
1

1

SQL Performance and Tuning

DB2 Relational Database
June 2002

Penny Bowman and Rick McClendon

2

Course Overview

The DB2 Optimizer
SQL Coding Strategies and Guidelines
DB2 Catalog
Filter Factors for Predicates
Runstats and Reorg Utilities
DB2 Explain
DB2 Insight

2

3

The DB2 Optimizer

Determines database navigation
Parses SQL statements for tables and
columns which must be accessed
Queries statistics from DB2 Catalog
(populated by RUNSTATS utility)
Determines least expensive access path
Since it is a Cost-Based Optimizer - it
chooses the lease expensive access path

4

The DB2 Optimizer

SQL

Optimized
Access

Path

DB2 Optimizer

Cost - Based

Query
Cost

Formulas
DB2

Catalog

3

5

Optimizer Access Path Selection

1. Gets the current statistics from DB2
catalog for the columns and tables
identified in the SQL statements. These
statistics are populated by the Runstats
utility.
2. Computes the estimated percentage of
qualified rows for each predicate - which
becomes the filter factor for the predicate.

6

Optimizer Access Path Selection

3. Chooses a set of reasonable access paths.

4. Computes each potential access path’s
estimated cost based on:

CPU Cost
I/O Cost

4

7

Access Path Cost Based On:
CPU Cost
– Applying predicates (Stage 1 or Stage 2)
– Traversing pages (index and tablespace)
– Sorting

I/O Cost
– DB2 Catalog statistics
– Size of the bufferpools
– Cost of work files used (sorts, intermediate results, and

so on)

8

Will a Scan or an Index Be
Used?

A tablespace Scan sequentially reads all of the
tablespace pages for the table being accessed.

Most of the time, the fastest way to access DB2 data
is with an Index. For DB2 to consider using an
index - the following criteria must be met:
– At least one of the predicates for the SQL

statement must be indexable.
– One of the columns (in any indexable

predicate) must exist as a column in an
available index.

5

9

Will a Scan or an Index Be
Used?

An index will not be used in these circumstances:
When no indexes exist for the table and columns
being accessed
When the optimizer determines that the query can
be executed more efficiently without using an
index -
– the table has a small number of rows or
– using the existing indexes might require

additional I/O - based on the cardinality of the
index and the cluster ratio of the index.

10

Types of Indexed Access
Direct Index Lookup

values must be provided for each column in the index

Matching Index Scan (absolute positioning)
can be used if the high order column (first column) of an index key is
provided

Nonmatching Index Scan (relative positioning)
can be used if the first column of the index is not provided
can be used for non-clustered indexes
can be used to maintain data in a particular order to satisfy the
ORDER BY or GROUP BY

Index Only Access
can be used with if a value is supplied for all index columns - avoids
reading data pages completely

6

11

Sequential Prefetch
A read-ahead mechanism invoked to prefill DB2’s

buffers so that data is already in memory before it
is requested. Can be requested by DB2 under any
of these circumstances:
– A tablespace scan of more than one page
– An index scan in which the data is clustered

and DB2 determines that eight or more pages
must be accessed.

– An index-only scan in which DB2 estimates
that eight or more leaf pages must be accessed.

12

Database Services Address Space
The DBAS, or Database Services Address Space,
provides the facility for the manipulation of DB2
data structures. The DBAS consists of three
components:
Relational Data System (RDS)

Set-Level Orientation
Stage 2 predicates
SQL statement checking
Sorting
Optimizer

7

13

Database Services Address Space
Data Manager (DM)

Row-Level Orientation
Stage 1 predicates
Indexable predicates
Locking
Various data manipulations

Buffer Manager (BM)
Physical Data Access
Data movement to and from DASD ,
Bufferpools

14

Database Services Address Space

Relational
Data Manager

Data
Manager

Buffer
Manager

SQL

Optimized
SQL

Read Buffer
or

Request data

Results

Apply stage 2
predicates

and sort data

Apply stage 1
predicates

Data

8

15

Database Services Address Space

When an SQL statement requesting a set of columns and
rows is passed to the RDS, the RDS determines the best
mechanism for satisfying the request. The RDS can parse
an SQL statement and determine its needs.
When the RDS receives an SQL statement, it performs
these steps:
1. Checks authorization
2. Resolves data element names into internal identifiers
3. Checks the syntax of the SQL statement
4. Optimizes the SQL statement and generates an access
path

16

Database Services Address Space

The RDS then passes the optimized SQL statement to the
Data Manager for further processing.
The function of the DM is to lower the level of data that is
being operated on. The DM analyzes the request for table
rows or index rows of data and then calls the Buffer
Manager to satisfy the request.
The Buffer Manager accesses data for other DB2
components. It uses pools of memory set aside for the
storage of frequently accessed data to create an efficient
data access environment.

9

17

Database Services Address Space

The BM determines if the data is in the bufferpool
already. If so - the BM accesses the data and send
it to the DM. If not - it calls the VSAM Media
Manager to read and send back the data to the
BM, so it can be sent to the DM.
The DM receives the data and applies as many
predicates as possible to reduce the answer set.
Only Stage 1 predicates are applied in the DM.

18

Database Services Address Space

Finally, the RDS receives the data from the DM.
All Stage 2 predicates are applied, the necessary
sorting is performed, and the results are returned
to the requestor.
Considering these steps, realize that Stage 1
predicates are more efficient because they are
evaluated earlier in the process, by the DM instead
of the RDS, and thereby reduce overhead during
the processing steps.

10

19

SQL Coding Strategies and
Guidelines

Understand Stage 1 and Stage 2 Predicates
Tune the queries that are executed more
frequently first!
It Depends!
Know Your Data!
Static vs. Dynamic SQL
Batch vs. Interactive (CICS vs. web)

20

Unnecessary SQL

Avoid unnecessary execution of SQL
Consider accomplishing as much as
possible with a single call, rather than
multiple calls

11

21

Rows Returned

Minimize the number of rows searched
and/or returned
Code predicates to limit the result to only
the rows needed
Avoid generic queries that do not have a
WHERE clause

22

Column Selection

Minimize the number of columns
retrieved and/or updated
Specify only the columns needed
Avoid SELECT *
Extra columns increases row size of the
result set
Retrieving very few columns can
encourage index-only access

12

23

Singleton SELECT vs. Cursor

If a single row is returned
– Singleton SELECT .. INTO

outperforms a Cursor
error when more than 1 row is returned

If multiple rows are returned
– Cursor

requires overhead of OPEN, FETCH, and
CLOSE

What is an example of a singleton select and a
select requiring a cursor?

24

Singleton SELECT vs. Cursor

For Row Update:
– When the selected row must be retrieved first:
– Use FOR UPDATE OF clause with a CURSOR

Using a Singleton SELECT
– the row can be updated by another program

after the singleton SELECT but before the
subsequent UPDATE, causing a possible data
integrity issue

13

25

Use For Fetch Only

When a SELECT statement is used only for
data retrieval - use FOR FETCH ONLY
FOR READ ONLY clause provides the
same function - and is ODBC compliant
Enables DB2 to use ‘block fetch’
Monitor the performance to decide which is
best for each situation

26

Avoid Sorting

DISTINCT - always results in a sort

UNION - always results in a sort

UNION ALL - does not sort, but retains any
duplicates

14

27

Avoid Sorting

ORDER BY
– may be faster if columns are indexed
– use it to guarantee the sequence of the data

GROUP BY
– specify only columns that need to be grouped
– may be faster if the columns are indexed
– do not include extra columns in SELECT list or

GROUP BY because DB2 must sort the rows

28

Subselects

DB2 processes the subselect (inner select)
first before the outer select
You may be able to improve performance of
complex queries by coding a complex
predicate in a subselect
Applying the predicate in the subselect may
reduce the number of rows returned

15

29

Use Inline Views

Inline views allow the FROM clause of a
SELECT statement to contain another
SELECT statement
May enhance performance of the outer
select by applying predicates in the inner
select
Useful when detail and aggregated data
must be returned in a single query

30

Indexes

Create indexes for columns you frequently:
– ORDER BY
– GROUP BY (better than a DISTINCT)
– SELECT DISTINCT
– JOIN

Several factors determine whether the index
will be used

16

31

Avoid Data Conversion

When comparing column values to host
variables - use the same

Data Type
Length

When DB2 must convert data, available
indexes are sometimes not used

32

Join Predicates

Response time -> determined mostly by the
number of rows participating in the join
Provide accurate join predicates
Never use a JOIN without a predicate
Join ON indexed columns
Use Joins over subqueries

17

33

Join Predicates (cont.)

When the results of a join must be sorted -
– limiting the ORDER BY to columns of a single

table can avoid a sort
– specifying columns from multiple tables causes

a sort
Favor coding explicit INNER and LEFT
OUT joins over RIGHT OUTER joins
– EXPLAIN converts RIGHT to LEFT join

34

Example: Outer Join With A
Local Predicate

SELECT emp.empno, emp.lastname, dept.deptname
FROM emp LEFT OUTER JOIN dept
ON emp.workdept = dept.deptno
WHERE emp.salary > 50000.00;

Works correctly but… the outer join is performed
first, before any rows are filtered out.

18

35

Example: Outer Join Using An
Inline View

SELECT emp.empno, emp.lastname, dept.deptname
FROM (SELECT empno, lastname

FROM emp WHERE salary > 50000.00) as e
LEFT OUTER JOIN dept
ON emp.workdept = dept.deptno

Works better… applies the inner join predicates first,
reducing number of rows to be joined

36

OR vs. UNION

OR requires Stage 2 processing
Consider rewriting the query as the union of
2 SELECTs, making index access possible
UNION ALL avoids the sort, but duplicates
are included
Monitor and EXPLAIN the query to decide
which is best

19

37

Use BETWEEN

BETWEEN is usually more efficient than
<= predicate and the >= predicate
Except when comparing a host variable to 2
columns

Stage 2 : WHERE
:hostvar BETWEEN col1 and col2

Stage 1: WHERE
Col1 <= :hostvar AND col2 >= :hostvar

38

Use IN Instead of Like

If you know that only a certain number of
values exist and can be put in a list
– Use IN or BETWEEN

IN (‘Value1’, ‘Value2’, ‘Value3’)
BETWEEN :valuelow AND :valuehigh

– Rather than:
LIKE ‘Value_’

20

39

Use LIKE With Care

Avoid the % or the _ at the beginning
because it prevents DB2 from using a
matching index and may cause a scan

Use the % or the _ at the end to encourage
index usage

40

Avoid NOT

Predicates formed using NOT are Stage 1
But they are not indexable
For Subquery - when using negation logic:
– Use NOT Exists

DB2 tests non-existence

– Instead of NOT IN
DB2 must materialize the complete result set

21

41

Use EXISTS

Use EXISTS to test for a condition and get
a True or False returned by DB2 and not
return any rows to the query:

SELECT col1 FROM table1
WHERE EXISTS

(SELECT 1 FROM table2
WHERE table2.col2 = table1.col1)

42

Code the Most Restrictive
Predicate First

After the indexes, place the predicate that
will eliminate the greatest number of rows
first
Know your data
– Race, Gender, Type of Student, Year, Term

22

43

Avoid Arithmetic in Predicates

An index is not used for a column when the
column is in an arithmetic expression.
Stage 1 but not indexable

SELECT col1
FROM table1
WHERE col2 = :hostvariable + 10

44

Limit Scalar Function Usage

Scalar functions are not indexable
But you can use scalar functions to offload
work from the application program
Examples:
– DATE functions
– SUBSTR
– CHAR
– etc.

23

45

Other Cautions

Predicates that contain concatenated
columns are not indexable
SELECT Count(*) can be expensive
CASE Statement - powerful but can be
expensive

46

With OPTIMIZE for n ROWS

For online applications, use ‘With
OPTIMIZE for n ROWS’ to attempt to
influence the access path DB2 chooses
Without this clause, DB2 chooses the best
access path for batch processing
With this clause, DB2 optimizes for quicker
response for online processing
Try Optimize for 1, for 10, for 100

24

47

Review DB2 Optimizer

DB2 is a Cost-based optimizer
RUNSTATS populates the DB2 Catalog
DB2 Catalog used to determine access path
Create Indexes for columns you frequently
select and sort
Avoid Unnecessary Sorts in SQL
Code the SQL predicates thoughtfully

48

DB2 Catalog

SYSTABLES
SYSTABLESPACE
SYSINDEXES
– FIRSTKEYCARDF

SYSCOLUMNS
– HIGH2KEY
– LOW2KEY

SYSCOLDIST
SYSCOLDISTSTATS

25

49

Filter Factors for Predicates

Filter factor is based on the number of rows
that will be filtered out by the predicate
A ratio that estimates I/O costs
The lower the filter factor, the lower the
cost, and in general, the more efficient the
query
Review the handout as we discuss this topic

50

Filter Factors for DB2 Predicates

Filter Factor Formulas - use FIRSTKEYCARDF column
from the SYSINDEXES table of the Catalog
If there are no statistics for the indexes, the default filter
factors are used
The lowest default filter factor is .01 :

– Column BETWEEN Value1 AND Value2
– Column LIKE ‘char%’

Equality predicates have a default filter factor of .04 :
– Column = value
– Column = :hostvalue
– ColumnA = ColumnB (of different tables)
– Column IS NULL

26

51

Filter Factors for DB2 Predicates

Comparative Operators have a default filter factor of .33
– Column <, <=, >, >= value

IN List predicates have a filter factor of .04 * (list size)
– Column IN (list of values)

Not Equal predicates have a default filter factor of .96 :
– Column <> value
– Column <> :hostvalue
– ColumnA <> ColumnB (of different tables)

52

Filter Factors for DB2 Predicates

Not List predicates have a filter factor of
1 - (.04 * (list size))

– Column NOT IN (list of values)

Other Not Predicates that have a default filter factor of .90
– Column NOT BETWEEN Value1 and Value2
– Column NOT IN (non-correlated subquery)
– Column <> ALL (non-correlated subquery)

27

53

Column Matching

With a composite index, the column matching stops at one
predicate past the last equality predicate.
See Example in the handout that uses a 4 column index.

(C1 = :hostvar1 AND C2 = :hostvar2 AND C3 = (non
column expression) AND C4 > :hostvar4)

– Stage 1 - Indexable with 4 matching columns

(C1 = :hostvar1 AND C2 BETWEEN :hostvar2 AND
:hostvar3 AND C3 = :hostvar4)

– Stage 1 - Indexable with 2 matching columns

54

Column Matching

(C1 > value1 AND C2 = :hostvar2 AND C2 IN (value1,
value2, value3, value4))

– Stage 1 - Indexable with 1 matching column

(C1 = :hostvar1 AND C2 LIKE ‘ab%xyz_1’ AND C3 NOT
BETWEEN :hostvar3 AND :hostvar4 AND C4 = value1)

– Indexable with C1 = :hostvar1 AND C2 LIKE ‘ab%xyz_1’
– Stage 1 - LIKE ‘ab%xyz_1’ AND C3 NOT BETWEEN :hostvar3

AND :hostvar4 AND C4 = value1

28

55

Column Matching - 2 Indexes

With two indexes: C1.C2 and C3.C4

(C1 = :hostvar1 AND C2 LIKE :hostvar2) OR
(C3 = (non column expression) AND C4 > :hostvar4)

– Multiple Index Access
– 1 column matching of first index
– 2 columns matching on second index
– LIKE will be Stage 2
–

56

Order of Predicate Evaluation
1. Indexed predicates
2. Non-indexed predicates - Stage 1 then Stage 2

Within each of the groups above, predicates are evaluated in
this sequence:

1. Equality predicates, including single element IN list
predicates

2. Range and NOT NULL predicates
3. All other predicates
If multiple predicates are of the exact same type, they are

evaluated in the order in which they are coded in the
predicate.

29

57

Review Filter Factors for
Predicates

DB2 Catalog
Filter Factors
Column Matching
Order of Predicate Evaluation

58

Runstats and Reorg

Runstats Utility
– updates the catalog tables with information about the tables in your

system
– used by the Optimizer for determining the best access path for a

SQL statement

Reorg Utility
– reorganizes the data in your tables
– good to run the RUNSTATS after a table has been reorg’d

Use Workbench to review the statistics in
both Test and Production databases

30

59

Runstats and Reorg (DBA Tools)

Development Databases
– you can use Workbench to run RUNSTATS and

REORGs

Test Databases
– use TSO MASTER Clist to copy production statistics to

the Test region
– DBA has set this up for each project

Production Databases
– DBA runs the REORG and RUNSTATS utilities on a

scheduled basis for production tables

60

DB2 Explain
Valuable monitoring tool that can help you
improve the efficiency of your DB2 applications

Parses your SQL statements and reports the access
path DB2 plans to use

Uses a Plan Table to contain the information
about each SQL statement. Each project has their
own plan table.

31

61

DB2 Explain
Required and reviewed by DBA when a DB2
program is moved to production

Recognizes the ? Parameter Marker - assumes
same data type and length as you will define in
your program

Know your data, your table design, your indexes
to maximize performance

62

DB2 Explain Example - 1 Table

--SET THE CURRENT SQLID TO YOUR AREA:
SET CURRENT SQLID='FSUDBA';

-- SET THE QUERYNO TO YOUR USERID NUMBER, OR SOMETHING UNIQUE
-- IN YOUR GROUP. IN THIS EXAMPLE, CHANGE 587 TO YOUR USERID.

--THIS QUERY SELECTS COLUMNS FROM 1 TABLE.
--NOTICE THE ? PARAMETER MARKERS IN THE WHERE CLAUSE.

EXPLAIN PLAN SET QUERYNO=587 FOR
SELECT NAME, SSN, YEAR, TERM

FROM FSDWH.DATA_SHARE
WHERE SUBSTR(YEAR,3,2) = ? AND TERM = ?;

32

63

DB2 Explain Example - 1 Table
-GENERATE THE EXPLAIN REPORT FROM THE PLAN_TABLE OF YOUR AREA:
SELECT

SUBSTR(DIGITS(QUERYNO),6,5) AS QUERY,
SUBSTR(DIGITS(QBLOCKNO),4,2) AS BLOCK,
SUBSTR(DIGITS(PLANNO),4,2) AS PLAN,
SUBSTR(DIGITS(METHOD),4,2) AS METH,
TNAME, SUBSTR(DIGITS(TABNO),4,2) AS TABNO,
ACCESSTYPE AS TYPE, SUBSTR(DIGITS(MATCHCOLS),4,2) AS MC,
ACCESSNAME AS ANAME, INDEXONLY AS IO,
SORTN_UNIQ AS SNU, SORTN_JOIN AS SNJ, SORTN_ORDERBY AS SNO,
SORTN_GROUPBY AS SNG, SORTC_UNIQ AS SCU, SORTC_JOIN AS SCJ,
SORTC_ORDERBY AS SCO, SORTC_GROUPBY AS SCG, PREFETCH AS PF

FROM FSUDBA.PLAN_TABLE
WHERE QUERYNO = 587 ORDER BY 1, 2, 3;
-DELETE THE ROWS YOU ADDED DURING THIS EXPLAIN PROCESS:
DELETE FROM FSUDBA.PLAN_TABLE WHERE QUERYNO = 587;

64

DB2 Explain Example- 1 Table
---------+---------+---------+---------+---------+---------+---------+----
QUERY BLOCK PLAN METH TNAME TABNO TYPE MC ANAME
---------+---------+---------+---------+---------+---------+---------+----
00587 01 01 00 DATA_SHARE 01 I 00 IXDSH01

--+---------+---------+---------+---------+---------+-------
IO SNU SNJ SNO SNG SCU SCJ SCO SCG PF

--+---------+---------+---------+---------+---------+-------
N N N N N N N N N S

33

65

DB2 Explain Columns

QUERY Number - Identifies the SQL statement in the PLAN_TABLE
(any number you assign - the example uses the numeric part of the userid)

BLOCK - query block within the query number, where 1 is the top level
SELECT. Subselects, unions, materialized views, and nested table
expressions will show multiple query blocks. Each QBLOCK has it's own
access path.

PLAN - indicates the order in which the tables will be accessed

66

DB2 Explain Columns
METHOD - shows which JOIN technique was used:

– 00- First table accessed, continuation of previous table accessed, or not used.

– 01- Nested Loop Join. For each row of the present composite table, matching rows of a new table
are found and joined

– 02- Merge Scan Join. The present composite table and the new table are scanned in the order of the
join columns, and matching rows are joined.

– 03- Sorts needed by ORDER BY, GROUP BY, SELECT DISTINCT, UNION, a quantified
predicate, or an IN predicate. This step does not access a new table.

– 04- Hybrid Join. The current composite table is scanned in the order of the join-column rows of the
new table. The new table accessed using list prefetch.

TNAME - name of the table whose access this row refers to. Either a table in the FROM
clause, or a materialized VIEW name.

TABNO - the original position of the table name in the FROM clause

34

67

DB2 Explain Columns

TYPE (ACCESS TYPE) - indicates whether an index was chosen:
– I = INDEX

– R= TABLESPACE SCAN (reads every data page of the table once)

– I1= ONE-FETCH INDEX SCAN

– N= INDEX USING IN LIST

– M= MULTIPLE INDEX SCAN

– MX = NAMES ONE OF INDEXES USED

– MI = INTERSECT MULT. INDEXES

– MU = UNION MULT. INDEXES

68

DB2 Explain Columns
MC (MATCHCOLS) - number of columns of matching index scan
ANAME (ACCESS NAME) - name of index

IO (INDEX ONLY) - Y = index alone satisfies data request

N = table must be accessed also

8 Sort Groups: Each sort group has four indicators indicating why the sort is necessary.
Usually, a sort will cause the statement to run longer.

– UNIQ - DISTINCT option or UNION was part of the query or IN list for subselect

– JOIN - sort for Join

– ORDERBY - order by option was part of the query

– GROUPBY - group by option was part of the query

35

69

DB2 Explain Columns

Sort flags for 'new' (inner) tables:

– SNU - SORTN_UNIQ - Y = remove duplicates, N = no sort

– SNJ - SORTN_JOIN - Y = sort table for join, N = no sort

– SNO - SORTN_ORDERBY - Y = sort for order by, N = no sort

– SNG - SORTN_GROUPBY - Y = sort for group by, N = no sort

70

DB2 Explain Columns

Sort flags for 'composite' (outer) tables:

– SCU - SORTC_UNIQ - Y = remove duplicates, N = no sort

– SCJ - SORTC_JOIN - Y = sort table for join, N = no sort

– SCO - SORTC_ORDERBY - Y = sort for order by, N = no sort

– SCG - SORTC_GROUPBY - Y = sort for group by, N = no sort

– PF - PREFETCH - Indicates whether data pages were read in advance by prefetch.

– S = pure sequential PREFETCH

– L = PREFETCH through a RID list

– Blank = unknown, or not applicable

36

71

DB2 Explain Analysis
Guidelines:
• You want to avoid tablespace scans (TYPE = R) or at

least be able to explain why. Tablespace scans are
acceptable for small tables.

• Nested Loop Join is usually the most efficient join
method.

• Index only access is desirable (but usually not possible)

• You should strive for Index access with the matching
columns being the same as the number of columns in the
index.

72

DB2 Explain Analysis

Try to answer the following questions:

• Is Access through an Index? (TYPE is I, I1, N or MX)

• Is Access through More than one Index (TYPE is M, MX,
MI or MU)

• How many columns of the index are used in matching
(TYPE is I, I1, N or MX and MC contains number of
matching columns)

• Is the query satisfied using only the index? (IO = Y)

37

73

DB2 Explain Analysis

• Is a view materialized into a work file? (TNAME names a
view)

• What Kind of Prefetching is done? (PF is L for List, S for
sequential or blank)

• Are Sorts Performed?
(SNU,SNJ,SNO,SNG,SCU,SCJ,SCO or SCG = Y)

• Is a subquery transformed into a join? (BLOCK Value)

74

DB2 Explain Example - 5 tables

This example uses the training database tables:
--SET THE CURRENT SQLID TO YOUR AREA:
SET CURRENT SQLID='FSUTRN';
-- SET THE QUERYNO TO YOUR USERID NUMBER, OR SOMETHING

UNIQUE IN YOUR GROUP. IN THIS EXAMPLE, CHANGE 587 TO
YOUR USERID.

--THIS QUERY SELECTS COLUMNS FROM 5 TABLES.
--NOTICE THE ? PARAMETER MARKERS IN THE WHERE CLAUSE.

EXPLAIN PLAN SET QUERYNO=587 FOR

38

75

DB2 Explain Example - 5 tables
SELECT C.COURSE_NUMBER, C.COURSE_IND,

C.YEAR, C.TERM, C.SECTION_NUMBER,
C.SUMMER_SESSION_IND, C.FACULTY_ID,
E.COURSE_DEPT_NUMBER,
D.LAST_NAME AS FACULTY_LAST_NAME,
D.FIRST_NAME AS FACULTY_FIRST_NAME,
D.MIDDLE_NAME AS FACULTY_MID_NAME,
A.STUDENT_ID, A.HOURS,

B.LAST_NAME AS STUDENT_LAST_NAME,
B.FIRST_NAME AS STUDENT_FIRST_NAME,
B.MIDDLE_NAME AS STUDENT_MID_NAME,
B.CURR_CLASS, B.CURR_DIV, B.CURR_MAJOR, B.RACE,

B.GENDER

76

DB2 Explain Example - 5 tables
FROM FSDBA.COURSE_MASTER AS E,

FSDBA.CURRENT_COURSES AS C,
FSDBA.TEACHER_MASTER AS D,
FSDBA.STUDENT_COURSE AS A,
FSDBA.STUDENT_MASTER AS B

WHERE
C.COURSE_NUMBER = E.COURSE_NUMBER AND
C.COURSE_IND = E.COURSE_IND AND
C.FACULTY_ID = D.FACULTY_ID AND
C.YEAR = A.YEAR AND C.TERM = A.TERM AND
C.COURSE_NUMBER = A.COURSE_NUMBER AND
C.COURSE_IND = A.COURSE_IND AND
C.SECTION_NUMBER = A.SECTION_NUMBER AND
A.STUDENT_ID = B.STUDENT_ID AND

39

77

DB2 Explain Example - 5 tables

C.YEAR = '1998' AND C.TERM = '9' AND
STATUS NOT IN ('13', '14', '15', '20', '21') AND
-- FIRST CODE A POSSIBLE DEPT:

(E.COURSE_DEPT_NUMBER = '1105'
OR

-- THEN CODE THE POSSIBLE COURSE NUMBERS:
SUBSTR(C.COURSE_NUMBER,1,7) = 'BCH4054'

OR
-- THEN CODE THE POSSIBLE PREFIXES:

SUBSTR(C.COURSE_NUMBER,1,3) = 'CEG'
OR

78

DB2 Explain Example - 5 tables

-- THEN CODE THE POSSIBLE SECTIONS:
(SUBSTR(C.COURSE_NUMBER,1,7)

LIKE 'STA4502' AND
SUBSTR(C.SECTION_NUMBER,1,2) LIKE '01')

OR (SUBSTR(C.COURSE_NUMBER,1,7)
LIKE 'GEB6904' AND
SUBSTR(C.SECTION_NUMBER,1,2) LIKE '04')

OR (SUBSTR(C.COURSE_NUMBER,1,7)
LIKE 'SYO5376' AND
SUBSTR(C.SECTION_NUMBER,1,2) LIKE '85')

)

40

79

DB2 Explain Example - 5 tables

ORDER,BY C.COURSE_NUMBER, C.COURSE_IND,
C.SECTION_NUMBER,

STUDENT_LAST_NAME,
STUDENT_FIRST_NAME,
STUDENT_MID_NAME
FOR FETCH ONLY
OPTIMIZE FOR 15 ROWS;

80

DB2 Explain Example - 5 tables
---------+---------+---------+---------+---------+---------+---------+---
QUERY BLOCK PLAN METH TNAME TABNO TYPE MC ANAME
---------+---------+---------+---------+---------+---------+---------+--
00587 01 01 00 CURRENT_COURSES 02 R 00
00587 01 02 04 COURSE_MASTER 01 I 02 IXCRM01
00587 01 03 04 STUDENT_COURSE 04 I 03 IXSTC02
00587 01 04 01 TEACHER_MASTER 03 I 01 IXTCM01
00587 01 05 01 STUDENT_MASTER 05 I 01 IXSTM01
00587 01 06 03 00 00

41

81

DB2 Explain Example - 5 tables

-------+---------+---------+---------+---------+---------------
IO SNU SNJ SNO SNG SCU SCJ SCO SCG PF
-------+---------+---------+---------+---------+---------------
N N N N N N N N N S
N N N N N N N N N L
N N Y N N N N N N L
N N N N N N N N N
N N N N N N N N N
N N N N N N N Y N

82

Example: SAMAS Query1

SET CURRENT SQLID='FSUDBA';
EXPLAIN PLAN SET QUERYNO=587 FOR
SELECT MON, SUM(AMOUNT)

FROM
(SELECT
MACH_DATE, MONTH(MACH_DATE) AS MON,

SUM (AMOUNT) AS AMOUNT
FROM
FSUDWH.SAMAS_TRANSACTIONS SAM,
FSUDWH.FUND_CODES FND,
FSUDWH.OBJECT_CODES OBJ,
FSUDWH.APPRO_CATEGORY_CDS CAT

42

83

Example: SAMAS Query1
WHERE (CAT.APPRO_CATEGORY=

SAM.APPRO_CATEGORY) AND
(OBJ.OBJECT_CODE= SAM.CHARGE_OBJECT)
AND (SAM.STATE_FUND= FND.STATE_FUND AND
SAM.FUND_ID= FND.FUND_CODE)
AND ((SAM.RECORD_TYPE = 'I')
AND SAM.CHARGE_ORG LIKE '021000000‘
AND SAM.MACH_DATE BETWEEN '2000-07-01'
AND '2001-06-30‘ AND (SAM.B_D_E_R = 'D‘ AND

SAM.TRANS_TYPE <> '80‘ AND
SAM.RECORD_TYPE = 'I'))

GROUP BY SAM.MACH_DATE) AS QRY1
GROUP BY MON ;

84

Example: SAMAS Query1
SELECT SUBSTR(DIGITS(QUERYNO),6,5) AS QUERY,

SUBSTR(DIGITS(QBLOCKNO),4,2) AS BLOCK,
SUBSTR(DIGITS(PLANNO),4,2) AS PLAN,
SUBSTR(DIGITS(METHOD),4,2) AS METH,
TNAME, SUBSTR(DIGITS(TABNO),4,2) AS TABNO,
ACCESSTYPE AS TYPE,

SUBSTR(DIGITS(MATCHCOLS),4,2) AS MC,
ACCESSNAME AS ANAME, INDEXONLY AS IO,
SORTN_UNIQ AS SNU, SORTN_JOIN AS SNJ,

SORTN_ORDERBY AS SNO,
SORTN_GROUPBY AS SNG, SORTC_UNIQ AS SCU,

SORTC_JOIN AS SCJ,
SORTC_ORDERBY AS SCO, SORTC_GROUPBY AS SCG,

PREFETCH AS PF
FROM FSUDBA.PLAN_TABLE

WHERE QUERYNO = 587 ORDER BY 1, 2, 3;
delete from fsudba.plan_table where queryno = 587;

43

85

Example: SAMAS Query1
QUERY BLOCK PLAN METH TNAME TABNO TYPE MC ANAME
----- ----- ---- ---- ------------------ ----- ---- -- -------

00587 01 01 00 QRY1 01 R 00

00587 01 02 03 00 00
00587 02 01 00 SAMAS_TRANSACTIONS 02 I 01 IXSTR08

00587 02 02 01 FUND_CODES 03 I 02 IXFUN01

00587 02 03 01 OBJECT_CODES 04 I 01 IXOBJ01

00587 02 04 01 APPRO_CATEGORY_CDS 05 I 01 IXACC01
00587 02 05 03 00 00

86

Example: SAMAS Query1
IO SNU SNJ SNO SNG SCU SCJ SCO SCG PF

-- --- --- --- --- --- --- --- --- --

N N N N N N N N N S
N N N N N N N N Y

N N N N N N N N N S

Y N N N N N N N N
Y N N N N N N N N

Y N N N N N N N N

N N N N N N N N Y

44

87

Example: SAMAS Query2

SET CURRENT SQLID = 'FSUDBA';
EXPLAIN PLAN SET QUERYNO = 1 FOR

SELECT MACH_DATE, FISCAL_YEAR,
CHARGE_ORG, PRIMARY_DOC_NUM,
AMOUNT

FROM FSDBA.SAMAS_TRANSACTIONS
WHERE MACH_DATE >= '2001-07-01'
AND MACH_DATE <= '2002-06-30'
AND FISCAL_YEAR IN ('20012002'
,'20012002')
AND BUDGET_ENTITY = '48900100'

88

Example: SAMAS Query2

AND APPRO_CATEGORY = '010000'
AND CERTIFY_FORWARD = ' '

AND GL LIKE '7%'
AND (SUBSTR(DATE_TAG,1,2)) ¬= ' '
AND (SUBSTR(DATE_TAG,1,2)) IN
('01','02','03','04','05','06','07','08','09','10','11','12')
AND PRIMARY_DOC_NUM LIKE '_OT%'
ORDER BY MACH_DATE, FISCAL_YEAR
FOR FETCH ONLY
;

45

89

Example: SAMAS Query2

SELECT SUBSTR(DIGITS(QUERYNO),6,5) AS QUERY,
SUBSTR(DIGITS(QBLOCKNO),4,2) AS BLOCK,
SUBSTR(DIGITS(PLANNO),4,2) AS PLAN,
SUBSTR(DIGITS(METHOD),4,2) AS METH,
TNAME, SUBSTR(DIGITS(TABNO),4,2) AS TABNO,
ACCESSTYPE AS TYPE, SUBSTR(DIGITS(MATCHCOLS),4,2)
AS MC, ACCESSNAME AS ANAME, INDEXONLY AS IO,
SORTN_UNIQ AS SNU, SORTN_JOIN AS SNJ,
SORTN_ORDERBY AS SNO,
SORTN_GROUPBY AS SNG, SORTC_UNIQ AS SCU,
SORTC_JOIN AS SCJ, SORTC_ORDERBY AS SCO,
SORTC_GROUPBY AS SCG, PREFETCH AS PF
FROM FSUDBA.PLAN_TABLE
WHERE QUERYNO = 1 ORDER BY 1, 2, 3;

DELETE FROM FSUDBA.PLAN_TABLE WHERE QUERYNO = 1;

90

Example: SAMAS Query2
QUERY BLOCK PLAN METH TNAME TABNO TYPE MC ANAME
----- ----- ---- ---- ------------------ ----- ---- -- ------
00001 01 01 00 SAMAS_TRANSACTIONS 01 R 00
00001 01 02 03 00 00

IO SNU SNJ SNO SNG SCU SCJ SCO SCG PF
-- --- --- --- --- --- --- --- --- --
N N N N N N N N N S
N N N N N N N Y N

46

91

DB2 Insight

Use DB2 Insight to determine how much
CPU is used by your query
You can look at information during and
after your query executes

Demo
Goal --> REDUCE the COST !!!

92

Review Performance Tuning

Write your SQL to maximize use of Indexes
and Stage 1 Predicates
Use an EXPLAIN Report to understand
how DB2 plans to access the data
Run REORGs and RUNSTATs as needed
Use Insight for obtaining actual CPU costs

