
LEFT-DEEP VS. BUSHY TREES:
AN ANALYSIS OF STRATEGY SPACES AND

ITS IMPLICATIONS FOR QUERY OPTIMIZATION ~

Yannis E. Ioannidis
Younkyung Cha Kang

Computer Sciences Department
Um”versity of Wisconsin

Madison, WI 53706

Abstract

We present a combination of analytical and experimental

results that shed some light into the shape of the cost func-

tion of the strategy spaces that query optimizers must deal
with. These are the space that includes only left-deep trees
and the space that includes koth deep and bushy trees. We
conclude that the cost functions of both spaces essentially
form a “well” but of a distinctly different quality. Based

on this result, we discuss how Iterative Improvement,
Simulated Annealing, and Two Phase Optimization per-
form on these spaces. We conclude that the space of both

deep and bushy trees is easier to optimize than the space of
left-deep trees alone.

1. INTRODUCTION

Query optimization is an expensive process, pri-
marily because the number of alternative access plans for a

query grows at least exponentially with the number of rela-
tions participating in the query. The application of several
useful heuristics elimimtes some alternatives that are likely

to be suboptimal [Seli79], but it does not change the com-
binatorial nature of the problem. Future database systems

will need to optimize queries of much higher complexity
than current ones. This increase in complexity may be
caused by an increase in the number of relations in a query
[Kris86], by an increase in the number of queries that are
optimized collectively (global optimization)

[Gran81, Sel186], or by the emergence of recursive queries.
The heuristically pruning, almost exhaustive search algo-
rithms used by current optimizem are inadequate for

queries of the expected complexity. Thus, the need to
develop new query optimization algorithms becomes

apparent.

Randomized algorithms have been successfully

applied to various combinatorial optimization problems.
Three such algorithms have been proposed for optimizing

t Partially supported by NSF under Grant IRI-8703592.

Permission to copy without fee all or part of this material is

granted provided that the copies are not made or distributed for

direct commercial advantage, the ACM copyright notice and the

title of the publication and Its date appear, and notice is given

that copying is by permission of the Association for Computing

Machinery. To copy otherwise, or to republish, requires a fee

and/or specific permission.
0 1991 ACM ()-89791-425-2/91/0005/01 68...$1.50

complex queries in the
[Kirk83, Ioan87, Ioan90],

Naha86, Swam88], and Two

past Simulated Annealing
Iterative Improvement

Phase Optimization [10an90].

Our focus in this paper is these three algorithms when
applied to the optimization of select-project-join queries.

The performance and appropriateness of any of these
algorithms depends heavily on the shape of the cost func-
tion of the space of alternatives that these algorithms

search. The major contributions of the paper are the fol-
lowing. First, we identify several factors that affect the

shape of the cost function of arbitrary spaces. These
include the structure of the space represented as a graph

(node degree and node distance), the cost distribution of all

the alternatives in the space, and specialized properties of
the cost functions. Second, we study the two primary
spaces with which query optimizers deal and present results
on their properties that affect the above mentioned factors.
Hence, we are able to obtain strong indications for the

shape of the cost function for these spaces. The main con-
clusion is that in both spaces of interest, the shape of the
cost function resembles a “well”, although of a distinctly
different quality. Third, based on the above conclusion, we
discuss the expected behavior of the above algorithms on

each of these spaces. Our conjectures regarding the cost
function shape in the space and the expected algorithm

behavior have been verified by a series of experiments,
whose results are nevertheless not presented in this paper
due to lack of space. The interested reader, however, can
find them elsewhere [Kang9 1].

In every instance of the query optimization problem,

there are three types of graphs that are important. To avoid
any confusion, we use three different terms for them. First,
there is the query graph K.Jllm82], which has the query
relations as nodes and the joins Mween relations as

undirected edges. In this paper, we study tree queries (i.e.,
queries whose query graph is a tree lUllm82]) containing
only equality joins. Occasionally, because of their interest-
ing characteristics, special attention is given to star and
string queries. In a star query, one relation participates in

all joins and each of the rest participates in one join. In a
string query, two relations participate in one join and each
of the rest participates in two joins. Second, there is the
strategy (or access plan), which is a directed tree and is
defined in Section 2.1. Finally, there is the strategy space,
which is a general undirected graph that is searched by the

optimization algorithms for the node of least cost.

This paper is organized as follows. Section 2
describes the two spaces of interest and the three

168

algorithms that are the focus of this paper. Section 3

classifies the different shapes of cost functions that affect

the behavior of these algorithms. Sections 4 and 5 discuss

the factors that determine the shape of the cost function of
arbitrary spaces. Sections 6, 7, and 8 contain a combina-

tion of analytical and experimental results that shed some
light into the properties of the spaces of interest to query

optimization. Section 9 uses the results of the last five sec-
tions to draw conclusions on the shape of the cost functions

of these spaces. Section 10 analyzes the behavior of the
three algorithms according to the shape of each space. Sec-
tion 11 compares the spaces themselves and suggests one
of them as the most appropriate for query optimization.
Section 12 presents the results of our p~vious work
[Ioan90] and that of Swami and Gupta [Swam88] in light
of the findings in this paper. Finally, Section 13 concludes

and presents some directions for future work.

2. RANDOMIZED QUERY OPTIMIZATION ALGO-
RITHMS

Each solution to a combinatorial optimization prob-
lem can be thought of as a state in a space, i.e., a node in a
graph, that includes all such solutions. Each state has a
cost associated with it, which is given by some problem-

specific cost function. A state of low (high) cost is a low
(high) state. The goal of an optimization algorithm is to
find a state with the globally minimum cost. Randomized

algorithms usually perform ranabn walks in the state space
via a series of moves. The states that can be reached in one
move from a state S are called the neighbors of S. Their
number is the degree of the state. A move is called uphill

(downhill) if the cost of the source state is lower (higher)
than the cost of the destination state. A state is a local

minimum if, in all paths starting at that state, any downhill
move comes after at least one uphill move. It is a global

minimum if it has the lowest cost among all states. A state
is on a plateau if it has no lower cost neighbor and yet it

can reach lower cost states without uphill moves.

Using the above terminology we describe three ran-
domized optimization algorithms that are of interest to
query optimization. Due to lack of space, the descriptions
are very brief. Details can be found elsewhere ~oan90].

Iterative Improvement (II) performs a large number

of local optimization. A local optimization starts at a ran-

dom state and improves the solution by repeatedly accept-
ing random downhill moves until it reaches a local
minimum. Its output at the end is the least cost local
minimum that has been visited.

Simulated Annealing (SA) starts at a random state
and proceds by random moves, which if uphill, they are
only accepted with certain probability. As time progresses
this probability gradually decreases until the time it
becomes zero, which signifies the end of the algorithm.
The output of the algorithm is again the least cost state that
has been visited.

Two Phase Optimization (2PO) is divided into two
phases. In the lirst phase, II is run for a small period of

time, i.e., a few local optimizatiohs. The output of that
phase is the initial state of the next phase, where SA is run

with very low initial probability for uphill moves.

When the above generic optimization algorithms are

applied to query optimization, three parameters need tQ be
specified the state space, the neighbors function, and the

cost function.

2.1. State Space

Each state in query optimization corresponds to a

strategy (or access plan) of the query to ke optimized.
Hence, in the sequel, we use the term strategy and state
indistinguishably. Using the heuristics of performing

selections and projections as early as possible and exclud-
ing unnecessary cartesian products [Seli79], we can elim-

inate certain suboptimal strategies to increase the efficiency
of the optimization. Thus, we reduce the goal of the query
optimizer to finding the best join order, together with the

best join method for each join. In this case, each strategy
can be represented as a join processing tree, i.e., a tree
whose leaves are base relations, internal nodes are join
operators, and edges indicate the flow of data. If all inter-
nal nodes of such a tree have at least one leaf as a child,

then the tree is called deep. Otherwise, it is called bushy.
Most join methods distinguish the two join operands, one

being the outer relation and the other being the inner rela-
tion. A left-deep tree is a deep tree whose inner relations
of all joins are base relations. In this study, we deal with
two strategy spaces: one that includes only left-deep trees,
which is denoted by L, and one that includes both deep and
bushy ones, which is denoted by A.

2.2. Neighbors Function

The neighbors of a state, which is a join processing

tree (i.e., a strategy), are determined by a set of transforma-

tion rules. Each rule is applied to some internal nodes of

the state, replaces them by some new nodes, and usually
leaves the rest of the nodes of the state unchanged. There

are several sets of transformation rules from which one
could choose, and the options are different for the spaces A
and L. The ones adopted in this study are described below.

Let a, b, and c ke join processing formulas and

assume for simplicity that joins are signified by concatena-

tion. The set of transformation rules in A is given below
[Ioan90]:

(1) Join mefhod choice: a (~thi) b + a (methj) b

(2) Join commutativity: ab+ba

(3) Join associativity: (a b)c++a(bc)

(4) Leji join exchange: (a b)c+(ac)b

(5) Right join exchange: a(bc)+b(ac)

Strategies in L can be represented as a sequence of
relations, which signifies the order in which the relations

are joined in the strategy. Let a, b, c, and d be relation
sequences, and R, S, and T be single relations. The set of

169

transformation rules in L is given below [Swam88]:

(I) J&I ~thod choice: a (~thi) R + a (~thj) R

(2) swap: aRb Sc-+a SbRc

(3) 3-cycle: aRb ScTd+a SbTc Rd

In both spaces, rule (1) is only applicable when mul-

tiple join methods are available in the system rmd simply
changes the join method of a join operator, e.g., from
nested-loops to merge-scan.

2.3. Cost Function

In our study, we used several models for the cost
functions of database operations to observe their effect on

our findings. The details of each model are not presented
here due to lack of space and because the results were

insensitive to the specific cost model. We should mention,
however, that all three join methods, nested-loops, merge-

scan, and hash-join were used, and that several interesting
combinations of them were tried in the various cost models.

3. SHAPES OF COST FUNCTIONS

Hereafter, we refer to the shape of the cost function
of a strategy space as the shape of the space. Also, con-
sider two low local minima S 1 and S2 in some space, and
let P be the set of paths that connect them. For each path

pE P, let NP be the set of strategies in the path excluding S ~
and S2. The connection cost of S 1 and S2 is equal to

(3.1)

There are two par&eters of the shape of some stra-
tegy space that determine the behavior of the above optimi-
zation algorithms:

(A) the cost distribution of local minima, and

(B) the connection cost of low local minima.

The question of interest in (A) is what percentage of the

local minima are close to the cost of the global minimum.
The question of interest in (B) is whether or not, for the low
local minima, their connection costs are much higher than
their costs. Based on the cost distribution of local minima,
shapes can be placed in three categories that can be defined
qualitatively as follows.

Al Most local minima are low.

A2 A nontrivial percentage of local minima are low, but
most of them are high.

A3 Local minima are scattered at all costs.

Based on the connection cost of low local minima, shapes

can be placed in three categories as well.

B 1 The connection cost is similar to the cost of the local
minima, i.e., the area of low cost strategies is
smooth.

B2 The connection cost is somewhat distant from the

cost of most low local minima, but still relatively low
compared to the cost range in the whole space, i.e.,
the area of low cost strategies is bumpy.

B3 The connection cost is much higher than the cost of
the local minima, i.e., there are multiple areas of low
cost strategies, which are separated by high “hills”.

This classification leads to the following qualitative

definition of a well. Any cost function whose shape is of
type Ai-Bj, with i, j~ {1,2), forms a well. In later sections,
it is shown that the behavior of the algorithms depends not

only on whether the cost function forms a well or not, but
also on the specific well class to which it belongs.

4. COST DISTRIBUTION OF LOCAL MINIMA

This section identifies three aspects of a strategy

space that affect the cost distribution of its lcud minima:
the degree of the strategies in the space, the range of the
cost difference between neighbors, and the cost distribution

of all strategies. The results presented below hold for

spaces that are generated randomly. Clearly, such spaces
are not accurate models of A or L. Nevertheless, although
these results cannot serve as proofs of what is happening in
the spaces of interest, they are still valuable in providing
some intuition that can help explain the experimental

observations.

In what follows, in order to compare cost distribu-
tions, we need the following definitions. For a random
variable X, its distribution function is denoted by F’x and is

defined as Fx(x) = Prob (X=). Consider two random vari-
ables X and Y on the same range [mJWJ of possible values.
Then, the dishibution of Y is shifted to the leji relative to
the distribution of X if FY(x)/F’x(x)> 1 for all x -@f. The
ratio FY(x)/Fx(x) is the relative shift of the distribution of

Y over the distribution of X at point x. If the random vari-

ables do not have the same range, then the relative shift of

their distributions can be defined after scaling them so that

their ranges become equal.

Consider an arbitrarily large space and let the stra-
tegy costs be assigned based on some probability distribu-
tion. Also, let each strategy have d neightmrs, which are
chosen randomly among all other strategies. Then the fol-
lowing holds.

Theorem 4.1: Let X be the random variable for stra-

tegy costs and Y be the random variable for local minimum
costs. Then, Fy(x) = l–(l–Fx(x))d+l.

As with all other analytical results in this paper, in

the interest of space, we omit their proofs. Note that the
above theorem holds for arbitrary cost distributions in the
strategy space. Due to the exponential form of the formula
in the theorem, we see that with high enough degree, the
local minimum cost distribution is very much shifted to the
left relative to the cost distribution of all strategies. This is
clearly exemplified in Figure 4. la, where F’x(x) is drawn as
a function of FY(x) for various values of d. Even with
degree d=lO, 50% of the local minima are found among

170

the lowest 7% of all strategies, and this drops to 2% of all

strategies for d=50.

Fx(y)
o.2s - d=10

,’

0.20’
i

/’,

0.15”
/’,

H’
/’

,’

0.10’ ,$’
,.’

,.

0.05 w
d=50

//”
./ /. d=100

.-</
z—

0.00”
0.4 0.5 0.6 0.7 0.8 0.9 1.0

FY(y)
(a)

Fx(y)
0.06-

? 6=-
(d=50, CI=2.0,~=10.0) ;

0.05 “
J

/
0.04’

,
,d’

0.03
1

0.00L
0.4 0.5 0.6 0.7 0.8 0.9 1.0

0)
FY(y)

Figure 4.1: The relationship of the strategy cost and local
minimum cost distributions: (a) b=~; (b) d=50.

Next, we enhance the above graph model to capture

constraints on the cost difference between neighbors.
Specifically, consider the additional constraint that the d
neighbors of a strategy with cost c are chosen randomly

among all strategies whose cost is between c –5 and c +8,
for some threshold & Unfortunately, for this case, it is not

possible to capture the relationship between Fx and Fr in
closed form independent of the probability distribution.
Thus, to obtain an understanding of the effect of 5, we have
experimented with several values of 8 and with several
forms of the r distribution. The choice of the r distribu-
tion was motivated by experimental results that showed
that it resembles the distribution followed by the cost of
strategy spaces in query optimization (Section 7). The con-
clusion from the experiments is that, in general, the relative
shift of the local minimum distribution to the left increases
as 8 decreases, i.e., locat minima tend to be of lower cost.

Occasionally, for very low degree d and at high values of
Fy(x), we observed a reversal of this trend, i.e., the relative
shift started decreasing as 6 decreased beyond a certain
point. Overall, however, these cases were few. As a

typical example, Figure 4.lb shows Fx(x) as a function of
FY(x) for the r distribution with parameters CX=2and &10

Eoth86], and for d=50. Diagrams for many values of 5

expressed as a fraction of the standard deviation o of the
used r distribution are shown. The above mentioned trend
is obvious in these diagrams. Hence, in general, less abrupt
changes in cost between neighbors result in less local
minima among higher cost strategies.

Another interesting outcome of both experiments

above is that as the cost distribution of all strategies

changes, the local minimum cost distribution follows along.
More specifically, if the distribution of X is shifted to the
left then the distribution of Y is shifted to the left as well.
This establishes the rather intuitive fact that, as more stra-
tegies move closer to lower costs, more local minima do
the same as well.

5. CONNECTION COST BETWEEN LOW LOCAL
MINIMA

This section identifies three aspects of a strategy

space that affect the connection cost of low local minima:
the distance between the local minima and the number of
paths connecting them, the cost distribution of all stra-
tegies, and some special properties of the functions used to
compute the cost of each strategy.

The effect of the first factor is rather intuitive

although difficult to express formally. As the distance of
two local minima increases and/or the number of paths
connecting them decreases, their connection cost most

likely increases as well. The intuition behind the above

statement is based on equation (3.1). Longer paths contain
more strategies (NP is larger) and therefore tend to be able

to reach at higher costs (there are more choices for the
maximum of the costs of strategies in NJ. By the same

token, fewer paths (smaller P) implies that there are fewer
choices for the minimum among those maxima. Although
there is no concrete relationship between distance/number
of paths and connection cost, there is a rather intuitive
trend. As two extreme examples, consider a fully con-
nected graph with N nodes and a string of N nodes (a cycle

with one of its edges removed). In the first graph, every
pair of strategies is connected with a path of length 1, and
the total number of paths is approximately e (N–2)!, where
e is the Napierian number. The connection cost for all
pairs of strategies is zero, since they are neighbors. In the

second graph, for every pair of strategies, there is a unique
path that connects them. Moreover, there exist strategies
whose connecting path contains all nodes in the graph and
therefore their connection cost is the highest possible.
Most graphs fall between these two extremes and behave

analogously. Note that the degree of a graph affects both
the distance between two strategies and the number of

paths between them. A higher degree, decreases the former
and increases the latter, thus decreasing the connection cost
of strategies.

The effect of the second factor is also straightfor-

ward. As the percentage of strategies having low cost
increases, the connection cost of low local minima

171

decreases. The intuition behind the above statement is
again based on equation (3.1). The further to the left the
strategy cost distribution is shifted, the lower the costs will
beinthe set {c(s) I SGNP].

The effect of the third factor is much more complex

and is based on previous work [Monm79, Ibar84, Kris86].
Consider a strategy space whose nodes can be mapped to
the distinct permutations of a set of symbols X. In addition,
for every strategy S, let its neighbors include all strategies

obtained from S by interchanging two adjacent subse-
quences of S. For example, if S corresponds to the permu-
tation abcdef, the strategy that corresponds to deabcf is a
neighbor of S. Let A, B, U, and V be sequences of symbols
in Z, with U and V not being null. The strategy cost func-

tion satisfies the Adjacent Sequence Interchange (ASI) pro-
perty if the following holds: c (AUVB) < c (AVUB) iff
rank (U) <rank (V), for some function rank. The impor-

tance of the ASI property for the more traditional
approaches to query optimization has been discussed
before [Ibar84, Kris86]. Its importance for randomized
algorithms becomes evident with the following theorem.

Theorem 5.1: Consider a strategy space as described

above, whose cost function satisfies the ASI property.
Then the space has a unique area of local minima that are

connected among themselves, which are therefore global
minima.

Whenever the premises of the above theorem are

satisfied by a strategy space, its conclusions suggest an
extremely efficient optimization algorithm: execute one
local optimization of II. Although neither A nor L satisfy
the premises of Theorem 5.1, they contain many subspaces
that do satisfy them, so that its conclusions are quite impor-
tant in understanding the shape of their cost function.

6. STRUCTURE OF THE STRATEGY SPACE

The previous two sections presented several results

on the properties of a strategy space that determine the
shape of its cost function by affecting the (A) and (B)

parameters. This and the following two sections contain
results that characterize the A and L spaces with respect to
these properties. Specifically in this section, we present
results on the degree of strategies and the interstrategy dis-

tance in these spaces, which affect both (A) and (B). We
should point out that L and A are examined with respect to
the structure of the strategies alone, independent of other
additional characteristics with which the spaces can be
enriched, i.e.. multiple join methods or indices. Incorporat-
ing these is straightforward.

6.1. Space of Left-Deep Strategies

For the L space, we have considered only the Swap
rule (rule (2) in Section 2.2.2). Any neighbor of a strategy
that is produced by applying the 3-cycle transformation
rule is reachable with two consecutive applications of the
Swap rule as well. Hence, extending the forthcoming
results to the complete space is straightforward.

6.1.1. Degree of Strategies

The strategy space that corresponds to an arbitrary

query is rather had to analyze. We focus our attention on
queries in whose query tree all non-leaf nodes have the
same degree. That is, these are queries where each relation

participates in either one join or g joins, for some constant

g. Let L~ denote the space that corresponds to such a
query. For such queries the following theorems hold.

Theorem 6.1: Consider a strategy in L~ for a query

with J joins. If d is the degree of the strategy, then

Theorem 6.2: Consider the space L~ for a query with

J joins whose query tree has a root node whose distance
from all leaves is A. Then, there exist strategies in that

space whose degree d satisfies

d ~ (g-l)A-l ~2-2) (%-l) +g,

i.e., for a given g, d=O (.llogJ).

The geneml conclusion from the above theorems is

that, in the L space, the degree of strategies is not always

quadratic in the number of joins. Although high for many
strategies in L, the degree of several other stmtegies in the
same space is rather low.

Example 6.1: As an example, consider star queries,

which correspond to the space LJ. By Theorem 6.1, all
strategies in LJ are of degree ~(J–1)/2 + 1. In fact, for
that space, all strategies have the same degree, which is
equal to the given upper bound. As another example, con-
sider string queries, which correspond to the space L2. By
Theorem 6.1, all strategies in L2 are of degree that is less

than J. By Theorem 6.2, there exist strategies of degree 2,
which in fact is the lower bound on the degree as well. ‘G

6.1.2. Interstrategy Distance

The intersirategy distance is a rather difficult param-

eter of a space to analyze, since it can be quite different for
different pairs of strategies. The following results provide
some bounds on interstrategy distances and hold for the L
space in general.

Theorem 6.3: Consider the space L for a query with

J joins. All strategies in that space are connected with a
path of length less than Y(J+l)/2.

Theorem 6.4: Consider the space L for a query with

J joins. Let r be the length of the longest path in the query
tree whose relations appear in reverse order in two stra-
tegies. Then, any path between the two strategies is longer
than r (r+l)/2–2.

The implications of the above theorem are that the

distance between strategies is rather short, quadratic in the
number of joins in the worst case. Moreover, there do exist
strategies whose distance has a quadratic lower bound, so

172

the results of these theorems are tight.

Example 6.2: Consider again star queries. In the

corresponding strategy space, any pair of strategies is con-
nected with a path of length less than J. This space is the

one with the closest connections between strategies. For
string queries, by Theorem 6.4, there exists a pair of stra-
tegies whose shortest path connecting them is of length
J(J+l)/2–2. •1

6.2. Space of Deep and Bushy Strategies

The placement of edges in space A is a much more

tightly controlled process than in L, and this makes the

analysis of its characteristics easier as well.

6.2.1. Degree of Strategies

Theorem 6.5: Consider the space A for a query with
J joins. Then, the degree of any strategy in that space is
equal to 2J-1.

Theorem 6.5 comes in interesting contrast to
Theorems 6.1 and 6.2. It shows that in A, all strategies
have the same degree, whereas in L, strategies have varying

degrees, which can be higher or lower than the degree of
the corresponding A space.

6.2.2. Interstrategy Distance

Theorem 6.6: Consider the space A for a query with

J joins. All strategies in that space are connected with a
path of length less than J (.1+1)/2.

Comparing Theorems 6.3 and 6.6, we see that the
maximum interstrategy distance in the two spaces for all
queries is the same. We expect, however, that in general,
interstrategy distance is shorter in L than in A.

7. COST DISTRIBUTION OF ALL STRATEGIES

Let the catalogs of the database contain information

on the following relation characteristics: relation size,
number of unique values per attribute, and primary and

secondary indices on the relation. If we make the usual
uniformity and independence assumptions for the values in
the relation attributes, these characteristics are enough to
compute the cost of any equality join query on these rela-
tions.

To obtain an understanding on the strategy cost dis-
tribution for tree queries, we have experimented with
several types of catalogs and cost models for both strategy
spaces. For several queries, we generated 500,000 random
strategies in the space of each query to obtain an approxi-
mation of its distribution. Due to the presence of strategies

with cross-products, genemting truly random strategies in
spaces of random tree queries is extremely time consum-
ing. Hence, we have confined ourselves in experimenting
with star queries alone, which do not present similar
difficulties. The results for all tested queries and for all
cost models in both strategy spaces have been very con-
sistent. As the variance in the values of the relation

characteristics in the catalogs increases, two important

parameters of the distribution change. First, the cost range
increases dramatically. Second, the distribution shifts
further to the left. Example distributions for two cases

corresponding to catalogs with low and high variance in

their contents are shown in Figure 7.1. The x-axis
represents the ratio of the strategy cost over the least such
cost among the sampled strategies. The specific case is for
a 20-join query and for the A space. Similar trends were
observed in all other experiments. Note the strong resem-
blance with the r distribution with parameters ct = 1 and 2
[Roth86]. This justifies our experimentation with these dis-

tributions in Section 4.

States (%)

51
I LOW VarianceCatalog

4’

3“

2{

:Ls.ed
o 100 200 300 400 500 cost

(a)

States (%)

101

I High Variance Catalog

o~ Scaled
0 12000240003600048000 60000 Cost

(h)

Figure 7.1: The strategy cost distribution of a star query.

The observed trends can be explained as follows.

Clearly, a variance increase in the characteristics of the
database relations results in opening the gap between the
low and the high cost strategies. For example, if all rela-

tions have the same characteristics, all strategies will have
the same cost. On the other hand, as the difference in
characteristics grows, choosing the wrong order of joining
the relations will be of much higher cost than choosing the
correct order.

The above fact partly explains the change in the
amount of shifting to the left as well. Consider a set of

173

strategies whose lmttom part t is identical. Their cost
difference is determined by the cost difference in the
remaining joins, but is affected by the size of the results of

the common part. For low cost strategies, the common bot-
tom patI usually produces small relations, whereas for high
cost strategies, it produces large ones. Small relations
allow a relatively small range in the cost of the subsequent
operations, whereas large ones allow larger differences.
This has the effect that the strategy cost distribution is in

general shifted to the left. As the variance in the charac-
teristics of the relations increase, the overall cost range
increases as well, and the distribution is shifted further to
the left.

8. INTERACTION BETWEEN ASI AND NON-ASI
COST FUNCTIONS

A ranked join method is defined to be one whose
cost formula is of the form n Ig (n2), where n 1 and n2 are

the sizes of the outer and inner relations respectively, and

g(.) is some appropriate function [Kris86]. Suppose that R
is a relation in some tree query. In the L space that

corresponds to the query, consider its subspace whose
nodes are the strategies having R as their first (leftmost)
relation. It is well known that, if all available join methods
are ranked, the strategy cost function for that subspace

satisfies the ASI property [Kris861. Hence, if exchanging

adjacent sequences of relations in a strategy was a legal
transformation to generate neighbors, by Theorem 5.1, that
subspace would have a unique area of local minima.
Although this is not the case in L, for star queries, exchang-
ing any pair of adjacent relations is legal (assuming that the

relation in the center of the star remains the first relation in

the strategy). This fact can be used to prove several
interesting properties regarding the connection cost of stra-

tegies in lwth L and A for star queries.

8.1. Space of Left-Deep Strategies

Theorem 8.1: Consider a star query with J joins and

a pair of strategies S 1 and Sz in the corresponding L space.
Then the following hold:

(a) If all available join methods are ranked, there exists a
path connecting S 1 and S2 whose most expensive
strategy is either S 1 or S2 or one of their neighbors.

(b) If non-ranked join methods are available, there exists
a path connecting S 1 and S2 whose most expensive
strategy is at most .l+l steps apart from S 1 or S2.

Considering the huge size of the strategy space, one
realizes that the above linear bound is extremely small,
especially since all steps mentioned in (b) correspond to
applying the join method choice rules, which do not affect
the strategy structure. Hence, by Theorem 8.1, the

t Recall that each strategy correspmtds to a processing tree. For
star queries, at least one of the children of any internal node in the strategy
is a base relation. Hence, a common bottom part implies that some
nmnber of the first relaticm to be joined are the same.

connection cost of low local minima should in general be
low as well.

8.2. Space of Deep and Bushy Strategies

Theorem 8.2: Consider a star query with J joins and

a pair of strategies S 1 and S z in the corresponding A space.
Then the following hold

(a) If all available join methods are ranked, there exists a
path connecting S 1 and S2 whose most expensive
strategy is at most J steps apart from S 1 or S2.

(b) If non-ranked join methods are available, there exists
a path connecting S 1 and S2 whose most expensive
strategy is at most 2J steps apart from S 1 or Sz.

(c) If merge-scan is the only available non-ranked join
method, there exists a path connecting S 1 and S2

whose most expensive strategy is at most J steps
apart from some strategy that is connected to S 1 or

S2 with an equal cost path.

The implications of Theorem 8.2 for A are very simi-
lar to those of Theorem 8.1 for L. Essentially, the general
conclusion is that for both spaces the connection cost
among low local minima is relatively low as well.

9. THE SHAPE OF THE COST FUNCTION OF

STRATEGY SPACES

In this section, we use the whole set of the results
presented in Sections 4 to 8 to identify the shape of the cost
function of the spaces A and L. We want to emphasize

again that, except for very few special cases, no definite
results can be proved for this problem. There is enough
evidence, however, based on which useful conclusions can
be drawn. These conclusions are presented in this section

and have been verified by a series of experiments, whose
results are not presented here due to lack of space, but can

be found elsewhere [Kang91].

9.1. Space of Left-Deep Strategies

The characteristics of the L space are as follows.
Most strategies in the space have a high degree (Theorem
6.1), so the local minimum distribution is shifted to the left
relative to the cost distribution of all states. On the other
hand, there are several strategies with relatively few neigh-

bors (Theorem 6.2) and the cost difference between neigh-
bors can be high. Hence, given also that the strategy cost
distribution is in general shifted to the left (Section 7), from
our analysis in Section 4, most likely the shape is of type
A2.

Because of the relatively high degree of strategies,
the interstrategy distance is in general relatively small and
the number of paths between strategies is relatively high
(Theorems 6.3 and 6.4). Therefore, the connection cost of
low local minima should not be very high, i.e., the shape

should be of type B2 or B 1. This is further strengthened
when using some ranked join methods. Moreover, as the
variance among relation characteristics in the catalog
increases, the strategy cost distribution is shifted to the left,

174

and the shape should move closer to B 1.

The overall conclusion from the above observations
is that the shape is of type A2-B2 or A2-B 1.

9.2. Space of Deep and Bushy Strategies

The characteristics of the A space areas follows. All

strategies in the space have exactly the same degree, which
is relatively high (Theorem 6.5), so the local minimum dis-
tribution is shifted to the left. Also, the cost difference

between neighbors is relatively low. Hence, from our
analysis in Section 4, and for most strategy cost distribu-
tions, the shape should be of type Al. The major distinc-
tion between A and L is that there is no degree difference
among the strategies, so A is unlikely to include local
minima of high cost. This, together with the low neighbor

cost difference, results in the different type of shape.

With respect to the connection cost, A has similar
characteristics with L (Theorems 6.3 and 6.6), and there-
fore the same arguments apply to both. The primary differ-

ence is that the interstrategy distance in A is in general
larger than in L. However, that difference is much smaller

than the difference in the size of the strategy space, so one

can conclude that the connection cost of low local minima
cannot be very high in A either. Hence, the shape should
be of type B2 or B 1. The effect of using some ranked join
methods and the specifics of the strategy cost distribution is

the same in the two spaces as well.

The above observations lead to the overall conclu-

sion that the shape is of type A1-B2 or Al-B 1.

10. ALGORITHM BEHAVIOR

In this section, we discuss how the II, SA, and 2P0

algorithms should be expected to perform based on the

shape of the cost function of the strategy spaces A and L.
These conclusions are supported by several experimental
results, which can be found elsewhere [Kang91].

10.1. Space of Left-Deep Strategies

We have concluded that the shape of the L space is

of type A2-B2 or A2-B 1. This implies that II needs many
local optimization before it reaches one that is of low cost.

In general, much effort is wasted because of local optimi-

zation finishing at high local minima. Nevertheless, since

the shape is of type A2 and not A3, after a reasonable
number of local optimizations, some strategies of low cost
will be visited, so the final output will be of good quality.

SA will waste much time among strategies in high

cost in the beginning. As the probability for uphill moves
decreases, it should eventually be able to escape the high
cost local minima that it will encounter and converge into
the well bottom. Due to the risk of getting trapped in one
of the many high cost local minima, however, its perfor-
mance should not be very stable.

The behavior of 2P0 depends on the length of its
first phase, i.e., on how many local optimizations will be
done before the simulated annealing phase starts. If the

first phase involves few local optimization, it is likely that

the well bottom will not be reached during that time. This
implies that in the second phase, there is high chance that

the algorithm will be trapped in a high cost local minimum,

so that its final output is unsatisfactory. On the other hand,
if the fist phase involves many local optimizations, the
well bottom will be reached during that time and will be

adequately explored during the second phase. So, the final
output should be better than that of II.

10.2. Space of Deep and Bushy Strategies

By the previous analysis, the shape of the cost func-

tion of the strategy space X is of type A1-B2 or Al-B 1.
This implies that II can reach strategies of low cost after
few local optimization, and the final output will be of good

quality again. SA will have a similar behavior to that in the
L space, waste much time among high cost strategies, but

eventually reach the well bottom. Its performance should
be much more stable, however, since there are not many
high cost local minima in which the algorithm can be

trapped. Finally, 2P0 should be able to reach the well bot-
tom after few local optimizations and spend the rest of the
time exploring that area. Taking advantage of the good
qualities of the other two algorithms, it should be very

stable and superior to them.

11. CHOICE OF STRATEGY SPACE

Given a specific strategy space (A or L), Section 10
identifies the algorithm that should be used for query
optimization over that space. The main conclusion is that
for L, the situation is not so clear-cut, with 2P0 possibly
being slightly better than II, especially when many local

optimization are attempted in the first phase. For A, on the
other hand, 2P0 is superior to the other algorithms across

the board. In this section, we want to address the next
higher level up issue, i.e., given the choice, which of the

two spaces should be used for optimization. The following

two subsections identify some inherent properties of the
two spaces that are helpful in drawing some conclusions in
the third subsection.

11.1. Structure of the Generated Strategy Space

In both A and L, the neighbors of any strategy S are
determined by a set of transformation rules that can be

applied on S. However, among the strategies thus con-
structed, only those that are cross-product-free are real
neighbors of S. To move from some strategy to one of its

neighbors, all algorithms described in this paper blindly

apply one of the appropriate transformation rules and then
check whether it includes a cross-product or not to deter-
mine its validity as a neighbor. The set of strategies that

can be generated by applying all transformation rules on a
given strategy S, independent of whether they contain a
cross product or not, is the set of generated neighbors of S,
and their number is the generated degree of S. Clearly, the
degree of a strategy is less than or equal to its generated
degree. The following two theorems shed some light on
the generated degrees of strategies in the two spaces L and

175

A. For consistency with Section 6.1, we again concentrate

on the Swap transformation rule in L; including the 3-cycle
rule is straightforward.

Proposition 11.1: In L, every strategy is of generated

degree Y(.1+1)/2.

Proposition 11.2: In A, every strategy is of gen-

erated degree 3Y–2.

If we compare the above results with Theorems 6.1,
6.2, and 6.5, a clear advantage of A over L emerges. For
most queries, a large fraction of the generated strategies in
L is not part of the actual space. This becomes worse as we
move from a star query to a string query. On the other
hand, for all queries, 2/3s of the generated strategies in A

belong to the space. The corresponding ratio in L is higher

for star queries, but lower for most other queries. More-

over, it is independent of the number of joins in A, whereas
in general it grows with the number of joins in L.

Clearly, the lower the ratio of the degree over the
generated degree of a strategy is, the more time will be
spent in trying to find a legal neighbor, and the slower any
algorithm will be. Hence, one can conclude that, in gen-
eral, the same amount of useful work requires more time
when searching L than when searching A.

11.2. Incremental Cost Computation

When a move is attempted from a strategy S ~ to one
of its neighbors S2, the cost of the latter need not be recom-

puted from scratch. It is enough to subtract the cost of all
operations in S 1 that were modified and add the cost of the
operations that replaced them in Sz. The following two
results shed some light on the cost computation of neigh-

bors in the two spaces L and A.

Proposition 11.3: Consider a strategy in the space L
for a query with J joins. The number of operations whose
cost needs to be recomputed when transforming the stra-

tegy into one of its neighbors is bounded by Y.

Proposition 11.4: Consider a strategy in the space A
for a query with .l joins. The number of operations whose

cost needs to be recomputed when transforming the stra-
tegy into one of its neighbors is bounded by 2.

If merge-scan is one of the available join methods,
due to the side-effeets of modifying the interesting order of
a tempormy result [Seli79], there can be transformations of
a strategy in A thatrequire a recomputation of the costs of
up to .l operations as well. Nevertheless, cost recomputa-
tion is in general much more time-consuming in L than A
(linear in the number of joins vs. constant). Hence, the
same conclusion with the previous section can be drawn,
that the same amount of useful work requires more time
when searching L than when searching A.

11.3. Comparison Between A and L

Space A has many more strategies than space L.
Nevertheless, contrary to conventional wisdom, the former
is easier to optimize than the latter. The shape of the cost
function in A has a much more definite shape of a well than

in L: type Al vs. A2. Hence, algorithms like 2P0 can take

advantage of that and have a robust performance in optimi-
zation. Also, the results in Sections 11.1 and 11.2 show

that searching itself is more efficient in A than in L.
Finally, in most cases, the optimum strategy in L is not as
efficient as the optimum strategy in A. The combination of

easier and more efficient optimization with the potential of

a better quality output makes A the strategy space of
choice. We believe that it should be the prefemed one
when optimizing large join queries.

12. COMPARISON TO PREVIOUS WORK

Query optimization has been a very active area of
research for relational database systems [Jark84, Kim86].
Regarding large join queries, their optimization was

specifically addressed by Krishnamurthy et al. [Kris86],
who proposed a quadratic algorithm that took advantage of

the ASI property in the cost function when mnked join
methods were used alone. In this section, we want to pri-

marily discuss some earlier results of ours [Ioan90] and

some results of Swami and Gupta [Swam88] in light of the
findings in this paper with respect to the shape of the cost
function of the strategy space.

Our previous work was with the A space whose
shape, based on our previous analysis, was Al -B2. Our
observations were consistent with what would be expected
in that case: 2P0 was superior to SA, which was superior

to II. Also 2P0 was the most efficient.

The work of Swami and Gupta was with the L space

and with a relation catalog with very high variance in its
contents. From the previous analysis, one can conclude
that the study of Swami and Gupta dealt with a space
whose shape was Al-B 1 (Sections 9.1 and 10.1), as specu-
lated in their paper as well [Swam88].

Swami and Gupta experimented with II and SA
alone. By the discussion in Section 9.1 and the results in
Section 10.1, one would expect that the two algorithms
should provide output of similar quality. Moreover, II

should reach low cost strategies relatively early and then
fail to make any substantial improvement in the found cost.
The observations of Swami and Gupta were slightly dif-

ferent [Swam88]: (a) II had a rather gradual improvement

over time; (b) the output quality of SA was worse than that
of 11. We believe that these differences are due to two
specific aspects of their modeling of the algorithms that do
not conform to the model presented in Seetion 2. First,
local minima were recognized by looking at J randomly
generated (with replacement) neighbors of a strategy.
Quite often, Y represents a small fraction of the actual
number of neighbors, especially for large queries. Hence,
many strategies could be erroneously identified as local
minima. This explains (a), since in the implementation of
Swami and Gupta, local optimization were prematurely

ended much more often than in the presented model.

Second, a time limit was used as one of the stopping cri-
teria for SA. Because of the ability of the algorithm to
make uphill moves and the high expense of each move

(Proposition 11.1 and Proposition 11.3), SA needs ample

176

time before the probability for accepting uphill moves

decreases enough for the algorithm to be positioned in the
well bottom. This explains (b), since in the implementation
of Swami and Gupta, it was very likely that the time limit
was reached while that probability was still high, and there-
fore the best strategy visited at that time had high cost as
well,

13. CONCLUSIONS

We have presented a combination of analytical and
experimental results that shed some light into the shape of

the cost function of the strategy spaces that query optimiz-
ers must deal with. We have argued that both such spaces
essentially form a well, but of a distinctly different quality.
We have shown how II, SA, and 2P0 would perform on
these spaces. The results have led to the conclusion that
query optimization in the space of both deep and bushy

trees is easier that in the space of left-deep trees alone.

Since the former contains many more strategies as altern-

atives, it is expected that it would produce output of better
quality as well, and therefore it should be the one used for
query optimization.

We are currently working on extending the above
results in two directions. First, we are looking into the
optimization of other types of queries of the relational and
other data models. Second, we are looking into other
domains where optimization problems arise and test the
validity of our generic results on the shapes of cost func-

tions. The goal of both efforts is to examine whether a well
is formed or not in the corresponding state spaces and thus

test the applicability of algorithms like 2P0 in those cases.

14. REFERENCES

[Gran81]
Grant, J. and J. Minker, “Optimization in Deductive
and Conventional Relational Database Systems”, in
Advances in Data Base Theory Vol. 1, edited by H.

Gallaire, J. Minker and J. M. Nicolas, Plenum Press,
New York, N.Y., 1981, pp. 195-234.

[Ibar84]
Ibaraki, T. and T. Kameda, “On the Optimal Nesting

Order for Computing N-Relational Joins”, ACM
TODS 9,3 (September 1984), pp. 482-502.

[Ioan87]
Ioarmidis, Y. E. and E. Wong, “Query Optimization
by Simulated Annealing”, in Proc. of the 1987
ACM-SIGMOD Co#erence on the Management of
Data, San Francisco, CA, May 1987, pp. 9-22.

[Ioan90]
Ioannidis, Y. E. and Y. C. Kong, “Randomized Algo-
rithms for Optimizing Large Join Queries”, in Proc.
of the 1990 ACM-SIGMOD Conference on the

Management of Data, Atlantic City, NJ, May 1990,

pp. 312-321.

[Jark84]
Jarke, M. and J. Koch, “Query Optimization in Data-
base Systems”, ACM Computing Surveys 16,2 (June
1984), pp. 111-152.

[Kang91]
Kang, Y., “Randomized Algorithms for Query Optim-
ization”, Ph.D. Thesis, University of Wisconsin,

Madison, WI, April 1991.

[Kim86]
Kim, W., D. Reiner, and D. Batory, Query Process-

ing in Database Systems, Springer Verlag, New
York, NY, 1986.

[Kirk83]
Kirkpatrick, S., C. D. Gelatt, Jr., and M. P. Vecchi,

“Optimization by Simulated Annealing”, Science
220,4598 (May 1983), pp. 671-680.

[Kris86]
Krishnamurthy, R., H. Boral, and C. Zaniolo,

“Optimization of Nonrecursive Queries”, in Proc.
12th International VWB Conference, Kyoto, Japan,
August 1986, pp. 128-137.

[Monm79]
Monma, C. L. and J. B. Sidney, “Sequencing with
Series-Parallel Precedence Constraints”, Mathemat-

ics of Operations Research 4, 3 (August 1979), pp.
212-224.

Naha86]
Nahar, S., S. Sahni, and E. Shragowitz, “Simulated
Annealing and Combinatorial Optimization”, in
Proc. of the 23rd Design Automation Conference,
1986, pp. 293-299.

moth86]
Rothschild, V. and N. Logothetis, Probability Distri-
butions, John Wiley & Sons, New York, N.Y., 1986.

[Seli79]
Selinger, P. et al., “Access Path Selection in a Rela-

tional Data Base System”, in Proc. of the 1979
ACM-SIGMOD Conference on the Management of

Data, Boston, MA, June 1979, pp. 23-34.

[Sel186]
Sellis, T. K., “Global Query Optimization”, in Proc.
of the 1986 ACM-SIGMOD Conference on the
Management of Data, Washington, DC, May 1986,

pp. 191-205.

[swam88]
Swami, A. and A. Gupta, “Optimization of Large
Join Queries”, in Proc. of the 1988 ACM-SIGMOD

Conference on the Management of Data, Chicago,
IL, June 1988, pp. 8-17.

~llm82]

Unman, J. D,, Principles of Database Systems, Com-
puter Science Press, Rockville, MD, 1982.

177

