
1

1

Execution Strategies

for SQL Subqueries

Mostafa Elhemali, César Galindo-
Legaria, Torsten Grabs, Milind Joshi

Microsoft Corp

With additional slides from material in paper,

added by S. Sudarshan

2

Motivation

� Optimization of subqueries has been studied for some
time

� Challenges
� Mixing scalar and relational expressions

� Appropriate abstractions for correct and efficient processing

� Integration of special techniques in complete system

� This talk presents the approach followed in SQL Server

� Framework where specific optimizations can be plugged

� Framework applies also to “nested loops” languages

2

3

Outline

� Query optimizer context

� Subquery processing framework

� Subquery disjunctions

4

Algebraic query representation

� Relational operator trees

� Not SQL-block-focused

GroupBy T.c, sum(T.a)

Select (T.b=R.b and R.c = 5)

RT

Cross product

SELECT SUM(T.a)

FROM T, R

WHERE T.b = R.b

AND R.c = 5

GROUP BY T.c

GroupBy T.c, sum(T.a)

Select (R.c = 5)

R

T

Join (T.b=R.b)

algebrize transform

3

5

Operator tree transformations

Select (A.x = 5)

Join

BA

Select (A.x = 5)

Join

B

A

GropBy A.x, B.k, sum(A.y)

Join

BA

Join

B

A

GropBy A.x, sum(A.y)

Join

BA

Hash-Join

BA

Simplification /

normalization

ImplementationExploration

6

SQL Server Optimization process

T0

simplify

T1 pool of alternatives

search(0) search(1) search(2)

T2

(input)

(output)

cost-based optimization

use simplification /

normalization rules

use exploration and

implementation rules,

cost alternatives

4

7

Plan Generation Overview

8

Outline

� Query optimizer context

� Subquery processing framework

� Subquery disjunctions

5

9

SQL Subquery

� A relational expression where you expect a

scalar

� Existential test, e.g. NOT EXISTS(SELECT…)

� Quantified comparison, e.g. T.a =ANY (SELECT…)

� Scalar-valued, e.g. T.a = (SELECT…) + (SELECT…)

� Convenient and widely used by query

generators

10

Algebrization

select *

from customer

where 100,000 <

(select sum(o_totalprice)

from orders

where o_custkey = c_custkey)

CUSTOMER

ScalarGb

ORDERS

SELECT

SELECT

1000000

<

SUBQUERY(X)

O_CUSTKEY

=

C_CUSTKEY

X:=

SUM

O_TOTALPRICE

Subqueries: relational operators with scalar parents

Commonly “correlated,” i.e. they have outer-references

6

11

Subquery removal

� Executing subquery requires mutual recursion
between scalar engine and relational engine

� Subquery removal: Transform tree to remove
relational operators from under scalar operators

� Preserve special semantics of using a relational
expression in a scalar, e.g. at-most-one-row

12

The Apply operator

� R Apply E(r)

� For each row r of R, execute function E on r

� Return union: {r1} X E(r1) U {r2} X E(r2) U …

� Abstracts “for each” and relational function invocation

� Also known as d-join and tuple-substitution join

� Variants: left outer join, semi-join, anti-join

� Exposed in SQL Server (FROM clause)

� LATERAL clause in SQL standard

� Useful to invoke table-valued functions

7

13

Subquery removal

CUSTOMER

ScalarGb

ORDERS

SELECT

SELECT

1000000

<

SUBQUERY(X)

O_CUSTKEY

=

C_CUSTKEY

X:=

SUM

O_TOTALPRICE

CUSTOMER SGb(X=SUM(O_TOTALPRICE))

ORDERS

APPLY(bind:C_CUSTKEY)

SELECT(1000000<X)

SELECT(O_CUSTKEY=C_CUSTKEY)

14

Algebraization of SubQueries

� SQL Query:
� SELECT *, (SELECT C_NAME FROM

CUSTOMER
WHERE C_CUSTKEY = O_CUSTKEY)

FROM ORDERS

� Translated to
� ORDERS ApplyOJ (π [C_NAME]

σ [C_CUSTKEY = O_CUSTKEY]
CUSTOMER)

� In general:
� R ApplyOJ max1row(E(r))

� Subqueries with exists/not exists become
� R ApplySJ E(r)

� R ApplyASJ E(r)

8

15

Conditional Scalar Execution

� Expression
� CASE WHEN EXISTS(E1(r)) THEN E2(r) ELSE 0

END

� Translated to

�π CASE WHEN p = 1 THEN e2 ELSE 0 END (

(R Apply[semijoin, probe as p] E1(r))

Apply[outerjoin, pass-through p=1]

max1row(E2(r)) as e2)

16

Disjunction of SubQueries

� WHERE p(r) OR EXISTS(E1(r)) OR

EXISTS(E2(r))

� R ApplySJ ((σp(r) CT(1) UA E1(r) UA E2(r))

�CT(1): Constant Table returning 1

�UA: Union All

� Can also translate to apply with

passthrough

9

17

Quantification and NULLs

� Consider predicate 5 NOT IN S which is equivalent
to <>ALL

� The result of this predicate is as follows, for various
cases of set S:
1. If S = {} then p is TRUE.

2. If S = {1} then p is TRUE.

3. If S = {5} then p is FALSE.

4. If S = {NULL, 5} then p is FALSE.

5. If S = {NULL, 1} then p is UNKNOWN.

� (FOR ALL s in S: p)
� = (NOT EXISTS s in S: NOT p): But only without nulls

� In general predicate A cmp B is translated as
A <cmp’> B OR A IS NULL OR B IS NULL

� where cmp’ is the complement of cmp

18

Apply removal

� Executing Apply forces nested loops execution into the
subquery

� Apply removal: Transform tree to remove Apply
operator

� The crux of efficient processing

� Not specific to SQL subqueries

� Can go by “unnesting,” “decorrelation,” “unrolling loops”

� Get joins, outerjoin, semijoins, … as a result

10

19

Apply removal

CUSTOMER SGb(X=SUM(O_TOTALPRICE)

ORDERS

APPLY(bind:C_CUSTKEY)

SELECT(1000000<X)

SELECT(O_CUSTKEY=C_CUSTKEY)

CUSTOMER

Gb[C_CUSTKEY] X = SUM (O_TOTALPRICE)

ORDERS

LEFT OUTERJOIN (O_CUSTKEY = C_CUSTKEY)

SELECT (1000000 < X)

Apply does not add expressive power to relational algebra

Removal rules exist for different operators

20

Why remove Apply?

� Goal is NOT to avoid nested loops execution,
but to normalize the query

� Queries formulated using “for each” surface may
be executed more efficiently using set-oriented
algorithms

� … and queries formulated using declarative join
syntax may be executed more efficiently using
nested loop, “for each” algorithms

11

21

Removing Apply Cont.

� Apply removal that preserves the size of the
expression.
� With Apply

� ORDERS ApplyOJ
(σ[C_CUSTKEY = O_CUSTKEY] CUSTOMER)

� Removing apply
� ORDERS OJ [C_CUSTKEY = O_CUSTKEY] CUSTOMER

� Apply removal that duplicates subexpressions.

� Apply removal not always possible
� max1row/pass-through predicates, opaque functions

22

Magic Sets

� Originally formulated for recursive query

processing

� Special case for non-recursive queries

12

23

Magic Sets with Group By

� Other options

�B: Pull groupby above join

�C: “Segmented execution”, when R and S

are the same

� E.g. Select all students with the highest mark

24

Reordering Semijoins and Antijoins

� Pushing down semi/anti joins

� Converting semi-join to join (to allow

reordering)

�How about anti-joins?

13

25

Subquery Disjunctions

� generates an antijoin with predicate

� which can be rewritten using

� Another useful rule

26

Categories of execution strategies

select …

from customer

where exists(… orders …)

and …

apply

customer orders lookup

apply

orders customer lookup

hash / merge join

customer orders

forward lookup reverse lookupset oriented

semijoin

customer orders

normalized logical tree

14

27

Forward lookup

CUSTOMER ORDERS Lkup(O_CUSTKEY=C_CUSTKEY)

APPLY[semijoin](bind:C_CUSTKEY)

The “natural” form of subquery execution

Early termination due to semijoin – pull execution model

Best alternative if few CUSTOMERs and index on ORDER exists

28

Reverse lookup

ORDERS CUSTOMERS Lkup(C_CUSTKEY=O_CUSTKEY)

APPLY(bind:O_CUSTKEY)

Mind the duplicates

Consider reordering GroupBy (DISTINCT) around join

DISTINCT on C_CUSTKEY

ORDERS

CUSTOMERS Lkup(C_CUSTKEY=O_CUSTKEY)

APPLY(bind:O_CUSTKEY)

DISTINCT on O_CUSTKEY

15

29

Subquery processing overview

SQL without

subquery

“nested loops”

languages

SQL with

subquery

relational expr

without Apply

relational expr

with Apply

logical

reordering

set-oriented

execution

navigational,

“nested loops”

execution

Parsing and normalization Cost-based optimization

Removal of Subquery

Removal of Apply physical

optimizations

30

The fine print

� Can you always remove subqueries?

� Yes, but you need a quirky Conditional Apply

� Subqueries in CASE WHEN expressions

� Can you always remove Apply?

� Not Conditional Apply

� Not with opaque table-valued functions

� Beyond yes/no answer: Apply removal can

explode size of original relational expression

16

31

Outline

� Query optimizer context

� Subquery processing framework

� Subquery disjunctions

32

Subquery disjunctions

select * from customer

where c_catgory = “preferred”

or exists(select * from nation where n_nation = c_nation and …)

or exists(select * from orders where o_custkey = c_custkey and …)

CUSTOMER

ORDERS

APPLY[semijoin](bind:C_CUSTKEY, C_NATION, C_CATEGORY)

SELECT

UNION ALL

NATION

SELECTSELECT(C_CATEGORY = “preferred”)

1

Natural forward lookup plan

Union All with early termination short-circuits “OR” computation

17

33

Apply removal on Union

CUSTOMER ORDERS

SEMIJOIN

UNION (DISTINCT)

SELECT(C_CATEGORY = “preferred”)

CUSTOMER NATION

SEMIJOIN

CUSTOMER

Distributivity replicates outer expression

Allows set-oriented and reverse lookup plan

This form of Apply removal done in cost-based optimization, not simplification

34

Optimizing Apply

� Caching of results from earlier calls

�Trivial if no correlation variables

� In-memory if few distinct values/small results

�May or may no be worthwhile if large results

� Asynchronous IO

� Batch Sort

18

35

Asynchronous IO
� Ask OS to prefetch data, continue doing other things

while prefetch is happening

� better use of resources, esp with multiple disks/CPUs

� SELECT <blah blah>

FROM PART natural join SUPPLIER natural join PARTSUPP

WHERE <restrictive selections>

AND PS_SUPPLYCOST = (SELECT MIN(PS_SUPPLYCOST)

FROM PARTSUPP, SUPPLIER

WHERE P_PARTKEY = PS_PARTKEY

AND S_SUPPKEY = PS_SUPPKEY)

� Plan used by SQL Server (how the hell did it come up with this?)

� where

36

Batch Sort

� Sort order of parameters can help inner query

� But sorting outer query can be time consuming

� esp if we stop after a few answers

� So: batch a group of outer parameters, sort

them, then invoke inner in sorted order

� Batch size increased step-wise

� so first few answers are fast at cost of more IO, later

ones optimize IO more but with some delay

19

37

Summary

� Presentation focused on overall framework for
processing SQL subqueries and “for each” constructs

� Many optimization pockets within such framework – you
can read in the paper:

� Optimizations for semijoin, antijoin, outerjoin

� “Magic subquery decorrelation” technique

� Optimizations for general Apply

� …

� Goal of “decorrelation” is not set-oriented execution, but
to normalize and open up execution alternatives

38

A question of costing

Fwd-lookup …

Set-oriented execution …

Bwd-lookup …

10ms to 3 days

2 to 3 hours

10ms to 3 days

Optimizer that picks the right strategy for you … priceless

, cases opposite to fwd-lkp

20

39

Execution Strategies for Semijoin

� Outer query on orders, exists subquery on

lineitem (Section 6.1)

40

Execution Strategies for Antijoin

� Outer query uses only orders, exists

subquery on lineitem

21

41

Strategies for Subquery Disjunction

� Section 7.1: One disjunction is a select,

other is an exists on a subquery

42

Execution Optimization for Apply

