Execution Strategies
for SQL Subqueries

Mostafa Elhemali, César Galindo-
Legaria, Torsten Grabs, Milind Joshi
Microsoft Corp

With additional slides from material in paper,
added by S. Sudarshan

Motivation

Optimization of subqueries has been studied for some
time
Challenges
Mixing scalar and relational expressions
Appropriate abstractions for correct and efficient processing
Integration of special techniques in complete system

This talk presents the approach followed in SQL Server
Framework where specific optimizations can be plugged
Framework applies also to “nested loops” languages

« S
Outline

m Query optimizer context
m Subquery processing framework
m Subquery disjunctions

" JEE
Algebraic query representation

m Relational operator trees
m Not SQL-block-focused

SELECT SUM(T.a) =T GroupBy T.c, sum(T.a) GroupBy T.c, sum(T.a)
\ —_ \
FROMT, R) Select (T.b=R.b and R.c =5) Join (T.b=R.b)
WHERE T.b = R.b:lr | 2N
ANDR.c=5 Cross product _ T Select (R.c=5)
GROUP BY T.c VRN |
T R R

algebrize transform

Operator tree transformations

Select (A.x = 5) GropBy A.x, B.k, sum(A.y)
Join Join /JOi”
A/ \B A/ \B R 5
| | |
Join Join Hash-Join
Select (Ax=5) B GropBy A.x, sum(A.y) B A B
A A
Simplification / Exploration Implementation

normalization
5

" I
SQL Server Optimization process

cost-based optimization

simplify
T0 T1 pool of alternatives

(input)
.

use simplification / search(0) search(1) search(2) 5

normalization rules

use exploration and Yoo R g
implementation rules,
cost alternatives

T2

(output)

Plan Generation Overview

SQL without relational expr equivalent physical op-
subquery ——® without Apply » logicalre- — " timizations
orderings Section 8
Apply removal, / Sections 5. 6. 7
aka decorrelation
Section 4
“nested loops™
languages “‘-—-—-—-._._________‘_’ .
relational expr
with Apply
SQL with / .
subquery
Subquery removal,
Section 3
Parsing and normalization Cost-based optimization

Figure 1: Overview of plan generation for subqueries in SQL Server and structure of the paper

" D
Outline

m Query optimizer context
m Subquery processing framework
m Subquery disjunctions

" JEE
SQL Subquery

m A relational expression where you expect a
scalar
Existential test, e.g. NOT EXISTS(SELECT...)
Quantified comparison, e.g. T.a =ANY (SELECT...)
Scalar-valued, e.g. T.a = (SELECT...) + (SELECT...)

m Convenient and widely used by query
generators

select * SELECT
I~
from customer CUSTOMER/< «
where 100,000 < 1000000 SU?QUL’RY(X)
(select sum(o_totalprice) o
from orders seLeCT -
where o_custkey = c¢_custkey) ORPERS AN SoM

O _CUSTKEY C CUSTKEY O _TOTALPRICE

Subqueries: relational operators with scalar parents
Commonly “correlated,” i.e. they have outer-references

10

" S
Subquery removal

m Executing subquery requires mutual recursion
between scalar engine and relational engine

m Subquery removal: Transform tree to remove
relational operators from under scalar operators

m Preserve special semantics of using a relational
expression in a scalar, e.g. at-most-one-row

11

" J
The Apply operator

R Applys E(r) = UA, e g ({1} INE(F))
m R Apply E(r)

For each row r of R, execute function E on r
Return union: {r;} X E(ry) U {r)} XE(ry) U ...
Abstracts “for each” and relational function invocation
m Also known as d-join and tuple-substitution join
m Variants: left outer join, semi-join, anti-join
m Exposed in SQL Server (FROM clause)
LATERAL clause in SQL standard
m Useful to invoke table-valued functions 'z

Subquery removal

{SELECT)

TN SELECT(1000000<X)
f\qsroms_n{} < ‘
VN APPLY(bind:C_CUSTKEY)
1000000 SUBQUERY(X) / \
J . CUSTOMER ~ SGb(X=SUM(O_TOTALPRICE))
calar . ‘
et \ SELECT(O_CUSTKEY=C_CUSTKEY)
SLL‘LCI \ X,‘f ‘\\‘ ‘ —_ —
ORDERS = SUM ,: ORDERS

‘\ O CUSTKEY C CUSTKEY O '['O'['ALPRICR;/'

13

" JE
Algebraization of SubQueries

= SQL Query:
SELECT *, (SELECT C_NAME FROM
CUSTOMER
WHERE C_CUSTKEY = O_CUSTKEY)
FROM ORDERS
m Translated to

ORDERS Apply,, (17 [C_NAME]
o [C_CUSTKEY = O_CUSTKEY]
CUSTOMER)

m |n general:
R Apply, max1row(E(r))

m Subqueries with exists/not exists become
R Applys, E(r)
R Apply s, E(r)

14

= JEE
Conditional Scalar Execution

m Expression
CASE WHEN EXISTS(E1(r)) THEN E2(r) ELSE 0
END

m Translated to

T CASE WHEN p = 1 THEN e2 ELSE 0 END (
(R Apply[semijoin, probe as p] E1(r))
Apply[outerjoin, pass-through p=1]
max1row(E2(r)) as e2)

15

"
Disjunction of SubQueries

s WHERE p(r) OR EXISTS(E1(r)) OR
EXISTS(E2(r))

m R Applys, ((Gp(,) CT(1) UA E1(r) UA E2(r))
CT(1): Constant Table returning 1
UA: Union All

m Can also translate to apply with
passthrough

16

Quantification and NULLSs

Consider predicate 5 NOT INS which is equivalent
to <>ALL

The result of this predicate is as follows, for various
cases of set S:

If S ={} then p is TRUE.

If S ={1} then p is TRUE.

If S = {5} then p is FALSE.

If S = {NULL, 5} then p is FALSE.

If S = {NULL, 1} then p is UNKNOWN.

(FORALL s in S: p)

= (NOT EXISTS s in S: NOT p): But only without nulls

In general predicate A cmp B is translated as
A <cmp’>B OR A IS NULL OR B IS NULL

= where cmp’ is the complement of cmp

17

Apply removal

Executing Apply forces nested loops execution into the
subquery

Apply removal: Transform tree to remove Apply
operator

The crux of efficient processing

Not specific to SQL subqueries

Can go by “unnesting,” “decorrelation,” “unrolling loops”
Get joins, outerjoin, semijoins, ... as a result

18

Apply removal

SELECT(1000000<X)

‘ SELECT (1000000 < X)
APPLY(bind:C CUSTKEY) \

/ \ Gb[C_CUSTKEY] X = SUM (O_TOTALPRICE)
\
CUSTOMER SGb(X=SUM(O TOTALPRICE) LEFT OUTERJOIN (O_CUSTKEY =C_CUSTKEY)

‘ 7N
CUSTOMER ORDERS
SELECT(O CUSTKEY=C_CUSTKEY)

ORDERS

Apply does not add expressive power to relational algebra
Removal rules exist for different operators

19

.
Why remove Apply?

m Goal is NOT to avoid nested loops execution,
but to normalize the query

m Queries formulated using “for each” surface may
be executed more efficiently using set-oriented
algorithms

m ... and queries formulated using declarative join
syntax may be executed more efficiently using
nested loop, “for each” algorithms

20

10

Removing Apply Cont.

m Apply removal that preserves the size of the
expression.
With Apply
= ORDERS Apply
(o[C_CUSTKEY = O_CUSTKEY] CUSTOMER)

Removing apply
= ORDERS OJ[C_CUSTKEY = O_CUSTKEY] CUSTOMER

m Apply removal that duplicates subexpressions.
R Appbyn (ORa - 50 S) UAorp -1 1)
R INpa-54S UAR JNpp-15 T
m Apply removal not always possible

max1row/pass-through predicates, opaque functions
21

Magic Sets

m Originally formulated for recursive query
processing

m Special case for non-recursive queries
R Apply E(r) — R JNR =R’ DS
DS =R’ Apply E(r’)
R’ =distinct[R.r] R

22

11

" JEE
Magic Sets with Group By

A: R INprs) and pirx) Gsx=age S
M: R JN- = and p(r.x) (’g'S,x:agg R’ j%(r’,s) S)
m Other options
B: Pull groupby above join
C: “Segmented execution”, when R and S

are the same
m E.g. Select all students with the highest mark

23

e
Reordering Semijoins and Antijoins

m Pushing down semi/anti joins
(GarR) Shas) S = Gar R Sya. s S)

(GarR) ASTia $)S = Gar R ASTa 5 S)
m Converting semi-join to join (to allow
reordering)

R Shrs) S = Gleyw).any®) (R Joimyg) S)
ORDERS §7(CUSTOMER 7% SUPPLIER 7N LINEITEM)

How about anti-joins?

24

12

Subquery Disjunctions

SELECT COUNT (*)

FROM LINEITEM

WHERE I, SHIPDATE != ALL(SELECT O ORDERDATE
from ORDERS) N

m generates an antijoin with predicate
L SHIPDATE = O ORDERDATE OR L SHIPDATE IS NULL
m which can be rewritten using
(R ASTe10rp) S) = (R AS%1 S) ASTn S)
m Another useful rule
R Applys; (Eq(r1) UAE,(r;)UAEs(r3) ...) —>
(R Apphysy Ea(r1)) U R Apphs Ex(12)) U (R Apphisy Es(rs)) ..

25

g
Categories of execution strategies

select ...
from customer
where exists(... orders ...)

and ... \ .
SemUM normalized logical tree
customer orders
apply hash / merge join apply
v I Y I
customer orders lookup customer orders orders customer lookup
forward lookup set oriented reverse lookup

26

13

Forward lookup

APPLY[semijoin](bind:C_CUSTKEY)

CUSTOMER ORDERS Lkup(O_CUSTKEY=C CUSTKEY)

The “natural” form of subquery execution
Early termination due to semijoin — pull execution model
Best alternative if few CUSTOMERS and index on ORDER exists

27

Reverse lookup

DISTINCT on C_CUSTKEY

APPLY(bind:0_CUSTKEY)
/ AN
ORDERS CUSTOMERS Lkup(C_CUSTKEY=0_CUSTKEY)

APPLY (bind:0_CUSTKEY)
/ AN

DISTINCT on O_CUSTKEY CUSTOMERS Lkup(C_CUSTKEY=0_CUSTKEY)

ORDERS

Mind the duplicates
Consider reordering GroupBy (DISTINCT) around join

28

Subquery processing overview

SQL without relational expr , logical , set-oriented

subquery without Apply reordering execution
Removal of Apply physica\
optimizations
navigational,
“nested loops” “nested loops”
languages relational expr execution
with Apply
SQL with /
subquery Removal of Subquery
Parsing and normalization Cost-based optimization

29

g
The fine print

m Can you always remove subqueries?
Yes, but you need a quirky Conditional Apply
Subqueries in CASE WHEN expressions
m Can you always remove Apply?
Not Conditional Apply
Not with opaque table-valued functions
m Beyond yes/no answer: Apply removal can
explode size of original relational expression

30

15

Outline

m Query optimizer context
m Subquery processing framework
m Subquery disjunctions

31

" JE
Subquery disjunctions

select * from customer

where c_catgory = “preferred”

or exists(select * from nation where n_nation = ¢_nation and ...)
or exists(select * from orders where o_custkey = ¢_custkey and ...)

APPLY([semijoin](bind:C_CUSTKEY, C_NATION, C_CATEGORY)

CUSTOMER / UNIO‘N ALL
SELECT(C_CATEGORY = “preferred”) = SELECT SELECT
1 NATION ORDERS

Natural forward lookup plan

Union All with early termination short-circuits “OR” computation 52

16

Apply removal on Union

UNION (DISTINCT)
SELECT(C_CATEGORY = “preferred”) SEMIJOIN
CUSTOMER CUSTOMER ORDERS
SEMIJOIN

CUSTOMER NATION

Distributivity replicates outer expression
Allows set-oriented and reverse lookup plan
This form of Apply removal done in cost-based optimization, not simplification

33

" I
Optimizing Apply

m Caching of results from earlier calls
Trivial if no correlation variables
In-memory if few distinct values/small results
May or may no be worthwhile if large results
m Asynchronous IO

m Batch Sort

34

" JE
Asynchronous 10

m Ask OS to prefetch data, continue doing other things
while prefetch is happening

better use of resources, esp with multiple disks/CPUs
m SELECT <blah blah>
FROM PART natural join SUPPLIER natural join PARTSUPP
WHERE <restrictive selections>
AND PS_SUPPLYCOST = (SELECT MIN(PS_SUPPLYCOST)
FROM PARTSUPP, SUPPLIER
WHERE P_PARTKEY = PS_PARTKEY
AND S_SUPPKEY = PS_SUPPKEY)

m Plan used by SQL Server (how the hell did it come up with this?)

R Applhm (c[Rm = PS_SUPPLYCOST]

(Seekg p partiEy=ps parrxey PARTSUPP))
where

R = Gp parrrerm=mmes_svpprrcosn (PART JNVSUPPLIER gV

PARTSUPP) 35

= JEE
Batch Sort

m Sort order of parameters can help inner query
m But sorting outer query can be time consuming
esp if we stop after a few answers

m So: batch a group of outer parameters, sort
them, then invoke inner in sorted order

m Batch size increased step-wise

so first few answers are fast at cost of more 10, later
ones optimize IO more but with some delay

36

18

.
Summary

m Presentation focused on overall framework for
processing SQL subqueries and “for each” constructs

m Many optimization pockets within such framework — you
can read in the paper:

Optimizations for semijoin, antijoin, outerjoin
“Magic subquery decorrelation” technique
Optimizations for general Apply

m Goal of “decorrelation” is not set-oriented execution, but
to normalize and open up execution alternatives

37

A question of costing

Fwd-lookup ... 10ms to 3 days

Bwd-lookup ... 10ms to 3 days, cases opposite to fwd-lkp
Optimizer that picks the right strategy for you ... priceless

Set-oriented execution ... 2 to 3 hours

38

19

Execution Strategies for Semijoin

m Outer query on orders, exists subquery on
lineitem (Section 6.1)

1000000
T 100000 et &
¥ 10000
1000 | eemer oA ST T
3
g 100 PN
Z 10)// \
o« ~ N

1 : \‘

High - Low Low-Low Low - High

Selectivity combinations {ORDERS vs. LINEITEM)

= & = Set-Based Forward Lookup

+««fe = Reverse Lookup e S QL Server Optimizer Chaice

39

" JE
Execution Strategies for Antijoin

m QOuter query uses only orders, exists
subquery on lineitem

100000

10000

Response time (ms)

——t N ———————

1000
10 30 50 70 90

% Rows of ORDERS table

—+—Set-based Join Straightforward Apply

40

Strategies for Subquery Disjunction

m Section 7.1: One disjunction is a select,

other is an exists on a subauerv

Response time (ms)

10000000

1000000

100000

—

10000
20 30 40 50 GO0 70 80 a0
9% Rows of LINEITEM table

=+Split disjuncts Straightforward Apply

100

a4

Execution Optimization for Apply

90000
80000
Joooo
60000
50000
40000
30000
20000

Responetime (ms)

10000

JPE S o s s N RRaRE

-1000 4000 9000 14000 19000

Rows from LINEITEM

—+—Prefetch + Batch sort Straightforward apply

24000

42

21

