
Testing the Quality of a Query Optimizer

Michael Stillger

Johann�Christoph Freytag

Institut f�ur Informatik

Humboldt�Universit�at zu Berlin

Germany

fstillger� freytagg�informatik�hu�berlin�de

Abstract

Today� database technology is used in many di�erent application areas� Therefore� the
need to understand how well a particular database management system �DBMS� suits
the requirements of a given application has become an important task� One way to ad�
dress this need is to provide means to measure and to verify the quality of a database
management system and its query optimizer� Additionally� since database implementors
continue to improve the query optimizer of their speci�c systems� it becomes especially
important for them and the users of those systems to evaluate those changes on a large
scale� In particular� changes of the optimizer must be understood by both groups of people�
Individual test environments or standardized benchmarks are commonly used to evaluate
the quality of an optimizer� Almost all of them are only suited for a particular� arti�cial
database schema and lack the �exibility of determining the size and the shape of queries
to be tested and the database to be used�

We present a set of tools which are designed to overcome these problems� As a re�
sult it is especially useful for testing query optimization issues like join order� selectivity
estimation and choice of execution algorithms� The main features are� speci�cation and
generation of the data and of the database schema� speci�cation and generation of a par�
ticular set of queries for any existing or newly generated database� On the one hand�
the tools aim to support the work of the database implementors �DBIs� to design their
own testbed according to changes or enhancements done	 on the other hand� they should
help vendors and customers to design individual testbeds that re�ect the needs of speci�c
database applications�

With the query generator we already have available a �rst tool in our tool set� Exten�
sions and additional tools are currently under design and implementation�

� Introduction

The quality of a query optimizer is in�uenced by many di�erent parameters� First of all� the
search strategy used� the quality of the cost functions and the repertoire of the transforma�

�

tion strategies heavily determine the quality of the �nal query evaluation plan �QEP�� It also
depends on the overall optimization time that is available to the optimizer� In many cases it
is alsoimportant to the users of a DBMS to rely on a stable and predictable behavior of the
optimizer� This is especially true after changes done by DBIs to enhance the optimizer com�
ponent of the database� Often� these changes might be bene�cial for some queries� but it also
might impact the optimization of other queries adversely� That is� during the development cy�
cle of the database software� the optimizer might undergo important modi�cations� The DBI
must prove that those changes improve the quality of the QEPs generated� For example� The
DBI might decide to add new transformation rules to a rule based query optimizer 	DG
���
	PHH�� or to redesign the optimizer completely when working with an optimizer generator
tool 	BMG���	GM��� Exchanging the search strategies in the context of large join queries is
also an important change whose impact must be veri�ed and checked 	LV��� Thus� a DBI who
must go beyond the veri�cation of the changes analytically� must have tools to build various test
databases and test queries� Our generator tools aim to be an important utility in this context�

Another� more standardized testing methodology is the use of benchmarks� A benchmarks
test suite allows a user to compare di�erent DBMSs independent of the claims made by the
database vendors� The Benchmark Handbook by J� Gray provides a good overview of the
benchmark methodologies that have been developed so far 	Gra��� The currently existing
benchmarks� however� are limited in the number of queries tested and in the number of schemas
used� The WISCONSIN benchmark consists of a set of �� queries that run on a prede�ned
schema 	BDT
��� The Set Query Benchmark is designed for a particular area in database
systems� Queries with multiple selection predicates run on a large customer database where
joins are not needed 	O�N��� Hence� the generated database is restricted to one large relation
and the chosen queries re�ect the needs of business applications� The most �exible benchmark
is the AS�AP 	BOT�� benchmark� A unique feature is its adjustable database size which is
adapted to the system architecture in such a way that the benchmark can run in a �� hours
limit� But the query set is still limited in range and number�

Our set of tool consists of two parts� a query generator that creates a set of queries which can
be run against any existing database� and a database generator that creates the schema and the
data according to a given speci�cation� This provides full �exibility for designing and generating
individual testbeds� The query generator enables the user to create queries that stress a very
speci�c optimization task on a given database�

Example �� A new join algorithm that creates a temporary index for each attribute without
index is linked into the system� A test set may consist of �� queries with following properties
each�

� a � way join

� each join has at least one attribute without index

� one of two relations have a minimum cardinality of ������� rows�

� one join attribute is subject of an ORDER BY clause

The � joins with at least one non�indexed attribute makes the new join method an applicable
execution algorithm in the QEP� Assuming that creating a temporary index is an expensive

�

operation the algorithm might only be considered when large table joins are performed � �
��������� The temporary index is also useful to speedup the sort operation of the ORDER BY
clause� Hence� these properties ensure that the optimizer considers the new join algorithm in
its QEP search� �end of example�

Furthermore� it might be likely that the DBI wants to submit queries to a speci�c database with
a speci�c schema to test certain new or changed features� It is therefore necessary to create
�arti�cial� databases to test those features during query optimization� This database can be
created with the database generator �See Figure ���

3 way join

attr index

|R| > 100.000

...

Schema

...

Data

...

select ...;

select ...;

customer or

generated

Database

DB Specification File

Query Specification File

Database
Generator

Query
Generator

run queries

data dict.

create db

Query File

Figure �� Overview

The data in the database is also crucial for optimization� Unusual selectivity factors for joins
and selection predicates� and skews in the value distribution might heavily impact the quality
of the QEP generated� The database generator allows the DBI to specify properties of the data
stored which he believes are relevant for the optimization process�

� The Query Generator

This chapter provides an conceptual overview of the query generator and the features that are
met�

��� Schema independence

Schema independence is the ability to attach to any database and to produce valid queries� We
achieve this goal by scanning the data dictionary prior to generating any queries� The generator
needs information about the relations� attributes and data types of a particular database� In
addition to the structure of the schema� the program collects the available statistics and index
information from the data dictionary� Thus� the generator stays completely independent from
a prede�ned database structure as used in the common benchmarks�

�

��� Speci�cation language

Since we cannot predict the kind of queries that are needed for the di�erent tests of the optimizer�
it is desirable to cover the complete spectrum of the SQL standard� The generator must be able
to produce any query from the in�nite set of possible queries that are applicable to a given
schema� We designed a query description language that helps the user to specify any range
or subclass in which the queries should be generated� The language consists of �meta�SQL�
clauses which describe more than the syntactical features of the query to be generated� We
assumed that properties of the underlying database should in�uence the generation of queries�
It was therefore necessary to incorporate also physical properties of the data that are beyond the
syntactical constructs of the SQL language� For example� the generator can randomly determine
an attribute possibly in a SELECT clause or in a selection �join� predicate in the WHERE clause
in case no speci�c attribute is given� In this case� it should be possible to restrict this attribute
by a data type speci�cation or by specifying that it should be an indexed attribute� Regarding
relations in the FROM clause� it is sometimes more suitable to de�ne the participating relations
by their cardinality rather than by name�

Example �� The following example shows a simple generation script for our generator�

Queryname � Index�Scan�

Selectclause �

Column�numbers � � �

Column�names � ANY �

Agg�numbers � No �

Keywords � ORDER BY ANY�

Indices � No �

Fromclause �

Tablenumbers � � �

Tables� ANY �

Cardinality�list� ������ � �������

Whereclause �

Single�Predicate� Number�one

�

Operator � 	 �

Column � ANY �

Indices � No �

This speci�cation determines that the SELECT clause can contain any one attribute� There
are no aggregate operators and the ORDER BY clause is possible on a non�index attribute� The
FROM clause contains one table whose size is between ������ and ������� tuples� The WHERE
clause consists of one simple selection predicate which compares any non�indexed attribute with
a constant using the � operator� The speci�cation generates a single table query that scans

�

an arbitrary relation with the speci�ed size and applies a selection predicate on a non index
attribute� The result is then ordered on the attribute speci�ed in the ORDER BY clause�

S
�
ELECT job id

FROM employee
WHERE salary � ������
ORDER BY job id

�end of example�

In the current version of our generator we can specify the following properties�

� SELECT clause of SQL query

� number of columns �range� in the select clause�

� speci�c columns that should always appear in each query�

� number of columns �range� with primary keys�

� number of columns �range� with secondary key�

� number of aggregate columns �range�� possibly speci�c ones� including data type
speci�cations of columns that should be used�

� FROM clause of SQL query

� number of tables �range�� possibly speci�c ones�

� tables of certain size �cardinality�

� WHERE clause of SQL query

� single predicate� possibly with a speci�c column name with or without index� with a
speci�c operator� and a speci�c constant�

� multiple predicates consisting of single predicates� possibly composed by a speci�c
and�or structure�

� single join predicate� possibly with speci�c column names� with number of columns
�range� with primary or secondary index�

� multiple join predicate�

� complex predicate consisting of join predicates and single predicates� possibly com�
posed by a speci�c and�or structure�

� Aggregation clauses of SQL query

� number of aggregates�

� speci�c aggregate functions�

� speci�c types on which to generate aggregate functions�

� GROUP BY clause

� number and type of columns according to the dependencies with the SELECT clause�

�

��� Realistic queries

Before a new query is written to the output �le it is submitted to the DBMS for precompilation�
This ensures that every query is valid for an automatic evaluation tool that uses the query �le
as input� Syntactical correctness is a necessary but not a su�cient property for a realistic test
set� Consider a join predicate which was created based on the same data type shared by both
attributes� ���� WHERE room�number
 employee�age�� Such an semantically incorrect join
predicate should never be generated� We solve the problem of generating semantically correct
join queries by choosing join predicates from a prede�ned set of attribute pairs� These pairs are
stored as �feasible joins� as part of an extended data dictionary� Based on our experience we
strongly believe that this additional input improves the usability of this tool by avoiding queries
that do not make sense from the user�s point of view�

Similarly� the problem of generating constants for selection predicates in the WHERE clause
���� WHERE employee�age � ���� need similar attention� Again� we must avoid meaningless
constants �unless speci�ed explicitly by the user�� For this purpose we use statistical information
which is either provided by the DBMS or which must be collected �as in the case of RDB�VMS�
in the extended data dictionary prior to the generation of queries ��gure ���

YACC

LEX & Initialize

the metadata
Generate

Query specification Query file

select ...;

select ...;

...

UNIX

VMS

RDB DBMS

precompile query

statistics & feasible_joins

scan data dictionary,

decomposition

Figure �� the query generator

��� Query decomposition

In many cases � the e�ciency of the QEP generated is not the only feature that determines the
quality of the optimizer� Often the question if the optimizer generates correct QEPs is of much
more importance especially for complex queries� We extended our generator such that a query
generated is decomposed into a set of �simpler queries� which the optimizer handles correctly�

These queries are embedded into a set of �insert into temp relation� statements� Together
with the matching �create temp relation� statement each of the query materializes the interme�

�

diate results in the database� Again� we believe that the execution of simpler queries is more
likely to produce a correct result than the original query� Thus� this feature is a useful add�on
to verify the correctness of the optimizer� i�e� the correctness of the QEPs generated�

��� Implementation

In a �rst phase� we implemented the query generator for RDB�VMS and Transbase �a database
system built at the Technical University of Munich�� We used the generator writing many
di�erent scripts generating hundreds of queries� Those were run against databases stored in
both DBMSs� To make this tool available on a more popular platform we are currently porting
the generator to Sybase�

� The Database Generator

The database generator provides a useful tool to generate arbitrary schemas with arbitrary
extensions� Thus a database can easily be generated and �lled with user�de�ned data� This
might even better match the particular needs for testing a speci�c feature of the optimizer than
a real database�

The database generator provides a graphical editor �GraphEd� as a front end user interface�
The user can select a schema from several classes and edit its graphical representation ��gure
��� Nodes represent relations while edges re�ect relationships between them� based on possible
join predicates� Each node contains a description of the attributes and its data� The database

Graph Ed
user interaction

DB Generator

graph description

create table ..

DDL script C functions

file

Figure �� Database Generator

generator is still under development �also for Sybase��

��� Schema classi�cation

Determining the join order is an important step during query optimization� We must therefore
be able to generate large database schemas that allow the user to generate queries with many
joins� Thus� the queries need a minimum number of relations that can be joined� We can classify
join queries into star� chain� cycle� clique� grid and linked double chain according to 	SMK���

�

A DBI must be able to generate di�erent database schemas according to the kind of queries
that should be generated� Therefore� a database schema can be represented as a graph similar
to the join graphs �see �gure ���

Cycle Clique Star

Grid Linked Double Chain

Figure �� graph classes

��� Schema manipulation

The user can also edit the relational schemas and their relationships with a graphical editor� For
example� he can add additional relations or can de�ne new join edges� A new edge �relationship�
between to relations can lead to additional attributes for joining relations �for example if a �join
relationship� cannot be created otherwise�� The user can also edit the properties of the nodes
representing relations� New attributes can be added� existing one can be changed with regards
to their types or domains� Once the user �nishes the design� the graphical schemas can be
exported for later use�

��� Data description

Selectivity estimations are crucial for predicting the correct size of intermediate results� The
cost functions of the optimizer must be able to deal with any kind of skewed data� To test the
optimizer based on di�erent data distributions� the database generator includes additional pa�
rameters to specify some data properties for the extensions of di�erent relations� Each attribute
of the node can includes a description of its data� The user should be able to select among sev�
eral distribution functions �normal� gauss or Zipf�� chose duplicate factors and domain ranges
�minimum and maximum values��

� Summary

The database generator and the query generator complement each other� They both allow DBIs
to build their own test suites in a simple and straightforward manner to measure and to verify
the quality of a given database management system� We also believe that they together will
speed up the test phase when changes in the optimizer�s strategy occur� For example� new

transformation rules might generate good QEPs for one kind of queries� but generates worse
QEPs for other queries than with the previous set of rules�

With our second tool� we extend the capabilities to build powerful test suites� DBIs and
users can generate speci�c databases schemas and a speci�c database contents� This tool is
currently under design and implementation�

Our vision is to design a third tool for our testing environment� This tool should allow us
to evaluate �semi�automatically� the measurements that have been collected from the execution
of the queries generated� Only with this additional tool� we then believe that we provide a
complete testbed for evaluating the quality of a query optimizer�

References

	BDT
�� D� Bitton� C�J� DeWitt� and C� Turby�ll� Benchmarking Database Systems� a Sys�
tematic Approach� In Proceedings Very Large Database Systems �VLDB� Conference�
pages
��� November �
��

	BMG�� J� A� Blakeley� W� J� McKenna� and G� Graefe� Experiences Building the Open OODB
Query Optimizer� In Proc� ACM SIGMOD Conf�� page �
�� Washington� DC� May
���

	BOT�� D� Bitton� C� Orji� and C� Turby�ll� The AS�AP benchmark� In J� Gray� editor�
Database and Transaction Processing Sys� Performance Handbook� Morgan Kauf�
mann� San Mateo� CA� ���

	DG
�� D� DeWitt and G� Graefe� The EXODUS Optimizer Generator� In � ACM SIGMOD
Conf� on the Management of Data� May �
��

	GM�� G� Graefe and W� J� McKenna� The Volcano Optimizer Generator� Extensibility and
E�cient Search� In Proc� IEEE Int�l� Conf� on Data Eng�� page ��� Vienna� Austria�
April ���

	Gra�� J� Gray� editor� The Benchmark Handbook� Morgan Kaufmann Publishers� Inc� San
Mateo� CA� ���

	LV�� R�S�G� Lanzelotte and P� Valduriez� Extending the Search Strategy in a Query Opti�
mizer� In Proceedings of the ��th VLDB Conference� ���

	O�N�� P�E� O�Neil� The Set Query Benchmark� In J� Gray� editor� The Benchmark Handbook�
Morgan Kaufmann Publishers� Inc� San Mateo� CA� ���

	PHH�� H� Pirahesh� J� Hellerstein� and W� Hasan� Extensible�Rule Based Query Rewrite
Optimization in Starburst� In Proceedings of the ACM SIGMOD Conference on Man�
agement of Data� ���

	SMK�� M� Steinbrunn� G� Moerkotte� and A� Kemper� Optimizing Join Orders� Technical
report� Universitaet Passau� Germany� ���

