
•1

1

Implementation of Database Systems

236510
David Konopnicki

Taub 715
Spring 2000

2

Sources
• Oracle 7 Server Concepts - Oracle8i Server

Concepts. © Oracle Corp.
• Available on the course Web Site:
http://www.cs.technion.ac.il/~cs236510

• We will learn the internal structure of
Oracle7, a modern RDBMS.

•2

3

Copyright
• All company or product names mentioned

are used for identification purposes only
and may be trademarks of their respective
owners.

• Quotations and Figures taken from Oracle
Manuals are copyrighted by Oracle Corp.
and used here for teaching purposes only.

4

Part I

What is Oracle?

•3

5

What is a Database
A computer system that manages information.

In general, a database server must reliably
manage a large amount of data in a multi-
user environment so that many users can
concurrently access the same data. All this
must be accomplished while delivering high
performance. A database server must also
prevent unauthorized access and provide
efficient solutions for failure recovery.

6

Oracle Features
• Client/server

architecture
• Large DB: up to 1

terabyte (240 bytes)
• Many concurrent

database users
• High performance
• High availability

• Controlled availability
• Manageable security
• Data integrity
• Distributed systems
• Replication

•4

7

The Oracle Server
• The Oracle server consists of an Oracle

database and an Oracle instance.
• Database structure:

– Physical DB struct: determined by the OS.
Three types of files: datafiles, redo log files,
control files.

– Logical DB struct: Tablespaces, Schema
objects.

8

The Oracle Server (2)
An Oracle Instance:

– Every time a database is started, a system
global area (SGA) is allocated and Oracle
background processes are started.

– The system global area is a an area of memory
used for database information shared by the
database users.

– The combination of the background processes
and memory buffers is called an Oracle
instance.

•5

9

The Oracle Server (3)

10

The Oracle Server (4)
• If the user and server processes are on

different computers of a network, the user
process and server process communicate
using SQL*Net. SQL*Net is Oracle's
interface to standard communications
protocols that allows for the proper
transmission of data between computers.

•6

11

Database Structure
• Structures: Structures are well-defined objects (such as

tables, views, indexes, and so on) that store or access the
data of a database. Structures and the data contained within
them can be manipulated by operations.

• Operations: Operations are clearly defined actions that
allow users to manipulate the data and structures of a
database. The operations on a database must adhere to a
predefined set of integrity rules.

• Integrity Rules:Integrity rules are the laws that govern
which operations are allowed on the data and structures of
a database. Integrity rules protect the data and the
structures of a database.

12

Logical Database Structures
• Databases, tablespaces, datafiles

•7

13

Logical Database Structures (2)
• Schema objects: Tables

– A table is the basic unit of data storage in an Oracle
database.

– The tables of a database hold all of the user-accessible
data.

– Table data is stored in rows and columns. Every table is
defined with a table name and set of columns.

– Each column is given a column name, a datatype and a
width.

– Once a table is created, valid rows of data can be
inserted into it. The table's rows can then be queried,
deleted, or updated.

– To enforce defined business rules on a table's data,
integrity constraints and triggers can also be defined for
a table.

14

Logical Database Structures (3)
• Schema Objects: Views

– A view is a custom-tailored presentation of the data in
one or more tables. A view can also be thought of as a
"stored query".

– Like tables, views can be queried, updated, inserted
into, and deleted from, with restrictions. All operations
performed on a view actually affect the base tables of
the view.

– Views are often used to do the following:
• Provide an additional level of table security by restricting

access to a predetermined set of rows and columns of a
table.

• Hide data complexity.
• Simplify commands for the user.
• Present the data in a different perspective from that of the

base table.
• Store complex queries.

•8

15

Logical Database Structures (4)
• Schema Objects: Sequences

– A sequence generates a serial list of unique
numbers for numeric columns of a database's
tables. Sequences simplify application
programming by automatically generating
unique numerical values for the rows of a
single table or multiple tables.

– Sequence numbers are independent of tables, so
the same sequence can be used for one or more
tables. After creation, a sequence can be
accessed by various users to generate actual
sequence numbers.

16

Logical Database Structures (5)
• Schema Object: Program Unit

– The term "program unit" is used to refer to
stored procedures, functions, and packages.

– A procedure or function is a set of SQL and
PL/SQL (Oracle's procedural language
extension to SQL) statements grouped together
as an executable unit to perform a specific task.

– Stored procedures.

•9

17

Logical Database Structures (6)
• Schema Objects: Indexes, Clusters, Hash

Clusters
– Indexes are created on one or more columns of a table. Once

created, an index is automatically maintained and used by Oracle.
Changes to table data are automatically incorporated into all
relevant indexes with complete transparency to the users.

– Clusters are groups of one or more tables physically stored
together because they share common columns and are often used
together.

– Hash clusters: a row is stored in a hash cluster based on the result
of applying a hash function to the row's cluster key value. All rows
with the same hash key value are stored together on disk.

18

Logical Database Structures (7)

•10

19

20

Logical Database Structures (8)
• Disk Space: Data Blocks

– At the finest level of granularity, an Oracle
database's data is stored in data blocks.

– One data block corresponds to a specific
number of bytes of physical database space on
disk.

– A data block size is specified for each Oracle
database when the database is created.

– A database uses and allocates free database
space in Oracle data blocks.

•11

21

Logical Database Structures (9)
• Disk Space: Extents

– An extent is a specific number of contiguous
data blocks, obtained in a single allocation,
used to store a specific type of information.

22

Logical Database Structures (10)
• Disk Space: Segment

– A segment is a set of extents allocated for a
certain logical structure. the different types of
segments include the following:

• Data Segments: All of the table's data is stored in
the extents of its data segment.

• Index Segments:Each index has an index segment
that stores all of its data.

• Rollback Segments
• Temporary Segments

•12

23

Physical Database Structure (1)
• Datafiles:

– Every Oracle database has one or more physical
datafiles.

– A database's datafiles contain all the database
data (e.g. tables and indexes).

– characteristics of datafiles:
• Associated with only one database.

• Automatically extend when the database runs out of space.

• One or more datafiles form a logical unit of database
storage called a tablespace.

24

Physical Database Structures (2)
• Using Datafiles:

– The data in a datafile is read, as needed, during
normal database operation and stored in the
memory cache of Oracle.

– Modified or new data is not necessarily written
to a datafile immediately. To reduce the amount
of disk access and increase performance, data is
pooled in memory and written to the
appropriate datafiles all at once, as determined
by the DBWR background process of Oracle.

•13

25

Physical Database Structures (3)
• Redo Log Files:

– Every Oracle database has a set of two or more redo log
files. This is called the redo log.

– Records all changes made to data. Should a failure
prevent modified data from being permanently written
to the datafiles, the changes can be obtained from the
redo log and work is never lost.

– To protect against a failure involving the redo log itself,
Oracle allows a multiplexed redo log so that two or
more copies of the redo log can be maintained on
different disks.

26

Physical Database Structures (4)
• Control Files:

– A control file contains entries that specify the
physical structure of the database.

• database name
• names and locations of a database's datafiles and

redo log files
• time stamp of database creation

– Like the redo log, Oracle allows the control file
to be multiplexed for protection of the control
file.

•14

27

The Data Dictionary
• An Oracle data dictionary is a set of tables

and views that are used as a read-only
reference about the database.

• Stores information about both the logical
and physical structure of the database.

• the valid users of an Oracle database
• information about integrity constraints defined for

tables in the database
• how much space is allocated for a schema object

and how much of it is being used

28

Server Architecture (1)
• An Oracle Server uses memory structures

and processes to manage and access the
database.

• All memory structures exist in the main
memory of the computers that constitute the
database system.

• Processes are jobs or tasks that work in the
memory of these computers.

•15

29

Server Architecture (2)
• Users currently connected to an

Oracle Server share the data in
the system global area.

• For optimal performance, the
entire system global area should
be as large as possible (while
still fitting in real memory)

• Contain: the database buffers
(for data), redo log buffer (for
log entries), the shared pool (for
SQL), and cursors.

• These areas have fixed sizes
and are created during instance
startup.

30

•16

31

Server Architecture (3)
• A user process is created

and maintained to execute
the software code of an
application program (such
as a Pro*C/C++ program)
or an Oracle tool (such as
sqlplus). The user process
also manages the
communication with the
server processes.

32

Server Architecture (4)
• Oracle creates server

processes to handle
requests from connected
user processes.

• Carry out requests of the
associated user process
(e.g., read data into
buffers).

• Oracle can be configured
to vary the number of user
processes per server
process.

•17

33

Server Architecture (5)
• Background Processes
• Database Writer

(DBWR) writes modified
blocks from the database
buffer cache to the
datafiles.

• DBWR does not need to
write blocks when a
transaction commits

• DBWR is optimized to
minimize disk writes.

34

Server Architecture (6)
• Background Processes
• Log Writer (LGWR) The

Log Writer writes redo log
entries to disk.

• Redo log data is generated
in the redo log buffer of
the system global area.

• As transactions commit
and the log buffer fills,
LGWR writes redo log
entries into an online redo
log file.

•18

35

Server Architecture (7)
• Background Processes
• Checkpoint (CKPT) At

specific times, all
modified database buffers
are written to the datafiles
by DBWR; this is a
checkpoint.

• CKPT is responsible for
signaling DBWR at
checkpoints and updating
all the datafiles and
control files to indicate the
most recent checkpoint.

36

Server Architecture (8)
• Background Processes
• System Monitor

(SMON) performs
instance recovery at
instance startup.

• SMON also coalesces free
extents within the
database to make free
space contiguous and
easier to allocate.

•19

37

Server Architecture (9)
• Process Monitor

(PMON) performs
process recovery when a
user process fails.

• PMON is responsible for
cleaning up the cache and
freeing resources that the
process was using.

• PMON also checks on
dispatcher and server
processes and restarts
them if they have failed.

38

Server Architecture (10)
• Archiver (ARCH) copies

the online redo log files to
archival storage when they
are full.

• Recoverer (RECO) used
to resolve distributed
transactions pending due
to a network or system
failure in a distributed
database.

•20

39

Example of Work
• An instance is currently running

on the computer that is
executing Oracle.

• A computer used to run an
application runs the application
in a user process. The client
application attempts to establish
a connection to the server using
the proper SQL*Net driver.

• The server is running the proper
SQL*Net driver. The server
detects the connection request
from the application and creates
a (dedicated) server process on
behalf of the user process.

• The user executes a SQL
statement and commits the
transaction.

• The server process receives the
statement and checks the shared
pool for any shared SQL area
that contains an identical SQL
statement. If a shared SQL area
is found, the previously existing
shared SQL area is used to
process the statement; if not, a
new shared SQL area is
allocated for the statement so
that it can be parsed and
processed.

40

Example of Work (2)
• The server process retrieves any

necessary data values from the
actual datafile (table) or those
stored in the system global area.

• The server process modifies
data in the system global area.
The DBWR process writes
modified blocks permanently to
disk when doing so is efficient.
Because the transaction
committed, the LGWR process
immediately records the
transaction in the online redo
log file.

• If the transaction is successful,
the server process sends a
message across the network to
the application. If it is not
successful, an appropriate error
message is transmitted.

• Throughout this entire
procedure, the other
background processes run,
watching for conditions that
require intervention. In
addition, the database server
manages other users'
transactions and prevents
contention between transactions
that request the same data.

•21

41

Part II

Database Backup and Recovery

42

Introduction
• A major responsibility of the database administrator is to

prepare for the possibility of hardware, software, network,
process, or system failure.

• If such a failure affects the operation of a database system,
you must usually recover the databases and return to
normal operations as quickly as possible.

• Recovery should protect the databases and associated users
from unnecessary problems and avoid or reduce the
possibility of having to duplicate work manually.

•22

43

Failures: User Error
• A database administrator can do little to

prevent user errors (for example,
accidentally dropping a table).

• Usually, user error can be reduced by
increased training on database and
application principles.

• Furthermore, the administrator can ease the
work necessary to recover from many types
of user errors (backups).

44

Failures: Statement Failure
• Statement failure occurs when there is a logical failure in

the handling of a statement in an Oracle program (A valid
INSERT statement cannot insert a row because there is no
space available).

• If a statement failure occurs, the Oracle software or
operating system returns an error code or message.

• A statement failure usually requires no action or recovery
steps; Oracle automatically corrects for statement failure
by rolling back the effects (if any) of the statement and
returning control to the application. The user can simply
re-execute the statement after correcting the problem
conveyed by the error message.

•23

45

Failures: Process Failures
• A failure in a user, server, or background process of a

database instance
• When a process failure occurs, the failed subordinate

process cannot continue work, although the other processes
of the database instance can.

• The Oracle background process PMON detects aborted
Oracle processes.

• If the aborted process is a user or server process, PMON
resolves the failure by rolling back the current
transaction.If the aborted process is a background process,
you must shut down and restart the instance.

46

Failures: Network Failures
• A network failure might interrupt normal execution of a

client application and cause a process failure to occur. In
this case, the Oracle background process PMON detects
and resolves the aborted server process for the
disconnected user process, as described in the previous
section.

• A network failure might interrupt the two-phase commit of
a distributed transaction. Once the network problem is
corrected, the Oracle background process RECO of each
involved database server automatically resolves any
distributed transactions not yet resolved at all nodes of the
distributed database system.

•24

47

Failures: DB Instance Failure
• Database instance failure occurs when a problem arises

that prevents an Oracle database instance (SGA and
background processes) from continuing to work. An
instance failure can result from a hardware problem, such
as a power outage, or a software problem, such as an
operating system crash.

• Recovery from instance failure is relatively automatic. For
example, in configurations that do not use the Oracle
Parallel Server, the next instance startup automatically
performs instance recovery. When using the Oracle
Parallel Server, other instances perform instance recovery.

48

Failures: Disk Failures
• An error can arise when trying to write or read a file that is

required to operate an Oracle database. This occurrence is
called media failure because there is a physical problem
reading or writing physical files needed for normal
database operation.

• A common example of a media failure is a disk head crash,
which causes the loss of all files on a disk drive. All files
associated with a database are vulnerable to a disk crash,
including datafiles, redo log files, and control files. The
appropriate recovery from a media failure depends on the
files affected

•25

49

Failures: Disk Failures (2)
• Database operation after a media failure of online redo log

files or control files depends on whether the online redo
log or control file is multiplexed.

• If a media failure damages a single disk, and you have a
multiplexed online redo log, the database can usually
continue to operate without significant interruption.

• Damage to a non-multiplexed online redo log causes
database operation to halt and may cause permanent loss of
data.

• Damage to any control file, whether it is multiplexed or
non-multiplexed, halts database operation once Oracle
attempts to read or write the damaged control file.

50

Failures: Disk Failures (3)
• Media failures can be divided into two categories: read

errors and write errors.
• In a read error, Oracle cannot read a datafile and an OS

error is returned to the application, along with an Oracle
error. Oracle continues to run, but the error is returned
each time an unsuccessful read occurs. At the next
checkpoint, a write error will occur when Oracle attempts
to write the file header as part of the standard checkpoint
process.

• If Oracle discovers that it cannot write to a datafile and
Oracle archives filled online redo log files, Oracle returns
an error in the DBWR trace file, and Oracle takes the
datafile offline automatically. Only the datafile that cannot
be written to is taken offline.

•26

51

Failures: Disk Failures (4)
• If the datafile that cannot be written to is in the SYSTEM

tablespace, the file is not taken offline. Instead, an error is
returned and Oracle shuts down the database.

• If Oracle discovers that it cannot write to a datafile, and
Oracle is not archiving filled online redo log files, DBWR
fails and the current instance fails.

• If the problem is temporary, instance recovery usually can
be performed using the online redo log files, in which case
the instance can be restarted.

• If a datafile is permanently damaged and archiving is not
used, the entire database must be restored using the most
recent backup.

52

Recovery Structures: Backups
• A database backup consists of operating

system backups of the physical files that
constitute an Oracle database.

• To begin database recovery from a media
failure, Oracle uses file backups to restore
damaged datafiles or control files.

•27

53

Recovery Structures: Redo Log
• Records all changes made in an Oracle database.
• The redo log of a database consists of at least two

redo log files that are separate from the datafiles.
• As part of database recovery, Oracle applies the

appropriate changes in the database's redo log to
the datafiles, which updates database data to the
instant that the failure occurred.

• A redo log can be comprised of two parts: the
online redo log and the archived redo log.

54

Recovery Structures: Redo Log (2)
• Every Oracle database has an associated online

redo log.
• The online redo log works with the Oracle

background process LGWR to immediately record
all changes made through the associated instance.

• The online redo log consists of two or more pre-
allocated files that are reused in a circular fashion
to record ongoing database changes

•28

55

Recovery Structures: Redo Log (3)
• Optionally, Oracle may archive files of the online

redo log once they fill.
• The online redo log files that are archived are

uniquely identified and make up the archived redo
log.

• By archiving filled online redo log files, older
redo log information is preserved for more
extensive database recovery operations, while the
pre-allocated online redo log files continue to be
reused to store the most current database changes;

56

Recovery Structures: Rollback Segments
• Rollback segments are used for a number of functions in

the operation of an Oracle database.
• In general, the rollback segments of a database store the

old values of data changed by uncommitted transactions.
• Among other things, the information in a rollback segment

is used during database recovery to "undo" any
"uncommitted" changes applied from the redo log to the
datafiles.

• Therefore, if database recovery is necessary, the data is in
a consistent state after the rollback segments are used to
remove all uncommitted data from the datafiles

•29

57

Recovery Structures: Control Files
• In general, the control file(s) of a database

store the status of the physical structure of
the database.

• Certain status information in the control
file (for example, the current online redo log
file, the names of the datafiles, and so on)
guides Oracle during instance or media
recovery

58

Online Redo Log
• Every instance of an Oracle database has an

associated online redo log to protect the
database in case the database experiences an
instance failure.

• An online redo log consists of two or more
pre-allocated files that store all changes
made to the database as they occur.

•30

59

Online Redo Log (2)
• Online redo log files are filled with redo entries.
• Record data used to reconstruct all changes made to the

database, including the rollback segments.
• Buffered in a "circular" fashion in the redo log buffer of

the SGA and are written to one of the online redo log files
by LGWR. Whenever a transaction is committed, LGWR
writes the transaction's redo entries from the redo log
buffer of the SGA to an online redo log file, and a system
change number (SCN) is assigned to identify the redo
entries for each committed transaction.

• Redo entries can be written to an online redo log file
before the corresponding transaction is committed.

60

Online Redo Log (3)
• Consists of two or more online redo log files (so one is

always available for writing while the other is being
archived).

• LGWR writes to online redo log files in a circular fashion.
• When the current online redo log file is filled, LGWR

begins writing to the next available online redo log file.
• Filled online redo log files are "available" to LGWR for

reuse depending on whether archiving is enabled:
• A filled online redo log file is available once the checkpoint

involving the online redo log file has completed.
• If archiving is enabled, a filled online redo log file is available

to LGWR once the checkpoint involving the online redo log
file has completed and once the file has been archived.

•31

61

Log Switches
• The point at which Oracle ends writing to one online redo

log file and begins writing to another is called a log switch.
• A log switch always occurs when the current online redo

log file is completely filled and writing must continue to
the next online redo log file.

• Oracle assigns each online redo log file a new log
sequence number every time that a log switch occurs and
LGWR begins writing to it.

• If online redo log files are archived, the archived redo log
file retains its log sequence number.

• Each redo log file (including online and archived) is
uniquely identified by its log sequence number.

62

Checkpoints
• A checkpoint occurs when DBWR writes all the modified

database buffers in the SGA, including committed and
uncommitted data, to the data files. Checkpoints are
implemented for the following reasons:

• To ensure that blocks in memory that change frequently are
written to datafiles regularly. Because of the LRU algorithm of
DBWR, a data segment block that changes frequently might
never qualify as the least recently used block and thus might
never be written to disk if checkpoints did not occur.

• Because all database changes up to the checkpoint have been
recorded in the datafiles, redo log entries before the checkpoint
no longer need to be applied to the datafiles if instance
recovery is required. Therefore, checkpoints are useful because
they can expedite instance recovery.

•32

63

Checkpoints: When do they occur
• At every log switch.
• LOG_CHECKPOINT_INTERVAL

LOG_CHECKPOINT_TIMEOUT
• When the beginning of an online tablespace backup is

indicated, a checkpoint is forced only on the datafiles that
constitute the tablespace being backed up.

• If the administrator takes a tablespace offline.
• If the administrator shuts down an instance.
• The administrator can force a database checkpoint to

happen on demand.

64

The mechanics of a Checkpoint
• When a checkpoint occurs, CKPT remembers the location

of the next entry to be written in an online redo log file and
signals DBWR to write the modified database buffers in
the SGA to the datafiles on disk.

• CKPT then updates the headers of all control files and
datafiles to reflect the latest checkpoint.

• As a checkpoint proceeds, DBWR writes data to the data
files on behalf of both the checkpoint and ongoing
database operations. DBWR writes a number of modified
data buffers on behalf of the checkpoint, then writes the
LRU buffers and then writes more dirty buffers for the
checkpoint, and so on, until the checkpoint completes.

•33

65

The mechanics of a Checkpoint (2)
• A checkpoint can be either "normal" or

"fast".
• With a normal checkpoint, DBWR writes a

small number of data buffers each time it
performs a write on behalf of a checkpoint.

• With a fast checkpoint, DBWR writes a
large number of data buffers each time it
performs a write on behalf of a checkpoint.

66

The mechanics of a Checkpoint (3)
• Until a checkpoint completes, all online redo log files

written since the last checkpoint are needed in case a
database failure interrupts the checkpoint and instance
recovery is necessary.

• If LGWR cannot access an online redo log file for writing
because a checkpoint has not completed, database
operation suspends temporarily until the checkpoint
completes and an online redo log file becomes available. In
this case, the normal checkpoint becomes a fast
checkpoint, so it completes as soon as possible.

•34

67

Archived Redo Log
• Oracle allows the optional archiving of online redo log

files, which creates archived (offline) redo logs. The
archiving two key advantages :
• A database backup, together with online and archived

redo log files, guarantees that all committed
transactions can be recovered in the event of an
operating system or disk failure.

• Online backups, taken while the database is open and in
normal system use, can be used if an archived log is
kept permanently.

68

Automatic Archiving

•35

69

Control Files
• A control file contains information about a

database:
– the database name
– the timestamp of database creation
– the names and locations of associated databases

and online redo log files
– the current log sequence number
– checkpoint information

70

Multiplexed Control Files
• Oracle allows multiple, identical control files to be open

concurrently and written for the same database.
• If a single disk that contained a control file crashes, the

current instance fails when Oracle attempts to access the
damaged control file. However, other copies of the current
control file are available on different disks, so an instance
can be restarted easily without the need for database
recovery.

• If all control files of a database are permanently lost during
operation (several disks fail), the instance is aborted and
media recovery is required. Even so, media recovery is not
straightforward if an older backup of a control file must be
used because a current copy is not available.

•36

71

Database Backup
• There are two types of backups:

– Full Backups
– Partial Backups

72

Full Backups
• Online: Following a clean shutdown, all of the

files that constitute a database are closed and
consistent with respect to the current point in time.
Thus, a full backup taken after a shutdown can be
used to recover to the point in time of the last full
backup.

• Offline: A full backup taken while the database is
open is not consistent to a given point in time and
must be recovered (with the online and archived
redo log files) before the database can become
available.

•37

73

Backups and Archiving Mode
• The datafiles obtained from a full backup are useful in any

type of media recovery scheme:
• If a database is operating in NOARCHIVELOG mode

and a disk failure damages some or all of the files that
constitute the database, the most recent full backup can
be used to restore (not recover) the database (all
database work performed since the full database backup
must be repeated).

• If a database is operating in ARCHIVELOG mode and
a disk failure damages some or all of the files that
constitute the database, the datafiles collected by the
most recent full backup can be used as part of database
recovery.

74

Partial Backups
• A partial backup is any operating system backup

short of a full backup:
– a backup of all datafiles for an individual tablespace
– a backup of a single datafile
– a backup of a control file

• Partial backups are only useful for a database
operating in ARCHIVELOG mode. Because an
archived redo log is present, the datafiles restored
from a partial backup can be made consistent with
the rest of the database during recovery
procedures.

•38

75

Example of a partial backup of a datafile

76

•39

77

Recovery Procedures
• Recovering from any type of system failure

requires the following:
• Determining which data structures are intact and

which ones need recovery.
• Following the appropriate recovery steps.
• Restarting the database so that it can resume normal

operations.
• Ensuring that no work has been lost nor incorrect

data entered in the database.

78

Buffers and DBWR
• Database buffers in the SGA are written to disk only when

necessary, using the LRU algorithm. Therefore, datafiles
might contain some data blocks modified by uncommitted
transactions and some data blocks missing changes from
committed transactions.Two potential problems can result
if an instance failure occurs:
– Data blocks modified by a transaction might not be written to the

datafiles at commit time and might only appear in the redo log.
Therefore, the redo log contains changes that must be reapplied to
the database during recovery.

– Since the redo log might have also contained data that was not
committed, the uncommitted transaction changes applied by the
redo log (as well as any uncommitted changes applied by earlier
redo logs) must be erased from the database.

•40

79

Rolling Forward
• The redo log is a set of operating system files that record

all changes made to any database buffer, including data,
index, and rollback segments, whether the changes are
committed or uncommitted.

• The first step of recovery from an instance or disk failure
is to roll forward, or reapply all of the changes recorded in
the redo log. Because rollback data is also recorded in the
redo log, rolling forward also regenerates the
corresponding rollback segments.

• After roll forward, the data blocks contain all committed
changes as well as any uncommitted changes that were
recorded in the redo log.

80

Rolling Back
• Rollback segments record database actions

that should be undone during certain
database operations.

• In database recovery, rollback segments
undo the effects of uncommitted
transactions previously applied by the
rolling forward phase.

•41

81

Rolling Forward and rolling back

82

Recovery from Instance Failure
When an instance is aborted, either

unexpectedly (for example, an unexpected
power outage or a background process
failure) or expectedly (for example, when
you issue a SHUTDOWN ABORT or
STARTUP FORCE statement), instance
failure occurs, and instance recovery is
required. Instance recovery restores a
database to its transaction-consistent state
just before instance failure.

•42

83

Steps in Recovery from Instance Failure
• Roll forward to recover data that has not been recorded in the datafiles,

yet has been recorded in the online redo log, including the contents of
rollback segments.

• Open the database. Instead of waiting for all transactions to be rolled
back before making the database available, Oracle enables the database
to be opened as soon as cache recovery is complete. Any data that is
not locked by unrecovered transactions is immediately available. This
feature is called fast warmstart.

• Mark all transactions system-wide that were active at the time of
failure as DEAD and mark the rollback segments containing these
transactions as PARTIALLY AVAILABLE.

• Recover dead transactions as part of SMON recovery.

• Resolve any pending distributed transactions undergoing a two-phase
commit at the time of the instance failure.

84

Recovery from Media Failure
• Recovery from a media failure can take two forms:

• If the online redo log is not archived, recovery from a media
failure is a simple restoration of the most current full backup. All
work performed after the full backup was taken must be redone
manually.

• Otherwise, recovery from a media failure can be an actual recovery
procedure, to reconstruct the damaged database to a specified
transaction-consistent state before the media failure.

• Recovery from a media failure, no matter what form,
always recovers the entire database to a transaction-
consistent state before the media failure.

•43

85

Example of Complete Media Recovery
• Assume the following:

– the database has three datafiles: USERS1 and USERS2 are
datafiles that constitute the USERS tablespace, stored on Disk X of
the database server, SYSTEM is the datafile that constitutes the
SYSTEM tablespace, stored on Disk Y of the database server.

– Disk X of the database server has crashed.

– the online redo log file being written to at the time of the disk
failure has a log sequence number of 31.

– the database is in ARCHIVELOG mode

• Recovery of the two datafiles that constitute the USERS
tablespace is necessary.

86

Complete Media Recovery (2)
Phase 1: Restoration of Backup Datafiles After Disk X has been

repaired, the most recent backup files are used to restore only the
damaged datafiles USERS1 and USERS2.

•44

87

Complete Media Recovery (3)
Phase 2: Rolling Forward with the Redo Log Oracle applies redo log

files (archived and online) to datafiles, as necessary.

88

Complete Media Recovery (4)
Phase 3: Rolling Back Using Rollback Segments

•45

89

Incomplete Media Recovery
In specific situations (for example, the loss of

all active online redo log files, or a user
error, such as the accidental dropping of an
important table), complete media recovery
may not be possible or may not be desired.
In such situations, incomplete media
recovery is performed to reconstruct the
damaged database to a transaction
consistent state before the media failure or
user error.

90

Incomplete Media Recovery
There are different types of incomplete media

recovery that might be used, depending on the
situation that requires incomplete media recovery

• cancel-based recovery is used when one or more
redo logs (online or archived) have been damaged
by a media failure and are not available for
required recovery procedures.

• Time-Based and Change-Based Recovery
Incomplete media recovery is desirable if the
database administrator would like to recover to a
specific point in the past.

•46

91

Part III

Database Structures

92

Data Blocks, Extents and Segments

•47

93

Data Blocks
• Header: general block

info: block address and the
type of segment; for
example, data, index, or
rollback.

• Table Directory: info
about the tables having

rows in this block.

• Row Directory: row info
about the actual rows in
the block

• Row Data

94

PCTFREE
The PCTFREE

parameter is used to
set the percentage of a
block to be reserved
(kept free) for possible
updates to rows that
already are contained
in that block.

•48

95

PCTUSED
• After a data block becomes full,

as determined by PCTFREE,
Oracle does not consider the
block for the insertion of new
rows until the percentage of the
block being used falls below the
parameter PCTUSED. Before
this value is achieved, Oracle
uses the free space of the data
block only for updates to rows
already contained in the data
block.

96

PCTFREE and PCTUSED

•49

97

98

Segments
• There are four types of segments used in

Oracle databases:
• data segments
• index segments
• rollback segments
• temporary segments

•50

99

Tablespace and Datafiles

100

Databases

•51

101

Tables

102

Row Format and Sizes
Oracle stores each

row of a
database table
as one or more
row pieces

•52

103

104

Views

•53

105

Indexes

Oracle uses B*-
tree indexes that
are balanced to
equalize access
times to any row

106

Clusters

•54

107

Hash Clusters

108

•55

109

Allocation of space in Hash Clusters

110

•56

111

Datatypes
Data Type Description Column Length (bytes)

CHAR (size) Fixed-length character
data of length size.

Fixed for every row in the table (with trailing
blanks);

VARCHAR2
(size)

Variable-length
character data.

Variable for each row, up to 2000 bytes per row.

NUMBER (p, s) Variable-length numeric
data.

Variable for each row. The maximum space
required for a given column is 21 bytes per row.

DATE Fixed-length date and
time data

Fixed at seven bytes for each row in the table.

LONG Variable-length
character data.

Variable for each row in the table, up to 2^31 - 1
bytes, or two gigabytes, per row.

RAW (size) Variable-length raw
binary data

Variable for each row in the table, up to 255
bytes per row.

LONG RAW Variable-length raw
binary data.

Variable for each row in the table, up to 2^31 - 1
bytes, or two gigabytes, per row.

ROWID Binary data representing
row addresses.

Fixed at six bytes for each row in the table.

MLSLABEL Variable-length binary
data representing
operating system labels.

Variable for each row in the table, ranging from
two to five bytes per row.

112

Data Integrity

•57

113

Not Null Integrity Constraint

114

Unique Key

•58

115

Unique Keys

116

Primary Key

•59

117

Foreign Key

118

•60

119

Self-referential constraint

120

Part IV

System Architecture

•61

121

An Oracle Instance
• Regardless of the type of computer executing Oracle and

the particular memory and process options being used,
every running Oracle database is associated with an Oracle
instance.

• Every time a database is started on a database server,
Oracle allocates a memory area called the System Global
Area (SGA) and starts one or more Oracle processes.

• The combination of the SGA and the Oracle processes is
called an Oracle database instance.

• Oracle starts an instance, then mounts a database to the
instance.

122

An Oracle Instance (2)

•62

123

Single Process Instance

124

Multiple Process Instance

•63

125

DBWR
• When a buffer in the buffer cache is modified, it is marked "dirty". As

buffers are filled and dirtied by user processes, the number of free
buffers diminishes. If the number of free buffers drops too low, user
processes that must read blocks from disk into the cache are not able to
find free buffers. DBWR manages the buffer cache so that user
processes can always find free buffers.

• LRU keeps the most recently used data blocks in memory and thus
minimizes I/O. DBWR keeps blocks that are used often, for example,
blocks that are part of frequently accessed small tables or indexes, in
the cache so that they do not need to be read in again from disk.
DBWR removes blocks that are accessed infrequently (for example,
blocks that are part of very large tables or leaf blocks from very large
indexes) from the SGA.

• If the DBWR process becomes too active, it may write blocks to disk
that are about to be needed again.

126

DBWR (2)
The DBWR process writes dirty buffers to disk under the

following conditions:
• When a server process moves a buffer to the dirty list and

discovers that the dirty list has reached a threshold length,
the server process signals DBWR to write.

• When a server process searches a threshold limit of buffers
in the LRU list without finding a free buffer, it stops
searching and signals DBWR to write.

• When a time-out occurs (every three seconds), DBWR
signals itself.

• When a checkpoint occurs, the Log Writer process
(LGWR) signals DBWR.

•64

127

LGWR
The Log Writer process (LGWR) writes the redo log buffer to

a redo log file on disk. LGWR writes all redo entries that
have been copied into the buffer since the last time it
wrote. LGWR writes one contiguous portion of the buffer
to disk. LGWR writes

• a commit record when a user process commits a
transaction

• redo buffers every three seconds
• redo buffers when the redo log buffer is one-third full
• redo buffers when the DBWR process writes modified

buffers to disk

128

CKPT
• When a checkpoint occurs, Oracle must update the

headers of all datafiles to indicate the checkpoint.
• In normal situations, this job is performed by

LGWR.
• However, if checkpoints significantly degrade

system performance (usually, when there are
many datafiles), it is possible to enable the
Checkpoint process (CKPT) to separate the work
of performing a checkpoint from other work
performed by LGWR, the Log Writer process
(LGWR).

•65

129

SMON, PMON
• SMON performs instance recovery at

instance start up. SMON is also responsible
for cleaning up temporary segments that are
no longer in use; it also coalesces
contiguous free extents to make larger
blocks of free space available.

• PMON performs process recovery when a
user process fails. PMON is responsible for
cleaning up the cache and freeing resources
that the process was using.

130

Other Processes
• Reco: Distributed recovery
• Arch: The archiver of redo log files
• Lock0: Inter instance locking
• SPN0: Snapshot refresh
• Dnnn: Dispatcher processes

•66

131

Memory Structures
Oracle uses memory to store the following information:
• program code being executed
• information about a connected session, even if it is not

currently active
• data needed during program execution (for example, the

current state of a query from which rows are being fetched)
• information that is shared and communicated among

Oracle processes (for example, locking information)
• cached information that is also permanently stored on

peripheral memory (for example, a data block)

132

Memory Structures (2)
The basic memory structures associated with Oracle

include:
• software code areas
• the system global area (SGA)

• the database buffer cache

• the redo log buffer

• the shared pool

• program global areas (PGA)
• stack areas

• data areas

• sort areas

•67

133

Software Code Areas
Software code areas are portions of memory

used to store code that is being or may be
executed. The code for Oracle is stored in a
software area, which is typically at a
location different from users' programs -- a
more exclusive or protected location.

134

SGA
A System Global Area (SGA) is a group of shared

memory structures that contain data and control
information for one Oracle database instance. The
SGA contains the following subdivisions:
• the database buffer cache
• the redo log buffer
• the shared pool
• the data dictionary cache
• other miscellaneous information

•68

135

SGA: The Shared Pool

136

•69

137

The Shared Pool (2)
• Oracle represents each SQL statement it executes with a

shared SQL area and a private SQL area. Oracle
recognizes when two users are executing the same SQL
statement and reuses the same shared part for those users.
However, each user must have a separate copy of the
statement's private SQL area.

• A shared SQL area is a memory area that contains the
parse tree and execution plan for a single SQL statement.

• A private SQL area is a memory area that contains data
such as bind information and runtime buffers.

138

Program Global Area (PGA)

•70

139

Sort Areas
• Portions of memory in which Oracle sorts

data are called sort areas.
• If the amount of data to be sorted does not

fit into a sort area, then the data is divided
into smaller pieces that do fit. Each piece is
then sorted individually. The individual
sorted pieces are called "runs". After sorting
all the runs, Oracle merges them to produce
the final result.

140

Part V

Concurrency Control

•71

141

Transactions
• A transaction is a logical unit of work that

contains one or more SQL statements.
• A transaction is an atomic unit; the effects of all

the SQL statements in a transaction can be either
all committed (applied to the database) or all
rolled back (undone from the database).

• A transaction begins with the first executable SQL
statement. A transaction ends when it is
committed or rolled back, either explicitly (with a
COMMIT or ROLLBACK statement) or
implicitly (when a DDL statement is issued).

142

Example of Transaction

•72

143

Before Commit
Before a transaction that has modified data is

committed, the following will have occurred:
• Oracle has generated rollback segment records in

rollback segment buffers of the SGA. The rollback
information contains the old data values changed by the
SQL statements of the transaction.

• Oracle has generated redo log entries in the redo log
buffers of the SGA. These changes may go to disk
before a transaction is committed.

• The changes have been made to the database buffers of
the SGA. These changes may go to disk before a
transaction actually is committed.

144

After Commit
After a transaction is committed, the following occurs:

• The internal transaction table for the associated rollback segment
records that the transaction has committed, and the corresponding
unique system change number (SCN) of the transaction is assigned
and recorded in the table.

• LGWR writes the redo log entries in the redo log buffers of the
SGA to the online redo log file. LGWR also writes the
transaction's SCN to the online redo log file. This is the atomic
event that constitutes the commit of the transaction.

• Oracle releases locks held on rows and tables.

• Oracle marks the transaction "complete".

•73

145

Rolling Back
• Rolling back means undoing any changes to

data that have been performed by SQL
statements within an uncommitted
transaction.

• Oracle allows you to roll back an entire
uncommitted transaction. Alternatively, you
can roll back the trailing portion of an
uncommitted transaction to a marker called
a savepoint.

146

Rolling Back (2)
In rolling back an entire transaction, without referencing any savepoints,

the following occurs:
• Oracle undoes all changes made by all the SQL statements in the

transaction by using the corresponding rollback segments.

• Oracle releases all the transaction's locks of data.

• The transaction ends.

In rolling back a transaction to a savepoint, the following occurs:
• Oracle rolls back only the statements executed after the savepoint.

• The specified savepoint is preserved, but all savepoints that were
established after the specified one are lost.

• Oracle releases all table and row locks acquired since that savepoint, but
retains all data locks acquired previous to the savepoint.

• The transaction remains active and can be continued.

•74

147

Data Concurrency
• Many users can access data at the same

time.
• Users should see a consistent view of the

data, including visible changes made by the
user's own transactions and transactions of
other users.

148

Preventable Phenomena
• dirty reads: A transaction reads data that has been written

by a transaction that has not been committed yet.
• non-repeatable (fuzzy) reads: A transaction re-reads data it

has previously read and finds that another committed
transaction has modified or deleted the data.

• phantom read: A transaction re-executes a query returning
a set of rows that satisfy a search condition and finds that
another committed transaction has inserted additional rows
that satisfy the condition.

•75

149

Isolation Levels
The SQL standard defines four levels of isolation in terms of the phenomena

 a transaction running at a particular isolation level is permitted to experience.

Isolation
Level

Dirty
Read

Non-Repeatable
Read

Phantom Read

Read
uncommitted

Possible Possible Possible

Read
committed

Not
possible

Possible Possible

Repeatable
read

Not
possible

Not possible Possible

Serializable Not
possible

Not possible Not possible

Oracle offers the read committed and serializable isolation levels.

150

Locking Mechanisms
• Locks are mechanisms used to prevent destructive

interaction between users accessing the same resource.
• Resources include two general types of objects:

• user objects, such as tables and rows (structures and data)

• system objects not visible to users, such as shared data structures in
the memory and data dictionary rows

• In general, you can use two levels of locking in a multi-
user database:
– Exclusive locks

– Shared locks

•76

151

Deadlocks

152

Multiversion Concurrency Control

•77

153

Level of Consistency
• Oracle always enforces statement-level read consistency. This

guarantees that the data returned by a single query is consistent with
respect to the time that the query began. Therefore, a query never sees
dirty data nor any of the changes made by transactions that commit
during query execution.

• Oracle also allows the option of enforcing transaction-level read
consistency. When a transaction executes in serializable mode,all data
accesses reflect the state of the database as of the time the transaction
began. This means that the data seen by all queries within the same
transaction is consistent with respect to a single point in time, except
that queries made by a serializable transaction do see changes made by
the transaction itself. Therefore, transaction-level read consistency
produces repeatable reads and does not expose a query to phantoms.

154

Oracle Isolation Levels
Oracle provides three transaction isolation modes:
• read committed: This is the default transaction isolation

level. Each query sees only data that was committed before
the query (not the transaction) began. A transaction that
executes a given query twice may experience both non-
repeatable read and phantoms.

• Serializable transactions see only those changes that were
committed at the time the transaction began, plus those
changes made by the transaction itself.

• Read only: Read only transactions see only those changes
that were committed at the time the transaction began and
do not allow INSERT, UPDATE, and DELETE.

•78

155

Problems with Serialization

156

How Oracle Locks Data
• The only data locks Oracle acquires automatically are row-

level locks.
• Oracle does not escalate locks from the row level to a

coarser granularity.
• Readers of data do not wait for writers of the same data

rows.
• Writers of data do not wait for readers of the same data

rows (unless SELECT... FOR UPDATE is used, which
specifically requests a lock for the reader).

• Writers only wait for other writers if they attempt to update
the same rows at the same time.

•79

157

How Oracle Locks Data (2)
• All locks acquired by statements within a

transaction are held for the duration of the
transaction.

• All locks acquired by statements within a
transaction are held for the duration of the
transaction.

• Oracle automatically detects deadlock situations
and resolves them automatically by rolling back
one of the statements involved in the deadlock,
thereby releasing one set of the conflicting row
locks.

158

Types of Locks
• Data (DML) locks protect data. For example, table locks

lock entire tables, row locks lock selected rows.
• Dictionary (DDL) locks protect the structure of objects.

For example, dictionary locks protect the definitions of
tables and views.

• Internal locks and latches protect internal database
structures such as datafiles. Internal locks and latches are
entirely automatic.

• Parallel cache management locks are distributed locks that
cover one or more data blocks (table or index blocks) in
the buffer cache. PCM locks do not lock any rows on
behalf of transactions.

•80

159

Data Locks
• A transaction acquires an exclusive data lock (TX) for each

individual row modified by one of the following
statements: INSERT, UPDATE, DELETE, and SELECT
with the FOR UPDATE clause.

• A modified row is always locked exclusively so that other
users cannot modify the row until the transaction holding
the lock is committed or rolled back.

• A transaction acquires a table lock (TM) when a table is
modified in the following DML statements: INSERT,
UPDATE, DELETE, SELECT with the FOR UPDATE
clause, and LOCK TABLE.

160

Table Locks
SQL Statement Mode of Table

Lock
Lock Modes
Permitted?

RS RX S SRX X

SELECT...FROM table ... none Y Y Y Y Y

INSERT INTO table ... RX Y Y N N N

UPDATE table ... RX Y* Y* N N N

DELETE FROM table ... RX Y* Y* N N N

SELECT ... FROM table FOR UPDATE
OF ...

RS Y* Y* Y* Y* N

LOCK TABLE table IN ROW SHARE
MODE

RS Y Y Y Y N

LOCK TABLE table IN SHARE MODE RX Y Y N N N

LOCK TABLE table IN SHARE MODE S Y N Y N N

LOCK TABLE table IN SHARE ROW
EXCLUSIVE MODE

SRX Y N N N N

LOCK TABLE table IN EXCLUSIVE
MODE

X N N N N N

•81

161

Row Share (RS) and Row Exclusive (RX)Row Share (RS) and Row Exclusive (RX)

• High degree of concurrency
• Your transaction needs to prevent a table

from being altered or dropped before the
table can be modified later in your
transaction

162

Share (S)Share (S)
• Your transaction only queries the table and

needs transaction-level read consistency on
the table.

•82

163

Share Row Exclusive (SRX)Share Row Exclusive (SRX)
• Your transaction requires both transaction-

level read consistency and the ability to
update the locked table.

164

Exclusive (X)Exclusive (X)
• Immediate update access.
• Transaction-level read consistency.

•83

165

Locks CompatibilityLocks Compatibility

RS RX S SRX X
None Y Y Y Y Y
RX Y* Y* N N N
RS Y* Y* Y* Y* N
S Y N Y N N

SRX Y N N N N
X N N N N N

166

Example of explicit locking
Transaction 1 Time

Point
Transaction 2

LOCK TABLE scott.dept
 IN ROW SHARE MODE;
Statement processed

1
DROP TABLE scott.dept;
DROP TABLE scott.dept
 *
ORA-00054
(exclusive DDL lock not
possible because of T1's table
lock)

LOCK TABLE scott.dept
 IN EXCLUSIVE MODE NOWAIT;

ORA-00054

4 SELECT LOC FROM scott.dept
WHERE deptno = 20 FOR UPDATE
OF loc; LOC - - - - - - -
DALLAS 1 row selected

UPDATE scott.dept
 SET loc = 'NEW YORK'
WHERE deptno = 20;
(waits because T2 has locked
same rows)

5

6 ROLLBACK; (releases row locks)

1 row processed.
ROLLBACK;

7

•84

167

Part VI

Query Optimization

168

What is optimization?What is optimization?
• Whenever a DML statement is issued,

Oracle must determine how to execute it.
• There may be different ways to execute the

statement.
• The optimizer’s job is to choose one of

these ways.

•85

169

Execution PlansExecution Plans
• To execute a DML statement, ORACLE

may have to perform many steps.
• Each step may:

– retrieve rows from the DB.
– prepare rows for the user in some way.

170

ExampleExample
SELECT ename,job,sal,dname

FROM emp,dept

WHERE emp.deptno=dept.deptno

AND NOT EXISTS

(SELECT *

FROM salgrade

WHERE emp.sal BETWEEN

lowsal AND hisal)

•86

171

An Execution PlanAn Execution Plan

3
TABLE ACCESS (FULL)

emp

5
INDEX (UNIQUE SCAN)

pk_deptno

4
TABLE ACCESS (BY ROWID)

dept

2
NESTED LOOPS

6
TABLE ACCESS (FULL)

salgrade

1
FILTER

Physical access
to the DB
(Access Paths)

Read all
the rows

For each emp, use
the deptno value to

search the index.
It returns a ROWID

Use the
ROWID
to find the row

Join rows
from emp
and dept

Filter the results

172

Order of ExecutionOrder of Execution

3
TABLE ACCESS (FULL)

emp

5
INDEX (UNIQUE SCAN)

pk_deptno

4
TABLE ACCESS (BY ROWID)

dept

2
NESTED LOOPS

6
TABLE ACCESS (FULL)

salgrade

1
FILTER

1. Get all the rows and
return them, one at a
time to step 2

For each emp...

2. Find the
ROWID
of the dept

3. Find the row3. Find the row

4. Join the rows

5. Select the rows

6. Return the row
(or not)

•87

173

The explain plan commandThe explain plan command

ID Operation Options Object_name
1 Filter

2 Nested loops

3 Table access Full EMP
4 Table access By Rowid DEPT
5 Index Unique scan pk_deptno

6 Filter Full S A L G R A D E

174

Two approaches to optimizationTwo approaches to optimization
• Rule-based:
Choose an execution

plan based on the
access path available
and choose the access
path using a heuristic
ranking.

• Cost-based
– Generate a set of

possible access paths.
– Evaluate the cost of

each access path based
on the data distribution
and statistics.

– Choose the plan with
the smallest cost.

•88

175

How the optimization is doneHow the optimization is done
• Evaluation of expression and conditions
• Statement transformation
• View merging
• Choice: rule-based or cost-based
• Choice of access paths
• Choice of join orders
• Choice of join operation

176

Types of SQL statementsTypes of SQL statements
• Simple

statements
• Simple queries
• Joins
• Equijoins
• Nonequijoins

• Outerjoins
• Cartesian

products
• Complex

statements
• Compound query
• Statements

accessing views

•89

177

Evaluating Expressions and conditionsEvaluating Expressions and conditions
• Constants:

– sal > 32000/12

– sal*12 > 1000

• LIKE:
– ename LIKE ‘SMITH’

– ename = ‘SMITH’
• BETWEEN:

– sal BETWEEN 2000 AND 3000

– sal >= 2000 AND sal <= 3000

178

Transitivity
Select *

From emp, dept

Where emp.deptno = 20 and

emp.deptno = dept.deptno;

replaced with
emp.deptno = 20;

Evaluating Expressions and conditions (2)

•90

179

Evaluating Expressions and conditions (3)Evaluating Expressions and conditions (3)

OR’s and Compound Queries
SELECT *

FROM EMP

WHERE job = ‘Clerk’

OR deptno = 10;

replaced with:
UNION ALL SELECT * FROM EMP

WHERE deptno = 10;

180

Optimizing Complex Statements Optimizing Complex Statements
There are two approaches to the optimization

of complex statements:
• Transform the complex statement in a join

statement and optimize the join statement.
• Optimize the complex statement as it is.

•91

181

SELECT *

FROM accounts

WHERE custno IN (SELECT custno FROM

customers);

is transformed into

SELECT accounts.*

FROM accounts,customers

WHERE account.custno =

customers.custno

customer.custno
must be a
primary key

Example of Transformation

182

The corresponding execution planThe corresponding execution plan

2
TABLE ACCESS (FULL)

accounts

3
INDEX (UNIQUE SCAN)

pk_customers

1
Nested Loops

•92

183

Complex Statements that are not simplifiedComplex Statements that are not simplified

• The query and its subqueries are optimized
independently.

• For example:
SELECT *

FROM accounts

WHERE accounts.balance >

(SELECT AVG(balance) FROM
accounts);

184

Statements that Access ViewsStatements that Access Views
There are three approaches to the optimization

of queries that access views:
• Merge the view definition into the query

and then optimize the resulting query.
• Merge the query in the view definition and

then optimize the resulting query.
• Optimize and execute the view and then

optimize and execute the query.

•93

185

Merging the view definitionMerging the view definition
• View:
CREATE VIEW
emp_10

AS SELECT *

FROM emp

WHERE deptno =
10;

• Query:
SELECT empno

FROM emp_10

WHERE empno >
7800

SELECT empno
FROM emp
WHERE empno>7800
and deptno = 10;

186

Merging the query (1)Merging the query (1)
• View:
CREATE VIEW emp

AS SELECT * FROM
emp1

UNION SELECT *
FROM emp2;

• Statement:
SELECT
empno,ename

FROM emp

WHERE deptno=20;

•94

187

Merging the query (2)Merging the query (2)
The query that is executed is
SELECT * FROM emp1 WHERE
deptno=20

UNION

SELECT * FROM emp2 WHERE
deptno=20

188

The execution planThe execution plan

4 TABLE ACCESS (FULL)
emp1

5 TABLE ACCESS (FULL)
emp2

3
UNION ALL

2
SORT (UNIQUE)

1
VIEW
emp

•95

189

The query is merged in the viewThe query is merged in the view
If the view’s query contains:
• Set operator
• Group by
• DISTINCT
• Group Function

190

ExampleExample
• View:
CREATE VIEW group

AS SELECT

AVG(sal)
avg_sal,

MIN(sal)
min_sal,

MAX(sal) max_sal

FROM emp

GROUP BY deptno;

• Statement:
SELECT * FROM

group

WHERE deptno=10

Select
AVG(sal) avg_sal,
MIN(sal) min_sal,
MAX(sal) max_sal
FROM emp
WHERE deptno = 10 GROUP
BY deptno

•96

191

The execution planThe execution plan

4 INDEX (RANGE SCAN)
emp_deptno index

3 TABLE ACCESS (BY ROWID)
emp

2 SORT (GROUP BY)

1 VIEW
group

192

ExampleExample
• Statement:
Select
AVG(avg_sal),AVG(min_sal),AVG(max_sal)

FROM group;

Select AVG(AVG(sal)),AVG(MIN(sal)),
AVG(MAX(sal))
FROM emp
GROUP by deptno

•97

193

The execution planThe execution plan

4 TABLE ACCESS (FULL)
emp

3 SORT (GROUP BY)

2 VIEW
group

1 AGGREGATE (GROUP BY)

194

Optimizing other statements that access viewsOptimizing other statements that access views

• ORACLE cannot always merge definitions
and queries.

• In these cases, ORACLE issues the view’s
query, collects the rows and then access this
set of rows with the original statement as
thought it was a table.

•98

195

ExampleExample
• View:
CREATE VIEW group

AS SELECT deptno,

AVG(sal) avg_sal,

MIN(sal) min_sal,

MAX(sal) max_sal

FROM emp

GROUP BY deptno

• Query:
SELECT
group.deptno,

avg_sal, min_sal,
max_sal,

dname,loc

FROM group,dept

WHERE
group.deptno=dept
.deptno

196

Execution PlanExecution Plan

4
TABLE ACCESS (FULL)

emp

3
SORT (GROUP BY)

2
VIEW
group

6
INDEX (UNIQUE SCAN)

pk_dept

5
TABLE ACCESS (BY ROWID)

dept

1
NESTED LOOPS

•99

197

Optimization Approach and GoalOptimization Approach and Goal
• OPTIMIZER_MODE:

– COST: If there are statistics then cost-based else
rule-based.

– RULE: rule-based approach.
• ALTER SESSION:

– CHOOSE, ALL_ROWS (best throughput),
FIRST_ROWS (best response time), RULE

198

Choosing Access PathChoosing Access Path
• The basic methods.
• The access paths and when they are

available.
• How the optimizer chooses among the

access paths.

•100

199

Access MethodsAccess Methods
• Full Table Scans

– Read each row and determine of it satisfies the
statement’s WHERE clause.

– Implemented very efficiently using multi-block
reads.

– Each data block is read only once.
• Table Access by ROWID: fastest way.

200

Indexes, Clusters and Hash ClustersIndexes, Clusters and Hash Clusters
• Indexes are created on one or more columns

of a table. Very useful for range conditions.
They are independent of the table.

• Clusters are an optional method for storing
the table. Clusters group together tables
because they share columns and often used
together.

• The related columns in a cluster is the
Cluster key (always indexed)

•101

201

Example: ClusterExample: Cluster
Cluster key
(DEPTNO)

10 DNAME LOC
SALES BOSTON

EMPNO ENAME
1 KING
4 SMITH

20 DNAME LOC
ADMIN NEW-YORK

EMPNO ENAME
8 WILSON

10 NORMAN

Indexed

202

Hash ClustersHash Clusters
• Organization like simple clusters but...
• A row is stored in a hash cluster based on

the result of applying a hash function to the
row’s cluster key value.

• All rows with the same key value are stored
together on the disk.

•102

203

Example: Hash ClusterExample: Hash Cluster

Hash Key Cluster Key

TRIALNO Other Columns
237 1235 ...

2363 ...
7262 ...

238 16262 ...
83747 ...

204

Access Methods (2)Access Methods (2)
• Cluster Scans:

– Retrieves all the rows that have the same cluster
key value.

– ORACLE first obtains the ROWID of one of
the selected rows by scanning the cluster index.

– ORACLE then locates the rows based on this
ROWID.

•103

205

Access Methods (3)Access Methods (3)
• Hash Scans:

– ORACLE first obtains the hash value by
applying the hash function.

– ORACLE then scans the data blocks containing
rows with that hash value.

206

Access Methods (4) Access Methods (4)
• Index Scans:

– ORACLE searches the index for the indexed
column values accessed by the statement.

– If the statement accesses only columns of the
index, ORACLE reads the values only from the
index.

– In the other case, ORACLE uses the ROWID
found in the index to read the specific row from
the table.

•104

207

Access Methods (5)Access Methods (5)
• An index scan can be one of these types:

– Unique: a unique scan of the index returns only
a single ROWID.

– Range: A range scan can return more than one
ROWID.

208

1 - Single Row By ROWID1 - Single Row By ROWID
• If the Where Clause identifies the ROWID
• Example:
SELECT *

FROM emp

WHERE
ROWID=‘00000DC5.0000.0001’

•105

209

2 - Single Row by Cluster Join2 - Single Row by Cluster Join
• For statements that join tables stored in the

same cluster if:
– the statement equates every column of the

cluster in each table.
– there is a condition that guarantees that only

one row will be returned.

210

ExampleExample
SELECT *

FROM emp,dept

WHERE emp.deptno =dept.deptno

AND emp.empno=7800

•106

211

3 - Single Row by Hash Cluster Key3 - Single Row by Hash Cluster Key
• The WHERE clause uses all columns of a

hash cluster key with equality conditions.
• The statement is guaranteed to return only

one row because the columns of the cluster
key makes also a primary or unique key.

212

ExampleExample
SELECT *

FROM orders

WHERE orderno = 73468376

•107

213

4 - Single Row by key4 - Single Row by key
• The WHERE clause uses all the columns of

a unique or primary key in equality
condition.

• ORACLE uses the index of the key to find
the ROWID and then accesses the row in
the table.

214

ExampleExample
SELECT *

FROM emp

WHERE empno=7800

•108

215

5 - Clustered Join5 - Clustered Join
• The statement joins tables stored in the

same cluster, that is the WHERE clause
equates the columns of the cluster columns
in the two tables.

• To execute the statement, ORACLE
performs a nested loop operation.

216

ExampleExample
SELECT *

FROM emp,dept

WHERE emp.deptno = dept.deptno

•109

217

6 - Hash Cluster Key6 - Hash Cluster Key
• The WHERE clause uses all the columns of

the hash key in equality conditions.
• ORACLE calculates the hash value and

then performs a hash scan.
SELECT *

FROM line_items

WHERE deptno=09870897

218

7 - Indexed Cluster Key7 - Indexed Cluster Key
• ORACLE searches the cluster index to find

the ROWID.
• ORACLE then scans the rows with the

same cluster key using this ROWID.
SELECT *

FROM emp

WHERE deptno = 10

•110

219

8 - Composite Index8 - Composite Index
• All the columns of the index are in the

WHERE clause in equality conditions.
• ORACLE scans the index for the ROWIDs

and then accesses the table
SELECT *

FROM emp

WHERE job=‘CLERK’ AND deptno=30

220

9 - Single Column indexes9 - Single Column indexes
SELECT * FROM emp WHERE
job=‘CLERK’

• ORACLE can merge indexes if the query
conditions uses columns of many single
column indexes

•111

221

10 - Bounded Range Search on Indexed Columns10 - Bounded Range Search on Indexed Columns

• The conditions uses either a single-column
index or the leading portion of a composite
index:

column = expr

column >[=] expr AND column <[=] expr

column BETWEEN expr AND expr

column LIKE ‘c%’

• ORACLE performs a range scan on the
index and then accesses the table by
ROWID.

222

11 - Unbounded Range Search on Indexed Columns 11 - Unbounded Range Search on Indexed Columns

column >[=] expr

column <[=] expr

•112

223

12 - Sort Merge Join12 - Sort Merge Join
• Join on non-clustered columns.

224

13 - Max or Min of Indexed Column13 - Max or Min of Indexed Column
SELECT MAX(sal)

FROM emp

• ORACLE performs a range scan on the
index

•113

225

14 - ORDER BY on indexed column14 - ORDER BY on indexed column
SELECT *

FROM emp

ORDER BY empno

226

15 - Full Table Scan15 - Full Table Scan
• For any SQL statement.
• Remark: You cannot use a index if you

have
column1 (>|<|>=|<=) column2
column IS NULL
column IS NOT NULL
column NOT IN
column !=
column LIKE
column1 and column2 are in the same table.

•114

227

Rule-based optimizationRule-based optimization
SELECT empno
FROM emp
WHERE ename = ‘CHUNG’
AND sal > 2000

Indexed

Single-Column Index (RANK 9)

Index

Unbounded range index scan (Rank 11)
Full table scan (Rank 15)

228

Cost-Based OptimizationCost-Based Optimization
To choose among the available access paths,

the optimizer considers these factors:
• Selectivity of the query. (big % : Full scan,

small %: index scan).
• DB_FILE_MULTIBLOCK_READ_COUNT

(high: Full scan, small: index scan)

•115

229

Example of cost-based opt.Example of cost-based opt.

• If ename is a unique or
primary key, the
optimizer determines
that this query is
highly selective and
that it must use the
index.

• If ename is not a key,
the optimizer uses the
following statistical
values:

USER_TAB_COLUMNS.NUM_DISTINCT

USER_TABLES.NUM_ROWS

By assuming that the
ename values are
uniformly distributed,
the optimizer can
evaluate the selectivity

SELECT * FROM emp WHERE ename = ‘JACKSON’

230

ExampleExample

To estimate the selectivity of this query, the
optimizer uses the boundary value of 7500
the statistics HIGH_VALUE and
LOW_VALUE in the USER_TAB_COLUMNS
statistics table. It assumes that the values
are evenly distributed in the range to
estimate the selectivity of the condition.

SELECT * FROM emp WHERE empno < 7500

•116

231

ExampleExample

The value of the bind variable :e1 is
unknown at optimization time, therefore the
optimizer heuristically guesses 25% of
selectivity.

SELECT * FROM emp WHERE empno < :e1

232

Optimizing Join StatementsOptimizing Join Statements
To choose an execution plan for a join

statement, the optimizer must choose:
• Access Paths
• Join Operation
• Join Order
These Choices are related.
Lets examine the different possible join

operations.

•117

233

Nested Loops JoinNested Loops Join
SELECT * FROM emp,dept WHERE emp.deptno=dept.deptno

1 - NESTED LOOPS

2 - TABLE ACCESS (FULL)
emp

3 - TABLE ACCESS (BY ROWID)
dept

4 - INDEX (UNIQUE SCAN)
pk_dept

The outer table or
the driving table

The inner Table

234

Sort-merge JoinSort-merge Join

1 - MERGE JOIN

2 - SORT (JOIN) 4 - SORT (JOIN)

3- Table Access
(FULL SCAN)

emp

5 - Table Access
(FULL SCAN)

dept

•118

235

Cluster JoinCluster Join

1 - NESTED LOOPS

TABLE ACCESS (FULL)
dept

TABLE ACCESS
(CLUSTER)

emp

236

Choosing execution plans for joinsChoosing execution plans for joins
• Rule-based vs. Cost-based
• In the two approaches, the optimizers

always:
– begins with the joins that results in a single row

(using keys).
– begin with the tables without the outer join

operators (+)

•119

237

Rule-based ApproachRule-based Approach
• The optimizer generates a set of R join

orders by following the algorithm:
– Begin with a different table each time.
– Choose an access path for each table.
– Order the tables in the join from high ranked

access path to lower rank access path.
– For each table in the join, the optimizer must

decide how to join the table to the previous
results.

238

How to join the tables in the joinHow to join the tables in the join
• If the access path is ranked 11 or better

(there is an index or a cluster), use nested
loops.

• If this is an equijoin, use sort-merge.
• Use nested loops.

•120

239

How to decide which join to executeHow to decide which join to execute
The goal: maximize the number of nested

loops join where there is an index on the
inner table.

This is done using the following algorithm:

240

The AlgorithmThe Algorithm
Choose the table with:
• fewest nested loops where the inner table is

access with full table scan.
• If there is a tie, choose the fewest sort-

merge operation.
• If there is a tie, choose the plan with the

highest rank for the first table:

•121

241

The Algorithm (cont)The Algorithm (cont)
– If there is a tie between tables accessed by

single-column index, choose the plan whose
first table is accessed with most merged
indexes.

– If there is a tie between tables accessed by
bounded range scan, the optimizer chooses a
plan whose first table is accessed with the
greatest number of leading columns.

242

Cost-based optimizationCost-based optimization
Generate a set of join orders, join operations

and access paths and estimate the cost of
each one.

The optimizer estimates the cost using the
following algorithm:

•122

243

The Algorithm (cost-based)The Algorithm (cost-based)
• The cost of nested loops operation is based

on the cost of reading each of the selected
row of the outer table and each of its
matching rows of the inner table in
memory.

• The cost of a sort-merge join is mostly the
cost of reading the sources in memory and
sorting them

244

The Algorithm (cost-based)The Algorithm (cost-based)
• The influencing factors are:

– SORT_AREA_SIZE

– DB_FILE_MULTIBLOCK_READ_COUNT

•123

245

Compound queriesCompound queries
• Execute each query separately and then

apply the operator used in the compound
query.

SELECT part FROM orders1

UNION ALL

SELECT part FROM orders2

246

Part VII

Security

•124

247

Database Security
• Database security involves allowing or

disallowing users from performing actions
on the database and the objects within it.

• A privilege is permission to access a named
object in a prescribed manner; for example,
permission to query a table.

• Because privileges are granted to users at
the discretion of other users, this is called
discretionary security.

248

Users
• A user (sometimes called a username) is a name

defined in the database that can connect to and
access objects in database schemas.

• To access a database, a user must run a database
application (such as an Oracle Forms form,
SQL*Plus, or a Precompiler program) and connect
using a username defined in the database.

• When a database user is created, a corresponding
schema of the same name is created for the user.

•125

249

Authentication
• Oracle provides user validation via three

different methods for normal database
users:
• authentication by the operating system
• authentication by a network authentication

service
• authentication by the associated Oracle

database

250

User Tablespace Settings
the database administrator can set several

options regarding tablespace usage:
• the user's default tablespace
• the user's temporary tablespace
• space usage quotas on tablespaces of the

database for the user

•126

251

PUBLIC
• Each database contains a user group called

PUBLIC.
• The PUBLIC user group provides public

access to specific schema objects (tables,
views, and so on) and provides all users
with specific system privileges.

• Every user automatically belongs to the
PUBLIC user group.

252

User Resources
• As part of a user's security domain, the

DBA can set limits on the amount of
various system resources available to the
user.

• Session level, Call level
• Ressources CPU Time, Logical Reads

•127

253

Privileges
• A privilege is a right to execute a particular

type of SQL statement or to access another
user's object. Some examples of privileges
include
• the right to connect to the database (create a

session)
• the right to create a table
• the right to select rows from another user's table
• the right to execute another user's stored

procedure

254

Granting Privileges
• A user can receive a privilege in two

different ways:
• The DBA can grant privileges to users explicitly.

For example, she can explicitly grant the privilege to
insert records into the EMP table to the user
SCOTT.

• The DBA can also grant privileges to a role (a
named group of privileges), and then grant the role
to one or more users. For example, she can grant the
privileges to select, insert, update, and delete records
from the EMP table to the role named CLERK,
which in turn you can grant to the users SCOTT and
BRIAN.

•128

255

Roles

256

Auditing
• Auditing is the monitoring and recording of

selected user database actions. Auditing is
normally used to
• investigate suspicious activity. For example, if an unauthorized

user is deleting data from tables, the security administrator might
decide to audit all connections to the database and all successful
and unsuccessful deletions of rows from all tables in the database.

• monitor and gather data about specific database activities. For
example, the database administrator can gather statistics about
which tables are being updated, how many logical I/Os are
performed, or how many concurrent users connect at peak times.

•129

257

Part VIII

Distributed Processing
and

Distributed Databases

258

Client/Server
• In the Oracle client/server architecture, the

database application and the database are
separated into two parts: a front-end or client
portion, and a back-end or server portion.

• The client executes the database application that
accesses database information and interacts with a
user.

• The server executes the Oracle software and
handles the functions required for concurrent,
shared data access to an Oracle database.

•130

259

Distributed Processing

260

Advantages
• Client applications are

not responsible for
performing any data
processing

• Client applications can
be designed with no
dependence on the
physical location of
the data

• Oracle can be scaled

• Easier and more
efficient to manage
concurrent access.

• Inexpensive, low-end
client workstations can
be used

• Network traffic is kept
to a minimum because
only the requests and
the results are shipped
over the network.

•131

261

Distributed Databases
• A distributed database appears to a user as a

single database but is, in fact, a set of databases
stored on multiple computers.

• The data on several computers can be
simultaneously accessed and modified using a
network.

• Each database server in the distributed database is
controlled by its local DBMS, and each cooperates
to maintain the consistency of the global database

262

A Distributed Database

•132

263

Schema Objects and Naming

264

Statements and Transactions
• A remote query is a query that selects information from one or more

remote tables, all of which reside at the same remote node.

• A remote update is an update that modifies data in one or more tables,
all of which are located at the same remote node.

• A distributed query retrieves information from two or more nodes.

• A distributed update modifies data on two or more nodes.

• A remote transaction is a transaction that contains one or more remote
statements, all of which reference the same remote node.

• A distributed transaction is any transaction that includes one or more
statements that, individually or as a group, update data on two or more
distinct nodes of a distributed database.

•133

265

Distributed Transaction
• All participants (nodes) in a distributed transaction should

be unanimous as to the action to take on that transaction.
That is, they should either all commit or rollback.

• Oracle automatically controls and monitors the commit or
rollback of a distributed transaction and maintains the
integrity of the global database using a transaction
management mechanism known as two-phase commit.

• This mechanism is completely transparent. Its use requires
no programming on the part of the user or application
developer.

266

Prepare and Commit
The committing a distributed transaction has two

distinct phases:
• Prepare: The global coordinator (initiating node)

asks participants to prepare (to promise to commit
or rollback the transaction, even if there is a
failure).

• Commit: If all participants respond to the
coordinator that they are prepared, the coordinator
asks all nodes to commit the transaction. If any
participants cannot prepare, the coordinator asks
all nodes to roll back the transaction.

•134

267

Prepare Phase
• By preparing, a node records enough information

so that it can subsequently either commit or abort
the transaction regardless of intervening failures.

• When a node is told to prepare, it can respond
with one of three responses:
– Prepared: Data on the node has been modified by a

statement in the distributed transaction, and the node
has successfully prepared.

– Read-only: No data on the node has been, or can be,
modified (only queried), so no prepare is necessary.

– Abort: The node cannot successfully prepare.

268

Prepare Actions
• The node requests its

descendants to prepare.
• The node checks to see if

the transaction changes
data on that node or any of
its descendants. If there is
no change, the node skips
the next steps and replies
with a read-only message

• The node allocates all
resources it needs to
commit the transaction if
data is changed.

• The node flushes any
entries corresponding to
changes made by that
transaction to its local
redo log.

• The node responds to the
node that referenced it in
the distributed transaction
with a prepared message
or, if its prepare or the
prepare of one of its
descendents was
unsuccessful, with an
abort message.

•135

269

Commit Phase
• Before this phase occurs, all nodes referenced in the

distributed transaction have guaranteed that they have the
necessary resources to commit the transaction. That is,
they are all prepared.

• Therefore, the commit phase consists of the following
steps:
– The global coordinator send a message to all nodes telling them to

commit the transaction.

– At each node, Oracle commits the local portion of the distributed
transaction (releasing locks) and records an additional redo entry in
the local redo log, indicating that the transaction has committed.

• When the commit phase is complete, the data on all nodes
of the distributed system are consistent with one another.

270

The Session Tree
• All nodes participating

in the session tree of a
distributed transaction
assume one or more
roles:
• a client
• a database server
• a global coordinator
• a local coordinator
• the commit point site

•136

271

272

Clients and Servers
• A client references information from

another node's database.
• A server is a node that is directly referenced

in a distributed transaction or is requested to
participate in a transaction because another
node requires data from its database. A
node supporting a database is also called a
database server.

•137

273

Local Coordinator
• A node that must reference data on other nodes to

complete its part in the distributed transaction is called a
local coordinator.

• A local coordinator is responsible for coordinating the
transaction among the nodes it communicates directly with
by:
• receiving and relaying transaction status information to and from

those nodes

• passing queries to those node

• receiving queries from those nodes and passing them on to other
nodes

• returning the results of queries to the nodes that initiated them

274

Global Coordinator
• The node where the distributed transaction

originates (to which the database
application issuing the distributed
transaction is directly connected) is called
the global coordinator.

• All of the distributed transaction's SQL
statements, remote procedure calls, etc. are
sent by the global coordinator to the directly
referenced nodes, thus forming the session
tree.

•138

275

The Commit Point Site
• The job of the commit point site is to initiate a

commit or roll back as instructed by the global
coordinator.

• The system administrator always designates one
node to be the commit point site in the session tree
by assigning all nodes a commit point strength.

• The node selected as commit point site should be
that node that stores the most critical data (the data
most widely used)

276

The Commit Point Site (2)
• The commit point site is distinct from all

other nodes involved in a distributed
transaction with respect to the following
two issues:

• The commit point site never enters the prepared
state. This is potentially advantageous because if the
commit point site stores the most critical data, this
data never remains in-doubt, even if a failure
situation occurs.

• In effect, the outcome of a distributed transaction at
the commit point site determines whether the
transaction at all nodes is committed or rolled back.

•139

277

Commit Point Strength
• Every node acting as a database server must be

assigned a commit point strength.
• If a database server is referenced in a distributed

transaction, the value of its commit point strength
determines what role it plays in the two-phase
commit.

• Specifically, the commit point strength determines
whether a given node is the commit point site in
the distributed transaction.

278

Example

•140

279

Selecting the Commit Point Site
• The commit point site is selected only from

the nodes participating in the transaction.
• Once it has been determined, the global

coordinator sends prepare messages to all
participating nodes.

• Of the nodes directly referenced by the
global coordinator, the node with the
highest commit point strength is selected.

280

A Scenario
• A company that has separate Oracle servers,

SALES.ACME.COM and
WAREHOUSE.ACME.COM.

• As sales records are inserted into the
SALES database, associated records are
being updated at the WAREHOUSE
database.

•141

281

Defining the Session Tree

282

Determining the Commit Point Site

•142

283

Prepare

284

Commit

•143

285

Data ReplicationData Replication

286

Data ReplicationData Replication
• Data replication is the capability of

maintaining copies of tables/databases
separate from the primary copy.

• This replication is usually performed
separately from a two phase commit
protocol.

• This term is used by different vendors (in
our case: Sybase, ORACLE, Informix) to
describe differing functionality.

•144

287

DefinitionsDefinitions
• The Sybase replication server is a method for

distributing copies of a table to multiple sites.
• The Oracle table snapshot is a method for

distributing read-only copies of a table to multiple
sites.

• The Informix data replication feature is a method
for maintaining an exact duplicate of an Online
instance elsewhere on the system.

288

Sybase Replication ServerSybase Replication Server
• Designed to dynamically maintain subsets

of data in a distributed database
environment.

• A replication server environment is usually
made up of LANs connected to WANs.
Each LAN may have one or more
replication server.

•145

289

Primary SitesPrimary Sites
• Each piece of data has a primary site. This

can be thought as the original copy of the
data.

• The primary site determines who can
replicate the data and what data can be
replicated.

290

SubscriptionsSubscriptions
• Replication is started by the remote sites

requesting data from the primary site.
• This is called subscription.
• Subscriptions look like SQL SELECT

statement.

•146

291

SubscriptionsSubscriptions
• After a subscription is entered, the primary

site copies all the data that satisfies the
subscription query to the remote site.

• From that point on, the remote site is kept
up-to-date using one of the three methods
described below.

292

Subscriptions (2)Subscriptions (2)
• Sybase supports the change of the

subscription criteria. This is called dynamic
subscriptions.

• In case that any replication server fails, the
DB stores all the transactions for that server
and automatically resynchronizes the server
once it has been recovered.

•147

293

Replication methods (1)Replication methods (1)

LocalLocal--first Updatefirst Update

Client:Client:
update ...update ...

Local siteLocal site

Primary replicationPrimary replication
ServerServer

294

DrawbacksDrawbacks
• The primary site may be down when the

remote transaction is committed.
• Therefore, other sites will not work with up-

to-date information.

•148

295

BenefitsBenefits
• The local site contains up-to-date

information and may continue to proceed
even if the replication server has failed.

296

Replication methods (2)Replication methods (2)

PrimaryPrimary--first Updatefirst Update

Client:Client:
update ...update ...

Local siteLocal site

Primary replicationPrimary replication
ServerServer

•149

297

DrawbacksDrawbacks
• This method depends upon the primary

replication server being available.

298

BenefitsBenefits
• Ensures that, if the replication server does

not fail, users have a consistent view of the
data.

•150

299

Replication methods (3)Replication methods (3)

VersionVersion--Controlled UpdateControlled Update

Client:Client:
update ...update ...

Local siteLocal site

Primary replicationPrimary replication
ServerServer

300

DrawbacksDrawbacks
• Applications are not aware that they are

working with out-of-data information until
commit.

•151

301

BenefitsBenefits

302

OracleOracle
• The Oracle snapshot is the result of a query

of tables, views or other snapshots.
• Oracle defines two types of snapshots:

– Simple snapshots: on a single table without
GROUP BY or CONNECT BY.

– complex snapshots
• The original tables are called the master

tables. The snapshot is used for read-only
access.

•152

303

Refreshing the snapshotRefreshing the snapshot
• ORACLE supports two methods.
• The method depends on whether the

snapshot is simple or complex and how
often the user wants the information to be
updated at the remote site.

304

Fast refreshFast refresh
• Available only for simple snapshots.
• The snapshot log is a table found in the

master DB used to track all the updates to
the master table.

• A fast refresh applies the changes saved in
the snapshot log to the snapshot
periodically.

•153

305

Complete refreshComplete refresh
• Complete refresh entirely rebuild the

snapshot periodically.
• For the two refreshing methods, refreshing

can be set manually or automatically.

306

Informix-Online Dynamic ServerInformix-Online Dynamic Server
• The aim: to maintain available copy of

critical DB.
• The administrator sets a primary and a

secondary DB instance.
• The secondary instance is read-only if the

primary server is on-line.
• If the primary server fails, the secondary

server may be used for read-write access.

•154

307

Online data replicationOnline data replication

primary serverprimary server

secondary serversecondary server

Logical log bufferLogical log buffer

308

SynchronizationSynchronization
• The servers synchronization is set up using

two parameters:
– DRINTERVAL: determines the interval

between two resynchronizations of the servers.
– DRTIMEOUT: how long the primary site waits

for acknowledgment from the secondary site
after the data has been transferred.

