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ABSTRACT: Linear hashing and spiral storage are two 
dynamic hashing schemes originally designed for external 
files. This paper shows how to adapt these two methods for 
hash tables stored in main memo y. The necessa y data 
structures and algorithms are described, the expected 
performance is analyzed mathematically, and actual 
execution times are obtained and compared with alternative 
techniques. Linear hashing is found to be both faster and 
easier to implement than spiral storage. Two alternative 
techniques are considered: a simple unbalanced bina y tree 
and double hashing with periodic rehashing into a larger 
table. The retrieval time of linear hashing is similar to 
double hashing and substantially faster than a binary tree, 
except for ve y small trees. The loading times of double 
hashing (with periodic reorganization), a bina y tree, and 
linear hashing are similar. Overall, linear hashing is a 
simple and efficient technique for applications where the 
cardinality of the key set is not known in advance. 

1. INTRODUCTION 
Several dynamic hashing schemes for external files 
have been developed over the last few years [2, 4, 9, lo]. 
These schemes allow the file size to grow and shrink 
gracefully according to the number of records actually 
stored i.n the file. Any one of the schemes can be used 
for internal hash tables as well. However, the two 
methods best suited for internal tables seem to be lin- 
ear hashing [9] and spiral storage [lo]: they are easy to 
implement and use little extra storage. This paper 
shows how to adapt these two methods to internal hash 
tables, mathematically analyzes their expected per- 
formance, and reports experimental performance re- 
sults. The performance is also compared with that of 
more traditional solutions for handling dynamic key 
sets. Both methods are found to be efficient techniques 
for applications where the cardinality of the key set is 
not known in advance. Of the two, linear hashing is 
faster a:nd also easier to implement. 
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An inherent characteristic of hashing techniques is 
that a higher load on the table increases the cost of all 
basic operations: insertion, retrieval and deletion. If the 
performance of a hash table is to remain within accept- 
able limits when the number of records increases, addi- 
tional storage must somehow be allocated to -the table. 
The traditional solution is to create a new, la.rger hash 
table and rehash all the records into the new table. The 
details of how and when this is done can vary. Linear 
hashing and spiral storage allow a smooth growth. As 
the number of records increases, the table grows gradu- 
ally, one bucket at a time. When a new bucket is added 
to the address space, a limited local reorganization is 
performed. There is never any total reorganization of 
the table. 

2. LINEAR HASHING 
Linear hashing was developed by W. Litwin in 1980 [9]. 
The original scheme is intended for external files. Sev- 
eral improved versions of linear hashing have been pro- 
posed [5, 7, 13, 141. However, for internal hash tables 
their more complicated address calculation is likely to 
outweigh their benefits. 

Consider a hash table consisting of N buckets with 
addresses 0, 1, . . . , N - 1. Linear hashing increases the 
address space gradually by splitting the buckets in a 
predetermined order: first bucket 0, then bucket 1, and 
so on, up to and including bucket N - 1. Splitting a 
bucket involves moving approximately half of the rec- 
ords from the bucket to a new bucket at the end of the 
table. The splitting process is illustrated in Figure 1 for 
an example file with N = 5. A pointer p keeps track of 
the next bucket to be split. When all N buckets have 
been split and the table size has doubled to 2N, the 
pointer is reset to zero and the splitting process starts 
over again. This time the pointer travels from 0 to 
2N - 1, doubling the table size to 4N. This expansion 
process can continue as long as required. 

Figure 2 illustrates the splitting of bucket 0 for an 
example table with N = 5. Each entry in the hash table 
contains a single pointer, which is the head of a linked 
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list containing all the records hashing to that address. 
When the table is of size 5, all records are hashed by 
ho(K) = K mod 5. When the table size has doubled to 10, 
all records will be addressed by hi(K) = K mod 10. 
However, instead of doubling the table size immedi- 
ately, we expand the table one bucket at a time as 
required. Consider the keys hashing to bucket 0 under 
ho(K) = K mod 5. To hash to 0 under ho(K) = K mod 5, 
the last digit of the key must be either 0 or 5. Under the 
hashing function h,(K) = K mod 10, keys with a last 
digit of 0 still hash to bucket 0, while those with a last 
digit of 5 hash to bucket 5. Note that none of the keys 
hashing to buckets 1, 2, 3 or 4 under ho can possibly 
hash to bucket 5 under h,. Hence, to expand the table, 
we allocate a new bucket (with address 5) at the end of 
the table, increase the pointer p by one, and scan 
through the records of bucket 0, relocating to the new 
bucket those hashing to 5 under h,(K) = K mod 10. 

addresses in some interval [0, M]. M should be suffi- 
ciently large, say M > 2”. To compute the address of 
a record we use the following sequence of hashing 
functions: 

h,(K) =g(K)mod[N X 2j), j = 0, 1, . . . 

where N is the minimum size of the hash table. If N is 
of the form 2 k, the modulo operation reduces to extract- 
ing the last k + j bits of g(K). The hashing function g(K) 
can also be implemented in several ways. Functions of 
the type 

g(K) = (cK)mod M, 

The current address of a record can be found as 
follows. Given a key K, we first compute ho(K). If ho(K) 
is less than the current value of p, the corresponding 
bucket has already been split, otherwise not. If the 
bucket has been split, the correct address of the record 
is given by hi(K). Note that when all the original buck- 
ets (buckets 0-4) have been split and the table size has 
increased to 10, all records are addressed by hl. 

where c is a constant and M is a large prime have 
experimentally been found to perform well [12]. Differ- 
ent hashing functions are easily obtained by choosing 
different values for c and M, thus providing a “tuning” 
capability. By choosing c = 1, the classical division- 
remainder function is obtained. There is also some the- 
oretical justification for using this class of functions. As 
shown in [l], it comes within a factor of two of being 
univers&. 

We must also keep track of the current state of the 
hash table. This can be done by two variables: 

Returning to the general case, the address computa- L number of times the table size has doubled (from 
tion can be implemented in several ways. For internal its minimum size N), L 2 0. 
hash tables the following solution appears to be the P pointer to the next bucket to be split, 0 5 p C 

simplest. Let g be a normal hashing function producing Nx 2’. 
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FIGURE 1. Illustration of the Expansion Process of Linear Hashing 
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FIGURE 2. An Example of Splitting a Bucket 

When the table is expanded by one bucket, these vari- 
ables are updated as follows: 

p:=pt-1; 
if p = N X 2L then begin 

I, := I, + 1; 
p := 0; 

end; 

Given a key K, the current address of the corresponding 
record can be computed simply as 

addr := hL(K); 
if addr Q: p then addr := h=+,(K); 

Contracting the table by one bucket is exactly the in- 
verse OF expanding it by one bucket. First the state 
variables are updated as follows: 

p := p - 1; 
if p < 0 then begin 

L:=L-1; 

p := N x zL - 1: 
end; 

Then all the records of the last bucket are moved to the 
bucket pointed to by p, and the last bucket can be 
freed. 

So far we have only discussed how to expand or con- 
tract the table but not when to do so. The key idea is to 
keep the overall load factor bounded. The overall load 
factor is defined as the number of records in the table 
divided by the (current) number of buckets. In our case, 
the overall load factor equals the average chain length. 

We fix a lower and an upper bound on the overall load 
factor and expand (contract) the table whenever the 
overall load factor goes above (below) the upper (lower) 
bound. This requires that we keep track of the current 
number of records in the table, in addition to the state 
variables L and p. 

2.1 Data Structure and Algorithms 
The basic data structure required is an expanding and 
contracting pointer array. However, few programming 
languages directly support dynamically growing arrays. 
The simplest way to implement such an array is to use 
a two-level data structure, as illustrated in Figure 3. 
The array is divided into segments of fixed size. When 
the array grows, new segments are allocated as needed. 
When the array shrinks and a segment becomes super- 
fluous, it can be freed. A directory keeps track of the 
start address of each segment in use. 

Directory 

El---=! 

Ifi= 
Segment 1 

--l 

Segment 2 
I 

I 
FIGURE 3. Data Structure Implementing a Dynamiic Array 

The only statically allocated structure is the direc- 
tory. It is most convenient to let the minimum table 
size correspond to one segment. If the directory size 
and the segment size are both a power of two, the offset 
within the directory and the offset within a segment 
can be computed from the bucket address by masking 
and shifting. A directory size and segment size of 256 
gives a maximum address space of 256 X 256 = 64k 
buckets. As we shall see, an overall load factor of 5 is 
quite reasonable. This allows storage of over 300,000 
records in the table, which seems adequate for most 
applications. 

Pascal type declarations for a linear hash table using 
the proposed two-level data structure are given below. 
The directory is simply an array of pointers to segments 
and each segment is an array of pointers to a linked 
list of elements. Each element contains a record and a 
pointer to the next element. Some computation is saved 
by keeping track of the value N x 2L instead of the 
value of L. The field maxp is used for this purpose. The 
use of other fields should be clear from the field names. 
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keylength, segmentsize, and directorysize are assumed to 
be globally declared constants. 

elementptr = felement; 
element = 

record 
key: keytype ; 
(Insert definitions of additional fields here] 
next: elementptr ; 

end ; 
segment = 

array [0 . segmentsize - l] of elementptr ; 
segmentptr = tsegment ; 
hashtable = 

record 
p: integer ; 

(Next bucket to be split) 
maxp: integer ; 

{Upper bound on p during this expansion] 
keycount: integer ; 

(Number of records in the table} 
currentsize: integer ; 

(Current number of buckets] 
minloadfctr, 

{Lower and) 
maxloadfctr: real ; 

(upper bound on the load factor) 
directory: 

array [0 . directorysize - l] of segmentptr ; 
end; 

A Pascal implementation of the hashing function is 
given below. If the keys are alphanumeric, the key 
value must first be converted into an integer. The func- 
tion convertkey is assumed to perform this conversion. 
The hashing function g discussed above is implemented 
as g(K) = K mod 1048583. This implementation of g(K) 
was used in the experiments reported in Section 4. 

function hash 
(K: keytype ; T: hashtable]: integer ; 

const prime = 1048583 ; 
var h, address: integer ; 

begin 
h := convertkey mod prime ; 
address := h mod T.maxp ; 
if address < T.p 

then address := h mod(z*T.maxp) ; 
hash := address ; 

end; 

Given the address computation algorithm, retrieval 
and insertion of an element is straightforward. The first 
element on the chain to which a record with key value 
K belongs can be located as follows: 

address := hash (K, T); 
currentsegment := T.directory[address div segmentsize]; 
segmentindex := address mod segmentsize; 
firstonchain := currentsegmentf[segmentindex]; 

The procedure below expands the table by one bucket, 
creating a new segment when needed. It consists of 
three main parts. The first part locates the bucket to be 
split and the new bucket. The second part adjusts the 

state variables. The third part is a loop scanning down 
the chain of the “old” bucket, and moving records to 
the new bucket as necessary. 

procedure expandtable (var T: hashtable) ; 

var newaddress, oldsegmentindex, newsegmentindex: integer ; 
oldsegment, newsegment: segmentptr ; 
current, previous: elementptr ; 

(for scanning down the old chain] 
lastofnew: elementptr ; 

(points to the last element of the new chain] 
begin 
with T do 

{Reached maximum size of address space?) 
if maxp + p < directorysize * segmentsize then begin 

(Locate the bucket to be split) 
oldsegment := directory [p div segmentsize] ; 
oldsegmentindex := p mod segmentsize ; 

{Expand address space, if necessary create a new segment) 
newaddress := maxp + p ; 
if newaddress mod segmentsize = 0 

then new (directory [newaddress div segmentsize]) ; 
newsegment := directory[newaddress div segmentsize] ; 
newsegmentindex := newaddress mod segmentsize ; 

(Adjust the state variables) 
p:=p+1; 
if p = maxp then begin 

maxp := 2 * maxp ; 
p:=o; 

end ; 
currentsize := currentsize + 1 ; 

(Relocate records to the new bucket} 
current := oldsegmentf[oldsegmentindex] ; 
previous := nil ; 
lastofnew := nil ; 
newsegmentf[newsegmentindex] := nil ; 

while current c > nil do 
if hash(currentf.key, T) = newaddress 
then begin (attach it to the end of the new chain) 

if lastofnew = nil 
then newsegmentf[newsegmentindex] := current 
else lastofnewfnext := current ; 

if previous = nil 
then oldsegmentf[oldsegmentindex] := currentf.next 
else previousf.next := currentT.next ; 

lastofnew := current ; 
current := currentf.next ; 
lastofnewfnext := nil ; 

end 
else begin (leave it on the old chain} 

previous := current ; 
current := currentfnext ; 

end ; 
end ; 

end ; 

2.2 Analysis 
In this section we analyze the expected performance of 
a growing linear hash table under the assumption that 
the table is expanded as soon as the overall load factor 
exceeds LY, LY > 0. For a large table, the overall load 
factor will be (almost) constant and equal to (Y. It is also 
assumed that there are no deletions. The analysis is 
asymptotic and similar to the analysis in [6]. 
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The expected cost of retrieval and insertion depends 
on what fraction of the buckets has already been split 
during the current expansion. The performance is best 
at the end of an expansion because the load is uniform 
over the whole table. The performance varies cyclically 
where a cycle corresponds to a doubling of the table. 
Hence each cycle is twice as long as the previous cycle. 

A linear hash table can be viewed as consisting of 
two traditional hash tables: (1) the buckets that have 
not yet been split during the current expansion, and 
(2) the buckets that have been split plus the new buck- 
ets created during the current expansion. Within each 
part, the expected load is the same for every bucket. 
During an expansion the relative sizes of the two parts 
change. Consider a traditional hash table with load fac- 
tory, where records are stored using chaining as ex- 
plained in the previous section. The expected number 
of key comparisons for a successful search and an un- 
successful search in such a table are given by [3] 

S(Y) = 1 + Y/2 

U(Y) = y. 

Let x, o 5 x 5 1, denote the fraction of buckets that 
have been split during the current expansion and z, the 
expected number of records in an unsplit bucket. The 
expected number of records in a split or new bucket is 
then z/Z. For the overall load factor to be equal to 01, 
the following relationship between z and x must hold: 

2x2/2 + (1 - x)2 = a(2x + 1 - x). 

The left-hand side represents the expected number of 
records in a group, where a group consists of either one 
unsplit bucket (with load z) or one unsplit bucket plus 
one new bucket (each with load z/2). The expression 
2x + 1 - x represents the number of bucket addresses 
allocated to a group. Solving for z gives the relationship 

z=a(l +x). 

In other words, the expected number of records in an 
unsplit bucket grows linearly from 01 to 2a. Let S((Y, x) 
denote the expected number of key comparisons for a 
successful search when a fraction x of the buckets have 
been split. With probability x we hit a split group, in 
which case the expected search length is ~(a(1 + x)/2). 
With probablity 1 - x we hit an unsplit group, in which 
case the expected search length is s((~(1 + x)). Hence, 
we have 

S(a, x) = xs 
a(1 + x) 

( > 
-j-- + (1 - x)s((Y(l + x)) 

= 1 + f (2 + x - x”). 

Similarly, the expected length of an unsuccessful 
search is obtained as 

L&x, x) = xu 
a(1 + x) 

( > 
--y- + (1 - x)u(a(l + x)) 

= ; (2 + x - x2). 

The minimum expected search lengths occu:r when the 
load is uniform over the whole table, that is, when 
x=Oorx=l.Inthiscasewehave 

S(a, 0) = 1 + 4 

U((Y, 0) = a. 

The maximum expected search lengths occur when 
x = %. For x = % we have 

1 
s a,- ( 1 2 

Cl+;; 

u e,f =a;. 
( 1 

The average search cost over a cycle can be computed 
by integrating the expected search length over an ex- 
pansion cycle, which results in 

s 

1 

S(a) = 
0 

S(a,x)dx=l+;; 

1 
ii = 

s 0 
U(a,x)dx=n;. 

An insertion consists of two parts: the actual insertion 
of the new record at the end of a chain and, for some 
insertions, an expansion of the table. The cost of the 
actual insertion is the same as the cost of an unsuccess- 
ful search plus the cost of connecting the new record 
to the end of the chain. A fraction l/a of the insertions 
trigger an expansion. An expansion involves Bean- 
ning down a chain of records belonging to an unsplit 
bucket. The expected number of records on the chain is 
(~(1 + x), and for each record we must compute a hash 
address and update a few pointers. The expec:ted num- 
ber of extra hash address computations per record in- 
serted is then given by 

A(a,~)=~a(1+~)=1+x 
a 

1 
Ti(a) = 

s 
A@, x) dx = 1.5. 

0 

3. SPIRAL STORAGE 
When using linear hashing the expected cost of retriev- 
ing, inserting or deleting a record varies cyclically. Spi- 
ral storage [lo] overcomes this undesirable feature and 
exhibits uniform performance regardless of the table 
size. In other words, the table may grow or shrink by 
any factor but the expected performance alwalys re- 
mains the same. Spiral storage intentionally distributes 
the records unevenly over the table. The load is high at 
the beginning of the (active) address space and tapers 
off towards the end as illustrated in Figure 4. ‘To ex- 
pand the table additional space is allocated at the end 
of the address space, and at the same time a smaller 
amount of space is freed at the beginning. The records 
stored in the bucket that disappears are distributed 
over the new buckets. 

450 Communications of the ACM April 1988 Volume 31 Number 4 



Research Contributions 

Address space 

FIGURE 4. Illustrating the Load Distribution and the Expansion 
Process of Spiral Storage 

The address computation of spiral storage is illus- 
trated in Figure 5. The key value is first mapped into a 
real number x in the interval [S, S + 1). The x-value is 
the mapped into an address y by the function y = Ld”.l, 
where d > 1 is a constant called the growth factor. The 
function d” is called the expansion (or growth) function. 
The currently active address space extends from LdSJ to 
Ids+‘1 - 1. This equals approximately ds(d - 1) active 
addresses. Spiral storage requires a hashing function 
that maps keys uniformly into [0, l), that is, 0 5 
h(K) < 1. The value h(K) is then mapped into a value x 
in [S, S + 1). This value is uniquely determined by 
requiring that its fractional part must agree with h(K). It 
is most easily computed as x = IS - h(K)1 + h(K). The 
final address is computed as y = Ld”J. Hence every key 
is mapped into an address in the active address space. 

To increase the active address space we simply in- 
crease S to S’, see Figure 5. The keys that previously 
mapped into the range [S, S’) now map into the range 
[S + 1, S’ + 1). The new address range corresponding to 
[S + 1, S’ + 1) is approximately d times the old address 

s S’ x s+1 s+1 

Hash Value (adjusted) 

Choosing d = 2 gives the simplest scheme; every 
expansion creates two new buckets and deletes one 
bucket. From now on it is assumed that d = 2. The most 
expensive part of the address calculation is the compu- 
tation of 2’. A function of this type is normally com- 
puted by approximating it with a polynomial of a fairly 
high degree. Fortunately, most programming languages 
have built-in library routines for this type of computa- 
tion, thus hiding the complexity from a “normal” user. 

FIGURE 5. The Address Computation of Spiral Storage However, it is still a fairly expensive operation, To 

range corresponding to [S, S’). The records stored in the 
bucket(s) that disappears are relocated to the new buck- 
ets and the expansion is complete. The value S’ is nor- 
mally chosen so that exactly one bucket disappears. 

Let us illustrate the above discussion by a small ex- 
ample, see Table I. We start from an active address 
space of 5 addresses. The growth factor is d = 2, which 
is the most convenient value for internal hash tables. 
The value of S required to give 5 active addresses can 
be determined from the equation z’+’ - 2’ = 5, which 
gives S = log25 = 2.3219. The first active address is then 
y=LZ. 232’gJ = 5 and the last one, y = 123.32191 - 1 = 9. 
In this situation all keys with 0.3219 5 h(K) < 0.5849 
are stored in bucket 5, all those with 0.5849 % h(K) < 
0.8074 in bucket 6, . . . , and all those with 0.1699 5 
h(K) < 0.3219 in bucket 9. For example, if h(K) = 0.75, 
the x-value is x = f2.3219 - 0.751 + 0.75 = 2.75, which 
gives the address y = L22.75J = 6. The resulting load 
distribution is given in column three of Table I. Bucket 
5 is expected to receive 26.3 percent of the records, 
bucket 6, 22.2 percent, and so on. 

TABLE I. Address mapping for a small table, d = 2 

Acwrahr Haehlntenfnl Relative load 

5 [0.3219,0.5849) 0.253 
8 [0.5649,0.8074) 0.222 
7 [0.8074,1 .OOOO) 0.193 
8 [O.OOOO, 0.1899) 0.170 
9 [0.1899, 0.3219) 0.152 

10 [0.3219,0.4594) 0.137 
11 [O&%4,0.5849) 0.126 

To increase the active address space by one, S is 
increased to S’ = log26 = 2.5849. The last active ad- 
dress is now 123.58491 - 1 = 11, that is, addresses 10 and 
11 are now taken into use. All records in bucket 5 are 
relocated to the two new buckets. All records in bucket 
5 with h(K) < 0.4594 are moved to bucket 10, and all 
those with h(K) 2 0.4594 are moved to bucket 11. 

Note that the active address space slides to the right 
as it increases. Addresses up to LdSJ - 1 are unused. 
There is a rather simple way of mapping the “logical” 
addresses of spiral storage into “physical” addresses so 
that the “physical” address space always begins from 
address zero [lo, 111. However, the cost of computing 
the “physical” address grows with the table size. If this 
mapping is used, the performance would therefore de- 
pend on the table size. By using the same two-level 
data structure as for linear hashing we can avoid this 
extra cost. 
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reduce the cost we can approximate 2% by some other 
function that is faster to compute. Let f(x) be a function 
that approximates ZX in the interval 0 5 x 5 1. Then 
2’ can be approximated in the interval n 5 x 5 n + 1 
(integer n) by the function 27(x - n). Note that n is just 
the integer part of x and x - n is the fractional part. 
Hence the problem is reduced to approximating 2’ for 
0 I x 5 1. Martin [lo] suggested using a function of the 
form. 

f(x)=+x+c, 05x51. 

The values of the parameters a, b and c can be deter- 
mined by fixing the value of f(x) at three points. To 
guarantee that the function 27(x - n) is continuous, 
the function values at the two end points must be ex- 
act. This gives two conditions: f(0) = 1 and f(1) = 2. The 
third point can be any point in [0, 11. Some numerical 
experimentation showed that choosing x = 0.5 gives a 
good approximation. The maximum error is approxi- 
mately 0.0023. This gives the condition f(0.5) = 2°.5. 
From these three conditions we get the following 
parameter values: 

b= (2 -x&)/(3 -2x&)-3.4142136 

a=b(b -1)~ 8.2426407 

c=2-b =-1.4142136. 

The inverse of the function y = a/(b - x) + c is needed 
to compute the new value for S after an expansion. The 
inverse is 

x=b-a/(y-c), 

Instead of using the function above we could use a 
second degree polynomial. However, evaluation of 
a second degree polynomial requires four floating 
point operations while the function above requires 
only three. 

It should be emphasized that there are many possible 
expansion functions. The expansion function 2’ has the 
property that the expansion rate is constant; one old 
bucket is always replaced by two new buckets. The 
expected performance is also constant. Other expansion 
functions do not necessarily have this property. The 
function 27(x - n) where f(x) = a/(b - x) + c should 
therefore be seen as a different expansion function, not 
as an approximation of 2’. However, the resulting per- 
formance is very close to the performance obtained 
when using 2’. The expansion rate is almost, but not 
exad.ly, constant. Most of the time an expansion cre- 
ates two new buckets, but occasionally either one or 
three buckets are created. 

3.1 Date Structure and Algorithms 
The two-level data structure proposed for linear hash 
tables is also appropriate for spiral storage. Two minor 
modifications are required because the active address 
space moves to the right as the table size increases. 
When expanding the table, we can occasionally delete 
a segment and free a slot in the directory. When reach- 

ing the end of the directory, there will therefore be free 
slots in the beginning of the directory. To rnake use of 
these, we just “wrap around” and continue until all 
slots are in use. 

The required type declarations are given below. The 
constants a, b, and c are assumed to be globally de- 
clared. Elements and segments are exactly the same as 
for linear hashing. There are two changes in the decla- 
ration of hashtable. The fields lowaddr and highaddr re- 
place the field currentsize. The fields y0 and x0 replace 
p and maxp. Their use is explained in connection with 
the address computation algorithm. 

(Type definitions for elements and segments a.re the same as 
for linear hashing) 

hashtable = 
record 

y0: integer ; 
(See the text for an explanation) 

x0: real ; 
(of the use of these fields] 

lowaddr, 
{First address and) 

highaddr: integer ; 
(last address in current address space) 

keycount: integer 
(Number of records stored) 

minloadfctr, 
(Lower and) 

maxloadfctr: real ; 
(upper bound on the load factor) 

directory: 
array [0 . . directorysize - l] of segmenl.ptr ; 

end ; 

Recall from the discussion of address computation that 
the beginning (and the size) of the active address space 
is determined by the state variable S. Let f(x) denote 
the expansion function and I the desired (or current) 
lowest address. Then the following equality must hold: 
I = f(S), that is, S = f-‘(Z). Using the proposed expansion 
function we obtain 

1= ZLs’(a/(b - (S)) + c) 

where (S) denotes the fractional part of S. From the 
way this function was constructed we also know that 
the following inequality must be satisfied at all times: 

1 I a/(b - (S)) + c 5 2. 

This gives the following inequalities: 

In other words, the integer part of S, 1.9, is just the 
highest integer value such that 2”’ 5 1. Having deter- 
mined LSJ we can then compute the fractional part 
from the equation. 

(S) = b - a/(l/2’s’ - c). 

The field x0 stores the fractional part of S, (S). The field 
y0 is used for storing the value 2”‘. Storing 2”’ directly, 
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instead of storing LSJ and then computing 2”‘, speeds 
up the address calculation slightly. 

The full address computation algorithm is given be- 
low. The statement “if h < T.xO then . . .” requires 
some explanation. Recall that the x-value used in the 
address computation is computed as 

x = rs - h(q1 + h(~). 

Rewriting it in the form 

x = TLSJ + (S) - h(K)1 + h(K) 

it is easy to see that there are two cases: 

if {S) - h(K) 5 0 then x = LSJ + h(K) 
if (S] - h(K) > 0 then x = LSJ + 1 + h(K). 

In both cases the fractional part is the same and equal 
to h(K). Thus the value a/(b - h(K)) + c is also the same 
in both cases. The only difference is whether this value 
is multiplied by 2”’ or 2”‘+l. If h(K) < (S], the value is 
multiplied by 2”‘+l, i.e., 2 * T.xO, otherwise by ZLs’, 
i.e., T.xO. 

The logical address space of spiral storage starts from 
one. The mapping of addresses onto directory entries 
and segment entries is slightly easier if the address 
space starts from zero. Hence, the subtraction of one in 
the last statement. The fields lowaddr and highaddr are 
assumed to keep track of “physical” addresses, that is, 
addresses offset by one. This algorithm was used in the 
experiments reported in section 4, where the reasons 
for multiplying by a “scrambling” constant are also 
discussed. 

function hash(K: keytype ; T: hashtable): integer ; 

const 
cnst = 314159 ; (scrambling constant) 
prime = 1048583 ; 

var 
h, address: real ; 
temp: integer ; 

begin 
temp := convertkey ; 
temp := abs(temp*cnst)mod prime ; 
h := temp/prime ; 

address := T.yO*(a/(b - h) + c) ; 
if h < T.xO 

then address := address * 2.0 ; 
hash := trunc(address) - 1 ; 

end ; 

The algorithms for retrieving or inserting a record are 
the same as for linear hashing. However, because of the 
wrap-around, finding the correct segment requires a 
statement like the following: 

currentsegment := directory[(address 

div segmentsize)mod directorysize]; 

A full expansion algorithm can be found in [8]. The 
algorithm is quite straightforward and consists of four 
main parts: (1) locate and free the first bucket of the 
active address space, (2) update the state variables, 
(3) create the required new buckets at the end of the 

address space, and (4) redistribute the records from the 
deleted buckets. The expansion function explained 
above causes a slight complication: most expansions 
create two new buckets, but occasionally either one or 
three new buckets are created. This can be handled, for 
example, by first distributing the records over three 
auxiliary lists and then connecting each one to the 
chain of the appropriate bucket. A program fragment 
showing how to update the state variables is included 
below. 

lowaddr := lowaddr + 1; 
if lowaddr + 1 > 2*yO then y0 := 2*yO; 
x0 := b - a/((lowaddr+l)/yO - c); 

{Note that lowaddr is offset by one] 
newhighaddr := ceil(Z*yO+(a/(b-xo)+c) - 1) - 1; 

3.2 Analysis 
In this section we analyze the expected performance of 
spiral storage. In the same way as for linear hashing, it 
is assumed that the overall load factor is kept constant 
and equal to cu, cy > 0, and that there are no deletions. 
The analysis is asymptotic. The expected load on a 
bucket varies over the active address space. We derive 
the load distribution assuming that the expansion func- 
tion 2’ is used. The load distribution resulting from the 
expansion function 2’S’(a/(b - h) + c) is, for all practical 
purposes, the same. 

Without loss of generality we can consider only the 
normalized address range [l, 2). For any value of S, the 
active address range [2”, 2’+‘) can be normalized to the 
range [I, 2) by multiplying all addresses by the factor 
2-‘. Consider an infinitesimal interval [y, y + dy) C [l, 2) 
and let p(y) denote the probability that a key hashes to 
a (normalized) address in this interval. Under the as- 
sumption that the hashing function used distributes the 
keys uniformly over [0, I), we obtain 

P(Y) = bz(y + dyl - bs4y) 

Over the normalized address range [l, z), the insertion 
probability density function is thus l/(y In 2). The ex- 
pected load factor of a bucket at address y is propor- 
tional to the insertion probability at y. The load factor, 
X(y), is therefore given by 

WA = MY ln 21 

where c1 is a normalizing constant. Because the average 
load factor must equal LY, the value of cl can be deter- 
mined from the equation 

s ’ cldy 
1 yIna 

from which we find that c1 = CL The highest load factor 
is at y = 1, X(1) = a/in 2, and the lowest at y = 2, X(2) = 
cu/(2 In 2). 

Under the assumption that each record is equally 
likely to be retrieved, the probability of a successful 
search hitting a bucket is proportional to the load factor 
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of the bucket. Hence, the probability of hitting a bucket 
with an address in [y, y + dy] is c,ady/(y In 2) = c,dy/y. 
The (constant cJ is determined by the fact that the prob- 
ability of a search hitting some bucket is one. Hence, 
t.he value of c3 can be determined from the equation 

S ’ c3 dy ---=I 
1 Y ’ 

whic.h gives cg = l/In 2. If a successful search hits 
a bucket with a load factor of h, the expected cost is 
s(X) =: 1 + X/2. The expected cost of a successful search 
is then 

S(cY) = S dy W(y ln 2)) - 1 y In 2 

=i’i ) 

2 

1+L - dy 
2y In 2 y In 2 

(Y 1 

=1+22(ln= 
1 + ; 1.0407. 

Note that, not only is the cost of searching a bucket 
with a high load factor higher, we are also more likely 
to hit such a bucket. However, the net effect of the 
non-uniform distribution is rather small. The number 
of extra probes, beyond the one minimally required, 
is only 4 percent higher than for a uniform load dis- 
tribut ion. 

The probability that an unsuccessful search hits the 
(normalized) address interval [y, y + dy] is p(y). If the 
search hits a bucket in this address range, the search 
is done in a bucket whose expected load factor is 
a/(y In 2). Recall that the expected cost of an unsuc- 
cessful search in a bucket with load factor X is u(X) = X. 
This gives the expected cost of an unsuccessful search 
as 

S 
2 = a 4 -- 

I (In 2)’ y2 

a 
= - = a 10407 

2(ln 2)’ ’ * 

The non-uniform load distribution hence increases the 
cost of unsuccessful searches by about 4 percent com- 
pared with a uniform load distribution. 

The additional cost caused by expansions can be 
computed as follows. During an expansion all the rec- 
ords in the first bucket must be redistributed. The 
expected number of records in the first bucket is 
X(1) = oc/ln 2. A fraction l/a of the insertions trigger an 
expansion. Hence the additional hash address computa- 
tions per record inserted is 

&x((y) = i & = & = 1.4427. 
( ) 

4. EXPERIMENTAL RESULTS 
This section summarizes experimental results for linear 
hashing and spiral storage. The observed performance 
is also compared with that of a (unbalanced) binary tree 
and double hashing. All programs were written in C 
and run on a VAX 11/780 under UNIX 4.3BSD’. Test 
data were obtained from three real-life files: 

File A: User names from a large time-sharing installa- 
tion, 10000 keys, average key length of 7.1 char- 
acters. 

File B: Dictionary of English words used by the UNIX 
spelling checker, first 20000 keys used, average 
key length of 7.2 characters. 

File C: Library call numbers, 10000 keys, average key 
length of 13.3 characters. 

Key conversion for linear hashing, spiral storage, and 
double hashing was done using the following algorithm: 

convkey := 0; 
for i := 1 to keylength do 

if K[i] < > ’ ’ 
then convkey := 3i’+convkey + ord(K[i]); 

convkey := abs(convkey); 

For linear hashing and spiral storage the experiments 
were performed as follows. First all the keys were read 
into main memory. This was done to factor out I/O 
time from the experiments. Then the keys were in- 
serted and the total insertion time was recorded. Each 
time a new key was inserted into the table, space for a 
new element was allocated by calling the standard 
memory allocation routine. The insertion process was 
halted every 1000 insertions and 1000 succe:ssful 
searches were performed. The search keys were se- 
lected from among the keys already in the table using a 
random number generator. Each experiment was re- 
peated three times, each time using a different seed for 
the random number generator. The execution times 
reported are averages from the three experiments. 
The initial table size was 4 both for linear hashing and 
spiral storage. The directory size and segment size were 
both 256. 

The goal of the first experiments was to te.st the per- 
formance of the hashing functions used. Tables II and 
III show the expected search lengths and the observed 
search lengths from one such experiment. The differ- 
ence between the expected and observed values is less 
than z percent. Similar results were obtained for unsuc- 
cessful searches and for other values of LY. These results 
confirmed that the hashing functions performed as ex- 
pected. 

In one experiment the “scrambling” constant in the 
hashing function for spiral storage was omitted. This 
significantly increased the observed search lengths, 
especially for File A. After some investigation, it was 
found that omitting the constant caused short keys 

’ The programs were first written in Pascal but found to be surprisingly slow. 
Switching to C (without changing the algorithms) speeded them up by a factor 
between 3 and 4. 
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TABLE II. Theoretically expected and observed average 
number of comparisons for a successful search 

in a linear hash table (a = 5) 

TABLE Ill. Theoretically expected and obsenred average 
number of comparisons for a successful search 

using spiral storage (a = 5) 

‘2000 ,3.61 3.55 3.60 3.60 
4ooo ~.I31 3.57 3.66 3.89 

’ so00 3.81 3,61 S.!% 3.60 
6000 3.61 3.58 3.59 3.59 

10000 3.61 3.57 3.80 3.58 

(3-4 characters) to cluster together near zero (after 
being hashed into the interval [0, 1)). Multiplication by 
a “scrambling” constant breaks up such clusters, and is 
therefore recommended whenever the key set contains 
a significant fraction of short keys. 

The observed execution times for linear hashing and 
spiral storage are listed in Tables IV and V. The general 
trend is clear: spiral storage is consistently slower than 
linear hashing both for loading and searching. The 
main factor is the more expensive address calculation 
of spiral storage (approximately 0.16 ms/key for linear 
hashing and 0.24 ms/key for spiral storage). The expan- 
sion procedure of spiral storage is also more complex 

TABLE IV. Average CPU-time in milliseconds/key for loading 
and searching in a linear hash table 

Teitd& 

File A 
File .B 
FiteC 

‘--Ml 

uhl ‘a*$ rval0 arl a=5 aslO 

0.88 0.97 1.15 0.34 0.41 0.50 
0.04 1.02 1.28 0.36 0.44 0.53 
1.06 1.23 1.53 0.41 0.53 0.69 

TABLE V. Average CPU-time in milliseconds/key for loading 
and searching in a hash table organized by spiral storage 

Loedlyl’ sserddns 

?wbq a=1 ,&x5 arIO. a?* @7’5, P&q 

File A 1.25 1.17 1.34 0.41 0.48. 0.57 
File B 1.26 1.20 1.37 0.42 0.49 0.59 
File. C 1.40 1.43 1.71 0.47 0.59 0.75 

and somewhat slower. (For File A and (Y = 5, the cost 
was approximately 1.41 ms per expansion for linear 
hashing and 2.19 ms for spiral storage.) The higher load 
and search times of File C are caused by the substan- 
tially longer keys. Longer keys increase the cost of key 
conversions and key comparisons. 

For spiral storage, the loading cost per key is higher 
when (Y = 1 than when (Y = 5. This may appear surpris- 
ing at first. The explanation is as follows. The cost of 
carrying out an expansion is of the form C1 + &a. The 
constant C1 accounts for the overhead incurred in per- 
forming an expansion, that is, the cost incurred inde- 
pendently of the number of records in the bucket. The 
constant Cz accounts for the cost of processing and relo- 
cating a record in the bucket being split. An expansion 
is triggered every (Y insertion. Hence, the cost of expan- 
sions per record inserted is Cl/a + Cz. As cr increases the 
effect of the first term (expansion overhead) decreases 
rapidly, but for small (Y it is a significant component of 
the cost. The cost of inserting a record (without the cost 
of expansions) is of the form C3 + &(Y. The total cost of 
an insertion is therefore Cl/a + Cz + C3 + C,cu. For 
small values of (Y the first term will dominate the cost 

TABLE VI. Average CPU-time in milliseconds/key for loading 
and searching in an unbalanced binary tree 

.,_, 
), 

,, ; : W’, : 

Treeslxi ,‘.’ FIfeA* @I&&, WC’ ’ 

loql‘ Q.45 o..@’ :0.30 Q&l 0.58, 0.66 
2ooo ., o.f39 0.70’:. .g#3 .0.66 0.72 0.66 
3qcHX. 6.84. O,+!- ‘.. r- th86 8.72 0.78 0.94 
4000 0.88 
SOix,~ 693 

0,87‘* ~XhBS ’ 0.82 0.00 
o,Q2 ‘6, ~%.~ 

: 6176 
a 0,79 0.85 1.02 

6000 0.97 0.96 &I@ 0.82 0.87 1.06 
7000; l.O@ 0.99 .l,dl: 9% 0.89 1.08 
8ogc. 1.03 1.01 J.1‘9 6;$6 0.01 1.12 
eooo. 1.05 1,03 l.t8 ,p,@6 0.63 1.11 

10000 1.07 1.05 1.21. 0.87 .0.95 1.13 
2OOclO 1.18 1.04 

and for large values of OL the last term will dominate. 
This formula holds for both linear hashing and spiral 
storage, only the constants differ. (For File A and (Y = 
0.5 the loading cost of linear hashing was 0.99 ms per 
key.1 

A simple, unbalanced binary search tree is a straight- 
forward and generally efficient way of handling key 
sets of unknown cardinality. It was therefore decided to 
compare the performance of the new methods with that 
of a binary search tree. The experiments were orga- 
nized as follows. First all records were read into main 
storage. The keys were then inserted into a binary tree. 
The insertion order was determined by a random num- 
ber generator. The insertion process was again halted 
every 1000 insertions, the insertion time was recorded, 
1000 random, successful searches were performed and 
the search time recorded. This loading-and-searching 
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process was repeated 10 times for each input file and TABLE VIII. Average CPU-time in milliseconds/key for loading 
averages computed. a pseudo-dynamic hash table based on double hashing 

Table VI shows the results obtained. The figures for 
loading give the total CPU-time required to build a tree 
of the indicated size. For example, to build a tree con- 
tain:ing 5000 keys took, on average, 0.98 milliseconds/ 
key for File A, 0.92 for File B, and 1.02 for File C. The 
corr’esponding figures for searching give the average 
CPU-time for searching in a tree of the indicated size. 
For (example, locating a key in a tree of size 5000, re- 
quired 0.79 milliseconds for File A, 0.85 milliseconds 
for File B, and 1.02 milliseconds for File C. The higher 
load and search costs for File C are again caused by the 
longer keys. 

Comparing the results with those of Tables IV and V, 
we see that, for small key sets, building a binary tree is 
faster than loading a linear hash table. For key sets of 
6000-10000 keys, the loading costs per key are approxi- 
mately the same for a binary tree and a linear hash 
table with (Y = 5. However, unless the key set is very 
small, searching in a binary tree is significantly slower 
than searching in a hash table. 

loading costs of the three test files are shown in Table 
VIII. The exact cost varies with the three parameters 
mentioned above but the main trend is clear: the load- 
ing cost of linear hashing is either lower or only slightly 
higher than that of double hashing with periodic reor- 
ganization In addition, the insertion behavior of linear 
hashing and spiral storage is consistent; there are no 
long delays while the table is being reorgamzed. The 
delay can be substantial; total rehashing of 20000 rec- 
ords was observed to take over 11 seconds of CPU-time. 

TABLE VII. Average CPU-time in milliseconds/key for loading 
and searching using double hashing with a fixed-size fable 

a 

0.611 

0.70 
0.80 
0.90 
O.S!i 

The next comparison was with a traditional (fixed- 
size) hash table, where overflow records were handled 
by double hashing [3]. The results are summarized in 
Table VII. The search performance of a linear hash ta- 
ble with a! = 1 is approximately the same as that of 
double hashing with (Y = 0.8. Even with the overall 
load factor as high as 10, the search performance of 
linear hashing is only 50 percent higher than that of 
double hashing with (Y = 0.8. Not surprisingly, the cost 
of loading is substantially higher (2 to 3 times) for linear 
hashing and spiral storage than for double hashing. 
However, comparing the loading costs of a dynamic 
scheme and a traditional scheme with a fixed-size table 
is obviously not entirely fair. 

As mentioned earlier, any traditional hashing scheme 
can be made pseudo-dynamic by rehashing all the keys 
into a larger table when the current table becomes too 
heavily loaded. The total loading cost of such a scheme 
depends on (1) the initial table size, (2) the maximal 
load factor, and (3) the expansion factor. The maximal 
load factor is the load factor at which the table is reor- 
ganized. The expansion factor is the relative size of the 
new table compared to the size of the old table. The 
double hashing implementation was modified to in- 
clude this type of periodic reorganization. The resulting 

None of the methods above require an inordinate 
amount of overhead space. If the table for double hash- 
ing is also implemented as a pointer array, the over- 
head space consists solely of pointers for all. methods. 
The space overhead typically ranges from one to two 
pointers per record. A binary tree always requires 2 
pointers per record. For double hashing the number of 
pointers is l/Zf where If is the load factor. This ranges 
from 2 for If = 0.5 to 1.11 for If = 0.9. For linear hashing 
and spiral storage the number of pointers per record is 
approximately 1 + l/a, which ranges from 2 for (Y = 1 
to 1.1 for (Y = 10. The exact formula for the total num- 
ber of pointers is n + rn/(a x seg)lseg + dir, where n is 
the number of records, and seg and dir denote the seg- 
ment size and directory size, respectively. 

From the experimental results presented above the 
following overall conclusions can be drawn. For appli- 
cations where the cardinality of the key set is known in 
advance, the best performance is obtained by a tradi- 
tional fixed-size hash table. For applications where the 
cardinality of the key set is not known in advance, 
linear hashing gives the best overall performance. The 
average load factor can be set as high as 5 without 
seriously affecting the performance. Spiral storage is 
consistently slower than linear hashing. The expected 
loading cost of a binary tree is lower than that of linear 
hashing, but searching is slower (except for very small 
trees). Using a traditional hashing scheme with periodic 
reorganization does not seem to offer any advantages 
over using linear hashing. 
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