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Abstract. Query optimization is the most critical phase in query processing. In 
this paper, we try to describe synthetically the evolution of query optimization 
methods from uniprocessor relational database systems to data Grid systems 
through parallel, distributed and data integration systems. We point out a set of 
parameters to characterize and compare query optimization methods, mainly: (i) 
size of the search space, (ii) type of method (static or dynamic), (iii) modifica-
tion types of execution plans (re-optimization or re-scheduling), (iv) level of 
modification (intra-operator and/or inter-operator), (v) type of event 
(estimation errors, delay, user preferences), and (vi) nature of decision-
making (centralized or decentralized control). 

The major contributions of this paper are: (i) understanding the mechanisms 
of query optimization methods with respect to the considered environments and 
their constraints (e.g. parallelism, distribution, heterogeneity, large scale,  
dynamicity of nodes) (ii) pointing out their main characteristics which allow 
comparing them, and (iii) the reasons for which proposed methods become very 
sophisticated. 

Keywords: Relational Databases, Query Optimization, Parallel and Distributed 
Databases, Data Integration, Large Scale, Data Grid Systems. 

1   Introduction 

At present, most of the relational database application programs are written in high-
level languages integrating a relational language. The relational languages offer gen-
erally a declarative interface (or declarative language like SQL) to access the data 
stored in a database. Three steps are involved for query processing: decomposition, 
optimization and execution. The first step decomposes a relational query (a SQL 
query) using logical schema into an algebraic query. During this step syntactic, se-
mantic and authorization are done. The second step is responsible for generating an 
efficient execution plan for the given SQL query from the considered search space. 
The third step consists in implementing the efficient execution plan (or operator tree) 
[51]. In this paper, we focus only on query optimization methods. We consider multi-
join queries without “group” and “order by” clauses. 

Work related to the relational query optimization goes back to the 70s, and began 
mainly with the publications of Wong et al. [138] and Selinger et al. [112]. These papers 
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motivated a large part of the database scientific community to focus their efforts on this 
subject. The optimizer’s role is to generate, for a given SQL query, an optimal (or close to 
the optimal) execution plan from the considered search space. The optimization goal is to 
minimize response time and maximize throughput while minimizing optimization costs.  

The general problem of the query optimization can be expressed as follows [41]: 
let a query q, a space of the execution plans E, and a cost function cost (q) associated 
to the execution of p ∈E, find the execution plan calculating q such as the cost (q) is 
minimum. An optimizer can be decomposed into three elements [41]: a search space 
[85] corresponding to the virtual set of all possible execution plans corresponding to a 
given query, a search strategy generating an optimal (or close to the optimal) execu-
tion plan, and a cost model allowing to annotate operators' trees in the considered 
search space. 

Because of the importance, and the complexity of the query optimization problem [21, 
75, 82, 103], the database community made a considerable effort to develop approaches, 
methods and techniques of query optimization for various Database Management Sys-
tems DBMS (i.e. relational, deductive, distributed, object, parallel) [7, 9, 21, 26, 47, 52, 
61, 62, 79, 82, 103, 125]. The quality of query optimization methods depends strongly on 
the accuracy and the efficiency of cost models [1, 42, 43, 66, 99, 141]. 

There are two types of query optimization approaches [27]: static, and dynamic. 
During more than twenty years, most of the DBMSs have used the static optimization 
approach which consists of generating an optimal (or close to the optimal) execution 
plan, then executing it until the termination. All the methods, using this approach, 
suppose that the values of the parameters used (e.g. sizes of temporary relations, se-
lectivity factors, availability of resources) to generate the execution plan are always 
valid during its execution. However, this hypothesis is often unwarranted. Indeed, the 
values of these parameters can become invalid during the execution due to several 
causes [98]: 

1. Estimation errors: the estimation on the sizes of the temporary relations and the 
relational operator costs of an execution plan can be erroneous because of the ab-
sence, the obsolescence, and the inaccuracy of the statistics describing the data, 
or the errors on the hypotheses made by the cost model. For instance, the depend-
ence or the independence between the attributes member of a selective clause 
(e.g. town=’Paris’ and country = ‘France’). These estimation errors are propa-
gated in the rest of the execution plan. Moreover, [70] showed that the propaga-
tion of these errors is exponential with the number of joins.  

2. Unavailability of resources: at compile-time, the optimizer does not have any 
information about the system state when the query will run, in particular, about 
the availability of resources to allocate (e.g. available memory, CPU load). 

 
Because of reasons quoted previously, the execution plans generated by a static  
optimizer can be sub-optimal. To correct this sub-optimality, some recent researches 
suggest improving the accuracy of parameter values used during the choice of the 
execution plan. A first solution consists in improving the quality of the statistics on 
the data by using the previous executions [1]. This solution was used by [20] to  
improve the estimation accuracy of the operator selectivity factors and by [117] to 
estimate the correlation between predicates. The second solution proposed by [80] 
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concentrates on the distributed queries. The optimizer generates an optimal (or close 
to the optimal) execution plan, having deduced the data transfer costs and the cardi-
nalities of temporary relations. In this solution, the query operators are executed on a 
tuple subset of the operands to estimate the data transfer costs and the cardinalities of 
temporary relations. In both solutions, the selected execution plan is executed until 
the termination, whatever are the changes in execution environment. 

As far as the dynamic optimization approach, it consists in modifying the sub-
optimal execution plans at run-time. The main motivations to introduce ‘dynamicity’ 
into query optimization [27], particularly during the resource allocation process, are 
based on: (i) willing to use information concerning the availability of resources, (ii) 
the exploitation of the relative quasi-exactness of parameter values, and (iii) the re-
laxation of certain too drastic and not realistic hypotheses in a dynamic context (e.g. 
infinite memory). In this approach, several methods were proposed in different envi-
ronments: uni-processor, distributed, parallel, and large scale [3, 4, 6, 7, 8, 12, 14, 15, 
17, 18, 27, 30, 37, 48, 50, 56, 59, 72, 73, 74, 76, 87, 95, 98, 101, 102, 105, 106, 107, 
140]. All these methods have the capacity of detecting the sub-optimality of execution 
plans and modifying these execution plans to improve their performances. They allow 
to the query optimization process to be more robust with respect to estimation errors 
and to changes in execution environment. 

The rest of this paper is devoted to provide a state of the art concerning the evolu-
tion of query optimization methods in different environments (e.g. uni-processor, par-
allel, distributed, large scale). For each environment, we try to describe synthetically 
some methods, and to point out their main characteristics [67, 98], especially, the  
nature of decision-making (centralized or decentralized), the type of modification  
(re-optimization or re-scheduling), the level of modification (intra-operator and/or 
inter-operator), and the type of event (estimation errors, delay, user preferences).  

The major contributions of this paper are: (i) understanding the mechanisms of 
query optimization methods with respect to considered environments and their con-
straints, (ii) pointing out their main characteristics which allow comparing them, and 
(iii) the reasons for which proposed methods become very sophisticated. 

This paper is organized as follows: firstly, in section 2, we introduce two main 
search strategies (enumerative strategies, random strategies) for uni-processor rela-
tional query optimization. Then, in section 3 we present a synthesis of some methods 
in a parallel relational environment by distinguishing the two phase and one phase 
approaches. Section 4 provides global optimization methods of distributed queries. 
Section 5, describes, in data integration (mediation) systems, both types of dynamic 
optimization methods: centralized and decentralized. Section 6 is devoted to give an 
overview of query optimization in large scale environments, particularly in data grid 
environments. Lastly, before presenting our conclusion, in section 7, we provide a 
qualitative analysis of described optimization methods, and point out their main char-
acteristics which allow comparing them. 

2   Uni-processor Relational Query Optimization 

In the uniprocessor relational systems, the query optimization process consists of two 
steps: (i) logical optimization which consists in applying the classic transformation 
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rules of the algebraic trees to reduce the manipulated data volume, and (ii) physical 
optimization which has roles of [90]: (a) determining an appropriate join method for 
each join operator by taking into account the size of the relations, the physical organi-
zation of the data, and access paths, and (b) generating the order in which the joins are 
performed [69, 84] with respect to a cost model. In this section, we focus on physical 
optimization methods. We begin at first, to define, characterize, and estimate the size 
of the search space. Then, we present search strategies. These are based either on 
enumerative approaches, or random approaches. Finally, we synthesize some analyses 
and comparisons stemming from performance evaluations of proposed strategies. 

2.1   Search Space 

2.1.1   Characteristics  
In relational database systems [31, 120, 130], each query execution plan can be repre-
sented by a processing tree where the leaf nodes are the base relations and the internal 
nodes represent operations. Different tree shapes have been considered: left-deep tree, 
right-deep tree, and bushy tree. The Fig.1 illustrates tree structures of relational opera-
tors associated with the multi-join query R1∞ R2 ∞ R3 ∞ R4 ∞ R4.  
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Fig. 1. Tree shape 

A search space can be restricted according to the nature of the execution plans and 
the applied search strategy. The nature of execution plans is determined according to 
two criteria: the shape of the tree structures (i.e. left-deep tree, right-deep tree and 
bushy tree) and the consideration of plans with Cartesian products. 

The queries with a large number of join predicates make the difficulty to manage 
associated search space which becomes too large. That is the reason why some au-
thors [122, 123] chose to eliminate bushy trees. This reduced space is called valid 
space. This choice is due to the fact that this valid space represents a significant por-
tion of the search space, which is the optimal solution. However, this assertion was 
never validated. Others, such as [100], think that these methods decrease the chances 
to obtain optimal solutions. Several examples [100] show the importance of the im-
pact of this restrictive choice. 
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2.1.2   Search Space Size 
The importance of the query shape1 (i.e. linear, star or clique) and of the nature of the 
execution plans is due to their incidence on the size of the search space. If we have N 
relations in a multi-join query, the question is to know how many execution plans 
being able to be built, taking into account the nature of the search space. The size of 
this space also varies according to the shape of the query. In this case, [85, 124] pro-
posed a table illustrating the lower and superior boundary markers of the search space 
by taking into account the nature of this one and characteristics of the queries which 
are: the type of a query (i.e. repetitive, ad-hoc), the query shape, and the size of a 
query (i.e. simple, medium, complex). 

The results presented in [85, 124] point out the exponential growth of the number 
of execution plans according to the number of relations. This shows the difficulty to 
manage a solution set which is sometimes very large. Therefore, this brings the neces-
sity of adapting the search strategy to the query characteristics. 

2.2   Search Strategies 

In the literature, we distinguish, generally, two classes of strategies allowing to solve 
the problem of the join scheduling for the query optimization: 

- Enumerative strategies 
- Random strategies. 

The description of the principles of search strategies leans on the generic search algo-
rithms described in [84] and on the comparative study between the random algorithms 
proposed by [69, 70, 86, 122, 123]. 

2.2.1   Enumerative Strategies 
These strategies are based on the generative approach. They use the principle of dy-
namic programming (e.g. optimizer of System R). For a given query, the set of all 
possible execution plans is enumerated. This can lead to manage a search space too 
large in case of complex queries. They build execution plans from sub-plans already 
optimized by starting with all or part of base relations of a query. In the whole of gen-
erated solutions, only the optimal execution plan is returned for the execution. How-
ever, the exponential complexity of such strategies has led many authors to propose 
more efficient strategies. So enumerative strategies allow to discard bad states by in-
troducing heuristics (e.g. depth- first search with different heuristics [123]). Several 
strategies are described in [84]. 

2.2.2   Random Strategies  
The enumerative strategies are inadequate in optimizing complex queries because the 
number of execution plans quickly becomes too large [85, 124]. To resolve this prob-
lem, random strategies are used. The transformational approach characterizes this kind 
of strategies. Several rules of transformation (e.g.; Swap, 3Cycle, Join commutativity/ 
associativity) were proposed [69, 70, 122] where the validity depends on the nature of 
the considered search space [86]. 
                                                           
1

  The query shape indicates the way where the relations are joined by means of predicates, as 
well as the number of referenced relations. 
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The random strategies start generally with an initial execution plan which is itera-
tively improved by the application of a set of transformation rules. The start plan(s) 
can be obtained through an enumerative strategy like Augmented Heuristics. Two 
optimization techniques were abundantly already studied and compared: the Iterative 
Improvement and the Simulated Annealing [68, 69, 70, 84, 122, 123].  

The performance evaluation of these strategies is very hard because of strong in-
fluence, at the same time, of random parameters and factors. The main difficulty lies 
in the choice of these parameters (e.g local / global minimum detection, algorithm 
termination criterion, initial temperature, termination criterion of inner iteration). In-
deed, the quality of execution and the optimization cost depend on the quality of 
choice. After the tuning of the parameters, the comparison of the algorithms will al-
low to determine the most efficient random algorithm for the optimization problem of 
complex queries. However, the results obtained by [122] and by [69] differ radically 
because, for [122], the Iterative Improvement algorithm is better than the Simulated 
Annealing, while for [69], we have the opposite (even if for these last ones, their con-
clusion remains more moderate). The parameters were determined thanks to experi-
ments with various alternatives, in the case of [69], or by applying the methodology 
of the factorial experiments [122]. An example of the use of these factorial experi-
ments is given in [121]. 

2.3   Discussion 

In [69, 70, 122, 123], the authors concentrated their efforts on the performance 
evaluation of the random algorithms for Iterative Improvement and the Simulated 
Annealing. However, the difference of their results underlines the difficulty of such 
evaluation. Indeed, for Swami and Gupta [122, 123], the Simulated Annealing algo-
rithm is never superior to the Iterative Improvement whatever the time dedicated to 
the optimization is, while for Ioannidis and Cha Kong [69, 70], it is better than the 
Iterative Improvement algorithm after some optimization time. 

In [69, 70], the authors try to explain this difference. First, the considered search 
space is restricted to the left-deep trees in the case of Swami and Gupta [122, 123], 
while Ioannidis and Cha Kong [69, 70] study the search space in its totality. In [70], 
the authors spread their works on the study of the shape of the cost function by stress-
ing the analysis of the linear and bushy spaces, and take into account only results 
waited in this restricted portion by the search space in order to keep the comparison 
coherent. The second difference concerns the join method. Swami and Gupta choose 
the hash join method, while Ioannidis and Kong [69, 70] use two join methods: nested 
loop and sort merge join. They choose even integrating the hash join method to show 
that their results do not depend on the method chosen. Another variant in the cost 
evaluation of the execution plan (CPU time for the first ones and I/O time for the sec-
ond) has, either, no significant incidence on the difference of the results. On the other 
hand, they intuitively think that the number of nearest plans, the determination of the 
local minimum in the case of the Iterative Improvement algorithm and the definition 
of the transformation rules to be applied are important elements in the explanation of 
this difference. For example, if the number of nearest plans is not rather large, we can 
discard potential local minima and even indicate it as such, while they are not in real-
ity. In that case, the results are skewed. The transformation rules applied by Swami 
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and Gupta [122, 123] generates nearest execution plans with a significant difference 
in cost [69]. Hence, the Simulated Annealing algorithm has no more the possibility of 
crossing a long moment in this zone of low-cost plans and offers then insufficient 
improvement. However, the algorithm of the Iterative Improvement can easily reach a 
local minimum. 

The termination criterion of the Simulated Annealing defined in [122] does not 
give the time to the probability to decrease sufficiently. Indeed, when the time limit is 
reached, the probability to accept execution plans with high cost is still too high and 
the produced optimal plan has a still too expensive. 

3   Parallel Relational Query Optimization  

Parallel relational query optimization methods [57] can be seen as an extension of 
relational query optimization methods developed for the centralized systems, by inte-
grating the parallelism dimension. Indeed, the generation of an optimal parallel execu-
tion plan (or close to optimal), is based on either a two-phase approach [60, 63], or on 
a one-phase approach [24, 86, 111, 142]. A two-phase approach consists in two se-
quential steps: (i) generation of an optimal sequential execution plan (i.e. logical op-
timization followed by a physical optimization), and (ii) resource allocation to this 
plan. The last step consists, at first, in extracting the various sources of parallelism, 
then, to assign the resources to the operations of the execution plan by trying to meet 
the allocation constraints (i.e. data locality, and various sources of parallelism). As far 
as the one-phase approach, the steps (i) and (ii) are packed into one integrated com-
ponent [90]. The fundamental distinction between both approaches is based on the 
query characteristics and the shape of the search space [57]. 

In the proposals concerning parallel relational query optimization few authors [55, 
61, 79] proposed a synthesis dedicated to parallel relational query optimization meth-
ods. Hasan et al [61] have briefly introduced what they consider the major issues to be 
addressed in parallel query optimization. The issues that are tackled in [79] include, 
mainly, the placement of data in the memory, concurrent access to data and some al-
gorithms for parallel query processing. These algorithms are restricted to parallel 
joins. As far as proposals [55], the authors describe, in a very synthetic way, data 
placement, static and dynamic query optimization methods, and accuracy of the cost 
model. Nevertheless, the authors do not show how we can compare the two optimiza-
tion approaches, and how we can choose the appropriate optimization approach. Last 
year, Taniar et al. [126] provide the latest principles, methods and techniques of paral-
lel query processing in their book. 

The rest of the section is devoted to provide an overview of some static and dy-
namic query optimization methods in a parallel relational environment by distinguish-
ing the two phase and one phase approaches [57]. 

3.1   Static Parallel Query Optimization Methods  

In this sub-section, we describe some one-phase and two-phase optimization strate-
gies of parallel queries in a static context.  
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3.1.1   One-Phase Optimization  
In a one-phase approach, Schneider et al. [111] propose a parallel algorithm to proc-
ess a query compound of N joins for each search space shape (i.e. left-deep tree, right-
deep tree and bushy tree, Cf. Fig. 1). The authors consider two methods of hash join: 
the simple hash join and the hybrid hash join. [111] reports for each search space 
shape, the need in memory size, the potential scheduling, and the capacity to exploit 
the different forms of parallelism. The study includes the case where the memory re-
source is unlimited and the more realistic case where the memory is limited. In the 
first case, the right deep tree is the most adapted to best exploit the parallelism. But, 
this structure is no longer the best when the memory is limited. Indeed, there are sev-
eral strategies allowing to exploit the capabilities of the right deep trees when the 
memory is limited. The strategy, named "Static Right Deep Scheduling" [111], con-
sists in cutting the right deep tree in several separate sub-trees in a way that the sum 
of the sizes of all the hash tables of a sub-tree can fit in memory. The temporary re-
sults of the execution of sub-trees T1, T2 …Tn will be stored in disks. The drawback 
of this strategy is that the number of sub-trees increases with the number of base rela-
tions which are not held stored in memory. Hence, this method reduces the pipeline 
chain and increases the response time. Two methods were proposed, one is based on 
segmented right-deep trees [24], and the other one is based on zigzag trees [142]. The 
objective of these two methods is to avoid the investigation of the bushy tree search 
space and then simplifying the optimization process. 

3.1.2   Two-Phase Optimization  
In the two-phase approach, Hasan et al. [23, 60] propose several scheduling strategies of 
pipelined operators. To improve the response time, they develop an execution model 
ensuring the best trade-off between parallel execution and communication overhead. 
Several scheduling algorithms (i.e. processor allocation) are then proposed. They are 
inspired by the heuristic LPT (Largest Processing Time). These algorithms exploit pipe-
line and intra-operation (partitioned) parallelisms. Indeed, the authors firstly propose 
scheduling algorithms exploiting only the pipeline parallelism (POT Pipelined Operator 
Tree Scheduling), then they show how to extend these algorithms to take into account 
the intra-operation parallelism and the communication costs. The scheduling principle 
of the POT is decomposed into several steps [23]: (i) generation of operators' monoto-
nous tree [60] from operators' tree, (ii) fragmentation of the monotonous tree which 
consists in cutting the monotonous tree in a set of fragments, and (iii) scheduling which 
consists in assigning processors to fragments. The main difficulty lies in the determina-
tion of the number of fragments and the size of each fragment by insuring the best 
tradeoff between parallel execution - communication overhead. 

As for the works of Garofalakis et al. [44, 45], they can be seen as an elegant exten-
sion of the propositions of [23, 41, 60]. Indeed, the works of [44, 45] take into account 
the fact that the parallel query execution requires the allocation of several resource 
types. They also introduce an original way to resolve this resource allocation by a simul-
taneous scheduling (e.g. parallelism extraction) and mapping method. First, [44] present 
a scheduling and mapping static strategy on a shared nothing parallel architecture, con-
sidering the allocation of several “preemptive” resources (e.g. processors). Next, the 
authors extend their own works in [45] for hybrid multi-processor architecture. This 
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extension consists, mainly, in taking into account the "no preemptive" resource (e.g. 
memory) in their scheduling and mapping method. 

3.2   Dynamic Parallel Query Optimization Methods 

The main motivations to introduce ‘dynamicity’ into query optimization [27], in par-
ticular in the resource allocation strategies, are based on: (i) the will to use,, informa-
tion concerning the availability of the resources to allocate, (ii) the exploitation of the 
relative quasi-exactness of the metrics, and (iii) the relaxation of certain too drastic 
and not realistic hypotheses in a dynamic context. This sub-section describes in a syn-
thetic way some one-phase and two phase parallel query optimization strategies. It 
should be pointed out that the proposed resource allocation methods become very 
complex and sophisticated in such a dynamic context.  

3.2.1   One-Phase Optimization 
In this approach, the majority of work point out the importance of the determination 
of the join operation parallelism degree and the resource allocation method (e.g. proc-
essors and memory). Thus, it becomes interesting to synthesize some methods pro-
posed in the literature, mainly [19, 81, 96, 107]. 

In their most recent work Brunie et al. [18, 19, 81] are not only interested in a 
multi-join process in a multi-user context, but also consider the current system state in 
terms of multi-resource contention. [18] studied, more generally, the relational query 
optimization on shared nothing architecture. The optimizer MPO (Modular Parallel 
query Optimizers) [81] determines dynamically the intra-operation parallelism degree 
of the join operators of a bushy tree. The authors suggest a dynamic heuristic to re-
source allocation in four steps applied in the following order: (i) Preservation of the 
data locality (or “data localization”), (ii) Size of the memory, (iii) I/O Reduction, and 
(iv) Operation serialization of a bushy tree:  

The proposals of Mehta et al. [96] and Rahm et al. [107] were developed inde-
pendently of one-phase and two-phase approaches. Furthermore, their proposals are 
very representative and describe relevant and original solutions with respect to the 
problems identified above (i.e. determination of the parallelism degree and the re-
source allocation methods), we chose to include them in the one-phase approach.  

Mehta et al. [96] propose four algorithms (Maximum, MinDp, MaxDp, and Rate-
Match) to determine the join parallelism degree independently of the initial data 
placement. The originality of the algorithm Rate tries to make correspond the produc-
tion rate of the result tuples of an operator with the consumption rate of next operator 
tuples. Then, the authors describe six alternative methods of processor allocation in 
the clones of a unique join operator. They are based on heuristics such as the random 
or round-robin strategies, and on a model taking into account the effect of the re-
source contention. 

As for the proposals of Rahm et al. [107], who extend the works of [95], they 
tackle the problem of the dynamic workload balancing of several queries compounded 
in a single hash join on a shared nothing architecture. The intra-operation parallelism 
of a join as well as the choice of the execution processors of the join are determined in 
a “integrated” way (.i.e. in a single step) by considering the current system state. This 
state is characterized by using the resources “bottlenecks”: CPU, memory, and disk. 
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3.2.2   Two-Phase Optimization  
XPRS adapting scheduling method 
In the system XPRS (eXtended Postgres one Raid and Sprite) [118], implanted on 
shared memory parallel architecture, Hong [63] proposes an adaptive scheduling 
method of fragments stemming from the best sequential execution plan represented by 
a bushy tree. Fragments are used as unity of parallel execution and they will also be 
called tasks in this sub-section. The adaptive scheduling algorithm is based on the 
following three elements: (i) classification of the “IO-bound” and “CPU-bound” 
tasks, (ii) computing method of the IO-CPU balance point of two tasks, and (iii) 
mechanism of dynamic adaptation of the parallelism degree of a task.  

The proposed strategy by [63] consists in finding task scheduling which maximizes 
the use of the resources (i.e. processors and disks), and thus minimizes the response 
time. For that purpose, [63] defines two types of tasks: the IO-bound tasks (limited by 
Input / Output) and the CPU-bound tasks (limited by the number of processors). To 
maximize the resource utilization (e.g. when one of both tasks ends, a part of re-
sources remains unused), [63] proposes a dynamic adaptation method of the parallel-
ism degree of a task according to the implemented distribution methods (i.e. round-
robin, interval). This method is used in the adaptive scheduling so that the system 
always works on the IO-CPU balance point.  
 
Dynamic re-optimization methods of sub-optimal execution plans 
In Kabra et al. [77], where the idea is close Brunie and al. [18], the authors propose a 
dynamic re-optimization algorithm which detects and corrects sub-optimality of the 
execution plan produced by the optimizer at compile time. This algorithm is im-
planted in the system Paradise [33] which is based on the static optimizer OPT++ 
[78]. The authors show that sub-optimality of an execution plan can result: (i) in a 
poor join scheduling, (ii) in the inappropriate choice of the join algorithms, or (iii) in a 
poor resources allocation (CPU and memory). These three problems would be caused 
by erroneous or obsolete cost estimations, or another lack of information necessary 
for the static optimization, concerning to the system state. The basic idea of this algo-
rithm is founded on the collection of the statistics in some key-points during the query 
execution. The collected statistics correspond to the real values (observed during the 
execution), where the estimation is subject to error at compile time (e.g. size of a 
temporary relation). These statistics are used to improve the resource allocation or by 
changing the execution plan of the remainder of the query (i.e. the part of the query, 
which is not executed yet). 

As for the re-optimization process, it will be engaged only in case of estimation er-
rors really bringing sub-optimality besides of the execution plan. Indeed, on the basis 
of these new improved estimations, if they are different in a significant way from 
those supplied by the static optimizer a new execution plan of the remainder of the 
query is generated in the case where it brings a minimum benefit. 

4   Distributed Query Optimization 

The main motivation of the distributed databases is to present data which are distrib-
uted on networks of type LAN (Local Area Network) or of type WAN (Wide Area 
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Network) in an integrated way to a user. One of the objectives is to make data distri-
bution transparent to the user. In this environment, the main steps of the evaluation 
process of a distributed query are data localization and optimization. The optimization 
process [82, 103] takes into account network particularities. Indeed, contrary to the 
interconnection network of a multi-processor, networks have a lower bandwidth and a 
more important latency. For example, with a satellite connection the latency exceeds 
the half-second. These particularities are significant in cost of a distributed execution 
plan that authors [10, 103] are focused. They suppose that the communication cost is 
widely superior to those of the I/O and the CPU. So, many works focus on the com-
munication cost to the detriment of CPU and I/O costs. At present, with the improve-
ment of network performance, the cost functions used by the optimization process 
take into account the processing (i.e. CPU and I/O) and communication time together.  

The optimization process of a distributed query is composed of two steps [103]: a 
global optimization step and a local optimization step. The global optimization con-
sists of: (i) determining the best execution site for each local sub-query considering 
data replication, (ii) finding the best inter-site operator scheduling, and (iii) placing 
these last ones. As for local optimization, it optimizes the local sub-queries on each 
site which are involved to the query evaluation. The inter-site operator scheduling and 
their placement are very important in a distributed environment because they allow to 
reduce the data volumes exchanged on the network and consequently to reduce the 
communication costs. Hence, the estimation accuracy of the temporary relation sizes 
that must be transferred from a site to another one is important. In the rest of this sec-
tion, we present global optimization methods of distributed queries. They differ by the 
objective function used by the optimization process and by the type of approach: 
static or dynamic. 

4.1   Static Distributed Query Optimization 

In distributed environments, various research works concerning the static query opti-
mization are focused mainly on the optimization of inter-site communication costs. 
The idea is to minimize the data volume transferred between sites. In this perspective, 
there are two methods to process inter-site joins [103]: (i) the direct join by moving 
one relation or both relations, and (ii) the join based on semi-join. This alternative 
consists in replacing a join, whatever the class of algorithm implanting this join is, by 
the combination of a projection, and a semi-join ended by a join [25]. The cost of the 
projection can be minimized by encoding the result [133]. The benefit of a join based 
on semi-join with respect to a direct joint is proportional in the join operator selectiv-
ity [134]. According to the relation profiles (e.g. relation size), the optimizer will 
choose the approach which minimizes the data volume transferred between sites. For 
example, the SDD-1 system [10] often uses the join based on semi-join. However, 
System R* [113] avoids to use it. Indeed, the use of a join based on semi-join can 
increase the query processing time. Mackert  and Lohman [91] showed the impor-
tance of the local processing cost in the performance of a distributed query. Further-
more, its consideration by the optimizer significantly increases the size of the search 
space. Indeed, in a query, there are several possibilities of join based on semi-join for 
a given relation. The number of join based on semi-join is an exponential function 
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which depends of the number of temporary relations resulting from local sub-queries 
[103]. This explains why many optimizers do not use this alternative. 

The quality of a distributed execution plan which is generated by the global opti-
mization process depends on the accuracy of the used estimations. However, it is dif-
ficult to estimate the parameters (e.g. relation profile, resource availability) used by 
the optimizer. Generally, the used cost models made the assumption of processor and 
network uniformity. These cost models assume that all processors and network  
connections have the same speed and bandwidth, like in a parallel environment. Fur-
thermore, they do not take into account the workload of processors nor that of the 
network. Based on these observations, several works [80, 119] try to improve the ac-
curacy of these parameters. In this objective the Mariposa distributed DBMS [119] 
leans on an economic model in which querying servers buy data from data server. 
Each query Q, which is decomposed into several sub-queries Q1, Q2,…, QN, is ad-
ministered by a broker. A broker obtains bids for a sub-query Qi from various sites. 
After choosing the better bid, the broker notifies the winning site. The advantage of 
this method is that it leans on the local cost models of every DBMS which can par-
ticipate in the query evaluation. So, it considers the processor heterogeneity and takes 
into account their workload. 

[80] propose that the optimizer generates an optimal (or close to the optimal) 
execution plan, having deduced the data transfer costs and the cardinalities of tem-
porary relations. In this solution, the operators of a query are executed on a tuple 
subset of the operands to estimate the data transfer costs and the cardinalities of 
temporary relations. After deduced the cost of these parameters, an optimal execu-
tion plan is generated and executed until the termination, whatever the changes in 
execution environment are.  

4.2   Dynamic Distributed Query Optimization 

A solution to correct the sub-optimality of an execution plan consists in changing the 
operation scheduling at run-time. In the multi-database MIND system, Ozcan et al. 
[102] proposed strategies for dynamic re-scheduling of inter-site operators (e.g., join, 
union) to react to the inaccuracies of estimations. The inter-site operators can be exe-
cuted as soon as two sub-queries which are executed on different sites produced their 
results. These strategies use the partial results available at run-time to define the 
scheduling of the executions between the inter-site operators. The query processing is 
done in two steps [37]: 

1. Compilation. During this step, a global query is decomposed into local sub-
queries. The sub-queries are sent to different sites to be executed in parallel. 

2. Dynamic scheduling. This step defines a dynamic scheduling between the opera-
tions consuming the results of sub-queries sent on sites. When a sub-query pro-
duces its result, a threshold is associated to the result. This threshold is used to 
determine if the result must be consumed immediately to execute a join with an-
other result already available, or if the consumption of this result will be delayed 
while waiting for another result, which is unavailable in this moment. The 
threshold associated with a result is calculated according to the costs and selectiv-
ity factors of all joins connected to this result.  
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This scheduling strategy reduces the uncertainty of estimations since it is based on the 
execution times of local sub-queries. Moreover, it avoids the needs to know the cost 
models of the various databases.  

5   Query Optimization in Data Integration Systems 

Data integration systems extend [22, 53, 88, 127, 128, 136] the distributed database 
approach to multiple, autonomous, and heterogeneous data sources by providing uni-
form access (same query interface in read only to all sources). We use the term data 
source to refer any data collection which his owner wishes to share with other users. 
The main differences of a distributed database approach are the number of data 
sources and the heterogeneity of the data sources. The distributed database approach 
addresses about tens of distributed databases while data integration system approach 
can scale up to hundreds of data sources [104]. In addition to the material heterogeneity 
(i.e. CPU, I/O, network) due to the environment, the data sources are heterogeneous by 
their data structure (e.g. relational or object). Moreover, the software infrastructures 
allowing the access to data sources have different capabilities for processing queries. 
For example, a phone book service which requires the name of a person to return a 
phone number is a data source where the access is restricted. In this context, we need 
new operators in order to access to data sources and to, for instance, join two  
relations. Consider an execution plan that needs a relational join between Employee 
(empId, name) and Phone (name, phoneNumber) tables on their name attribute. In a 
standard join both of the following fragments: Join (Employee, Phone) and Join 
(Phone, Employee) are valid since join is a commutative operator. However, with 
restricted sources, the second fragment Join (Phone, Employee) on name attribute is 
not valid, since Phone requires the value of the name attribute in order to return the 
value of the phoneNumber. In consequence, we need a new join operator which is 
asymmetric in nature, also known as dependent join Djoin [46]. The asymmetry of 
this operator causes the search space to be restricted and raises the issue of capturing 
valid (feasible) execution plans [92, 93, 139].  

In an environment with hundreds of data sources connected on Internet it is even 
more difficult to estimate, at compile time, the availability of the resources like net-
work, CPU or memory. Hence, many authors propose dynamic optimization strategies 
to correct the sub-optimality of execution plans at runtime. Initially, proposed meth-
ods are centralized [3, 4, 7, 14, 15, 32, 74, 109]. A dynamic optimization method is 
said to be centralised if there is a unique process, generally the optimiser, which is 
charged to supervise, control and modify the execution plans. This process can be 
based on other modules ensuring the production of necessary information for the 
modifications and the control of an execution plan.  On other hand, in this environ-
ment, two phenomena that occur frequently are significant: initial delays before data 
start arriving and bursty arrivals data thereafter [72]. In order to react to these unpre-
dictable data arrival rate, several authors propose to decentralize the control inside the 
operator [72, 131, 132]. The idea is to produce most quickly as possible a part of the 
result with the already arrived tuples during the waiting of operand tuples. 
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In the rest of the section, we present the specific operators to the data integration, 
at first, then we describe both types of dynamic optimization methods: centralized and 
decentralized. 

5.1   Operators for Restricted Source Access 

Consider the execution plan presented previously that needs a relational join between 
Employee (empId, name) and Phone (name, phoneNumber) tables. The tables can be 
modeled with the concept of ‘binding patterns’ as introduced in [108]. Binding pat-
terns can be attached to the relational table to describe its access restrictions due to the 
reasons of confidentiality or performance issues. A binding pattern for a table R(X1, 
X2, . . . , Xn) is a partial mapping from {X1, X2, . . . , Xn} to the alphabet {b, f} [93]. 
For those attributes mapped to ‘b’, the values should be supplied in order to get in-
formation from R while the attributes mapping to ‘f’ do not require any input in order 
to return tuples from R. If all the attributes of R are mapped to ‘f’ then it is possible to 
get all the tuples of R without any restriction (e.g. with a relational scan operator). 
The binding patterns of the tables of our example are as follows: Employee (empIdf, 
namef), and Phone (nameb, phoneNumberf). It means that the Employee table is ready 
to return the values of the empId, and the name while the Phone table can give the 
phoneNumber only if the value of the name attribute is known. Regular set of rela-
tional operators are insufficient in order to answer queries in the presence of restricted 
sources.  

Although we can model the restricted sources with formalization of ‘binding pat-
terns’, due to the access restrictions of the sources, we cannot use the query process-
ing operators, like relational scan and relational join. In the example, in order to get 
the phoneNumber we have to give the values of the name attribute. So we need a new 
scan operator which is able to deal with the restricted sources. We quote this operator 
DAccess as D indicates its dependency on the values of the input attribute(s). While 
the relational scan operator always returns the same result set, this new operator DAc-
cess returns different sets depending on its input set. Formal semantics of DAccess is 
as follows: Consider a table R(Xb, Yf) and χ be a set of values for X. Then, DAc-
cess(R(Xb, Yf))χ =σ X∈χ(R(X, Y)) [93].  

We noticed that to make the join between Employee (empIdf, namef), and Phone 

(nameb, phoneNumberf) we need a new join operator known as dependent join [46], 

represented by the symbol . The representation of the dependent join is 

T←Scan(R1(Uf, Vf)) V=X DAccess(R2(Xb, Yf)). The hash dependent join consists 

in building a hash table from R1 and at the same time the distinct values of the attrib-

ute(s) V are retrieved and stored them into a table P. P is given to the DAccess opera-

tor to compute R2’ = σ X∈P (R2(X, Y)). Then the hash table is probed with R2’ to 

compute the result. 

5.2   Centralized Dynamic Optimization Methods in Data Integration Systems 

In this sub-section, we present some dynamic optimization methods and techniques 
where the type of decision-making is centralized. We classify these methods according 
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to the modification level of execution plans. This modification can be taken either on 
the intra-operator level, or on the inter-operator level.  

5.2.1   Modification of Execution Plans on the Intra-operator Level 
The sub-optimality of execution plans can be modified during the execution of an 
operator (intra-operator). With this objective, two approaches were proposed: the first 
one is based on the routing of tuples named Eddy [7], and the second one is based on 
the dynamic partitioning of data [74]. 

Avnur and Hellerstein [7] proposed a mechanism named Eddy for query process-
ing which updates continuously the execution schedule of operators in order to adapt 
to the changes in execution environment. Eddy can be considered as a router of tuples 
positioned between a number of data sources and a set of operators. Each operator 
must have one or two input queues to receive the tuples sent by Eddy and an output 
queue to return the result tuples to Eddy. The tuples received by an Eddy are redi-
rected towards the operators in different orders. Thus, the scheduling of operators is 
encapsulated by the dynamic routing of tuples.  

The key point in Eddy is the routing of tuples. Thus, the policy of the tuple routing 
must be efficient and intelligent in order to minimize the query response time. For that 
purpose, several authors [32, 109] suggest to extend Eddy's mechanism to improve 
the quality of the routing.  

Dynamic data partitioning was proposed by Ives et al. [74]. It corrects the sub-
optimality of execution plans relying on dynamic data partitioning. In this method, a 
set of execution plans is associated to each query which will be executed either in 
parallel or in sequence on separate data partitions. The execution plan of a query is 
constantly supervised at runtime, and it can be replaced by a new plan in the case 
where the current plan is considered to be sub-optimal. The tuples which are proc-
essed by each used plan represent a data partitioning. When an execution plan is re-
placed, a new data partitioning is produced. Each used execution plan produces a part 
of the total result from the associated data partitioning during the query execution. 
The union of the tuples produced by the various used execution plans provides only 
part of the total result. Thus, to calculate the final result of the query, it must also cal-
culate the results of all the combinations of various data partitioning.  

This method is similar to that of Eddy [7]. But contrary to Eddy which uses a local 
decision routing, this method is based on more total information to generate the new 
plans. The main difference is that the decision to suspend or replace an execution plan 
by another one is made by the optimizer. 

5.2.2   Modification of Execution Plans on the Inter-operator Level  
A solution to correct the sub-optimality of execution plans consists in changing the 
operation scheduling at runtime. The works of Amsaleg et al. [3] take into account the 
delays in data arrival rates. They have identified three types of delays: (i) Initial delay: 
that occurs before the arrival of the first tuple, (ii) bursty arrival: the data arrive in 
bursts but the arrival of these data is suddenly stopped and followed by a long period 
of no arrival, and (iii) slow delivery: the data arrive regularly but slower than normal. 
To deal with these delays, two methods were proposed by Amsaleg et al. [4] and by 
Bouganim et al. [14, 15].  
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The technique of query scrambling [3, 4] was proposed to process the blockings 
caused by the delays in data arrival rates. It tries to mask these delays by the execu-
tions of other portions of the execution plan until the termination of these delays. The 
technique of query scrambling processes the initial delay and the bursty arrival in two 
phases [3]:  

1. Re-scheduling: as soon as a delay is detected, this phase is invoked. It begins 
with the separation of the relational operators of an execution plan in two disjoined 
sets: (i) the set of blocked operators that contains all the ancestors of unavailable  
operands, and (ii) the set of executable operators that contains the remainder of the 
operators that do not belong to the set of blocked operators. Then, a maximum execu-
table sub-tree is extracted from the set of the executable operators. This maximum 
sub-tree is executed and its intermediate result is materialized. 

2. Synthesis: this phase is invoked if the set of the executable operators is 
empty and the set of the blocked operators is not empty. Contrary to the re-scheduling 
phase, the synthesis phase can significantly change the execution plan by adding new 
operators and/or by removing existing operators. The synthesis phase starts, at first, 
by the construction of a graph of the joins which are ready to be executed. Then, a 
join is processed and the result is materialized. The synthesis phase is finished if all 
delays are finished, or if the graph is reduced to only one node or several nodes with-
out join predicates. 

The technique of query scrambling supposes that an execution plan is executed 
without taking into account the delays in data arrival rates during plan execution. For 
that, Bouganim et al. [14, 15] proposed a strategy where the memory is available and 
data arrival rates are constantly supervised. This information is used to produce a new 
scheduling between the various fragments of the execution plan or to re-optimize the 
remainder of the query.  

The paper of Ives et al. [72] described a dynamic optimization method which is 
able to deal with the majority of the changes in execution environment (delays, errors 
and unavailable memory). This method interweaves the phases of optimization and 
execution and it uses specific dynamic operators. In this method, the optimizer trans-
forms a query into an annotated execution plan [77] and generates the associated rules 
with Event-Condition-Action type. These rules determine the behavior of the execu-
tion plan according to the changes at runtime. They check certain conditions (e.g. 
comparison of the sizes of the current temporary relations with those estimated during 
compilation) when events occur (e.g. delay, memory unavailable) they start actions 
(e.g. memory re-allocation, re-scheduling or re-optimization). 

5.3   Decentralized Dynamic Optimization Methods in Data Integration Systems 

The decentralized dynamic optimization methods correct the sub-optimality of execu-
tion plans by decentralizing the control. The conventional hash join [16] algorithm re-
quires the reception of all tuples of the first operand for building the hash table before 
beginning the probe step. Thus, the time to produce the first tuple can be long if: (i)  
the size of the operands is large, or (ii) when the data arrival rate is irregular. Contrary to 
the conventional hash join, the double hash join (DHJ) introduced by Ives et al. [72] 
built a hash table for each operand. When a tuple arrives, it is inserted firstly in the asso-
ciated hash table. Then, it is used to probe the other hash table. If the probe step allows 
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to produce result tuples, then these tuples are immediately delivered. DHJ was proposed 
in TUKWILA project [72] to deal with the problems of conventional hash join in the 
context of data integration: (i) the production time of the first tuple is minimized, (ii) the 
optimizer does not need to know the sizes of the operands in order to choose the oper-
and used in the building of the hash table, and (iii) it masks the slow arrival rate of tu-
ples from an operand by processing the tuples of the other operand. 

However, DHJ requires to maintain the two hash tables in memory. This can limit 
the use of DHJ with operands having large sizes or with queries constituted of several 
joins. To solve this problem, parts of the hash tables residing in the memory are 
moved towards a secondary storage space. When the memory becomes saturated, a 
partition of one of the two tables is chosen to be moved towards the secondary storage 
space. 

The DHJ allows reducing the necessary time for the production of the first tuple of 
result. Moreover, it makes it possible to continue the production of the result tuples in 
spite of the unavailability of any one of the two operands. However, it can lead to bad 
performances if the tuple productions of the two operands are blocked. For that, the 
Xjoin operator is proposed by Urhan et Franklin [131]. When Xjoin detect the un-
availability of the tuples of each operand, the tuples of a portion resident in the secon-
dary storage space are joined with the tuples of the same partition of second operand 
residing in memory.  

To accelerate the production of result tuples, it is interesting to define scheduling 
mechanisms between the various phases of the Xjoin operator. For that purpose,  
Urhan and Franklin [132] proposed a scheduling technique using the notion of 
Stream. Stream is the execution unit which consumes and produces tuples. The execu-
tion schedule of Stream is determined at runtime and is changed according to the 
variations of the system behaviour (productions of tuples, terminated streams). 

6   Query Optimization in Large Scale Environments 

6.1   Query Optimization in Large Scale Data Integration Systems 

Large scale environment means [58]: (i) high numbers of data sources (e.g. databases, 
xml files), users, and computing resources (i.e. CPU, memory, network and I/O band-
width) which are heterogeneous and autonomous, (ii) the network bandwidth presents, 
in average, a low bandwidth and strong latency, and (iii) huge volumes of data. 

In a large scale distributed environment, performances of previous optimization 
methods decrease because: (i) the number of messages relatively important on a net-
work with low bandwidth and strong latency, and (ii) the bottleneck that forms the 
optimizer. It becomes thus convenient to make the query execution autonomous and 
self-adaptable. In this perspective, two close approaches have been investigated: the 
broker approach [28], and the mobile agent approach [6, 76, 101, 110]. The second 
approach consists in using a programming model based on mobile agents [40], know-
ing that at present the mobile agent platforms supply only migration mechanisms, but 
they do not offer proactive  migration decision policy.  

The rest of this sub-section is devoted to describe execution models associated to 
brokers and mobile agent approaches [6, 28, 66, 76, 98, 101, 110]. 
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Broker Approach 
In a large scale mediation system context, Collet and Vu [28] proposed an execution 
model based on brokers. The broker, which is the basic unit of the query execution, 
supervises the execution of a sub-query. It detects the estimation inaccuracies and 
adapts itself according to these inaccuracies. Moreover, it communicates with the 
other brokers to take into account the updates of the execution environment. The prin-
cipal components of a broker are: (i) context including the annotations and constraints 
necessary for the execution of a sub-query, (ii) operator of the sub-query, (iii) buffer 
allowing to synchronize the data exchange between the brokers, and (iv) rules which 
define behavior of the broker according to changes of the execution environment. 

 
Mobile Agent Approaches 
A mobile agent [40] is an autonomous software entity which can move (code, data, 
and execution state) from a site to another in order to carrying out a task. In the tradi-
tional operating system, the decision of migration activity is controlled by another 
process. However, in a mobile agent, the decision of the migration activity is made by 
the agent itself. 

The operators of double hash join and Xjoin improve the local processing cost by 
adapting the use of resources CPU, I/O and memory with the changes of the execution 
environment (e.g. estimation errors, delays in data arrivals rates) and does not take in 
account the network resource. In objective to take into account the network resource, 
the work proposed by Arcangeli et al. [6], Hussein et al. [66] and Ozakar et al. [101] 
based on mobile agents extend the algorithms of direct join, semi-join based join and 
dependent join (in presence of binding patterns). This extension allows them to 
change their execution sites proactively. Each mobile agent executing a join chooses 
itself its execution site by adapting to the execution environment (e.g. CPU load, 
bandwidth) and the estimation accuracies on temporary relation sizes. Hence, the con-
trol which makes the decision of the execution site change is carried out in a decen-
tralized and autonomous way. Furthermore, for dynamic query optimization, Morvan 
et al. [97] proposed three cooperation methods between the mobile join agents. These 
methods allow to a mobile agent to make its decision to migrate or not according to 
the decisions of the other agents communicating with it. These methods minimize the 
number of messages exchanged between agents. 

As far as work of Jones and Brown [76], they propose, for large scale distributed 
queries, an execution model based on mobile agents which react to the estimations inac-
curacies. The mobile agents are charged to execute the local sub-queries of an execution 
plan. These agents compare the partial results (e.g. size, execution costs) with the esti-
mations used during compilation in order to detect sub-optimality. By taking into ac-
count the possibility of migration of mobile agents, two strategies were proposed:  

1. Decentralized execution without migration: the agents, executing sub-queries, 
communicate between them, by broadcasting their partial execution states, in order 
to produce an execution plan for the remainder of the query.  

2. Decentralized Execution with migration: this strategy extends the previous 
strategy while allowing the agents to migrate from one site to another before be-
ginning their executions. The decision of migration can be made in a distributed, 
individual or centralized way. 
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Another method based on mobile agents has been proposed by [110] in order to exe-
cute queries in a web context. In this context, the query result can correspond to a new 
query on another server which processes it. For this, two mechanisms were proposed 
which are also known as being parts of LDAP (Lightweith Directory Access Protocol) 
[64]: (i) referral which consists into return to the user, the new query and server ad-
dress to process it, and (ii) chaining which consists in cooperating with the server 
executing the new query to produce the result. 

In this approach [110], the mobile agents are used to exploit these two mechanisms 
in the query processing. Each query is processed by using a mobile agent which can 
choose the best adapted mechanism (referral and chaining). 

6.2   Query Optimization in Data Grid Systems 

Since more than ten years, the grid systems are very active research topics. The main 
objective of grid computing [39] is to provide a powerful and platform which supplies 
resources (i.e. computational resources, services, metadata and data sources). The grid 
computing is very important for scale distributed systems and applications that require 
effective management distributed and heterogeneous resources [58]. Large scale and 
dynamicity of nodes (unstable system) characterize the grid systems. Dynamicity of 
nodes (system instability) means that a node can join, leave or fail at any time. Today, 
the grid computing, intended initially for the intensive computing, open towards the 
management of voluminous, heterogeneous, and distributed data on a large-scale en-
vironment. Grid data management [104] raises new problems and presents real chal-
lenges such as resource discovery and selection, query processing and optimization, 
autonomic management, security, and benchmarking. To tackle these fundamental 
problems [104], several methods have been proposed [5, 30, 48, 49, 65, 94, 129]. A 
very good and complete overview addressing the most above fundamental problems is 
described in [104]. The authors discuss a set of open problems and new issues related 
to Grid data management using, mainly, Peer-to-Peer P2P techniques [104]. More 
focused on a specific and very hot problem such as resource discovery, [129] propose 
a complete review of the most promising Grid systems that include P2P resource dis-
covery methods by considering the three main classes of P2P systems: unstructured, 
structured, and hybrid (super-peer). The advantages and weaknesses of a part of pro-
posed methods are described in [104, 129].  

The rest of this sub-section tries to provide an overview of query processing and 
optimization in data grid systems. 

Several approaches have been proposed for distributed query processing (DQP) in 
data grid environments [2, 5, 48, 49, 50, 65, 115, 135]. Smith et al. [115] tackle the 
role of DQP within the Grid and determine the impact of using Grid for each step of 
DQP (e.g. resource selection). The properties of grid systems such as flexibility and 
power make grid systems suitable platforms for DQP [115]. 

In recent years, convergence between grid technologies and web services leads re-
searchers to develop standardized grid interfaces. Open Grid Services Architecture 
OGSA [38] is one of the most well known standards used in grids. Many applications 
are developed by using OGSA standards [2, 5, 135]. OGSA-DQP [2] is a high level 
data integration tool for service-based Grids. It is built on a Grid middleware named 
OGSA-DAI [5] which provides a middleware that assists its users by accessing and 
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integrating data from separate sources via the Grid. [135] describes the concepts that 
provide virtual data sources on the Grid and that implement a Grid data mediation 
service which is integrated into OGSA-DAI. 

By analyzing the approaches of DQP on the Grid, the research community focused 
on the current adaptive query processing approaches [7, 47, 62, 67, 74] and proposed 
extensions in grid environments [29, 48, 50]. These studies achieve query optimiza-
tion, by providing efficient resource utilization, without considering parallelization. 
Although, they use different techniques, most of the studies profit existing monitoring 
systems to determine progress of the queries. In [48], Gounaris et al. highlighted the 
importance and challenges of DQP in Grids. They mentioned the necessity of grids by 
emphasizing increasing demand for computation in the distributed databases. They 
also explained the challenges in developing adaptive query processing systems by 
expressing the weaknesses of existing studies and key points for the solutions. After 
giving the challenges, Gounaris et al. [50] proposed an adaptive query processing 
algorithm. They introduced an algorithm which provides both a resource discov-
ery/allocation mechanism and a dynamic query processing service. In [114], Slimani 
et al. developed a cost model by modeling the network characteristics and heterogene-
ity. By using this cost model, they also introduced a query optimization method on 
top of Beowulf clusters [34]. They considered both logical and physical costs and 
deployed the distributed query according to the cheapest cost model. In [29], Cybula 
et al. introduced a different technique for query optimization which is based on cach-
ing of query results. They developed a query optimizer which stores results of queries 
inside the middleware and used the cache registry to identify queries that need not be 
reevaluated. 

As far as parallelism dimension integration, many authors have re-studied DQP in 
order to be efficiently adopted by considering the properties (e.g. heterogeneity) of 
grids. Several methods are proposed in this direction [13, 30, 49, 89, 106, 116] which 
define different algorithms for parallel query processing in grid environments. The 
proposed methods consider different forms of parallelism (e.g. pipelined parallelism), 
whereas all of them consider also resource discovery and load balancing.  In [13], 
Bose et al. examined the problem of efficient resource allocation for query sub-plans. 
They developed their algorithm by exploiting the bushy query trees. They incremen-
tally distributed the sub-queries until a stopping condition is satisfied. In [30, 106] the 
authors introduced an adaptive parallel query processing middleware for the Grid. 
They developed a distributed query optimization strategy which is then integrated 
with a grid node scheduling algorithm by considering runtime statistics of the grid 
nodes. Gounaris et al. [49] proposed an algorithm which optimizes parallel query 
processing in grids by iteratively increasing the number of nodes which execute the 
parallelizable sub-plans. In [89], Liu et al. presented a query optimization algorithm 
which grades the nodes according to their capacities. They determined serial and par-
allel parts of the queries and proposed an execution sequence in highest ranked nodes. 
Soe et al. [116] proposed a parallel query optimization algorithm. In their study, they 
considered resource allocation, intra-query parallelism and inter-query parallelism by 
analyzing bushy query trees. 
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7   Discussion  

According to the discussion led in the section 2.4, and the results in [122, 123, 68, 69, 
70, 84], it is difficult to conclude about the superiority of a search strategy (e.g. 
scheduling of the join operators) with regard to the one another . However, each of 
them proposes a solution to improve the performances of these algorithms. Ioannidis 
and Kong [69, 70] chose to propose a new algorithm, called Two Phase Optimization 
[69], which consists in applying, at first, the Iterative Improvement algorithm, and 
then, the Simulated Annealing algorithm. As for Swami [123], he chose to experiment 
a set of heuristics with the aim of improving the performances of the Iterative Im-
provement and the Simulated Annealing algorithms [123]. The works of Ioannidis 
and Kong was able to show that the choice of a join method has no direct influence on 
the performances of the search strategies. In a parallel environment, Lanzelotte and al. 
[86] showed that the search strategy in breath first is not applicable in a bushy search 
space for queries with 9 relations or more. The use of a random algorithm is then in-
dispensable. The authors thus developed a random algorithm called Toured Simulated 
Annealing in a context of parallel processing [86]. 

The search strategies find the optimal solution more or less quickly according to 
their capacity to face the various problems. They must be adaptable to queries of  
diverse sizes (simple, medium, complex) and in various types of use (i.e. ad-hoc or 
repetitive) [54, 83]. A solution to this problem is the parameterization and the exten-
sibility of query optimizers [71, 83] possessing several search strategies, each being 
adapted for a type of queries. The major contributions in this domain arise, mainly, 
from the Rodin project [83, 84, 85, 86] as well as on the Ioannidis and Kong’s results 
[69]. Indeed, one of the main aspects studied by Lanzelotte in [83] concerns the  
extensibility of the search strategy for the optimizer, demonstrated by the implemen-
tation of four different strategies: System R, Augmented Heuristic, Iterative Im-
provement and Simulated Annealing. Lanzelotte is especially interested in the query 
optimization in new systems such as oriented object and deductive DBMS, and pro-
poses an extensible optimizer OPUS (OPtimizer for Up-to-date database Systems) 
[83] for these non conventional DBMS. Recently, Bizarro et al. [11] proposed “Pro-
gressive Parametric Query Optimization” which presents a novel framework to im-
prove the performance of processing parameterized queries.  

As far as parallel database systems, a synthesis dedicated to parallel relational 
query optimization methods and approaches [57] has been provided in section 3.  In a 
static context [57], the most advanced works are certainly those of Garofalakis and 
Ioannidis [44, 45]. They extend elegantly the propositions of [23, 41, 60] where the 
algorithms of parallel query are based on a uni-dimensional cost model. Furthermore, 
[45] tackle the scheduling problem (i.e. parallelism extraction) and the resource allo-
cation in a context, which can be multi-query by considering a multidimensional 
model of used resources (i.e. preemptive, and non-preemptive).  The proposals of [45] 
seem to be the richest in terms of categories of considered resources (i.e. multi-
resource allocation), exploited parallelisms, and various allocation constraints. In a 
dynamic context, the efforts were mainly centered on the handling of the following 
problems: (i) the determination and the dynamic adaptation of the intra-operation  
parallelism degree, (ii) the methods of resource allocation, and (iii) the dynamic query 
re-optimization. We identified a set of relevant parameters, mainly: search space, 



232 A. Hameurlain and F. Morvan 

 

strategy generation of a parallel execution plan, optimization cost for parallel execu-
tion, and cost model. These parameters allow: (i) to compare the two optimization 
approaches (i.e. one-phase, two-phase), and (ii) to help in the choice of an optimal 
exploitation of parallel optimization approaches according to the query characteristics 
and the shape of search space. 

In a distributed database environment, static query optimization methods are  
focused mainly on the optimization of inter-site communication costs, by reducing  
the data volume transferred between sites. Dynamic query optimization methods  
are based on dynamic scheduling (or re-scheduling) of inter-site operators to correct 
the sub-optimality due to the inaccuracies of estimations and variations of available 
resources. The introduction of a new operator, semi-join based join [10, 25], provides 
certainly more flexibility to optimizers. However, it increases considerably the size of 
search space. 

Heterogeneity and autonomy of data sources characterize data integration systems. 
Sources might be restricted due to the limitation of their query interfaces or certain 
attributes must be hidden due to privacy reasons. To handle the limited query capa-
bilities of data sources, new mechanisms have been introduced [46, 93], such as, De-
pendant Join Operator which is asymmetric in nature. The asymmetry of this operator 
causes the search space to be restricted and raises the issue of capturing valid (feasi-
ble) execution plans [92, 93, 139]. 

As for the optimization methods, the community quickly noticed that the central-
ized optimization methods [4, 7, 14, 15, 72, 73, 74, 77 ] could not be scaled up for the 
reasons which are previously pointed out. So, dynamic optimization methods were 
decentralized by leaning, mainly, on the brokers or on the mobile agents which allow 
decentralizing the control and scaling up. 

However, it is important to observe that the decentralized dynamic methods de-
scribed in sub-section 5.3 build both two hash tables (one for each operand relation). 
So, they do not apply to restricted data sources. Indeed, a restricted data source re-
turns a result, only if all attributes which are mapped to ' b ' are given. 

In grid environments, which are characterized by large scale and dynamicity of 
nodes (system instability), distributed query optimization methods are focused on two 
aspects: (i) proposed execution models react to state of resources by using monitoring 
services [36, 49, 137] and (ii) considering different forms and types of parallelism 
(inter-query parallelism, intra-query parallelism). 

Moreover, heterogeneity, autonomy, large scale and dynamicty of nodes raise new 
problems and present real challenges to design and develop acceptable cost models [1, 
35, 42, 43, 99, 114, 141]. Indeed, for instance, the statistics describing the data stem-
ming from sources and the formulae associated with the operations processed by these 
sources cannot be often published [35]. In a large scale environment, whatever the 
approach of the used cost model is (i.e. history approach [1], calibration approach [43, 
141], generic approach [99]) the statistics stored in the catalog are subject to obsoles-
cence [66], which generates large variations between parameters estimated at compile 
time and parameters computed at runtime. In consequence, it is not realistic to repli-
cate a cost model on all sites. This cost model should be distributed and partially rep-
licated [66, 58]. In an execution model based on mobile agents, a part of cost model 
should be embedded in mobile agents. This, ensures the autonomy of mobile joins and 
avoids distant interactions with the site on which was emitted the query [66]. 
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Finally, from this state of the art, we can point out the following main characteris-
tics of query optimization methods [98]: 

− Environment: query optimization methods have designed and implemented in 
different environments as uni-processor, parallel, distributed, and large scale. 

− Type of method: a query optimization method can be static or dynamic. 
− Search Space. this space can be restricted according to the nature of the consid-

ered execution plans, the limited capabilities of data sources, and the applied 
search strategy.  

− Nature of decision-making: can be centralized or decentralized. The decentralized 
dynamic optimization methods correct the sub-optimality of execution plans by 
decentralizing the control. 

− Type of modification: can be, mainly, re-optimization or re-scheduling. When the 
sub-optimality of an execution plan is detected, correction could be made by re-
optimization process or by a re-scheduling process. Re-optimization process: 
consists in producing a new execution plan for the remainder of the query [77]. 
The physical implementation, the scheduling and the tree structure of operators 
which are not yet been executed can be updated. As far as re-scheduling process, 
the tree structure of the remainder of the execution plan remains unchanged. But, 
scheduling between the operators can be modified. 

− Level of modification: can occur at intra-operator level or inter-operator level. 
The sub-optimal execution plan can be corrected during the execution of an op-
erator and/or at sub-query level. 

− Type of event: a dynamic query optimization method can react to following 
events: (i) estimation errors, (ii) available memory, (iii) delays in data arrival 
rates, and (iv) user preferences. 

These parameters allow comparing proposed optimization methods, and pointing out 
their advantages and weaknesses. A comparison study of dynamic optimization  
methods is described in detail in [98]. Furthermore, in a large scale environment, the 
benefits of mobile agents depending on estimation errors of temporary relation sizes, 
network bandwidth, and processor frequency, seem to be very promising due to their 
autonomy and proactive behavior. 

8   Conclusion 

Researches related to relational query optimization goes back to the 70s, and began 
with the publication of two papers [112, 138]. These papers and relevant applications 
requirements motivated a large part of the database community to focus their efforts 
and energies on this topic. Because of the importance and the complexity of the query 
optimization problem, the database community has proposed approaches, methods 
and techniques in different environments (uni-processor, parallel, distributed, large 
scale).  

In this paper, we wanted to provide a survey related to evolution of query optimi-
zation methods from centralized relational database systems to data grid systems 
through parallel and distributed database systems and data integration (mediation) 
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systems. For each environment, we described some query optimization methods, and 
pointed out their main characteristics which allow comparing them.  
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