
INDEX SELECTION IN A SELF-ADAPTIVE
‘DATA BASE MANAGEMENT SYSTEM

Michrei Hammer
Arroii Chan

Laboratory for Com~m S&ncr, MIT,
Camqrtdge, Massachusetts, 02139.

We address the problem of a,utomrticaiiy adjusting the physical organization of a data base to
optimize its performa& as Its access rquirements change. We describe the p’rindpies of’the
automatic index ,selectioB facility of a prototype self-adaptive data base management system
that is currently under development. The importance of accurate usage model acquisitioti and
data. characteristics estimation is stressed. The statistics gathering mechanisms that’ are being
incorporated into our prototype system are discussed. Exponential smoothing techniques are
used for averrging statistlo observed ,over different periods uf time in order to.predict future
characteristics. An heuristic algorithm for selecting indicts ‘to .matc@ projected access
kqt$~ments’is presented. The cost nude1 on which the decision procedure is besed is flexible.
enough to incorporate the overhead costs of index creation, index storage and application
p-ram recompilation.

INTRODUCTION

The efficlcnt utilization of a data base is highly dependent on the optimal matching of its phystcai~organizatlon
to its access rquirknenu and other ch~ractcristics (such as the distribution of values in It). We consider here the.
problem of autorivaticaliy timing the physical organization of an integrated data base. By an integrated data base.
we mean one that supports a diversity of applications in an enterprise, the development .of such data bases. is
expected, to be one of the most ‘important data processtng activities for the rest of the 70’s Ill. There are’ many
reasons for the incorporatlon of heretofore separate but related data bases with a high degree.of duplication into
a slngie Integrated one. The reduction of storage and updating costs, and the elimination of Incontistensies that
may be caused by different copies of the data In different stages of updating, are among the more important ones.
Viewing an integrated data base as- the repository of information for running an enterprise; it can no longer be
consldered as a,static entity. Instead, it must be looked upon as continually changing in size, with access

gradually .altcring as applications evolve, and a) users.develop familiarity with the system.
nscqucntly, the tuning of a data base’s physical organization must also be’a continual process. In current data

asc management systems, the responsibility of maklng reorganization decisions falls on the data base
(DBA), whose judgements are based on intuition and on a limited amount of communication with

some indtvidual data base users. For large integrated data bases, a more systematic means for acquiring
Information about data base usage. and a more algorithmic way of evaluating the costs of aiternatlve
configurations, wth be essential. A minimal capability of a data base management system should be the
incorporation of monitoring mechanisms that collect.usage statistics while performing query processing.. ,A more
sophisticated sy&m would sense the’ change in access rqutements, .evaluatc the cost/benefits of various
reorganization strategies, and recommend action to the DBA; eventually, such a system mieht Lt.&f perform the
necessary tuning.’

INDEX SELECTION IN AN ADAPTIVE DA%A BOSE SYSTEM.

We are currentiy’deveioping a self-adaptive data base management system which monitors the access patterns and
the data characteristics of a data base, and uses this information to tune its physical organization. We operate in
the environment of a relational data base system, which provides a level of physical data independence that
facilitates physlcai reorganization. Continuous monitoring of the usage of a retational data base opens up many
possibilities for its reorganization, and we expect to experiment with a variety of alternatives and study their costs
and tradeoffs. As a first cut at the problem, we have concentrated.on the problem of index selection. A
secondary index (sometimes referred to as an inversion) Is a well-known software structure which can improve the
performance of accesses to a relation’(file) Cl1 For each.domain (field) of the relation that is inverted, .a table IS
maintained, which for each value of the domain in question contains pointers to ail those tupies (records) whose
contents in thc,desjgnated domain is the specified value. Clearly, the presence of a secondary index for a
particular domain can improve the execution,of many queries that reference that domain; on the other ‘hand;
maintenance of such an index has o&s that slow down the performance of data base updates, insertions. and
delictions. Roughly speaking, a domain that is referenced frqucntlj relative to its modtftcation is a good

1

candidate for index maintenance. The choice of which (if any) domains to invert must be done with care; a.good
choice can significantly improve the performance of the system, while a bad selection can seriously degrade it.
The goal of our system is to make a good choice of those domains for which to maintain secondary indices, based
on how the data base is actually used.

The operation .of the initial .version of our prototype system can be described as follows. The specifications of
data base interactions,‘by both interactive users and application programs, are expressed in a non-procedural
language; these are first translated into an internal representation made up of calls to system level modules. The
language processor has availabie to it a model of the current ‘state of the data base, which contains, among other
things, a list of the currently maintained set of secondary indices, plus various informatio.6 about these 4ndices.
Using this information, the language processor can choose the best strategy for processing each data base
operation in the current environment. Statistics gathering mechanisms .are embedded within the system modules
that interpret the object code of the language processor; and record data concerning the execution of every.data
base transaction. The statistical information gathered for a run is deposited in a collection area and summarized
from time to time. When the reorgan,isation component of the system is invoked (which will occur at ,fixed.
intervals of time). the statistical information collected ,over the preceding interval is combined with statistics from
previous intervals and used to obtain a forecast of the access requirements of the upcoming interval; in additiou,
a projected assessment of various characteristiu’.of the data in the data base is made. A near-optimal set of
domains for which indices should be maintained is then determined heuristically; optimality means with respect to
total cost, taking into account index storage and maintenance, This cost is compared with the projected cost for
the existing set of indices. Reorganization is performed only if its payoff is great enough to,cover its cost as well
as that of application program retranslation..

In this paper, we stress our approach to the problem of acquiring an accurate usage model and estimating data
characteristics, by means of continuous monitoring and the application of forecasting techniques. We have
considered the reduced problem of choosing indices for a single relation, but we expect our approach to be
extendible to more complex situations once we have developed a model for the cost of processing multi-relation
queries using different strategies. We believe, that an accurate interaction and cost model is essential for a
practical environment, and that the use of problem-oriented heuristics to cut .down the index search .space will be
fruitful in achieving efficient and near+imum solution.procedures.

ORGANIZATION OF THE PAPER

The remainder of this paper is organized as follows. We begin with.a summary of our view of the data base
organization: the file model, the storage and index organizations, and the data base operations. Next, a
procedure for determining the strategy (whether or not to use existing indices) for processing thc,qualif.ication part
of a query. is presented. We then describe the statistics that are to be gathered during query processing, and
explain the use of exponential smoothing techniques in the+rivation of parameters for the cost model.’ This is
followed by a discussion of the need for heuristics in solving the index selection problem, and then the heuristics
that we have devised are presented. Finally, we include a bdef comparison with previous related work.

FILE MODEL

We have chosen the relational model 121 of data as the loglcal interface between application programs or
interactive users and the data base system, since it provides the level of physical data independence needed to
facilitate- physical reorganization. The totality of formatted data ‘in the data base consists therefore. of one or
more relations. However, we address here the reduced problem of selecting indices for a data base made up.of ‘a
single relation. Herein, the data base consists of a single relation (file) R with n tuples (records) T -. (ti, tg, -..*, tm)

where each ti t Di; the lth domain, i.e. R is a subset of the cartesian product of the domains Df, DP *‘““,‘D,
Even though .insertion and deletion of tuples are permitted, we will assume that the cardinal&y (number of tuples)
of the relation remains relatively unchanged between two consecutive points at which index selection is considered.

Following Rothnie 133, we assume a paged memory environment for tuple storage. More specificly, the R tuples in
the relation R are stored in R pages of t tuples each, where t is constant and n and p approximately so. The.
accessing cost of a page is assumed to’be independent of the sequence of page accesses, and dominates all other
internal processing costs. Hence, the processing cost for a query is measured solely in terms of.& number of
pages that have to be accessed to resolve the query. If a query is resolved by sequentially scanning alt tuples in th.e’
relation. then the total number of, pages that are accessed is just p. If an index is available for a domain
referenced in a query, it may significantly reduce the numba’of tuples that need’ to be examined to resolve the
query. These tuples may’correspondingly reside on fewer than p pages W; shall assume that such a restricted set
of tuples will be rahdomly distributed over the memory space, but that it is possible to access them such that each
page is. touched at most once. Yue and Wong 141 have derived an exact formula for the expected number of
pages that have to be touched in order to access r tup1e.s which are randomly distributd over the file. Let b(rpf)
be the expected number of page accesses for referencing r randomly distributed tuples in a file of p pages each
containing t tuples, and let

2

f(0) - 0
f(i+l) - ((~p-l)-ill(~qt-i)~f))tf(i) + (plrtll(pH-I)

then it, has been shown in I4 that b(r;p,t) - f(r). We will make use of the above formula todetermine if it is
orofitable to use index(u). to resolve a query.

INDEX ‘MODEL

An index on a domain of a .relation is a mapping from values of the domain to tupks inthe relation with those
value.% We assume that indices, just like tuples in the relation, are stored in a paged memory, with the usual two-
level hierarchical organization, i.e. the key values and their asmclated tuple identifier (TID) lbts are assumed to be
on separate levels t!il Each value is stored together with a pointer to the head of its associated TID list, and the
length of that list. To further simplify our discussion here, we will assume that the keys and the associated list
Pointers and list lengths are organized as a B-tree [61 each node of which is stored on a page. One or more TID
lists may be stored on the .same page. The cost of obtaining the TID list associated. with a domain value. in the
index is thus made up of the cost of locating the’head of the list (equal to the height of the B-tree, which is
dependent on the number of values in the domain), plus the cost of reading the page(s) on which the TID Iist’is
stored. Hence; the average cost for using an index can be readily estimated, given the number of values in .the
domain and the lengths of the associatalTID’lists.

The cost of modlfying am index as the result of a tuple Insert/delete/update is, however, more difficult .to
determine. We assume that only those domain’values that are associated with existing tuples in the relation are
stored in the index. In most cases, an insert/delete/update will.cause a single node in the B-tree to be updated. In
rarer cases, a key may have to be inserted into/deleted from the B-tree, resulting possibly in a node
overflow/underflow, which may in turn propagate through the tree. As for the TID list involved, it is possible’ in
many cases to write back a lengthened version of it onto the same page on which it was stored before the
insertion, by utilizing empty spaces in the original page. Occasionally, though, the empty space may run out, and
it becomes necessary to allocate a new page. Similarly, occasional garbage collection may be necessary to recompact.
the TID Ii&, and recover wasted space caused by deletions. Therefore, for’ a .given domain, the cost of key
insertion, key ‘deletion and. garbage collection depends on the sequence in which “updating” operations involving
this domain are performed; therefore it is very difficult to incorporate this cost into any,overall parametric tndex
maintenance cost ,model. We will therefore consider the index maintenance cost for each domain as made up of
two components. The first depends only on the frequencies of lnse_tts/deletes/updates for this domain and consists
of the cost of updating a node in the B-tree plus the cost of’ reading and writing an average TID list (an update
is esjentially equivalent to an delete and an insert); this component can be readily estimated. ‘The second, made
up of the unquantifiable overheads of node splitting/merging in the B-tree and garbage collection .in the TID
space, will be recorded by the statistics gathering mechanism if the domain ls indexed. Otherwise, it can very
roughly be estimated by using the normalized average overhead of those indices.that are maintained.

TRANSkTION MODEL AND PROCRSSING

Out transaction model allows for the retrieval, insertion, uodatinp, and deletion of tuuler in a relation. Data
selection (the specification of some subset of a relation by. mians 0;.its propertles)‘is the’fundamental component
of all, these operations. In choosing data selection operators to be included in our transaction, we have limited
ourselves to’ those for which the.utility of using indices can readily be estimated. These include conjunctions of
equality conditions and disJunction of quality conditions. (By an quality condition, we mean a predicate of the
form A ‘- k, where.A is some domain name and k is a constant or a program variable). The use of indices and.
list processing techniques for. resolving these kinds of queries is well known I’?), and will not be reiterated here.
However, our tuple access cost model implies that it may not always be desirable to resolve a conjunction or a
disjunction of quallty conditions using indices. (This will occur when the set of qualified tuples is expected to
reside on close to p pages; we say “close to”, because utilizing the index(es) also entails some page accesses.)
Therefore, we need a means whereby the number of tupks that can be expected to qualify for such a query can
.be estimated. We can define’s selectivity measure for a domaln index as the average fraction of the.set of tuples
under consideration that have historically satisfied an equality condition involving that domain. We will,
furthermore, assume that the joint ‘sekctlvity of a number of domains specified together is equal to the product of’
their individual selectlvities. Hence, glven the sekctivitiu of domains in each condition, the number of tuples that
can be expected to satisfy a conjunction of these conditions can be determined;. in addition, the number of tuples
for a disjunction can be estimated using the inclusion-exclusion principle 161 Thus, given a query and an exlstlng
set of indices, the query processor will use the availabk indices only if the expected sum of the cost of accessing
the indices and the resolved list of tuplcc is less than the cost of doing a sequential search of the entire tuple space.

STATISTICS GATHERING

An important component of our adaptive system is the monitoring mechanisms that collect usage statistics as data
base operations are performed. The statistics gathered over a time period are summarized and then “averaged”
with summaries from previous periods. The siatistks,to be gathered for the purpose of index selection fall into
three general classes.

e
I

*

c

9

2
m

I
z

3

(1) update related &tics - This h&s xveral components. First of all, thettare’the total numbers& tuplc!.
that ate deleted from (inserted into) the relation in the current time period. (We assume that each
insertion or deletion of a tuple will tquite some maintenance for each active index.) In addition, for
each domain of th’e relation; we maintain the number of updates made to that domain in the tuplei.
(This: involves some maintenance of the index for that domain.) Finally, we record the actual difficult-
to-patametetire costs of the maintenance of each index (node splitting and merging, garbage co&ction.
etc.), measured in terms of the actual number of page accesses expended for, such overheads.

c.2) domain: selectivity statistics -i For each domain, we maintain its average selectivity aver all i~ses of the
domain in equality conditions in the current interval. This is accomplished by recording the ,numbet of
times tile domain octuts in equality conditions and the selectivity of the domaln ,in each ,of xhese
predicaates. The selectivity of the use of a domain in an qtiality condition is measured as follows:

.

(a) Ii an index for the domain is used tp resolve the -particular quality condition, then the precise
selectivity of the domain for this query can be calculated as the fractian of’tupks in tbe.telation
with the domain value in question.

(b) Suppose the equality condjtion appears in a con]uncUon of conditions that”is resolved ‘b’y
sequential scanning. (This scan may be of a reduced set of tupks obtained. via an index.1 Let the
total number of tuples scanned be Nb Let the conJunction be of the for& Ci A Ci A I*’ A ,C$

where each of the C, is an ‘quality condition involving domain I$ ‘Let Np Np ““‘; N, be’ the

number of tupks’that satisfy Cl, Cl A C+, -, C, A % A - A C, respectively. (Note thati these
values are’readily available). The selectjvi~y of domain D, for this $ry is then approximated as

Ni/NimI

(c) Suppose the quality condition appears in a disjunction if conditions that .is tesolvt+ by sequentia!
scanning. .Let the total numbet‘of tuples scanned be Ng. Let the dispnction be of the form Cl V

c2 v -.* V C, where each of the C, is an quality tondition itivolving domaln Di. Ler N,, Np

“**‘*, N, be the number of tuples that sat!sfy C,, “ci A C+, “‘-; “cl h “c2 A ,y” IJ Ci respectively.
(Note that thesevalues ate readily available). The sekctivity of domain Di for this query is then

approximated as N,/(No - Sum (N] for] c 1).

Note that this measurement of selectivity accounts for mm-uniform distribution .of domain values over
the tuples, as well as the tion-uniform use of domain values in the quality predicates.

(3) query type statistics - Every time a query is process& its associated qualifyiq expression is recorded in
an access history file using a canonical representation (such as a bit ceding scheme for each domain that
appears in the qualification expression and a bit indicating whether it is a conJunction ‘dt’ a
disjunction). Note that by recording the actual queries that ticut, we avoid the sttong (and often
inaccurate) assumption that the simultaneous occurrence of domains in a query ate mutually
independent events.

ACCESS PATTERN FORECASTING AND PARAMiTER ESTIMdTION

We assume that the index selection problem is to be reconsidered ‘at fixed intervals. At each reotganizatlonal
point, we forecast a number of characteristics for the period up to the next reorganizational poinL Specifitilly, v.e
predict .the following:

(1) the number of occurrences’ of each query type (the type of.a query is detetmjned by whether :its
qualification component is a conjunction or a dlsjunction, and by the domains used ip the ‘constituent
quality conditioris);

.(2) the’sekctivity of each domain of the relation;

(3) the numbet,of distinct values’in each domain (if a domain.‘is not indexed in the current interval. then
rhe current value for this number is approxitiated as the reciprocal of the observed sekct#viq);

(4) the number of tupks (hence the number of pagy),in the entire relation;

(51 the.expected cost (in terms of page accesses) of maintaining an ind!x for each domain and .the expected
cosr’of ech UK of such an index.

We could do these projections sokly on .the basis of statistic colkcted during the previous time period, or we
could combini together the statistics collected ‘ooet a11 previous periods. However, neither alone would be

4

satisfactory for the purpose of a stable and yet responsive adaptive system. In thc’former case, the system would
be overly vulnerable to chance.fluctuations in access requirements and data characteristics, whereas in the latter
case,, it would be too insensitive to real changes Intuitively, a weighted moving average of observations over
previous periods should be more satisfactory. We utilize the technique of exponential smoothing [9,101 for our
.forecasting and estimation procedures because of its simplicity of.computation, its flexibility, its minimal storage
requirement, and its ability ‘to be generalized to account for trends and cycles. The basic formulation of
exponenrial smoothing in making a forecast of a discrete time series is as follows:

new forecast - a 6 (actual observation from last period) + (1-a) $ (previous forecast)

where a is called a smoothing constant and takes on values between 0 and’l. In essence, this is a weighted average
of all previous observations with the weight decreasing geometrically over successively earlier observations. The
‘rate of response to recent’changes can be adjusted simply by changing the smoothing constant: the larger the
smoothing constant, the more sensitive is the forecast to recent changes and chance ‘fluctuations. (The value of. a
can be ‘sekcted by the. DBA or can. be adaptively chosen by the system’itself to minimize the difference, between
observed and predkted data.) The compactness of the scheme lies in the fact that only two parameters need to be
maintain.ed for each time series, the current observation and the previous estimate. The above scheme is used for
the estimation of domain selectivity.

.Since the file site can generally be expected to be growing and the level of activity in a data base system can
generally be expected to, be upward moving as users become familiar .with the capabilities of the system, we will
use a modified. version -of exponential smoothing, which takes’ trends into account, in order to forecast query
frequencies, index maintenance cost, and fik size. Its formulation is as follows 191:

new average I a e (current observation) + (l-a) t (old av!rage)

current t,rend - new average - old average

new trend - a I (current trend) t (l-a) * (old trend)

new forecast - new average + ((l-a)/u) o (new trend)

In this form, it is necessary to store only the previously calculated values for the (new) average and for the (new)
trend, and the. calculation is still simple.

INDEX SELECTION ATAREORGANIZATIONPOINT

AS we have said, at each reorganizational point, a number of forecasts ‘are made. A projection is made of the
selectivity of each’domain in the relation, together.with the expected costs of accessing and ma’intaining an index
on that domain during the next interval. In addition; the expected size, and ,hence the storage requirement, of an
index’for each domain is estimated. Then the cost of creation for each index that is not currently maintained it
approximated. For any proposed set of indices, we can thus project a, total cost for the next time.period. (This cost
includes retrieval processing; index creation, maintenance and storage and application program recompilation.)
Therefore, we should be able to choose that set of domains whose indexing in the next interval will minimize this
total cost.

A straightforward approach to the index selection problem would be to evaluate the total cost for each possible
choice of ,domains to be indexed, and then select that set of domains which gives .the smallest cost. With m
domains in the relation, there are 2m possible choices of index sets. For small m, this enumerative approach is
probably the best strategy, as the optimal combination of domains to be indexed is guaranteed to be found. But
for moderate m, the cost of repeated application of thecost evaluation procedure becomes very expensive, and for
large m; it is prohibitive. It is not uncommon to find single%elation data bases with tens of domains. Therefore,
it is appropriate to look for ways whereby the search space of potential index sets can be systematically aeductd
There are two possible approaches to this. One is to look for properties in the cost function that will allow it to
be minimized without exhaustive enumeration, such ai through a depth-first search. This’is the approach that
Schkolnick Dlj has taken. .However, even with a simplified model for cost evaluation, his upper bound of the

order of 2m 08 O+ m sets to. be tested is not enough of a reduction to enable the inexpensive. selection of the,
optimal’index set for a relation with a moderate number of domains. If a more accurate and detailed cust model
is to be used, then the i,ncentive for reducing the search. space is even stronger. Yet in this case, the hope of
fin.ding an algorithmic way of exploring a reduced search space of practical ‘size that will yield the optimal
solution is even’ dimmer. Therefore, it is appropriate to draw on the experience of artificial intelligence
researchers working in areas where formal mathematical structures are computationally impractical U2.131 and use
heuristic methods that significantly prune down the search space and that work towards obtaining a near-optimal
solutiql.

I
E

m

.4

1
111
LaHI

5

INDEX SELECTION HEURISTICS

In our index selection procedure, we make use of five problem-oriented heuristics.

(1) A near optimum choice of domains to beindexed can be made incrementally using a depth-first search.
This heuristic permits analysis of the problem as a stepwise minimization, each time adding to.the
index ,tEt that domain which will bring the best improvement to the cost function. There .have been
two previous suggestions regarding the incremental selection of domains to be itrdexed.. Farley and
Schuster Ml suggest that the incremental selection process can’be terminated once no single domain ‘in
the non-indexed set can be chosen that will yield incremental cost/benefit& This Is insufficient for our
choice of query and tuple access’ models. There are two reasons why it may be necessary to consider the
incremental savings brought by considering two or more indices together. First, it may happen that.for
a query involving a conJunction of conditions, the selectivity of any one domain may n,ot be’sufficient
to restrict the number of tupks to be accessed to be less than the total number of pages in the ‘relation,
whereas the joint selecttvity of two or more domains might Secondly, a d!sjunction. ofatnditlons can
be resolved via indices only if all of the domains involved In the. disjunction are indexed. An
alternative strategy has been suggested by Held [IQ who, at any staged the Incremen~lIndex selectidn
procedure, considers the incremental savings of each of the possible subset of domains in the candidate
set with less than or equal to some,fixed number of domains in it. This, of course, may be very
inefficient. We have taken an intermediate.approach. We consider the adjoining of multiple domains
to the index set only if no single domain that will yield positive*incremenhI savings can ‘be found.

(2) Some domains can be eliminated from the initial candidate set by virtue of their low’occurrence
frquencies in queries. This ,effectively reduces m, the initial number of domains. in the candidate set.
From the forecasted frequency of each retrieval specification, we can find. the pro&ted number of
occurrences of each domain. Using the selectivity estimate of the domain, we,can find a gross upper
bound on .the number of page accesses that an index on the domain can save inthe processing of the
forecasted set of queries. If this upper bound is less than the projected cost of m&talning.an index on
the domain, then this domain can safely be excluded from the initial candidate’ set, i.e., the domain.
occurs so infrquently that it can never be profitabk to index it. The upper bound ‘is calculated as
follows. An index saves the largest number of page accesses if its domain only occurs in one-term
queries, Under, this assumption, the maximum number of page accesses is saved for each occurrence Jf
all the qualified tuples are clustered together. Let

p - number of pages in relation
s I selectivity of domain
f - number of occurrences

then an upper bound on the number of page accesses saved is f * p * (1 - s).. (Foreach occurrence, we
would have access p pages without an index, and only s9p with one).

(3) Only a small subset of all possible candidates need be considered to determine the next domain or set of
domalns to be adjoined to the index set at each stage. We can rank. the domains by the above
described upper bound and consider only the top ranking M domains. and combinations of these, for’
detailed incremental savings calculation. Furthermore,‘.a.bound M’ (M’&i) can be put on the n.umber
of domains that will be considered together.

(4) Not all queries can use indices profitably. The expected number of tuples that will qualify for each
query type can be estimated using the selectivity of the domains involved. Those that cannot profitably
make use of indices’are eliminated from the pro&ted query set whose processing cost is to be
minimized. This eliminates some unnecessary cost calculations. Similarly, only.queries that involve
domains’still in the candidate set need to be retained in the query set for incrcmeptal savings
calculation. (This heuristic does not cut down the search space, but does speed up the cost evahsation at
each step.)

(5) An upper bound can be put on the number of costevaluations that are performed in the entire
selection procedure. The procedure is terminated when this bound is exceeded.

To tllustrate the above heuristics, we present the details of our index selection ‘procedure. Our procedure can be
divided into two stages. During the first, a tentative set of domains to be indexed fs chosen in an jtrcremental
fashion. It is possible to put a bound on the cost of this phase by ad&sting the parameters M and M.‘. An.
alternative (Or additional) constraint is to bound the total .number of sets of indices for which cost evaluation is
performed.

(1) Rank the domains in the relation using the procedure described above atid let S be the set of domains
that occur so infrequently that indexing them can not be profitabk

6

(2) Partition the set of domains D in the relation into tliree.dis&int subsets: D, - the index set, Dc - the
candidate a&, and D, - the non-index set Initialize D, to null, D, to S, and Dc to D - D,.

(3) Consider in turn the incremental savings gained by indexing each of the M top ranking domains. in the
candidate set. Adjoin to D, the one that will give the best improvement to the cost function. If one
cannot be found, then consider larger-sized combinations (up to M3 of these M domains. Consider
combinations of the next larger size only if it is not profitable to ad&in any of the combinations less
than or qua1 to the current size. Revert to consider adjoining single domains after each adjoinment.
Remove the domains from DC as they are adjoined to D,

(4) Terminate the first phase of the procedure if:

(a) no subset of the M (or number of domains left in the candidate set, whichever is smaller) top
ranking domains up to size hi’ can be chosen that will improve the cost function.

(b) the upper bound on the total number of cost evaluations is reached.

The next stage may be called the bump-shift phase B21. Domains that have been adjoinedto the index set early
in the first stage may turn out to be uneconomical as the result of later addition of other domains to the set, and
thus should be removed from the index set. Only individual domains will be considered for removal from the
tentatively chosen index set.’ If more. than one can be chosen, then the one that leads to the best cost improvement
is removed first,’ and the procedure repeated until a local minimum, of the cost function is reached. (A possible
extention to this stage is to consider the profitability of maintaining combined indices for those domains that are
adJoined to the index set together.) Once an optimal set of domains for indexing has been chosen, the total ,cost
for this choice of domains, including query processing cost, index storage, maintenance and creation (if applicable)
costs, is compared with the cost for the existing set of indices. Reorganization is done only if the difference
between the two is enough to cover the application program recompilation cost.

COMPARISON WITH PREVIOUS WORK
1

We have presented an experimental and heuristic approach to the index selection problem that is different in
many respects from recent studies on index selection by Stonebraker OSI, King U7l, Schkolnick Oil, Farley M, and
Held Da]. These other studies have either been formal analyses, which have made many simplifying assumptions
in order to obtain an analytic solution, or else system designs that have been incomplete or unrealistic in various
w’ays. Our work attempts to go farther than these by utilizing more complete.and accurate models of cost and
access, and by emphasizing important aspects of realistic data base environments. Below we summarize ,the novel
aspects of our approach. We have stressed the importance of accurate usage model acquisition and data
characteristic estimation in a dynamic environment where access acquirements are continually ‘changing. ‘.We
believe it necessary to apply forecasting techniques to predict future access requirements based on past
observations, in order to capture and respond to the dynamic and changing nature of data .base usage. Our.
scheme endeavours to obtain a precise model of data base usage by recording actual query patterns, thereby
avoiding the strong ‘assumption that the probabilities of two domains appearing -in a query are mutually
independent, We also take into consideration the facts that values of a domain are not equally likely to be used in
querks, and that they are not evenly distributed among tuples of the relation, by monitoring the actual sekctivities
of domain values that are used in queries.

The size of actual data bases is reflected,in our concern for efficient heuristics to speed up the index selection
process. Our cost models account for such real overheads as the expense of index accessing and the cost of key
insertion/deletion and garbage collection in index maintenance, and are based on reasonable models for data base
storage. Our approach of minimizing the total processing cost for the upcoming time interval, rather than the
expected cost for a single query, is flexibk enough to account for the overhead costs of index creation, index
storage and application program recompilation.

CONCLUSIONS

We have presented a high-level description of our approach to th.e pmblem of index selection in an adaptive data
base management system that we are developing. This has been done, however, only in the restricted environment
of a single-relation data base accessed through a restricted interface with limited capabilities for the selection of
data: TO fully realize the flexibility of a relational data base, it is necessary to consider’s multi-relation
environment together with a high-kvel non-pro&dural language Interface that permits queries. with arbitrary
interconnection between relations in the qualification part and high level operators on the qualified data. In s’uch
an environment, it is necessary to consider the utility of indices for more complicated operations (such as
restriction, projection, division, join, etc. [21) and to select indices for all the relations in the data base as a whole.
This ‘Is where the recording of detailed access history is necessary for optimal index selection, and the use of
heurisdcs should be fruitful:for cutting down the search space and for selecting .richer index structures (such as
combined indices). Our heuristic index selection procedure should be readily extendible to such an t?iWolr~nt,

7

provided a cost evaluation procedure has been defined to estimate the cost of processing an arbitrary query with
the presence of a particular set ?f indices. Our plan is to experimentally assess the optimality of our heurlst.ic
index selection algorithm on a reduced environment, before embarking on the more ambitious propct of index
selection for a more.genetal environment. More fundamentally, our intent Is to experimentally study the needs
for, and capabilities of, a self-adaptive data management system in realistic data base environments..

ACKNOWLEDGEMENTS

This research’ was supported by the Advanced Research Projects Agency of the Department of D.efense and ivat
monitored by the Office of Naval Research under contract no. N9Wlf-1.

REFERENCES

W J. Martin, “Computer Data-Base Orga?ization”, Prentice Halt Inc. Englewocd Cliffs, New Jersey, 1975.
f21 E. F. Codd, “A Relational Model of Data for Large Shared Data Banks”, CACM, Vol. 13, No. 6, June, 1970..
C31 J. B. Rothnie, T. Lozano, ‘Attribute Based File Organization in a Paged Memory Environment”;CACM, Vol.
17, No. 2, Feb., 1974.
f41 P. C. Y’ue, C. K. Wang, “Storage Cost Considerations in Secondary Index Selection-, International Journal of
Computer’and Information Sciences, Vol. 4, No. 4,1975.
‘f5l A. F. Cardenas, “Analyiis and Performance of Inverted Data Base Structures”, CACM, Vol. 18,‘No. 6, May,
1975.
163 R..Bayer, E. McCreight, l Organization and Maintenance of Large Ordered Indexes”, Acta Informaticq. Vol. I,
Fast. $1972.
f71 M; M. Astrahan; D. DChamberlin, “Implementation of a Structured
the ACM-SIGMOD Conference on’the Management of Data, May, 1975.

English Query Language”, .Proceedings of

181 C. L. Liu, “Introduction to Combinatorial Mathematics’ McGraw-Hill Book Company, 1968.
I91 R. G. Brown, “Statistical Forecasting for Inventory Controls, McGraw-Hill Book Company, 19.59.
El01 R.- G. Brown,’ “Smoothing, Forecasting and Prediction of Discrete Time Series: Prentice Hall Inc, Englewood
Cliffs, New Jersey, 1962.
011 M. .Schkolnick, “The Optimal Selection of Secondary Indices For Files”, ‘Research Report, Department of
Computer Science, Carnegie-Mellon University, Nov.,l974.
I121 A. A. Kuehn, M. J. Hamburger, “A Heuristic Program for Locating Warehouses”, Management ‘Science,- Vol.
9;.No. 4, July, 1963.
1131 R. C. Meier, W. T. Newell, H. L. Pazer, “Simulation in Business and Economics”, Prentice Hall Inc.,
Engjewood Cliffs, New Jersey, 1963.
flt] J. H. G. Farley, S. .A. Schtuter, Query Execution and Index Selection for Relational Data Bases”, Technical
Report CSRG-53, University of Toronto, Mar;,.1975.
051 G. D. Held, “Storage Structures for Relational Data Base Management SystemsI: Memorandum No. ERJ-
M533, University of California, Berkeley, Aug., .!975.
OS1 .M. Stonebraker, The Choice of Partial Inversions and Combined Indice?, International Journal of Computer
and Information Sciences, Vol. 3, No. 2,1974.
fll W. F. King, ‘On the Selection,of Indices for a File”, IBM Research R J 1341, San Jose, Jan., 1974.

8

