
Index Selection for OLAP�

Himanshu Gupta Venky Harinarayan y Anand Rajaraman

Je�rey D� Ullman

Department of Computer Science

Stanford University

Stanford CA �����

fhgupta� venky� anand� ullmang�db�stanford�edu�

Abstract

On�line analytical processing �OLAP� is a recent
and important application of database systems� Typ�
ically� OLAP data is presented as a multidimensional
�data cube�� OLAP queries are complex and can take
many hours or even days to run� if executed directly on
the raw data� The most common method of reducing
execution time is to precompute some of the queries
into summary tables �subcubes of the data cube� and
then to build indexes on these summary tables� In most
commercial OLAP systems today� the summary tables
that are to be precomputed are picked �rst� followed
by the selection of the appropriate indexes on them�
A trial�and�error approach is used to divide the space
available between the summary tables and the indexes�
This two�step process can perform very poorly� Since
both summary tables and indexes consume the same
resource 	space 	 their selection should be done to�
gether for the most e
cient use of space� In this pa�
per� we give algorithms that automate the selection of
summary tables and indexes� In particular� we present
a family of algorithms of increasing time complexities�
and prove strong performance bounds for them� The
algorithms with higher complexities have better perfor�
mance bounds� However� the increase in the perfor�
mance bound is diminishing� and we show that an algo�
rithm of moderate complexity can perform fairly close
to the optimal�

�This work was supported by NSF grant IRI���������� ARO
grant DAAH������	��	��� and Air Force Contract F��
	�����
	�	����

yPresent address of V� Harinarayan and A� Rajaraman� Jun
glee Corp�� Palo Alto� CA�

� Introduction

Decision�support systems are an increasingly impor�
tant application of databases� Corporations are begin�
ning to use the accumulated operational data to help
understand and run their business� Towards this pur�
pose� data from the di�erent operations of a corpora�
tion are reconciled and stored in a central database
commonly called a �data warehouse�� Analysts use
the data warehouse to extract the business information
that enables better decision making� This interactive
decision�support process is called OLAP �On�line An�
alytical Processing� to distinguish it from conventional
OLTP �On�line Transaction Processing� applications�

OLAP applications require viewing the data from
many di�erent business perspectives �dimensions��
Data cube 	GBLP
�� is a multidimensional view of a
databases where a critical value� e�g�� sales� is orga�
nized by several dimensions� for example� sales of au�
tomobiles organized by model� color� day of sale and
so on� The metric of interest is called the measure
attribute� which is sales in the example� It is gener�
ally accepted that OLAP systems need to present such
a multidimensional view of the data to users� Each
cell of the data cube corresponds to a unique set of
values for the di�erent dimensions and contains the
value of the measure for this set of values� As men�
tioned in 	GBLP
��� the domain of each dimension is
augmented with the special value �ALL�� In order to
present this multidimensional view� the data is usually
stored in the form of �summary tables� corresponding
to the subcubes of the data cube��

In 	HRU
�� the e�cient implementation of �data

�This approach of storing a data cube is known as ROLAP
�Relational OLAP�� The other approach in which the data cube
is stored as a multidimensional array is known as MDOLAP�
MDOLAP is very space consuming for sparse data cubes and
hence is rarely used�

cubes� was considered� In particular� we investigated
the problem of selecting a set of views of the data cube
to materialize� in order to minimize the time needed
to execute a given population of queries� An algorithm
that was both polynomial�time and competitive �always
gives a solution that is within a constant factor of the
optimum� was presented� This �greedy� algorithm is
guaranteed to give at least �� of the bene�t of the
optimal solution�

While the greedy algorithm can be shown to be com�
petitive �in the formal sense given above� for a variety
of materialized view problems� there are also problems
for which the greedy approach can be shown arbitrarily
bad �	G
���� In this paper� we investigate a simple but
important example of a problem where straightforward
approaches are neither polynomial nor competitive� yet
there is a technique that gives us both of these desir�
able properties� We study data cubes with indexes on
the materialized views permitted� The problem is that
when we have the option of putting one or more indexes
on a view in order to speed certain queries� then all the
bene�t of materializing a view might reside in one or
more of the indexes that we later build for that view�
We are thus faced with two apparently bad choices�

�� Treat a view and any set of its indexes as one
view that we might choose to materialize� Then�
the number of di�erent views available grows ex�
ponentially� While the greedy algorithm might
then be both competitive and polynomial in the
size of its data� the fact that its data has grown
exponentially makes the approach unlikely to be
successful� even for relatively small data cubes�

�� Treat indexes as separate �views� that we might
materialize� Here� the problem is that until the
underlying view is chosen by the greedy algo�
rithm� there is no bene�t in choosing an index�
Thus� a simple greedy algorithm might never ma�
terialize the underlying view� because it perceives
no immediate bene�t in doing so� Thus� we could
be locked out of the opportunity to make major
improvements in the average query time by ma�
terializing the view and several of its indexes�

We might imagine that the solution is simple� look
at several �objects� �views or their indexes� at a time�
Unfortunately� the more objects we consider at a time�
the higher the degree of the polynomial that mea�
sures the running time� We thus consider both this
�k�greedy� approach and another approach that of�
ten has a slightly lower performance guarantee but re�
mains close to quadratic in running time per step of
the greedy algorithm� Our conclusion is that we can�

with small degradation of performance compared with
the no�index case considered in 	HRU
�� incorporate
indexes into the framework of data cube design�

��� Related Work

Gray et al� in 	GBLP
�� introduce the data cube op�
erator as a generalization of the SQL groupby opera�
tor� The key to this generalization is the introduction
of the �ALL� keyword� In many commercial systems�
subcubes of this data cube are precomputed to improve
performance� In 	HRU
�� Harinarayan et al� look into
the problem of determining which subcubes to precom�
pute� They give a simple greedy algorithm to select
subcubes� and prove a strong performance guarantee
for the algorithm� Gupta 	G
�� develops a framework
for the general problem of selecting views to materialize
in a datawarehouse� Johnson and Shasha in 	JS
� in�
troduce a new index structure that reduces the number
of index accesses in data cube queries�

The issue of what indexes to build has not been in�
vestigated before from a research perspective� A two�
step process � picking subcubes �rst� followed by the
indexes � is typically adopted 	MS
��� An ad hoc
approach is used in dividing the space and in picking
indexes� For example� 	MS
�� builds indexes on the
most frequently used dimensions� This paper is the �rst
to explore the index�selection problem and automate it
with provably near�optimal algorithms�

��� Paper Organization

The rest of the paper is organized as follows� In
Section �� we present a motivating example based on
the TPC�D benchmark database which illustrates why
the two�step process of �rst picking subcubes and then
indexes can lead to bad choices� In Section �� we look at
the universe of views� queries� and indexes that arise in
a data cube� The cost model is introduced in Section ��
We present the algorithms along with the analysis of
their performance guarantees in the following section�
Experimental results are stated in Section � Finally�
we present our conclusions in Section ��

� Motivating Examples

We use an example taken from TPC�D 	TPCD
���
a decision�support benchmark to motivate the index�
selection problem� The example illustrates the com�
plexity of this problem� and the di�culty of doing the
selection well in the two�step selection process�

For this example� we use only a subset of the dimen�
sions that exist in the schema of the TPC�D bench�

mark� TPC�D models a business warehouse with di�
mensions part� supplier� and customer� The busi�
ness buys a part from a supplier and sells it to a
customer� The measure of interest is the total sales�
sales� We use the TPC�D database as a running ex�
ample throughout this paper and wherever it is clear
from the context� we abbreviate part to p� supplier
to s� and customer to c� We also use the terms dimen�
sions and attributes interchangeably�

We �rst discuss the universe of subcubes� queries�
and indexes possible� This discussion is formalized in
Section ��

Subcubes

The subcubes considered for precomputation corre�
spond to elements of the power set of the set of di�
mensions viz� fpart� supplier� customerg� The ele�
ment fpart� customerg� for example� corresponds to
the subcube which has the sales for each �part�
customer� pair over all supplier�s� In SQL terms�
the subcubes di�er only in their groupby clause� and
an element of the power set gives the attributes in
the groupby clause of the corresponding subcube�
The eight subcubes considered for precomputation are
shown in Figure � organized into a lattice as explained
in Section ���� The numbers �e�g�� M� i�e�� mil�
lion� associated with the subcubes denote the number
of rows �cells� in each and none indicates the empty
subset�

Queries

The queries we consider can use each dimension as a
selection attribute or as an output attribute �in SQL
terms� as a groupby clause attribute or as a where

clause attribute respectively�� A possible query Q is�

� Find the sales to each customer of a given part

�widget� bought from a given supplier

�Widgets�r�us��

In this query� sales and customer are output at�
tributes� and part and supplier are selection at�
tributes� Since all queries have sales as an output
attribute� we do not use the sales dimension in spec�
ifying a query� Using the abbreviations for the dimen�
sions� we write query Q as �c�ps� � speci�es the output
or groupby attributes� while � speci�es the selection
attributes of the query� The order of the dimensions in
� and � is unimportant� Also� any subcube that has
all the output and the selection attributes of a query
can be used to answer the query�

Indexes

We can construct B�Tree indexes �or variants� to speed
up query processing� For subcube ps� for example� we
can construct the following indexes�
� Ips� the search key for this index is a concatenation

of the p and s dimensions�
� Isp� the search key for this index is a concatenation

of the s and p dimensions�
The order of the dimensions in the indexes matter�

Given a value for p� we can use Ips to retrieve those
rows in subcube ps that have this value for p� Simi�
larly for ps� given a value for p and s we can use Ips to
retrieve the required row from subcube ps� However�
given a value for s� the index Ips cannot be used e��
ciently to retrieve those rows in subcube ps with that
given value of s� In general� an index IX������Xk

is only
useful in answering any query which has some pre�x of
X�� � � � � Xk in its selection attributes�

Cost Model

Suppose that the cost of answering any query is the
number of rows processed� Consider answering Q��
�p�s� Now Q� can be answered using either subcube
ps at a cost of ���M rows� or using subcube psc at a
cost of M rows� Consider now answering Q� using
the index Isp on subcube ps�� The average number of
rows associated with each value of s in subcube ps is
jpsj
jsj � ��� Thus the cost of answering Q� using Isp is

the cost of processing �� rows� Indexes are thus very
useful in reducing query costs dramatically and should
be considered in any precomputation strategy�

Figure � also shows the queries and indexes associ�
ated with one subcube� ps� Queries are associated with
the smallest subcube that can be used to answer them�

EXAMPLE ��� Returning to our original problem�
the precomputation strategy for the TPC�D bench�
mark database� the question is now� which of the
possible subcubes and indexes do we materialize for
good query performance� For simplicity� assume that
all queries are equiprobable� To materialize all possi�
ble subcubes and indexes� we would require space for
around ��M rows� In most practical situations there
is not enough space �or equivalently load time� to pre�
compute everything� For this example� assume that we
have around ��M rows worth of space available�
The Two�Step Approach� The two�step pro�

cess 	MS
�� would divide this available space between
subcubes and indexes� Subcubes are picked in the �rst

�In this example� we restrict ourselves to only �fat� ��cover
ing�� indexes� i�e�� the indexes which correspond to the permu
tations of the dimensions in the subcube�

psc M

sc M

p ���M

none �

IspIps

Queries

�s�p
�ps��

�p�s
���ps

ps ���M pc M

c ���M s ����M

Figure �� Subcubes� Queries and Indexes in the TPC�D database�

step to �t within the space allotted to them and in�
dexes are picked in the second step again �tting within
the space allotted to them� Note that indexes can only
be built for those subcubes picked in the previous step�
An important problem is dividing the space available
between the subcubes and the indexes� One possibility
is dividing the space available equally between the sub�
cubes and indexes� In this example� we use a greedy
algorithm as given in 	HRU
� to pick the best sub�
cubes and indexes in each step� On dividing the space
equally between the two steps and running this algo�
rithm� we pick the following subcubes in the �rst step�
psc� ps� c� s� p� none� sc� and the following indexes in the
next step� Icsp� Ipcs� This selection leads to an average
query cost of ����M rows� That is� each query requires
us to process on an average ����M rows �

The ��Greedy Approach� Now consider inte�
grating the subcube selection and index selection into
one step� We use the simplest algorithm we give
in this paper� a ��greedy algorithm that at every
stage picks the subcube or the index on a subcube
�if the underlying subcube has already been picked�
that gives the greatest benefpit in terms of the number
of rows processed� The ��greedy algorithm gives us
the following selection in order of decreasing bene�t�
psc� Icsp� ps� Ipcs� Ispc� c� s� p� none�

The selections made by this algorithm result in an
average query cost of ����M rows� By integrating the
two�steps into one� we have improved the average query
cost by almost �� percent� The reason is the following�
while in the two�step process we allocate half of the
��M rows available to the indexes� it turns out that we
are best o� allocating three�quarters of the available
space to the indexes� The actual fraction of space we
should allocate to the indexes depends on a number

of factors like the sizes of the subcubes and indexes�
and it is di�cult to determine this fraction a priori
without considering the relative bene�ts of subcubes
and indexes at every stage of the selection process�

Interestingly� we see a law of diminishing returns
here too� The remaining subcubes and indexes which
have a total of around ��M rows provide virtually no
bene�t and do not impact the query cost at all� �

It may still be argued that one can design better
strategies to ensure that the two�step process does not
perform so badly� But as we shall show� even the one�
step ��greedy algorithm can perform arbitrarily badly
in the general case� In practice moreover� the general
strategy used in the two�step case is one of trial�and�
error� The algorithms and the associated performance
guarantees that we give in this paper are thus a sig�
ni�cant step towards automating this complex task of
deciding what to precompute for the best query per�
formance�

� Views� Queries� and Indexes

In this section� we outline the type of views� queries
and indexes which we consider in a data cube� Note
that� our algorithms are robust and their correctness or
performance guarantees do not depend upon the choice
of views� queries and indexes�

��� Views

In a data cube� we associate a subcube with every
set of groupby attributes possible� These subcubes
are the units of precomputation and form the potential
views considered for materialization� Here� we provide

a rationale for such a partitioning scheme of the data
cube into its subcubes�

There are many ways of partitioning a data cube�
The boundary cases illustrate the problems of too many
partitions and too few� When every row of the data
cube is treated as a subcube� in a ROLAP setting� a
separate table is associated with each row� The over�
head cost and complexity of the metadata make such a
choice very di�cult to implement� On the other hand�
consider the case when we have only one partition� the
entire data cube itself� This approach leads to poor
utilization of space� since we do not precompute any�
thing unless we can precompute the entire cube� Thus
any available space which is less than the size of the
entire data cube is wasted�

It is important that we strike a balance between
these two extremes� A commonly used ROLAP parti�
tioning scheme 	HRU
�� is to associate a subcube with
every element of the power set of the set of dimensions�
as was mentioned in Section �� The subcubes when
speci�ed in SQL di�er only in the groupby clause�
The element of the power set gives the set of attributes
in the groupby clause of the corresponding subcube�
Thus� for example� fpart� customerg corresponds to
the subcube given by the SQL query�

SELECT Part� Customer� SUM�sales�
AS TotalSales

FROM R
GROUP BY Part� Customer�

In this paper we denote a subcube by the attributes
in the groupby clause� The subcube above is denoted
by part� customer� When we abbreviate the dimen�
sions� we just concatenate the abbreviations in speci�
fying the subcubes � the subcube above could also be
written as pc� Note that the order of the dimensions is
irrelevant�

In practice too� such a partitioning scheme is com�
mon� The popular �snow�ake schema� 	ADS
� is an
example of this partitioning scheme� Since the sub�
cubes are now just aggregate views� some of which are
materialized� we refer to them as views�

��� Queries

A user query in the TPC�D example� asks for the
sales grouped by a certain set of attributes� after se�
lecting on another set of attributes� The selection at�
tributes are disjoint from the group�by attributes� For
example� a user query could ask only for the sales of a
single part� say �widgets�� grouped by the customer�s
it was sold to� We write this query as �c

�
�p�widget�R�

�
�

Here the subscripts of � denote the group�by attributes
and those of �� the selection attributes�

In general� a query of the form �c
�
�p�constant�R�

�

asks for a slice through the subcube customer� part�
We denote a generic query of this form by �c�p and call
it a slice query on the subcube customer� part� We
can associate a query �G������Gk

�S������Sl with the sub�
cube denoted by G�� � � � � Gk� S�� � � � � Sl� which is the
smallest subcube that can answer this query� We re�
gard a user query that asks for an entire subcube as
a special kind of slice query where the set of selection
attributes is empty� Thus all queries are slice queries�
An r�dimensional subcube has �r slice queries associ�
ated with it� because any subset of the dimensions can
occur in the select part� An n�dimensional data cube
has a total of

�
n
r

�
r�dimensional subcubes� Therefore�

the total number of slice queries associated with an
n�dimensional data cube is

Pn
r��

�
n
r

�
�r� which equals

�n�

��� Indexes

B�Tree indexes can improve query response times
substantially� There can be several indexes on a given
view� For subcube ps� for example� we can construct
the following four indexes� Ip�ps�� Is�ps�� Ips�ps��
Isp�ps�� In each case we list the search key attributes
as the subscript� while the subcube ps on which the
index is built� is mentioned in parentheses� The order
of the attributes in the indexes matters as we saw in
Section ��

We can have one index for every subset of the at�
tributes of a view and every ordering of the subset�
Thus the number of possible indexes for a view with
m attributes is given by

Pm
r��

�
m
r

�
r which approaches

�e � ��m for large m� Using a similar calculation�
the total number of indexes associated with an n�
dimensional data cube is close to �e � ���n which
is approximately �n � The number of fat indexes �
search key attributes are permutations of the subcube
attributes � in an n�dimensional cube is �e � ��n �
or approximately �n � In general� an index can help
answer slice queries when some pre�x of the index at�
tributes correspond to some of the selection attributes
in the query�

��� The Computability and Dependence
Relations

We de�ne the computability relation � between
queries and views as follows� For a query Q and a
view V � we say Q�V if the result of query Q can be
computed using the tuples in view V � For example�
the query Q� � �c�s can be computed from the view
V� � sc and also from the view V� � psc� Therefore�

Q��V� and Q��V�� However� if V� � pc� Q� cannot
be computed from V��

De�ne the partial order � on the views as follows�
V� � V� i� the set of attributes of V� is a super�
set of the set of attributes of V�� Thus� part� part

and part� part� customer� but part �� customer and
customer �� part� The di�erent subcubes of a data�
cube form a lattice under �� which we call the de�
pendence relation for views� The lattice of the views
�subcubes� involved in the TPC�D example is shown
in Figure ��

There is a relationship between the computability
relation � and the dependence relation �� if V� � V��
and Q��V�� then Q��V�� Therefore� the lattice in
Figure � also helps us build the � relation�

The � relation can be represented using a bipar�
tite graph as done in Section �� If a query Q is com�
putable from a view V � we draw an edge between Q
and V � Each edge �Q� V � also has a weight� the cost
of answering Q using V � Consider now an index I on
a view V that helps answer a query Q more quickly�
The e�ect of this index on the graph is an additional
edge between Q and V labeled by a pair consisting of
I and the cost of answering Q using V and I� The
algorithms we outline in Section � take this graph for
the � relationship as an input�

��� Summary

An n�dimensional data cube has associated with it�
� �n views�
� �n slice queries� and
� about �n possible indexes� about �n of these

being fat indexes�
It is to be noted here that the problem size varies as

a factorial of the number of dimensions�

� A Cost Model

In this section� we present a cost model to estimate
the time to answer a query using a view in conjunc�
tion with an index on the view� We then consider the
problem of estimating the sizes of views� indexes� and
query results without actually materializing all of them
�as we have seen� the number of queries� views� and in�
dexes can be quite large even for data cubes of small
dimension�� Our algorithms do not depend upon any
cost model for correctness and performance guarantees�

��� The Linear Cost Model

Suppose we answer a query Q using a view V � We
need to process the table corresponding to V to answer

Q� Depending on the availability of indexes� we may
have to process only some of the rows of the table for V �
The cost of answering Q is a function of the number of
rows of the table V we must process in order to answer
Q� In this paper� we choose the simplest possible cost
model�
� The cost of answering Q is the number of rows of

the table for V that must be processed to

construct the result of Q�
This �linear cost model� was presented in 	HRU
� and
is also used in the MetaCube product 	STG
���

Let Q be a slice query such that Q�V � and con�
sider answering Q using V � For example� suppose Q
is a query about the sales of a single part �wid�
get�� and V is the view part� supplier� That is�
Q � �none�p� If there are no suitable indexes on V �
we must scan almost the entire table for V � and the
query cost is given by jV j� where jV j is the number of
rows in V � Suppose we have available the index Ip�V ��
We can use this index to process only those rows of
V that Q asks for� On average� V has jV j � j�p�V �j
rows corresponding to each part� and so this is the
average number of rows we would have to process to
answer the slice query Q� Here � is the distinct pro�
jection� and so j�p�V �j gives the number of distinct
values of part in V � Noticing that the number of dis�
tinct part values is the same as the number of rows
in the subcube part� we get j�part�V �j � jpartj�
where jpartj is the size of the subcube part� We
conclude that the average cost of answering the slice
query �none�p using the view V and the index Ip�V �
is jV j � jpartj � jpart� supplierj � jpartj� In comput�
ing the cost� we disregard the number of index nodes
processed�

We can follow exactly the same process and arrive at
the same cost if we had used the index Ips�V � instead�
However� suppose we had either the index Is�V � or the
index Isp�V � available� We cannot use either of these
indexes to reduce the number of rows of V that we
need to process to answer Q� Therefore� the cost of
answering Q is jV j� if there are no helpful indexes�

����� Cost Formula

We generalize these observations to obtain a formula
for the cost of answering query Q using view V and
index J �

Let Q be the query � �A� �B� where !A and !B are sets of
dimensions� We have !B � � i� Q is a subcube query�
and !A � � denotes aggregation over all dimensions� Let
V be a view !C� Now� Q�V if and only if !A� !B 	 !C�
Also� let J be the index I�D�V �� We use �D to emphasize

that the order of attributes matters� �D is a sequence

of attributes rather than a set� In particular� D � hi
�the empty sequence� denotes the case where we are
not using an index�

Let !E denote the largest subset of !B such that the
attributes in !E form a pre�x �not necessarily proper�

of �D� The cost of answering Q using the view V in
conjunction with the index J is given by�

c�Q� V� J� �
j� !C�j

j� !E�j

Recall that j� !C�j and j� !E�j denote the number of rows
in the tables corresponding to views � !C� and � !E� re�
spectively�

As an example consider the TPC�D database� with
the view V � psc of size million rows� query Q �
�c� �ps and the index J � Iscp on subcube psc� In
this case� !C � psc and !E � s� since the largest sub�
set of attributes of ps that forms a pre�x in scp is
s� From Section � we know the desired cardinalities�
j� !psc�j � M � j�!s�j � ����M � The cost is therefore
c�Q� V� J� � �M

����M � �� In other words� �� rows
have to be accessed in answering query Q using index
J on view V �

The above formula works in all cases� The case when
!E � � deserves some discussion� This case might occur
either because no index is available on V � or because
Q is a subcube query� or because the index used has
no pre�x composed only of select attributes of Q� In
all these cases� we must process all the rows in V to
answer Q� and so c�Q� V� J� � jV j� The formula gives
exactly the same result� because j���j � � �recall that
��� denotes the view none� which has � row��

��� Determining View and Index Sizes

Our algorithms require the following information�

� The size of each view�
� The size of each index�
� For each �query� view� index� triple� the cost of

answering the query using the view and an
index�

Section ����� shows how to obtain item ��� given
item ���� But we still need to know the sizes of each
view and each index� The problem is nontrivial because
the number of views and indexes is very large even for
cubes of moderate dimension �Section � shows that the
number of views and indexes is exponential in the cube
dimension��

����� Estimating View Sizes

There are many ways of estimating the view sizes that
avoid materializing all the views� We can use sampling

and analytical methods to compute the sizes of the dif�
ferent views if we only materialize the largest element
Vl in the lattice �the view that groups by all the di�
mensions�� For a view� if we know that the grouping
attributes are statistically independent� we can esti�
mate the size of the view analytically� given the size
of Vl� Otherwise we can sample Vl �or the raw data�
to estimate the size of the other views� The size of a
given view is the number of distinct values of the at�
tributes it groups by� Thus for example� the size of the
view that groups by part and supplier is the number
of distinct values of part�supplier in the raw data�
There are many well�known sampling techniques that
we can use to determine the number of distinct values
of attributes in a relation 	HNSS
���

����� Estimating Index Sizes

Given the view sizes� we can estimate index sizes� The
size of each view in our cost model is the number of
rows in the view� For indexes too� we follow a similar
model to estimate the space cost� The size of each index
�B�Tree� is the number of leaf nodes in the index� The
number of leaf nodes of an index is approximately the
number of rows in the underlying view� Thus�
� The size of any index on a view V is the same as

the size of view V �
Our model of index sizes has the important conse�

quence of pruning our space of possible indexes� Con�
sider two indexes J� � I �A�V � and J� � I�B�V � on

the same view V � If �B is a proper pre�x of �A� then
surely c�Q� V� J��
 c�Q� V� J�� for any query Q� us�
ing our cost formula� Moreover� the sizes of J� and
J� are approximately the same under our index size
model� Therefore� in any reasonable scheme of mate�
rializing views and indexes� we can ignore the index
J� in favor of the index J�� Thus� for each view� we
need to consider only the fat indexes� those indexes
whose search attributes are not a proper pre�x of the
search attributes of any other index on the same view�
If the view V is � !C�� the exactly the set of indexes

is fI�D�V � j �D is a permutation of !Cg� This result is
similar to that in 	JS
�� where they consider only fat
indexes� It can be shown that this pruning reduces the
number of indexes of interest by approximately a factor
of e� �� where e is the base of the natural logarithms�

� Materializing Views with Indexes

In this section� we develop algorithms for selecting
views and indexes to be materialized in the data cube�
Informally� we are given a set of views� each of which
has a set of indexes� and a set of queries that are to

be supported by the system� A view with one of its
indexes can be used to answer a query at some spec�
i�ed cost� The goal is to select a set of views and
indexes which will minimize the total cost to answer
the queries� under the constraint that the set of views
and indexes selected do not occupy more than a given
amount of space� S�

The above problem is NP�complete� even in the
absence of indexes and even when each view occu�
pies a unit space� there is a straightforward reduction
from Set�Cover� We develop heuristic algorithms which
provably deviate from the optimum selection of views
and indexes by only a small amount�

First� we state the above problem formally� Then�
we present a class of algorithms which have di�erent
guarantees of performance ratios and time complexi�
ties� We also rigorously analyze the performance of
the algorithms presented�

��� Problem De�nition

Consider a bipartite multigraph� G � �V � Q�E��
called a query�view graph� V contains the set of views
and Q contains the set of queries�

� With each view vi � V is associated a tuple
�Si� Ii�� where

Si is the space occupied by the view� and

Ii is the set of indexes on the view� Iik is used to
denote the kth index of vi�

� With each query qi � Q is associated a default
cost Ti of answering the query qi� even without
using any other view or index in G� �In data
cube� the default cost of answering any query is
the cost incurred in answering the query using
the raw data table�s���

� Every edge �qi� vj� has a label �k� tijk� associated
with it� where tijk is the cost of answering the
query qi using the view vj and its kth index�
When k � �� tijk is the cost of answering qi using
just vj�

Goal� Given a set of views V and a set of queries Q�
we must select M 	 V � a set of views and indexes to
be materialized� under the constraint that the views
and indexes in M can be accommodated in S �a given
constant� units of space� M must minimize the total
cost incurred answering each query in Q from one of
the views in M � More formally� we wish to minimize
the following quantity

� �G�M � �

jQjX

i��

min�Ti� min
vj�Ij�k�M�

tijk�

under the constraint that the total space occupied by
the structures� in M is less than S�

The above problem is a simple formalization of the
problem of selecting views and indexes in data cube�
We have assumed that the queries supported by the
system are uniformly distributed across the queries in
Q� Our algorithms generalize easily to the case when
there is a frequency fi associated with each query qi
�by including the factor fi with the term associated
with qi in the summation used to de�ne � ��

��� The Bene�t of a Choice of Structures

Let C be an arbitrary set of views and indexes in
a query�view graph G� We use S�C� to denote the
total space occupied by the structures in C� The ben�
e�t of C with respect to M � an already selected set
of structures� is denoted by B�C�M � and is de�ned as
�� �G�M �� � �G�M �C��� where � is the function de�
�ned above� Bene�t of C per unit space with respect
to M is B�C�M ��S�C�� Also� B�C� 	� is called the
absolute bene�t of the set C�

��� The r�Greedy Algorithm

The r�greedy algorithm executes in a number of
stages� selecting at each stage a subset C having at
most r structures� The set C consists either of
� A view and some of its indexes� or
� A single index whose view has already been

selected in one of the previous stages�

At any given stage� the set C that has the maximum
bene�t per unit space with respect to M � the set of
structures selected prior to this stage� is selected� See
Algorithm ����

Suppose there are v views and each view has at
most i indexes� Then at each stage� the r�greedy al�
gorithm must consider and calculate the bene�t of at
most vi " v

�
i

r��

�
possible sets� Hence an upper bound

on the running time of the algorithm is O�kmr�� where
m is the number of structures in the given query�view
graph and k is the number of structures selected by the
algorithm� which is S in the worst case�

EXAMPLE ��� We illustrate the working of r�
greedy algorithm through a simple example�

�A structure is a view or an index�

V4
V

1
V

3
V

2
V

5

Default cost, T , of answering any query is 100 units.i

QUERIES

VIEWS

(1, 90)

(0, 95)(0, 94)

(1,50), (2,50), ..., (8,50)

(4, 79)(4, 73)

(3, 73) (3, 79)

(2, 62)

(1, 64) (1, 62)

(2, 79)

(0, 93) (4, 93)

(1, 93)

(2, 93)

(3, 93)

Q:

V:
labels: labels:

Figure �� A query�view graph

Consider the query�view shown in Figure �� For
simplicity� we have assigned a space cost of � unit to
each of the indexes and views� Let the value of S be �
units�

We now see how the r�greedy algorithm works on
the example for di�erent values of r�

�� ��greedy� Initially� absolute bene�t of every in�
dex is zero� Absolute bene�ts of the views in
order of their subscripts are viz� �� �� � �� and
�� Hence� at the �rst stage the ��greedy algo�
rithm selects V�� Except for the indexes of V��
the bene�ts of all views and indexes with respect
to M � fV�g remain the same as their abso�
lute bene�ts� The bene�ts of I��i� �
 i
 ��
relative to M become � each� Hence� the ��
greedy algorithm choses one by one all the in�
dexes of V� in the later stages� followed by V� and
V	� Thus� the solution returned by ��greedy is
fV�� I���� I���� I���� I��	� V�� V	g� with an absolute
bene�t of ��

�� ��greedy� In the �rst stage� the ��greedy algo�
rithm selects C � fV�� I���g which has an abso�
lute bene�t of �� �
 �
�� Bene�t of fV�� I��ig
for any i
 � with respect to C is �� �i�e�� ��
per unit space�� Hence� fV	� I	��g� whose bene�
�t with respect to C is �� �i�e�� ���� per unit
space�� gets selected in the second stage In the
later stages� the other indexes of V	 get selected
one by one� Thus� the solution returned by ��
greedy is fV�� I���� V	� I	��� I	��� I	��� I	�	g with an
absolute bene�t of �
��

�� 	�greedy� As in the ��greedy case� the �rst stage
of the ��greedy algorithm selects C � fV�� I���g�

Algorithm ��� r�Greedy Algorithm

Given� G� a query�view graph� and S� the space�
BEGIN

M � 	� #� M � set of structures selected so far� �#
while �S�M �
 S�

Look at all sets of one of the following forms�
� fvi� Iij�� Iij� � � � � � Iijpg� such that vi ��M �
Iijl ��M for �
 l
 p� and �
 p
 r� or
� fIijg� such that vi is in M � and Iij ��M �

Among these sets� let C be the set which has the
maximum bene�t per unit space w�r�t� M �

M � M �C�
end while

return M�
END�

�

with the absolute bene�t of
�� The second stage
selects fV�� I���� I���g� having a bene�t of �� with
respect to C �i�e�� ���� per unit space�� as the
bene�t of V� with any two of its indexes is at most
�� with respect to C �i�e�� ��� per unit space��
The structures selected in the later stages are
I���� and I��	� Thus� the solution returned by ��
greedy is fV�� I���� V�� I���� I���� I���� I��	g� which
has an absolute bene�t of ���

�� Optimal Solution� It is not di�cult to see that
the optimal solution for the given example is
fV�� I���� I���� I���� I��	� I���� I���g� having an abso�
lute bene�t of ����

�

Theorem ��� In the case when each structure occu�
pies a unit space� the r�greedy algorithm produces a so�
lutionM that uses at most S"r�� units of space� Also�
the absolute bene�t of M is at least �� � ��e
r����r�
times the optimal bene�t achievable using as much
space as that used by M �

Proof� It is easy to see that the solution M produced
by the r�greedy algorithm has at most S " r� � struc�
tures� Let k � jM j� Let the optimal solution contain�
ing k structures be O and the absolute bene�t of O be
B�

Consider a stage at which the r�greedy algorithm
has already chosen a set Gl having l structures with
�incremental� bene�ts a�� a�� a�� � � � � al� The absolute
bene�t of Gl is thus

Pl
i�� ai� Surely the absolute bene�

�t of the set O�Gl is at least B� Therefore� the bene�t
of the set O with respect to Gl� B�O�Gl�� is at least

B �
Pl

i�� ai�
Without loss of generality� we can assume that

the optimal set O doesn�t contain any index whose
corresponding view is not in O� Hence� if O con�
tains m views� it can be split into m disjoint sets
O�� O�� � � � � Om� such that each Oi consists of a
view and its indexes in O� Then� B�O�Gl�
Pm

i��B�Oi� Gl�� Therefore� by pigeon hole princi�
ple� there exists an Oi such that B�Oi� Gl��jOij
B�O�Gl��k� Now� consider the best r�subset	 Oc of
such anOi� Its bene�t per unit space with respect to Gl

is at least � r��
r

�� k
k����B�Oi� Gl��jOij�� which happens

when the bene�t of the view in Oi is zero and jOij � k�
Let� k� � � r��

r �� k
k���� As Oc �or its best subset� is also

considered for selection at this stage of the r�greedy
algorithm� the bene�t per unit space with respect to
Gl of the set C selected by the algorithm is at least
k�B�Oi� Gl��jOij� which is at least k��B �

Pl
i�� ai��k�

�i�e�� set of size at most r�

Note that Oc may contain some structures from Gl�
but the argument still holds� Distributing the bene�t
of C over each of its structures equally �for the pur�

pose of analysis�� we get al�j k��B�
Pl

i�� ai��k� for
�
 j
 jCj� As this is true for each set C selected at
any stage� we have

B

k

k�
aj "

j��X

i��

ai� for �
 j
 k�

Let k�� � k�k�� Multiplying the jth equation by

�k
����
k��

�k�j� and after adding all the equations and some

minor manipulations we get A�B ���k
����
k��

�k� where

A �
Pk

i�� ai� the absolute bene�t of M � This implies

A�B �� �k
����
k��

�k
��k�

 �� ��ek
�

 �� ��e
r����r�

We have come up with instances of the problem for
which the r�greedy algorithm performs as bad as the
worst case bound of �� ��e
r����r�

��� Inner�Level Greedy Algorithm

The Inner�level greedy algorithm works in stages� At
each stage� it selects a subset C� which consists either
of
� A view and some of its indexes selected in a greedy

manner� or
� A single index whose view has already been

selected in one of the previous stages�

Note that there is no constraint on the size of set
C� Each stage can be thought of as consisting of two
phases� In the �rst phase� for each view vi we construct
a set IGi which initially contains only the view� Then�
one by one its indexes are added to IGi in the order
of their incremental bene�ts until the bene�t per unit
space of IGi with respect to M � the set of structures
selected till this stage� reaches its maximum� That
IGi having the maximum bene�t per unit space with
respect to M is chosen as C� In the second phase� an
index whose bene�t per unit space is the maximum
with respect to M is selected� The bene�t per unit
space of the selected index is compared with that of C�
and the better one is selected for addition to M � See
Algorithm ����

The running time of the Inner�level greedy algorithm
is O�k�m��� where m is the total number of structures
in the given query�view graph and k is the maximum
number of structures that can �t in S units of space�
which in the worst case is S�

EXAMPLE ��� We illustrate the working of the
Inner�level greedy algorithm for the example in Fig�
ure ��

Algorithm ���

Inner�Level Greedy Algorithm

Given� G� a query�view graph� and S� the space�
BEGIN

M � 	� #� M � Set of structures selected so far �#
while �S�M �
 S�

C � 	�
#� C � Best set containing a view and some

of its indexes found so far �#
for each view vi �� M

IG � fvig�
#� IG � Set of vi and some of its indexes

selected in a greedy manner� �#
while �S�IG�
 S� #� Construct IG �#

Let Iic be the index of vi whose bene�t per
unit space w�r�t �M � IG� is maximum�

IG � IG � Iic�
end while

if �B�IG�M ��S�IG� � B�C�M ��jCj�
or C � 	
C � IG�

end for

for each index Iij such that its view vi �M
if B�Iij �M ��S�Iij� � B�C�M ��S�C�

C � fIijg�
end for

M � M �C�
end while

returnM �
END�

�

As the absolute bene�t per unit space of V� with at
most six of its indexes is less than ��� the algorithm
selects fV�� I���g� whose absolute bene�t is
� �i�e�� ��
per unit space� in the �rst stage� In the next stage�
the algorithm selects V� and six of its indexes with an
�incremental� bene�t of ��� �i�e�� ���� per unit space��
Thus� the solution returned by the Inner�level greedy
is fV�� I���� V�� I���� I���� I���� I��	� I���� I���g with an ab�
solute bene�t of ���� Note that the size of the solution
returned is
 units� slightly more than the given space
limit� The optimal solution using
 units of space is
V� with its eight indexes� having an optimal bene�t of
���� �

Theorem ��� The Inner�level greedy algorithm pro�
duces a solution M that uses at most � � S units
of space� Also� the absolute bene�t of M is at least

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 2 4 6 8 10 12 14 16 18 20

P
e
rf

o
rm

a
n
c
e
 G

u
a
ra

n
te

e

r in "r-greedy"

Figure �� Performance guarantees of various

algorithms

�� � ��e����� � ���� of the optimal bene�t achievable
using as much space as that used by M � assuming that
no structure occupies more than S units of space�

Proof� The proof is almost identical to the proof of
Theorem ���� The only di�erence is that in the case
of Inner�level greedy algorithm the value of k� is ���
and is independent of the sizes of the views and in�
dexes� This follows from the result in 	HRU
� on the
performance guarantee of the simple greedy algorithm
under space constraint� As the value of k� is indepen�
dent of the relative sizes of structures� the result holds
for arbitrary sizes of views and indexes�

� Performance of the Algorithms

Figure � plots the performance guarantees of the
family of r�greedy algorithms against r� Observe that
the performance guarantee of the ��greedy is �� it is
possible to construct examples where the the ratio of
the bene�t of the ��greedy choice to that of the opti�
mal choice arbitrarily small� The performance guaran�
tee initially rises rapidly as we increase r beyond �� but
the increases are exponentially diminishing� The actual
performance guarantees for ��greedy� ��greedy� and ��
greedy are ���
� ���
� and ���� respectively� The graph
has a �knee� at r � �� and the increments for greater r
are vanishingly small� The performance guarantee ap�
proaches ��� as r approaches in�nity �more precisely�
as r approaches the number of structures we are willing
to materialize�� Recall that the running time is O�mr�
where m is the total number of structures� and that
m is large even for small cube dimensions� Therefore�
it seems that in practice� using r�greedy algorithms is
not worth the additional complexity for r � ��

For comparison� the Inner�greedy algorithm runs in
time O�m�� and has a performance guarantee of �����
which is between the ratios for ��greedy and ��greedy�
Thus Inner�greedy is preferable to ��greedy because
it gives a better guarantee than ��greedy for approxi�
mately the same running time�

We experimented with the r�greedy family of al�
gorithms on cubes of dimension up to � for r �
�� �� �� We generated cubes using the analytical model
in 	HRU
�� extended to incorporate indexes and slice
queries� We varied di�erent parameters� the cardinal�
ity of each dimension� the sparsity of the cube� and the
query frequencies� �The sparsity of a data cube is the
ratio of the number of rows in the raw data relation
to the product of the cardinalities of the individual di�
mensions�� For dimensions up to � we observed that
the algorithms in the r�greedy family produced solu�
tions that were extremely close to the optimal� The
results are encouraging because they indicate that in
practice� we can obtain near�optimal solutions using an
algorithm of low complexity�

	 Conclusions

In this paper we investigate the problem of what in�
dexes to build to improve OLAP query performance�
While this problem is very important to the success
of ROLAP systems� commercial systems today usually
use ad hoc solutions� In this paper we show that the
precomputation of subcubes and indexes should be in�
tegrated into one step� ROLAP systems currently use a
two�step process which can adversely a�ect query per�
formance� We give an example of the poor performance
of the two�step process using an example based on the
TPC�D benchmark database�

We provide a family of one�step algorithms that se�
lect which subcubes and indexes should be precom�
puted for improved query performance� given the space
constraint� We give strong performance bounds for our
algorithms and show the trade�o� between the perfor�
mance bounds and the complexity of the algorithm�
Our results indicate that an algorithm of moderate
complexity performs almost as well as that of high com�
plexity� We also present the experimental results which
validate our analysis�

References

	ADS
� Archer Decision Sciences� Star Schema
���� White Paper� Available at URL
http���members�aol�com�nraden�str����htm�

	GBLP
�� J� Gray� A� Bosworth� A� Layman� H� Pi�
rahesh� Data Cube� A Relational Ag�
gregation Operator Generalizing Group�By�
Cross�Tab� and Sub�Totals� Microsoft Tech�
nical Report No� MSR�TR�
�����

	G
�� H� Gupta� Selection of Views to Materialize
in a Data Warehouse� To appear in ICDT�
January� �

�� Delphi� Greece�

	HNSS
�� P� J� Haas� J� F� Naughton� S� Seshadri�
L� Stokes� Sampling�Based Estimation of
the Number of Distinct Values of an At�
tribute� In Proceedings of the ��st Inter�
national VLDB Conference� pages ��������
�

��

	HRU
� V� Harinarayan� A� Rajaraman� and J� D�
Ullman� Implementing Data Cubes E��
ciently� ACM SIGMOD ��� pages �������
�

�

	JS
� T� Johnson and D� Shasha� Hierarchically
Split Cube Forests for Decision Support� de�
scription and tuned design� Personal Com�
munication�

	MS
�� Microstrategy Inc� The Case for Rela�
tional OLAP� White Paper� Available at
http���www�strategy�com�

	TPCD
�� F� Raab� editor� TPC Benchmark�tm� D
�Decision Support�� Proposed Revision ����
Transaction Processing Performance Coun�
cil� San Jose� CA
����� � April �

��

	STG
�� Stanford Technology Group� Inc� Design�
ing the Data Warehouse On Relational
Databases� White Paper�

