Users

A user (sometimes called a username) is a name
defined in the database that can connect to and
access objects in database schemas.

To access a database, a user must run a database
application (such as an Oracle Forms form,
SQL*Plus, or a Precompiler program) and connect
using a username defined in the database.

When a database user is created, a corresponding
schema of the same name is created for the user.




Authentication

 Oracle provides user validation via three
different methods for normal database
USErs:
¢ authentication by the operating system

¢ authentication by a network authentication
service

e authentication by the associated Oracle
database

User Tablespace Settings

the database administrator can set several
options regarding tablespace usage:

e the user's default tablespace
e the user's temporary tablespace

e space usage quotas on tablespaces of the
database for the user




PUBLIC

» Each database contains a user group called
PUBLIC.

The PUBLIC user group provides public
access to specific schema objects (tables,
views, and so on) and provides all users
with specific system privileges.

Every user automatically belongs to the
PUBLIC user group.

User Resources

As part of a user's security domain, the
DBA can set limits on the amount of
various system resources available to the
user.

» Session level, Call level

» Ressources CPU Time, Logical Reads




Privileges

A privilege 1s a right to execute a particular
type of SQL statement or to access another
user's object. Some examples of privileges
include

e the right to connect to the database (create a
session)

e the right to create a table
e the right to select rows from another user's table

e the right to execute another user's stored
procedure

Granting Privileges

A user can receive a privilege in two
different ways:

e The DBA can grant privileges to users explicitly.
For example, she can explicitly grant the privilege to
insert records into the EMP table to the user
SCOTT.

e The DBA can also grant privileges to a role (a
named group of privileges), and then grant the role
to one or more users. For example, she can grant the
privileges to select, insert, update, and delete records
from the EMP table to the role named CLERK,
which in turn you can grant to the users SCOTT and
BRIAN. 0 -




NS

T

ETETET T &7 -

NS

PAY_CLERK Role

MANAGER Fole

REC_CLERK Role

NS

NS

ACCTS_PAY Role

ACCTS_REC Role

T

Frivileges to
execute the
AGCTS_PAY
application

T

Privileges to
execyte the
ACCTS_REC
application

User Roles

Application Roles

Application Privileges

Auditing

Auditing is the monitoring and recording of
selected user database actions. Auditing is
normally used to

e investigate suspicious activity. For example, if an unauthorized
user is deleting data from tables, the security administrator might
decide to audit all connections to the database and all successful
and unsuccessful deletions of rows from all tables in the database.

monitor and gather data about specific database activities. For
example, the database administrator can gather statistics about

which tables are being updated, how many logical I/Os are

performed, or how many concurrent users connect at peak times.




®© © o 0o 0o 0o o o o o

Part VIII

Distributed Processing
and
Distributed Databases

Client/Server

In the Oracle client/server architecture, the
database application and the database are
separated into two parts: a front-end or client
portion, and a back-end or server portion.

The client executes the database application that
accesses database information and interacts with a
user.

The server executes the Oracle software and
handles the functions required for concurrent,
shared data access to an Oracle database.




Advantages

* Client applications are ¢ Easier and more
not responsible for efficient to manage
performing any data concurrent access.
processing

Inexpensive, low-end
Client applications can client workstations can
be designed with no be used

dependence on the Network traffic is kept
physical location of to a minimum because
the data only the requests and
* Oracle can be scaled the results are shipped
over the network.




Distributed Databases

* A distributed database appears to a user as a
single database but is, in fact, a set of databases
stored on multiple computers.

The data on several computers can be
simultaneously accessed and modified using a
network.

Each database server in the distributed database is
controlled by its local DBMS, and each cooperates
to maintain the consistency of the global database

A Distributed Database

SELECT
FRON ENPRSALES




Schema Objects and Naming

" " Other Mon-Commercial
Eeucatonal nsttons

ACME_TOOLS ACKE _ALTO

DWISIDM DIVISIONZ ‘DIV\SIDNS ASIA ‘ ASMERICAS H ELROPE ‘

HI.IMM | RESOURCES.EHP

ji

I | ‘ ‘ ll ‘ JaPaN H H MEXICD H UK
‘

HI.IMAN _RESOURCES.EMP

Statements and Transactions

A remote query is a query that selects information from one or more
remote tables, all of which reside at the same remote node.

A remote update is an update that modifies data in one or more tables,
all of which are located at the same remote node.

A distributed query retrieves information from two or more nodes.
A distributed update modifies data on two or more nodes.

A remote transaction is a transaction that contains one or more remote
statements, all of which reference the same remote node.

A distributed transaction is any transaction that includes one or more
statements that, individually or as a group, update data on two or more
distinct nodes of a distributed database.




Distributed Transaction

All participants (nodes) in a distributed transaction should
be unanimous as to the action to take on that transaction.
That is, they should either all commit or rollback.

Oracle automatically controls and monitors the commit or
rollback of a distributed transaction and maintains the
integrity of the global database using a transaction
management mechanism known as two-phase commit.

This mechanism is completely transparent. Its use requires
no programming on the part of the user or application
developer.

Prepare and Commit

The committing a distributed transaction has two
distinct phases:

Prepare: The global coordinator (initiating node)
asks participants to prepare (to promise to commit
or rollback the transaction, even if there is a
failure).

Commit: If all participants respond to the
coordinator that they are prepared, the coordinator
asks all nodes to commit the transaction. If any
participants cannot prepare, the coordinator asks
all nodes to roll back the transaction.




Prepare Phase

By preparing, a node records enough information
so that it can subsequently either commit or abort
the transaction regardless of intervening failures.

When a node is told to prepare, it can respond
with one of three responses:

— Prepared: Data on the node has been modified by a
statement in the distributed transaction, and the node

has successfully prepared.

— Read-only: No data on the node has been, or can be,
modified (only queried), so no prepare is necessary.

— Abort: The node cannot successfully prepare.

Prepare Actions

* The node flushes any
entries corresponding to
changes made by that
transaction to its local
redo log.

The node requests its
descendants to prepare.

The node checks to see if
the transaction changes
data on that node or any of
its descendants. If there is
no change, the node skips
the next steps and replies
with a read-only message

The node allocates all
resources it needs to
commit the transaction if
data is changed.

The node responds to the
node that referenced it in
the distributed transaction
with a prepared message
or, if its prepare or the
prepare of one of its
descendents was
unsuccessful, with an
abortinessage. . .




Commit Phase

Before this phase occurs, all nodes referenced in the
distributed transaction have guaranteed that they have the
necessary resources to commit the transaction. That is,
they are all prepared.

Therefore, the commit phase consists of the following
steps:

— The global coordinator send a message to all nodes telling them to
commit the transaction.

— At each node, Oracle commits the local portion of the distributed
transaction (releasing locks) and records an additional redo entry in
the local redo log, indicating that the transaction has committed.

When the commit phase is complete, the data on all nodes
of the distributed system are consistent with one another.

The Session Tree

All nodes participating

in the session tree of a [fEintkwa
distributed transaction S |
assume one or more U s oueon
roles:

e aclient

a database server

a glObal coordinator WAREHOUSE ACME.COM  FINANGE AGME GOM

a local coordinator B Giosal Goordinaio

B Commi Foint Stel
I Database Server
[ ]

Client

the commit point site



IITSERT INTS orders. ..
UFDATE inventory @ warehouse. . .
UFDATE accts_rec @ finance.. .

COMIII T,

el " SALES ACME GOM

WAREHOUSE ACME COM FINANCE ACME COM

Global Coordinato
Commit Point Site
Database Server
Client

[T

Clients and Servers

A client references information from
another node's database.

A server is a node that is directly referenced

in a distributed transaction or is requested to
participate in a transaction because another
node requires data from its database. A
node supporting a database is also called a
database server.




Local Coordinator

A node that must reference data on other nodes to
complete its part in the distributed transaction is called a
local coordinator.

A local coordinator is responsible for coordinating the
transaction among the nodes it communicates directly with

receiving and relaying transaction status information to and from
those nodes

passing queries to those node

receiving queries from those nodes and passing them on to other
nodes

returning the results of queries to the nodes that initiated them

Global Coordinator

The node where the distributed transaction
originates (to which the database
application issuing the distributed
transaction is directly connected) is called
the global coordinator.

All of the distributed transaction's SQL
statements, remote procedure calls, etc. are
sent by the global coordinator to the directly
referenced nodes, thus forming the session
tree.




The Commit Point Site

The job of the commit point site is to initiate a
commit or roll back as instructed by the global
coordinator.

The system administrator always designates one
node to be the commit point site in the session tree
by assigning all nodes a commit point strength.

The node selected as commit point site should be
that node that stores the most critical data (the data
most widely used)

The Commit Point Site (2)

The commit point site is distinct from all
other nodes involved in a distributed
transaction with respect to the following
two issues:

e The commit point site never enters the prepared
state. This is potentially advantageous because if the
commit point site stores the most critical data, this
data never remains in-doubt, even if a failure
situation occurs.

e In effect, the outcome of a distributed transaction at
the commit point site determines whether the
transaction at all nodes is committed or rolled back..




Commit Point Strength

Every node acting as a database server must be
assigned a commit point strength.

If a database server is referenced in a distributed
transaction, the value of its commit point strength
determines what role it plays in the two-phase
commit.

Specifically, the commit point strength determines
whether a given node is the commit point site in
the distributed transaction.

WAREHOUSE ACME COM
(140;




Selecting the Commit Point Site

The commit point site is selected only from
the nodes participating in the transaction.

Once it has been determined, the global
coordinator sends prepare messages to all
participating nodes.

Of the nodes directly referenced by the
global coordinator, the node with the
highest commit point strength is selected.

A Scenario

A company that has separate Oracle servers,
SALES.ACME.COM and
WAREHOUSE.ACME.COM.

As sales records are inserted into the
SALES database, associated records are
being updated at the WAREHOUSE
database.




Defining the Session Tree

INISERT INTO orders. ..;
UFDATE inventory @ warehouse. ..
INNSERT INTO orders. ...
UFDATE inwventory @ warehouse.. . :
COMMIT,

‘ SALES ACME.GOM

WAREHOUSE ACME . COM

. Global Coordinata
. Commit Point Site
l:l Database Server
[ client

Global Coordinato
Commit Point Site

Database Server
Client




Prepare

l.5ales to Warehouse
“Please prepare”

3 Warehouse to Sales
“FPrepared”

Global Coordinato
Commit Paint Site
Database Server
Client

Commit

Sales to Warehouse:
“Commit™

Global Coordinatol
Commit Point Site
Database Server

Client




Data Replication

Data Replication

 Data replication is the capability of
maintaining copies of tables/databases
separate from the primary copy.

This replication is usually performed
separately from a two phase commit
protocol.

This term 1s used by different vendors (in
our case: Sybase, ORACLE, Informix) to
describe differing functionality.




Definitions

» The Sybase replication server is a method for
distributing copies of a table to multiple sites.

The Oracle table snapshot is a method for
distributing read-only copies of a table to multiple
sites.

The Informix data replication feature is a method
for maintaining an exact duplicate of an Online
instance elsewhere on the system.

Sybase Replication Server

Designed to dynamically maintain subsets
of data in a distributed database
environment.

A replication server environment is usually
made up of LANs connected to WANS.
Each LAN may have one or more
replication server.




Primary Sites

 Each piece of data has a primary site. This
can be thought as the original copy of the
data.

The primary site determines who can
replicate the data and what data can be
replicated.

Subscriptions

Replication is started by the remote sites
requesting data from the primary site.

This is called subscription.

Subscriptions look like SQL SELECT
statement.




Subscriptions

 After a subscription is entered, the primary
site copies all the data that satisfies the
subscription query to the remote site.

From that point on, the remote site is kept
up-to-date using one of the three methods
described below.

Subscriptions (2)

Sybase supports the change of the
subscription criteria. This is called dynamic
subscriptions.

In case that any replication server fails, the
DB stores all the transactions for that server
and automatically resynchronizes the server
once it has been recovered.




Replication methods (1)

Local-first Update

Primary replication
Server

N~

Drawbacks
» The primary site may be down when the
remote transaction is committed.

» Therefore, other sites will not work with up-
to-date information.




Benefits

» The local site contains up-to-date
information and may continue to proceed
even if the replication server has failed.

Replication methods (2)

Primary-first Update

=
Primary replication
Server
-




Drawbacks

 This method depends upon the primary
replication server being available.

Benetfits

» Ensures that, if the replication server does
not fail, users have a consistent view of the
data.




Replication methods (3)

Version-Controlled Update

Primary replication
Server

Drawbacks

» Applications are not aware that they are
working with out-of-data information until
commit.




Benefits

Oracle

* The Oracle snapshot is the result of a query
of tables, views or other snapshots.
 Oracle defines two types of snapshots:

— Simple snapshots: on a single table without
GROUP BY or CONNECT BY.

— complex snapshots
» The original tables are called the master

tables. The snapshot is used for read-only
access.




Refreshing the snapshot

* ORACLE supports two methods.

» The method depends on whether the
snapshot 1s simple or complex and how
often the user wants the information to be
updated at the remote site.

Fast refresh

 Available only for simple snapshots.

* The snapshot log is a table found in the
master DB used to track all the updates to
the master table.

A fast refresh applies the changes saved in
the snapshot log to the snapshot
periodically.




Complete refresh

« Complete refresh entirely rebuild the
snapshot periodically.

For the two refreshing methods, refreshing
can be set manually or automatically.

Informix-Online Dynamic Server

The aim: to maintain available copy of
critical DB.

The administrator sets a primary and a
secondary DB instance.

The secondary instance is read-only if the
primary server is on-line.

If the primary server fails, the secondary
server may be used for read-write access.




Online data replication

l primary server

Logical log buffer

secondary server

Synchronization

» The servers synchronization is set up using
two parameters:
— DRINTERVAL: determines the interval
between two resynchronizations of the servers.

— DRTIMEOUT: how long the primary site waits
for acknowledgment from the secondary site
after the data has been transferred.




