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DBMS Architecture—the Layer Model  
and its Evolution
More than two decades ago, DB re-
searchers faced up to the question of how 
to design a data-independent database 
management system (DBMS), that is, a 
DBMS which offers an appropriate appli-
cation programming interface (API) to 
the user and whose architecture is open 
for permanent evolution. For this pur-
pose, an architectural model based on 
successive data abstraction steps of 
record-oriented data was proposed as 
kind of a standard and later refined to a 
five-layer hierarchical DBMS model. We 
review the basic concepts and implemen-
tation techniques of this model and sur-
vey the major improvements achieved in 
the system layers to date. Furthermore, 
we consider the interplay of the layered 
model with the transactional ACID prop-
erties and again outline the progress ob-
tained. In the course of the last 20 years, 
this DBMS architecture was challenged 
by a variety of new requirements and 
changes as far as processing environ-
ments, data types, functional extensions, 
heterogeneity, autonomy, scalability, etc. 
are concerned. We identify the cases 
which can be adjusted by our standard 
system model without the need of major 
extensions or other types of system mod-
els.1

1 Motivation

In the seventies, the scientific discussion 
in the database (DB) area was dominated 
by heavy arguments concerning the most 
suitable data model, sometimes called a 
religious war. It essentially focussed on 
the question of which abstraction level is 
appropriate for a DB application pro-
grammer. The network data model seems 
to be best characterized by »the more 
complex the pointer-based data structure, 
the more accurate is the mini-world rep-
resentation«. However, it offers only 
very simple operations forcing the pro-
grammer to navigate through cursor-con-
trolled data spaces. In contrast, a »data 

1. This contribution is the first part of an extend-
ed version of [Härder 2005].
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structure of spartan simplicity« (E. F. 
Codd) and value-based relationship rep-
resentation are provided by the relational 
data model. Each additional embellish-
ment (modeling option) needs additional 
operations and thus leads to greater mod-
el complexity. Because the result of ev-
ery DB operation is a table (a multi-set of 
an unnamed type in SQL), it offers the 
closure property which was a prerequisite 
for its practically very significant concept 
of views. In that time, the decision con-
cerning the most appropriate data model 
could be pinpointed to »record orienta-
tion and pointer-based, navigational use« 
vs. »set orientation and value-based, de-
clarative use«. Far ahead of the common 
belief of his time, E. F. Codd taught us 
that simplicity is the secret of data inde-
pendence—a property of the data model 
and the database management system 
(DBMS) implementing it. A high degree 
of data independence is urgently needed 
to let a system »survive« the permanent 
change in computer science in general 
and in the DB area in particular.

How should we design a DBMS 
whose architecture is open for permanent 
change or evolution? More than two de-
cades ago, this was already a difficult 
question, because nobody knew what 
permanent change means. On the other 
hand, it was rather simple compared to 
the time being, because we only thought 
about storing and managing objects of the 
relational or network (or hierarchical) 
data models, that is, sets of simply struc-
tured records or tables. Nowadays, how-
ever, important DBMS requirements in-
clude data streams, unstructured or semi-
structured documents, time series, spatial 
objects, and so on. What were the recom-
mendations to achieve the system proper-
ties for which the terms physical and log-
ical data independence were coined?

It is immediately clear that a mono-
lithic approach to DBMS implementation 
is not very reasonable. It would mean to 
map the data model functionality (e.g., 
SQL) in a single step to the interfaces of-
fered by external storage devices, e.g., 
read/write block. As we have experi-
enced during the last decades, DBMSs 
have a lifetime >20 or even >30 years. In 
that time, system evolution requirements 
were abundant: growing information de-
mand led to enhanced standards with new 
object types, constraints, etc.; advances 
in research and development bred new 
storage structures and access paths, etc.; 
rapid changes of the technologies used 
and especially Moore’s law had far-
reaching consequences on storage devic-
es, memory, connectivity (e.g., Web), and 
so on. But what are the guidelines of sys-
tem development in such a situation to be 
anticipated?

The ideas of structured programming 
and information hiding were corner-
stones guiding the way of development. 
»The Goto Statement Considered Harm-
ful« [Dijkstra 1968] was translated into 
the DB world as the battle cry »Pointers 
are the Evil!«. On the other hand, the con-
cept of information hiding introduced by 
[Parnas 1972] was widely accepted in ac-
ademic circles as a software design prin-
ciple. However, most industrial software 
developers did not apply the idea and 
many considered it unrealistic.2 Parnas 
convinced us of the advantages of the use 
relation3 [Parnas & Siewiorek 1975] to 
be applied to hierarchical layers of large 
software systems. Developing a hierar-
chically structured system offers the fol-
lowing important benefits:
• The implementation of higher-level 

system components is simplified by 
the usage of lower-level system com-
ponents.

• Lower-level system components are 
independent of functionality and mod-
ifications in higher-level system com-
ponents.

• Testing of lower-level system compo-
nents is possible, before the higher 
system levels are put into use.
The resulting abstraction hierarchy 

hides some properties of a system level 
(an abstract machine) from higher-layer 
machines. Furthermore, the implementa-
tion of higher-level operations extends 
the functionality of an abstract machine. 

2. taken from a Parnas’ talk Modularization by 
Information Hiding: The napkin of doom—
Compiler and database experts have a 
lunch.They exchange a control block format 
on a napkin. Napkin is punched, copied, and 
filed. Format changes, but napkin does not. 
Components are coupled and don‘t work. 
They had to do something. I did not know 
what they should have done. (www.sdm.de/
download/sdm-konf2001/f_3_parnas.pdf)

3. »Module A uses module B, if A calls B and the 
complete execution of A requires the correct 
execution of B.«
1
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 Table 1: Description of the DBMS mapping hierarchy

Level of abstraction Objects Auxiliary mapping data

L5 Nonprocedural or 
algebraic access Tables, views, tuples Logical schema description

L4 Record-oriented, 
navigational access

Records, sets, 
hierarchies, networks

Logical and physical
schema description

L3 Record and access
path management

Physical records,
access paths

Free space tables, DB-key 
translation tables

L2 Propagation control Segments, pages  DB buffer, page tables

L1 File management Files, blocks Directories, VTOCs, etc.
System evolution is often restricted to the 
internals of such abstract machines when, 
for example, a function implementation 
is replaced by a more efficient one. In 
case new functionality extends their in-
terfaces, the invocation of these opera-
tions implies »external« changes which 
are, however, limited to the next higher 
layer. 

But how can these concepts and ob-
jectives be accomplished? Although it is 
fundamentally true that »systematic ab-
straction is the prime task of computer 
science« (H. Wedekind), it is always very 
hard to translate the appropriate abstrac-
tion into a system structure. Did this 
multi-level information-hiding approach 
fulfil the far-reaching expectations dur-
ing the last 20 years we try to look back 
to?

In section 2, we review the concepts 
of the five-layer hierarchical DBMS 
model and use it as an explanation model 
for run-time aspects, binding and infor-
mation-flow dependencies. Furthermore, 
we survey the major improvements 
achieved in the various layers in the 
course of the past two decades. In section 
3, we consider the interplay of the layered 
model with the transactional ACID prop-
erties and again outline the progress 
achieved. Section 4 discusses a variety of 
DBMS architectures where our layered 
model can be used to describe the map-
ping abstractions and to gain better in-
sight into the operations modeled, before 
we briefly summarize our findings in sec-
tion 5.

2 Hierarchical DBMS 
Architecture

2.1 Static Engine Architecture

Given the arguments introduced so far, it 
was clear to select a multi-layered hierar-
chical architecture to implement a cen-
tralized DBMS. However, when starting 
with a concrete design, many questions 
with no obvious answer emerged. How 
many layers are adequate for the entire 
DB-mapping process? What is an appro-
priate decomposition of DBMS function-
ality into individual layers? Do we have 
to provide auxiliary mapping data or 
meta-data for each layer separately or is a 
centralized meta-data repository more 
appropriate? Where do we allocate the 
transaction functionality, i.e., the ACID 
properties? And many questions more...
2

Mike Senko developed initial archi-
tectural concepts which resulted in the 
Data Independent Accessing Model 
[Senko et al. 1973]. DIAM consists of 
four hierarchically layered levels called 
entity set model, string model, encoding 
model, and physical device level model. 
Some years later, [Härder & Reuter 
1983b, 1985] refined these ideas and pro-
posed a mapping model or reference ar-
chitecture consisting of five layers de-
picted in Table 1. The architectural de-
scription embodies the major steps of 
dynamic abstraction from the level of 
physical storage up to the user interface. 
At the bottom, the database consists of 
huge volumes of bits stored on non-vola-
tile storage devices, which are interpreted 
by the DBMS into meaningful informa-
tion on which the user can operate. With 
each level of abstraction (proceeding up-
wards), the objects become more com-
plex, allowing more powerful operations 
and being constrained by a growing num-
ber of integrity rules. The uppermost in-
terface supports a specific data model, in 
our case by a declarative data access via 
SQL.

The bottom layer, called File Man-
agement, operates on the bit pattern 
stored on some external, non-volatile 
storage device. Often in collaboration 
with the operating system’s file manage-
ment, this layer copes with the physical 
characteristics of each type of storage de-
vice. Propagation Control as the next 
higher layer introduces different types of 
pages which are fixed-length partitions of 
a linear address space and mapped into 
physical blocks which are, in turn, stored 
on external devices by the file manage-
ment. The strict distinction between pag-
es and blocks offers additional degrees of 
freedom for the propagation of modified 
pages. For example, a page can be stored 
in different blocks during its lifetime in 
the database thereby enabling atomic 
propagation schemes (supporting failure 
recovery based on logical logging, see 
section 3.4). To effectively reduce the 
physical I/O, this layer provides for a 
(large) DB buffer which acts as a page-
oriented interface (with fix/unfix opera-
tions) to the fraction of the DB currently 
resident in memory. 

The Record and Access Path Man-
agement implements mapping functions 
much more complicated than those pro-
vided by the two subordinate layers. For 
performance reasons, the partitioning of 
data into segments and pages is still visi-
ble at this layer. It has to provide cluster-
ing facilities and maintain all physical 
object representations, that is, data 
records, fields, etc. as well as access path 
structures, such as B-trees, and internal 
catalog information. It typically offers a 
variety of access paths of different types 
to the navigational access layer. Especial-
ly with the clustering options and the pro-
vision of flexibly usable access paths that 
are tailored to the anticipated workloads, 
this layer plays a key role for the entire 
DBMS performance.

The Navigational Access Layer maps 
physical objects to their logical represen-
tations and vice versa. At this interface, 
the user (or the modules at the next higher 
layer) navigates through a hierarchy or 
network of logical records or along logi-
cal access paths using scans of various 
types. A special ability is to dynamically 
order (sort) sets of records to support 
higher operations such as sort/merge 
Datenbank-Spektrum 1
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Open Scan (IBooks(Subject), Subject = ’DBMS’, Subject > ’DBMS’)  /* SCB1 */
Sort Access (SCB1) ASC AuthId Into T1 (AuthId, Title, P-Year)
Close Scan (SCB1)
Open Scan (IAuthors(Name), Name >= ’S’, Name > ’S’) /* SCB2 */
Sort Access (SCB2) ASC AuthId Into T2 (AuthId, Name)
Close Scan (SCB2)
Open Scan (T1, BOF, EOF) /* SCB3 */
Open Scan (T2, BOF, EOF) /* SCB4 */
While Not Finished
Do

Fetch Tuple (SCB3, Next, None)
Fetch Tuple (SCB4, Next, None)
. . . 

End
Fig. 1:   Access module for query Q1
joins. Finally, the Non-procedural Access 
Layer provides logical data structures 
(such as tables and views) with declara-
tive operations or a non-procedural inter-
face to the database. At the API, it pro-
vides an access-path-independent data 
model with descriptive languages (e.g., 
SQL). 

Each layer needs a number of auxilia-
ry data structures for mapping higher-lev-
el objects to more elementary ones. To in-
dicate the type of data, Table 1 character-
izes some of them. 

2.2 Dynamics of Query Execution

To gain a more detailed insight into the 
internal DBMS tasks and dynamics, we 
sketch important translation, optimiza-
tion, and execution steps exemplified by 
the following SQL query Q1.: 
Select  B.Title, B.P-Year, A.Name  
From   Books B, Authors A   
Where  B.AuthId=A.AuthId  
    And A.Name = ’S*’  
    And B.Subject = ’DBMS’

It is highly desirable to relieve run 
time from all preparation aspects of query 
processing and to shift as much of it as 
possible to query compilation time. 
Therefore, a particular design objective is 
to generate for each query a so-called ac-
cess module (incorporating the query 
evaluation plan (QEP)), the operations of 
which can be directly invoked at the L4 
interface (see Fig. 1). Missing (suitable) 
indexes on Books and Authors would en-
force table (segment) scans on them in 
our example. Therefore, let us assume 
that indexes IAuthors(Name) and 
IBooks(Subject) exist and that, in turn, the 
optimizer plans a sort/merge join for the 
query evaluation. When using I-scans on 
the given indexes (with start and stop 
conditions) for the selection operations, 
the required sort orders on AuthId do not 
come for free. Hence, sorted objects have 
to be created explicitly in L4, before the 
join can be processed. In turn, the I-scans, 
which deliver the records to be sorted, 
fetch them via physical access paths and 
storage structures managed by L34. The 
resulting access module is illustrated in 
Fig. 1. This module directly returns the 
result set of Q1. Normally, L3 offers a va-
riety of storage structures which physi-
cally embody the indexes or other types 
of access paths. The most prominent ones 

4. For example, a list prefetch operator is provid-
ed by DB2 to optimize such situations.
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are, of course, the »ubiquitous« B-trees 
or B*-trees [Comer 1979] which grant 
rapid direct and, equally important, sort-
ed sequential access to the indexed data. 
Because they are search trees, they can 
support range queries or may give the in-
dex sort order to the subsequent QEP op-
erator for free. 

The functionality provided by L3 
needs to refer to the physical data of the 
DB. For this reason, the DB buffer (as 
part of L2) acts as the memory interface 
to the DB on external devices and pro-
vides access to pages based on explicit re-
quest and release (so-called logical page 
references). Its prime objective is to ex-
ploit the (space and time) locality of 
DBMS processing (inter- and intra-trans-
action locality of page references) to min-
imize the number of physical page refer-
ences (usually disk accesses). Because 
DB buffer space as well as DB volumes 
roughly grow at the same pace, the size 
ratio buffer/DB (memory/storage ratio) 
remains constant over time—often a ratio 
of 1:1000 is a good estimate. Hence, ran-
dom access to DB pages and random 
page replacement in the buffer would re-
sult in a hit ratio of 0.1%. Fortunately, the 
locality of reference and replacement al-
gorithms tailored to the workload charac-
teristics reduce the number of physical 
page references that hit ratios of 95% and 
higher can normally be expected in the 
buffer. Nevertheless, large sequential 
scans or other »peculiar« access patterns 
may produce miss ratios close to 100% 
(in rare cases). Despite the query optimi-
zation in L5, the following extreme cases 
may occur for the evaluation example of 
Q1: All index pages and all referenced 
data pages are located in the DB buffer 
and enough memory space can be provid-
ed for the sorts. In the other extreme, each 
logical page reference requires a physical 
page reference. For large intermediate 
record sets, even external sort/merge op-
erations may be anticipated.

Because modified pages have to be 
propagated back to external storage, the 
output of a modified page may precede 
each physical page reference to make 
room for the requested page in the buffer. 
Special L2 functionality may be dedicat-
ed to recovery provisions from failures 
[Härder & Reuter 1983a]. In contrast, L1 
encapsulates number, type and location 
of external devices. It may be implement-
ed directly above the raw disk interface 
or, more frequently, perform its task in 
cooperation with the OS file manage-
ment. Even in the L1 layer, dedicated de-
vices, tailored file clustering or decluster-
ing measures (depending on disk access 
frequencies or set-oriented and parallel 
access interfaces [Weikum et al. 1987]) 
or block mapping techniques regarding 
special workload characteristics [Tafve-
lin 1974] have a major impact on query 
processing.

2.3 Number of Layers Reconsidered

Ideal layers strictly enforcing the Parnas’ 
use relation behave like abstract ma-
chines where the abstract machine of lay-
er i+1 is implemented by using the ab-
stract machine of layer i. Hence, in the 
worst case, six formal interfaces have to 
be crossed before data stored on disk is 
reached to evaluate a DB request. This 
performance-critical observation 
prompts us to reconsider the number of 
system layers. On the one hand, a grow-
ing number of layers reduces the com-
plexity of the individual layers which, in 
turn, facilitates system evolution. On the 
other hand, a growing number of interfac-
3
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es to be crossed for the DB request execu-
tion increases the run-time overhead and 
generally reduces the DBMS optimiza-
tion potential. Due to the ideal layer en-
capsulation, each service invocation im-
plies parameter checking, additional data 
transport, and more difficult handling of 
non-local errors. For example, the re-
quested data has to be copied—in its lay-
er-specific format—from layer to layer 
up to the requestor. In the same way, data 
modified has to be propagated—again in 
its layer-specific format—eventually 
down to the disk. Hence, the number of 
layers seems to have a major influence on 
the overall system performance5. Above 
all, data copying and update propagation 
should be minimized across the system 
layers. However, our proposed architec-
tural DBMS model is already a compro-
mise between layer complexity/system 
evolution potential and request optimiza-
tion/run-time overhead, as far as ade-
quate data mapping is concerned. 

Our discussion in section 2.2 already 
revealed the way to reduce the perfor-
mance penalty introduced by the layered 
structure of our model. Based on these 
observations, we propose run-time opti-
mizations to our static five-layer model 
leading to two or three effective layers in 
the dynamic case. As illustrated in Fig. 2, 
L5 is replaced by the access module 
whose operations directly refer to the L4 
interface. At the other side, the use of a 
large DB buffer effectively reduces disk 
accesses such that almost all logical page 
references can be located by L2 in mem-
ory.

There are precompilation approaches 
conceivable where the access module di-
rectly maps the SQL requests to the L3 

5. For DBMSs, it is especially true: »Perform-
ance is not everything, but without perform-
ance everything is worth nothing.«

Fig. 2:   DBMS model at run time

L4

L3

L2

DB request
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DB buffer

. . . . . .
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interface to further save the crossing of 
the L4 interface. Hence, query prepara-
tion is pushed as far as possible. Even ad-
hoc queries may be prepared in this way, 
because it turned out that generated ac-
cess code is more effective than query in-
terpretation. In this way, the extra cost of 
preparation (which extends the query re-
sponse time in this case) is quickly amor-
tized especially when large sets of 
records have to be accessed [Chamberlin 
et al. 1981a]. On the other hand, some 
systems pass on query preparation (at 
program compile time) and use—at the 
cost of extending the query response 
time—interpreters which can be under-
stood as replacements of L5 at run time. 
An interpreter is a general program 
which, in this case, accepts any SQL 
statement as input and immediately pro-
duces its query result thereby referring to 
the L4 interface. Mixed approaches use a 
preparation phase at compile time, but do 
not go to the extreme—the access mod-
ule. They prepare intermediate query ar-
tifacts such as query graphs or execution 
plans in varying details, and use specific 
interpreters that »execute« these artifacts 
at run time by invoking L4 operations 
(and, in turn, lower-layer operations). 

2.4 Binding and Information 
Channels

Compilation and early binding are good 
ideas. Of course, important aspects have 
to be observed when dealing with the 
compilation/optimization problem. Lack 
of run-time parameter values introduces 
imprecise selectivity estimates at compile 
time even for up-to-date statistical data. 
Full compile-time preparation unburdens 
query response time as far as possible, 
that is, it creates access modules for each 
query, if possible. Less ambitious prepa-
ration methods only provide access plans 
or operator graphs for the queries and 
postpone the completion of query compi-
lation to run time or even use full inter-
pretation which represents the latest pos-
sible binding. However, all preparation 
approaches necessarily bind their gener-
ated artifacts to the meta-data valid at 
preparation time, that is, compilation 
time in general. Later changes to the 
meta-data (table definition alterations, 
new or dropped index definitions, etc.) 
cannot be taken into account; hence, 
binding makes the artifacts data depen-
dent and requires an automated compen-
sation mechanism for invalidation/re-
preparation. Ideally, this concept of early 
binding enhanced with such a compensa-
tion should combine the query evaluation 
efficiency of full compile-time prepara-
tion with the convenience and data inde-
pendence of late binding, i.e., that of a 
full interpreter. 

So far, we have avoided to introduce 
control measures (dependency relation-
ships) across the system layers, typically 
necessary to increase query performance/
throughput or to guarantee specific sys-
tem properties, e.g., dependencies to real-
ize some functionality for load control or 
ACID protection. Hence, a real DBMS 
implementation will soften the claims of 
our explanation model strictly adhered to 
the information hiding and hierarchical 
layer principles. Normally, a few careful-
ly selected dependencies or mechanisms 
have to be provided for control and opti-
mization measures across system layers, 
that is, we need a few »vertical« informa-
tion channels. For example, when the hot 
set model [Sacco & Schkolnick 1982] is 
used to make frame reservations support-
ing specific QEPs in the DB buffer, query 
optimization in L1 has to communicate 
some hints to L4. On the other hand, 
thrashing behavior in the DB buffer or 
extreme situations for lock contention 
(occurring in lower layers) need an infor-
mation channel to the load control and 
transaction entry queue allocated in L1.

2.5 Extensions and Optimizations 

While the explanation model concerning 
the DBMS architecture is still valid, an 
enormous evolution/progress has been 
made during the last two decades con-
cerning functionality, performance, and 
scalability. The fact that all these en-
hancements and changes could be adopt-
ed by the proposed architecture, is a 
strong indication that we refer to a salient 
DBMS model. We cannot elaborate on 
all extensions, let alone to discuss them in 
detail, but we want to sketch some major 
improvements/changes.

20 years ago, SQL—not standardized 
at that time—and the underlying relation-
al model were simple. Nevertheless, 
some query optimizers were »stupid« in 
the sense that they produced incredibly 
bad QEPs. Users had to react by reformu-
lating the queries (fooling the optimizer). 
Although the situation has greatly im-
proved up-to-date and bread-and-butter 
cases are perfectly optimized, there exists 
quite a number of contributions of the 
Datenbank-Spektrum 1
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kind »Optimizing the XXX Optimizer« 
which explain tricks how the »convince« 
a particular optimizer to select the best 
possible QEP for a given application.

For other reasons, query optimization 
is still an open problem. Today, we have 
to refer to SQL:1999 or SQL:2003 and an 
object-relational model which are com-
plex and not well understood in all parts. 
Many of the new aspects and functions—
such as user-defined types, type and table 
hierarchies, recursion, constraints, trig-
gers—have to be adjusted in L5. While 
initially query translation and optimiza-
tion started with solid foundations [Sel-
inger et a. 1979, Jarke & Koch 1984], en-
abled the integration of new mechanisms, 
and could be successfully improved 
[Mitschang 1995], in particular, by using 
refined statistics (in particular, histo-
grams [Ioannidis 2003]), some of the new 
language concepts turn out to be very 
hard for the optimization. For example, 
SQL’s new landmark concept of user-de-
fined types—despite some proposals 
such as enhanced abstract data types [Se-
shadri 1998]—is not solved at all. Rule-
based optimizers are here foredoomed 
because sufficiently general rules cannot 
be provided for them. In contrast, user-
defined types have to carry their own cost 
model to be integrated by cost-based op-
timizers, which is no general proceeding: 
first, the type writers have to deliver the 
complex cost models and, second, many 
of the models’ parameters are hard to de-
termine at run time. 

Work on building effective optimiz-
ers for dynamic QEPs to address the 
problem of changes in resource availabil-
ity [Graefe 2000] or to »reduce the brak-
ing distance« of the query engine [Carey 
& Kossmann 1998] is in progress, but far 
away from the point where practical tech-
niques are ready for their use in products. 
Proposals typically leave resource avail-
ability to the individual algorithms, rather 
than to arrange for dynamic plans with al-
ternative algorithms or alternative plan 
shapes. Available adaptive techniques (in 
L4) are not only related to the internal be-
havior of single algorithms (operators), 
but also among operators within a single 
query and among multiple concurrent 
queries. Furthermore, new dynamic opti-
mization opportunities come up, for ex-
ample, for special query types where the 
result set is characterized by »N tuples 
only« or »top/bottom N tuples«. The 
challenge for the optimizer is to provide 
dynamic QEPs that try to stop the evalu-
Datenbank-Spektrum 1
ation when the size N is reached. New 
partition-based techniques or even a kind 
of »gambling« help to reduce the wasted 
sorting and/or joining effort. 

DB research delivered new algo-
rithms to improve and extend the func-
tionality in L4 for SQL’s standard opera-
tions required. Hash joins are a success 
[Shapiro 1986] and complement each 
sufficiently broad and efficient DBMS 
implementation. Furthermore, function-
ality for »arbitrary« join predicates, reuse 
of intermediate query evaluation results, 
sorting (internally usually optimized for 
relatively small sets of variable length 
records in memory as well as external 
sort/merge), etc. was improved and much 
better integrated. In particular, space-
adaptable algorithms contribute to great 
improvements and support load balanc-
ing and optimized throughput, even for 
high multi-programming levels [Graefe 
1993]. For example, the replacement se-
lection sort, which can react to presorted-
ness, dynamically adjusts its memory re-
quirements to save merge runs [Graefe 
2003]. Other adaptive techniques for op-
erators include setting or adjusting the 
degree of parallelism depending on the 
current workload, reordering and merg-
ing ranges to optimize repeated probes 
into an index, sharing scans among mul-
tiple queries, etc. [Graefe 2000]. On the 
other hand, the language extensions men-
tioned above enforced entirely new func-
tionality to be provided by L4. Support 
for some of them, close enough to the 
original concepts of the relational model, 
is successfully made available and ex-
tends the spectrum of algorithms towards 
enabling (originally called) non-standard 
applications [Härder & Reuter 1983c]. 
Examples include spatial joins 
[Brinkhoff et al. 1993, Günther 1993] or 
operations supporting functionality for 
OLAP or data warehouses [Lehner 
2002]. However, it seems to be inade-
quate or even impossible to integrate ad-
justed operators for the »exploding« set 
of new types, e.g., video, image, text, au-
dio (referenced by the acronym VITA) 
and others. 

All these operations have to be made 
efficient by providing appropriate access 
paths and storage structures in L3. A 
»firestorm« of research in the last two de-
cades tried to respond to this challenge—
partly because the search problems to be 
solved could be described in isolation and 
empirical results could be produced by 
various kinds of simulation, that is, with-
out the need to embed the structures into 
an existing DBMS. A survey article on 
multidimensional access methods [Gaede 
& Günther 1998] compared a large set of 
structures and their genealogy (with 
about 200 references published until 
1998). Besides the ubiquitous B-tree and 
maybe some variants of the R-tree and 
the UB-tree [Bayer 1997], why did these 
structures not make their way into L3? Of 
course, a few of them are successfully in-
tegrated into specialized data handling 
system (Grid, Hashing). However, the li-
on’s share of the proposed access paths 
fails to pass the DBMS acid test for vari-
ous reasons. A suitable method should 
not be data dependent (on the value set or 
UID sequence) and should not require 
static reorganization. Moreover, it should 
not rely on special data preparation and 
its optimal use should not require the 
knowledge on system internals or expert 
experience. Furthermore, over-special-
ized use and tailoring to narrow applica-
tions do not promise practical success in 
DBMSs6. Finally, many of these methods 
(often Ph.D. proposals) disregard the 
DBMS environment, where dependen-
cies to locking and recovery issues, inte-
gration into optimizer decisions, support 
of mixed and unexpected workload char-
acteristics have to be regarded. Indeed, 
the most dramatic performance enhance-
ments in this area are due to fine-granular 
locking methods, in particular, applied to 
index structures, that is, to B*-trees [Mo-
han 1990].

The most drastic improvements oc-
curred at the L2 level—without much en-
deavor of the DB researchers. Moore’s 
Law did the job, because the available 
memory is now increased by a factor of 
104. Therefore, DB buffer sizes may now 
range in the area of up to 1–10 million 
frames while, in the same period, the in-
dividual frame size has grown from 2K to 
8K–32K bytes. The classical demand-
driven replacement algorithms were en-
hanced by ideas combining LRU together 
with reference density, e.g., in the form of 
LRU-K [O’Neil et al. 1993]. Further-
more, they were complemented by vari-
ous prefetching algorithms and pipelined 
double buffering which together can au-
tomatically detect and optimize scan-
based operations. Buffer allocation algo-

6. Optimal support of point queries in high-di-
mensional spaces (say k in the range of 10–20) 
and nothing else is not a broad requirement.
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rithms, on the other hand, were proposed 
to exploit knowledge of declarative, set-
oriented DB languages and may be used 
in the form of the hot set model. Finally, 
the huge DB buffer capacity facilitated 
the provision of buffer partitions where 
each partition can individually be tailored 
to the anticipated locality behavior of a 
specific workload. For example, current-
ly some DBMSs provide the optional 
configuration of up to 80 buffers each 
with individual size, locality-of-reference 
support and management algorithms 
[IBM DB2]. Nevertheless, buffering de-
mands of VITA applications cannot be 
integrated in any reasonable way into L2, 
let alone the transfer of the huge data vol-
umes through the layered architecture up 
to the application. 

While the separation of segments/
pages (L2) and files/blocks (L1) opens 
opportunities for sophisticated data map-
pings and update propagations, nothing 
has really happened in this part of the ar-
chitecture. The old and elegant concepts 
of shadow pages and differential files, 
which allow for Atomic update propaga-
tion and, depending on the selected 
checkpoint mechanism, for materialized 
DB states of guaranteed consistency after 
crashes, were considered too expensive 
in the normal DB processing mode. Be-
cause failures are very rare events, nor-
mal update propagation uses update-in-
place (NonAtomic) and is performed in 
some optimistic way—with logging as 
the only failure precaution –, and more 
burden is shifted to the recovery and re-
start phases. 

To conclude our pass through the 
DBMS layers, L1 was not a focus of in-
terest for DB researchers. OS people pro-
6

posed various improvements in file sys-
tems where only some were helpful for 
DB management, e.g., distribution trans-
parency. Log-structured files [Rosen-
blum & Ousterhout 1992], for example, 
turned out to be totally unsuitable. Fur-
thermore, there is still no transaction sup-
port available at this layer of abstraction. 
However, standard file mapping was con-
siderably refined - now supporting long 
fields or large objects (Blob, Clob, 
DClob) up to 2G bytes. A lot of new stor-
age technology was invented during the 
last two decades—disks of varying ca-
pacity, form and geometry, DVDs, 
WORM storage, electronic disks, etc. 
Their integration into our architectural 
model could be transparently performed 
in L1 as far as the standard file interfaces 
were concerned. New opportunity ar-
rived with the disk arrays [Patterson et al. 
1988] supporting different clustering and 
declustering strategies at the file level 
[Weikum & Zabback 1993]. To enable 
parallel access, file interfaces had to be 
extended at the L1 interface. Their use, 
possibly exploiting set-oriented and par-
allel I/O requests, has led to new algo-
rithms to be allocated in L2.

3 Layered Model and 
Transactional Properties 

So far, we have discussed an explanation 
model for the data abstraction hierarchy 
in a DBMS. In particular, we have 
sketched the state of the art reached after 
20 or more years of research and develop-
ment. However, we have excluded all 
considerations of the failure case and the 
interplay of the transactional properties 
with the operations at the different ab-
straction levels. As far as ACID is con-
cerned, the layered model again helps to 
describe the concepts and to derive ap-
propriate solutions. All transactional 
properties are no »natural« properties of 
computer systems.

3.1 Atomicity

Atomicity of transactions, the A in ACID, 
is an abstraction which has to be achieved 
by appropriate mechanisms. In the pres-
ence of failures we even cannot guarantee 
atomic execution of instructions or I/O 
operations. Hence, these properties have 
to be accomplished by complex software 
mappings. Early attempts to provide ato-
micity were based on the recovery blocks 
[Randell et al. 1978]. However, they were 
impractical already for atomic actions in 
a single layer, let alone for DML opera-
tions executed across several layers or 
even a set of separate DML operations 
bracketed into a transaction. This situa-
tion is illustrated in Fig. 3; even if atomic 
actions (AA) would be protected by cor-
responding recovery blocks (RB), they 
would be released upon exit. Hence, the 
calling hierarchy AA1–>AA2–>AA3 
shown in Fig. 3 would release RB3 and 
then RB2. A subsequent error in AA1 
would leave behind in lower system lay-
ers unprotected marks caused by the al-
ready finished AA3 and AA2. It is obvi-
ous that recovery blocks for DML opera-
tions—if they could be accomplished in 
some way—would be of no help, because 
an error in DML op2 would leave the un-
protected effects of DML op1 behind. 
Hence, in-line solutions for atomicity are 
impossible. Furthermore, selected atom-
icity mechanisms are not enough, al-
though we can implement some them in a 
Datenbank-Spektrum 1
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DBMS—for example, atomic propaga-
tion of modified blocks/pages can be met 
by particular update propagation schemes 
[Gray & Reuter 1993]. Statement atomic-
ity and transaction atomicity must be 
achieved by combined use of concurren-
cy control and logging/recovery mea-
sures where a two-phase commit (2PC) 
protocol decides upon success of a trans-
action when a failure occurs at commit. 

3.2 Consistency

The C in ACID guarantees DB schema 
consistency which is preserved by every 
successful transaction. To develop a 
framework for transaction implementa-
tion, we will refine our notion of consis-
tency. For this purpose, it is helpful to in-
troduce a hierarchy of operations—I/O 
operations, elementary actions, actions, 
DML operations, transactions—which 
corresponds to our layered model, a sim-
plified version of which is sufficient for 
the refined consideration of transactional 
aspects. An obvious, but nevertheless im-
portant observation is that a data granule 
to which an operation has to be applied 
must be consistent w.r.t. this operation 
(operation consistency, layer-specific 
consistency). After successful execution 
it is again operation consistent. In this 
sense, a transaction can be explained as a 
hierarchy of nested atomic actions. 
Hence, object consistency needs layer-
specific consistency of all layers below. 
At each level in Fig. 4 up to the transac-
tion program (TAP), we give an example 
for an operation that requires the given 
type of consistency and which preserves 
it after successful (atomic) completion. 

To reduce the complexity of discus-
sion, Fig. 4 simplifies our five-layer mod-
el to the well-known three-layer model 
and we will refer to it when appropriate. 
The lowest layer, called storage system, 
comprises L1 and L2. For our ACID con-
siderations, the separation of blocks and 
pages would not capture new aspects. On 
the other hand, in L3, called access sys-
tem, we distinguish between elementary 
action consistency (EAC) and action con-
sistency. A single action (at L3) may 
cause updates of several pages, for exam-
ple, when a B-tree insertion causes page 
splits, whereas an elementary action is al-
ways confined to a single page. 

Again, a separate consideration of L4 
and L5 would not reveal new insights for 
ACID, because their operations affect 
multiple pages in general. L4 roughly 
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corresponds to a navigational one-record-
at-a-time DBMS interface (e.g., for the 
network or (simple) object-oriented data 
models), whereas L5 characterizes de-
clarative set-oriented DBMS interfaces 
(e.g., SQL). As indicated by the upper 
layer in Fig. 4, called data system, single 
DML operations require and guarantee 
(DBMS) API consistency. This relation-
ship is emphasized by the golden rule7 in 
[Date 1995] and explains why integrity 
constraints attached to atomic DML op-
erations (statement atomicity in SQL) 
have to be satisfied at end of operation 
(e.g., a complex case of it are referential 
actions). In turn, only »higher« DB sche-
ma constraints can be declared deferra-
ble, to be satisfied later and checked at 
the latest in the commit phase to fully 
guarantee transaction consistency.

3.3 Isolated execution

By passing the I in ACID, we only re-
mark that the operation hierarchy in Fig. 
5 is appropriate to explain the various 
conflict serializability models in the con-
text of a DBMS. The schedules/histories 
of the page model could be derived by a 
history writer observing the interface be-
tween access system and storage system, 
whereas other models would choose the 
interfaces of the operations considered. 
In Fig. 5, the lowest layer characterizes 
the page model, whereas the intermediate 
layer and the topmost layer indicate sam-
ple requests for concurrency control 

7. »No update operation must ever be allowed to 
leave any relation or view in a state that vio-
lates its own predicate. Likewise no update 
transaction must ever be allowed to leave the 
database in a state that violates its own predi-
cate.«
which had to be handled by a kind of 
record locking and predicate locking, re-
specively. Because only the specification 
of conflict relations among concurrent 
operations—but not their specific seman-
tics—is needed for conflict serializabili-
ty, appropriate protocols achieving trans-
action isolation can be provided at any 
abstraction level. For a comprehensive 
discussion see the textbook of [Weikum 
& Vossen 2002]. 

20 years ago, multi-granularity lock-
ing was the method of choice for multi-
user synchronization in DBMSs and, sur-
prisingly, it still is—extended by a larger 
set of specialized lock modes. While ear-
ly DBMSs used the page granule as the 
smallest lockable unit, today records or 
even smaller units are a must to cope with 
resource contention in an acceptable 
manner [Mohan 1999]. Of course, practi-
cal progress has been made on efficiently 
synchronizing operations on special 
structures (indexes, trees, hot spots) and 
for specific sequences of access requests 
[Mohan 1990, Mohan et al 1992]. Fur-
thermore, multi-version methods current-
ly seem to gain more importance, be-
cause plenty of memory allows keeping 
multiple versions per object to increase 
the effective level of transaction parallel-
ism. However, considering the myriads 
of conflict-serializable synchronization 
protocols proposed [Thomasian 1998], it 
is humbling how few of these ideas have 
entered the DBMS world. 

3.4 Durability

Recording of redundancy during normal 
processing—to be prepared for the event 
of failures—and an application of recov-
ery algorithms in case of a failure remain 
the standard measures to achieve durabil-
7
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ity. Recovery from failures always aims 
at the most recent transaction-consistent 
state of the DB. Because the level-specif-
ic operations preserve layer-specific con-
sistency for their data, they can be ex-
ploited to extract logging information. 
Hence, logging can be performed at each 
level, as illustrated in Fig. 6.

Logging

Log data is collected during normal pro-
cessing and applied by the recovery algo-
rithms in case of a failure. While transac-
tion recovery can refer to the current state 
of the DB and use context information, 
recovery from a crash or a media failure 
must use the materialized DB or the ar-
chive DB, respectively. Hence, in these 
cases the DB has to satisfy the corre-
sponding layer-specific consistency re-
quired for the successful application of 
the log information to redo or undo the 
transaction effects at the chosen abstrac-
tion level. Therefore, we establish a 
strong and performance-critical relation-
ship, in particular, for the crash recovery 
if we select a specific logging method. 
Furthermore, logging has to observe a 
number of rules such that transaction-ori-
ented recovery is possible at any rate 
[Härder & Reuter 1983a].

Physical logging is sufficient when 
device or file consistency can be expect-
ed at the time of crash recovery (restart). 
In turn, EAC enables physiological log-
ging and LSNs [Gray & Reuter 1993] 
which leads to the practically most im-
portant logging/recovery method. Be-
cause the effects of an elementary action 
are always confined to a page, non-atom-
ic propagation of pages to disk is suffi-
cient to enable the corresponding Redo 
and Undo operations in history sequence. 
Hence, physiological logging8—physical 
to a page, logical within a page thereby 
tolerating displacements and rearrange-
ments of data within a page—can be ap-
plied. Furthermore, the use of log se-
quence numbers (LSNs) allows a simple 
check at restart of whether or not the 
modifications of an elementary action 
have reached the materialized DB. In 
contrast, logical logging implies the 
atomic propagation of all pages modified 
by the corresponding operation to suc-

8. Its implementation could be shifted to the 
buffer manager (fix page, ..., write log), be-
cause only objects in individual pages are in-
volved [Haustein 2005].
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cessfully perform Redo or Undo recovery 
for such operations (actions and opera-
tions at higher levels). 
The question is which kind of consisten-
cy for the materialized DB can be guaran-
teed at restart, i.e., after a crash has oc-
curred? Table 2 summarizes the required 
logging methods for a given consistency 
level.

The converse conclusion is, however, 
not compelling. For example, if we use 
DML operation logging, we do not auto-
matically assure the API consistency for 
the materialized DB. Therefore, extra 
precautions are needed during normal 
processing. Usually, the higher the con-
sistency level guaranteed, the more ex-
pensive are the mapping and propagation 
algorithms (e.g., shadow pages, check-
points) to establish the respective level. If 
we can rely on a consistency level at re-
start, it is possible to choose logging 
methods corresponding to a lower consis-
tency level. However, this idea is not 
cost-effective, because logging costs typ-
ically decrease with increasing consisten-
cy levels.

How do we establish a consistency 
level of the materialized DB? If a device 
is destroyed, we cannot provide the min-
imum consistency for the logging meth-
ods discussed. Therefore, we must usual-
ly9 perform recovery algorithms tailored 
to device failures, the so-called media re-
covery with archive DB and archive log. 
In the following, we assume file consis-
tency as a minimum consistency level.

Non-atomic Update Propagation

If we use non-atomic propagation meth-
ods, the DB is only file consistent when a 
crash occurs; all individual blocks are 
readable, but they are nicknamed as cha-
os consistent, because the DB contains 
actual, outdated, and invalid blocks. But 
the correctness of non-atomic propaga-
tion methods does not rely on specific re-
quirements of page I/O, because the cor-
responding recovery methods based on 
logging of pages or elementary actions 
can be correctly applied to individual 
pages only. 

If all before- and after-images of the 
modified pages are logged, which is ex-
tremely expensive and log-space con-
suming, entire pages can be exchanged 
and transaction-oriented recovery is pos-
sible. Another significant cost factor is 
given by the minimum lock granule10 im-
plied by page locking. Physiological log-
ging brings a substantial improvement, 
because an Undo and a Redo of modifica-
tions in elementary-action-consistent 
pages can be performed based on a space-

9. In special cases of destroyed blocks, page log-
ging may work if the entire block can be re-
placed.

10.The lock granule must be larger or equal to the 
log granule used [Härder & Reuter 1983a], see 
also appendix.
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Table 2: Consistency and logging

consistency level at restart adjusted log information

file consistency pages (before- and after-images)

elementary action consistency physiological logging

action consistency actions (entries)

API consistency DML operations

transaction consistency transaction program invocations with params
saving logging method. Using LSNs, the 
recovery manager can efficiently decide 
whether an Undo or a Redo operation has 
to be applied to a page addressed, even 
for lock granules smaller than a page. 

Atomic Update Propagation

Because operations in higher system lay-
ers may affect multiple pages, the corre-
sponding recovery operations based on 
the resp. logging methods imply the ex-
istence of the entire data granule. For this 
reason, the set of resp. pages must be 
completely or not at all in the material-
ized DB, a property which can only be 
obtained by checkpointing and atomic 
propagation methods [Härder & Reuter 
1983a]. Referring to Fig. 6, action consis-
tency for pages to be recovered is accom-
plished when the set of pages involved in 
an update action is either completely in 
the materialized DB or not at all; this is 
obtained by action-consistent check-
points. Then all effects of the actions 
starting from this checkpoint can be re-
peated or undone on this DB state. The 
same is true for DML operations with 
API-consistent checkpoints or transac-
tions with transaction-consistent check-
points. Because only entire pages can be 
written to disk, checkpointing has to be 
synchronized with concurrency control; 
otherwise, large lock granules (at least 
page locks) have to be applied which en-
force serial operations in pages.
It is interesting to note that higher-level 
operation-consistent DB states can be re-
constructed (Redo) based on physiologi-
cal logging and LSNs. As a consequence, 
Undo operations are possible using oper-
ation-consistent logical logging methods 
[Haustein 2005]. As a prerequisite, only 
pages with operation-complete modifica-
tions must reach the disk which can be 
achieved by fixing all pages involved in 
an update until the end of the specific op-
eration (which is trivially satisfied for el-
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ementary actions). However, this idea be-
comes quickly impractical with growing 
operation granules. At the level of DML 
operations, this would, for example, re-
quire a long-term buffer fixing of all pag-
es involved in a set-oriented update re-
quest.

The Winner Solution

In early DBMSs, logging/recovery 
schemes were rather simple, exhibiting 
little or no optimization. They were often 
dominated by non-atomic propagation 
and page logging which implied page 
locking as a minimal granularity (see ap-
pendix). Therefore, they were neither ef-
ficient nor elegant. An exception was 
System R which implemented an atomic 
recovery scheme [Blasgen et al. 1981] 
whose atomicity mechanism was based 
on shadow pages [Lorie 1977]. Empirical 
studies [Chamberlin et al. 1981b] certi-
fied its high overhead during normal pro-
cessing. Furthermore, the presence of 
rapidly growing DB buffers made direct 
checkpoints infeasible for interactive DB 
processing. As a consequence, no effec-
tive solution exists for atomic propaga-
tion schemes eliminating, in practice, all 
recovery methods which require higher 
DB consistency levels at restart (logging 
granularity: transaction, DML operation, 
action). It is safe to say that all clean and 
elegant crash recovery solutions do not 
pay off (e.g., Atomic, NoSteal, Force
[Härder & Reuter 1983a]). Hence, they 
disappeared from the DBMS world. 
Nowadays, non-atomic propagation, also 
compatible with indirect checkpointing 
techniques, is the clear winner in this ar-
ea. Hence, the best performing recovery 
schemes, which effectively cope with 
huge buffers and unburden normal pro-
cessing with logging-related I/O over-
head, are characterized by NonAtomic, 
Steal, NoForce supported by Fuzzy 
checkpoints and some more I/O-saving 
tricks [Mohan et al. 1992]. 

4 Architectural Variants 

Up to now, we have intensively discussed 
the questions of data mapping and trans-
actional support in a centralized DBMS 
architecture. In the last two decades, 
however, a variety of new data manage-
ment scenarios emerged in the DBMS ar-
ea. How can these be linked to the core is-
sues of our architectural discussion so 
far? 
A key observation is that the invariants in 
database management determine the 
mapping steps of the supporting architec-
ture. In our case, we started with the pri-
mary requirement of navigational or set-
oriented processing of record-like data 
which led to the layered architecture 
sketched in Fig. 2 and 6. In many of the 
new data management scenarios, the ba-
sic invariants still hold true: page-orient-
ed mapping to external storage, manage-
ment of record-oriented data, set-oriented 
database processing. Hence, we should 
be able to identify the resp. layers/com-
ponents in the evolved architectures and 
to explain the similarity in database pro-
cessing using their architectural models.

4.1 Horizontal Distribution of DB 
Processing

A variety of DB processing scenarios can 
be characterized as the horizontal distri-
bution of the entire DB functionality and 
of partitioned/replicated data to process-
ing nodes connected by a network. As a 
consequence, the core requirements re-
main, leading to an architectural model 
sketched in Fig. 7, which consists of iden-
tical layered models for every node to-
gether with a connection layer responsi-
ble for communication, adaptation, or 
mediation services. In an implementa-
tion, this layer could be integrated with 
one of the existing layers or attached to 
the node architecture to encapsulate it for 
the remaining system. 

Shared-nothing DBMSs partition 
their data and need some functionality to 
decompose DB requests, forward them to 
the corresponding node, and assemble the 
answers to the query result thereby pro-
viding a local and homogeneous view of 
the entire DBMS to the user (single sys-
tem view). While the functionality of the 
individual nodes essentially remains un-
changed, some new cross-node tasks are 
9
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needed for optimal DBMS processing, 
e.g., load balancing, global query optimi-
zation in addition to the local one, dead-
lock detection, 2PC protocol, global re-
covery precautions, etc. [Lindsay 1987]. 
For shared-disk DBMSs, the adjustment 
and coordination aspects are primarily in 
the area of buffer management and once 
more in the failure recovery from individ-
ual node crashes [Rahm 1994]. In con-
trast, parallel DBMSs provide services to 
run identical operations on partitioned 
data in parallel (data parallelism) or to ap-
ply intra-operation parallelism to the 
same data. Hence, the major challenge is 
to decompose a problem for a large num-
ber of processors and to coordinate them 
such that a linear scale-up or speed-up is 
achieved [DeWitt & Gray 1992]. 

When heterogeneity of the data mod-
els or autonomy of database systems 
comes into play, the primary tasks of the 
connection layer are concerned with ad-
aptation and mediation. Federated 
DBMSs represent the entire spectrum of 
possible data integration scenarios and 
usually need an adjustment of the DB re-
quests at the level of the data model 
[Rahm 1994] or a compensation of func-
tionality not generally available. As op-
posed to the distributed homogeneous 
DBMSs, some users (transactions) may 
only refer to a local view thereby abstain-
ing from federated services, while, at the 
same time, other users exploit the full ser-
vices of the data federation. The other ex-
treme case amang the federation scenari-
os is represented by Multi-DBMSs, for 
which the connection layer primarily 
takes over the role of a global transaction 
manager passing unmodified DB re-
quests to the participating DB servers 
[Schek & Weikum 1991].

4.2 Vertical Distribution of DBMS 
Processing

The typical (most important) representa-
tives of this class of DBMS architectures 
belong to the so-called client/server 
DBMSs. Their major concern is to make 
DBMS processing capacity available 
close to the application in the client (com-
puter). Usually, client/server DBMSs are 
used in applications relying on long-run-
ning transactions with a checkout/check-
in mechanism for (versioned) data. 
Hence, the underlying data management 
scenarios are tailored to engineering ap-
plications [Härder et al. 1988]. As indi-
cated in Fig. 8, various forms of this ar-
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chitectural variant exist [Härder & Rahm 
2001]. They are characterized by DBMS-
controlled data or object buffers at the cli-
ent side to exploit data reference locality 
as the major mechanism to enhance per-
formance. The most sophisticated one is 
the query server, in its functionality com-
parable to DBMS kernel architectures 
[Schek et al. 1990]. Its real challenge is 
declarative, set-oriented query process-
ing thereby using the current content of 
the query result buffer [Deßloch et al. 
1998]. 

Until recently, query processing in 
such buffers was typically limited to que-
ries with predicates on single tables (or 
equivalent object types). Now, a major 
enhancement is pursued in scenarios 
called database caching. Here, full-
fledged DBMSs, used as DB frontends 
close to application servers in the Web, 
take over the role of cache managers for a 
backend DB. As a special kind of vertical 
distribution, their performance-enhanc-
ing objective is to evaluate more complex 
queries in the cache which, for example, 
span several tables organized as cache 
groups by equi-joins [Härder & Büh-
mann 2004]. While the locality preserva-
tion of the query result buffer in query 
servers can take advantage of application 
hints [Deßloch et al. 1998], adaptivity of 
database caching is a major challenge for 
future research [Altinel et al. 2003]. Fur-
thermore, precise specification of relaxed 
currency and consistency of data is an 
important future task to better control the 
widespread and growing use of distant 
caches and asynchronous copies [Guo et 
al. 2004].
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5 Conclusions

In the tradition of [Blaser 1995], we 
looked at the progress of database re-
search and development which happened 
in the 20 years of history of the BTW—
the German conference »Database Sys-
tems in Business, Technology, and the 
Web«. Because of the growing breadth 
and depth of the database area, this paper 
primarily focused on the developments 
concerning the DBMS architecture for 
the declarative and set-oriented (relation-
al) processing paradigm of record-like 
structures. We showed that the five-layer 
hierarchical model proposed more than 
20 years ago was able to accommodate all 
the extensions and optimizations for the 
originally established paradigm. Even 
new data management scenarios incorpo-
rating the processing invariants of our 
five-layer model could be well embraced 
by architectural variants of it. 
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Appendix:  
The Ten Commandments11

General Rules

I. Recovery based on logical logging 
relies on a matching operation-con-
sistent state of the materialized DB at 
the time of recovery.

II. The lock granule must be at least as 
large as the log granule.

III. Crash recovery under non-atomic 
propagation schemes requires Redo 
Winners resp. Redo All (repeatable 
history) before Undo Losers, whereas 
the order of Undo and Redo is irrele-
vant under atomic schemes. 

11.Härder, T., Reuter, A.: A Systematic Frame-
work for the Description of Transaction-Ori-
ented Logging and Recovery Schemes, 
Internal Report DVI 79-4, TH Darmstadt, Dec. 
1979. Commandments I and V are valid for 
logical and physical transition logging. The 
latter based on EXOR differences does not 
seem to be used anymore in DBMSs [Härder 
& Rahm 2001].
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IV. State logging requires a WAL proto-
col (if pages are propagated before 
Commit).

V. Non-atomic propagation combined 
with logical logging is generally not 
applicable (for Redo and Undo recov-
ery). 

VI.  If the log granularity is smaller than 
the transfer unit of the system (block 
size), a system crash may cause me-
dia recovery.

VII .Partial rollback within a transaction 
potentially violates the 2PL protocol 
(programming discipline necessary).

Rules for Redo Recovery

VIII.Log information for Redo must be 
collected independently of measures 
for Undo.

IX. Log information for Redo must be 
written at the latest in phase 1 of 
Commit.

X. To guarantee repeatability of results 
of all transactions using Redo recov-
ery based on logical logging, their DB 
updates must be reproduced on a 
transaction basis (in single-user 
mode) in the original Commit se-
quence.
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