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Abstract

On�line analytical processing �OLAP� is a recent
and important application of database systems� Typ�
ically� OLAP data is presented as a multidimensional
�data cube�� OLAP queries are complex and can take
many hours or even days to run� if executed directly on
the raw data� The most common method of reducing
execution time is to precompute some of the queries
into summary tables �subcubes of the data cube� and
then to build indexes on these summary tables� In most
commercial OLAP systems today� the summary tables
that are to be precomputed are picked �rst� followed
by the selection of the appropriate indexes on them�
A trial�and�error approach is used to divide the space
available between the summary tables and the indexes�
This two�step process can perform very poorly� Since
both summary tables and indexes consume the same
resource 	space 	 their selection should be done to�
gether for the most e
cient use of space� In this pa�
per� we give algorithms that automate the selection of
summary tables and indexes� In particular� we present
a family of algorithms of increasing time complexities�
and prove strong performance bounds for them� The
algorithms with higher complexities have better perfor�
mance bounds� However� the increase in the perfor�
mance bound is diminishing� and we show that an algo�
rithm of moderate complexity can perform fairly close
to the optimal�
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� Introduction

Decision�support systems are an increasingly impor�
tant application of databases� Corporations are begin�
ning to use the accumulated operational data to help
understand and run their business� Towards this pur�
pose� data from the di�erent operations of a corpora�
tion are reconciled and stored in a central database
commonly called a �data warehouse�� Analysts use
the data warehouse to extract the business information
that enables better decision making� This interactive
decision�support process is called OLAP �On�line An�
alytical Processing� to distinguish it from conventional
OLTP �On�line Transaction Processing� applications�

OLAP applications require viewing the data from
many di�erent business perspectives �dimensions��
Data cube 	GBLP
�� is a multidimensional view of a
databases where a critical value� e�g�� sales� is orga�
nized by several dimensions� for example� sales of au�
tomobiles organized by model� color� day of sale and
so on� The metric of interest is called the measure
attribute� which is sales in the example� It is gener�
ally accepted that OLAP systems need to present such
a multidimensional view of the data to users� Each
cell of the data cube corresponds to a unique set of
values for the di�erent dimensions and contains the
value of the measure for this set of values� As men�
tioned in 	GBLP
��� the domain of each dimension is
augmented with the special value �ALL�� In order to
present this multidimensional view� the data is usually
stored in the form of �summary tables� corresponding
to the subcubes of the data cube��

In 	HRU
�� the e�cient implementation of �data

�This approach of storing a data cube is known as ROLAP
�Relational OLAP�� The other approach in which the data cube
is stored as a multidimensional array is known as MDOLAP�
MDOLAP is very space consuming for sparse data cubes and
hence is rarely used�



cubes� was considered� In particular� we investigated
the problem of selecting a set of views of the data cube
to materialize� in order to minimize the time needed
to execute a given population of queries� An algorithm
that was both polynomial�time and competitive �always
gives a solution that is within a constant factor of the
optimum� was presented� This �greedy� algorithm is
guaranteed to give at least �� of the bene�t of the
optimal solution�

While the greedy algorithm can be shown to be com�
petitive �in the formal sense given above� for a variety
of materialized view problems� there are also problems
for which the greedy approach can be shown arbitrarily
bad �	G
���� In this paper� we investigate a simple but
important example of a problem where straightforward
approaches are neither polynomial nor competitive� yet
there is a technique that gives us both of these desir�
able properties� We study data cubes with indexes on
the materialized views permitted� The problem is that
when we have the option of putting one or more indexes
on a view in order to speed certain queries� then all the
bene�t of materializing a view might reside in one or
more of the indexes that we later build for that view�
We are thus faced with two apparently bad choices�

�� Treat a view and any set of its indexes as one
view that we might choose to materialize� Then�
the number of di�erent views available grows ex�
ponentially� While the greedy algorithm might
then be both competitive and polynomial in the
size of its data� the fact that its data has grown
exponentially makes the approach unlikely to be
successful� even for relatively small data cubes�

�� Treat indexes as separate �views� that we might
materialize� Here� the problem is that until the
underlying view is chosen by the greedy algo�
rithm� there is no bene�t in choosing an index�
Thus� a simple greedy algorithm might never ma�
terialize the underlying view� because it perceives
no immediate bene�t in doing so� Thus� we could
be locked out of the opportunity to make major
improvements in the average query time by ma�
terializing the view and several of its indexes�

We might imagine that the solution is simple� look
at several �objects� �views or their indexes� at a time�
Unfortunately� the more objects we consider at a time�
the higher the degree of the polynomial that mea�
sures the running time� We thus consider both this
�k�greedy� approach and another approach that of�
ten has a slightly lower performance guarantee but re�
mains close to quadratic in running time per step of
the greedy algorithm� Our conclusion is that we can�

with small degradation of performance compared with
the no�index case considered in 	HRU
�� incorporate
indexes into the framework of data cube design�

��� Related Work

Gray et al� in 	GBLP
�� introduce the data cube op�
erator as a generalization of the SQL groupby opera�
tor� The key to this generalization is the introduction
of the �ALL� keyword� In many commercial systems�
subcubes of this data cube are precomputed to improve
performance� In 	HRU
�� Harinarayan et al� look into
the problem of determining which subcubes to precom�
pute� They give a simple greedy algorithm to select
subcubes� and prove a strong performance guarantee
for the algorithm� Gupta 	G
�� develops a framework
for the general problem of selecting views to materialize
in a datawarehouse� Johnson and Shasha in 	JS
� in�
troduce a new index structure that reduces the number
of index accesses in data cube queries�

The issue of what indexes to build has not been in�
vestigated before from a research perspective� A two�
step process � picking subcubes �rst� followed by the
indexes � is typically adopted 	MS
��� An ad hoc
approach is used in dividing the space and in picking
indexes� For example� 	MS
�� builds indexes on the
most frequently used dimensions� This paper is the �rst
to explore the index�selection problem and automate it
with provably near�optimal algorithms�

��� Paper Organization

The rest of the paper is organized as follows� In
Section �� we present a motivating example based on
the TPC�D benchmark database which illustrates why
the two�step process of �rst picking subcubes and then
indexes can lead to bad choices� In Section �� we look at
the universe of views� queries� and indexes that arise in
a data cube� The cost model is introduced in Section ��
We present the algorithms along with the analysis of
their performance guarantees in the following section�
Experimental results are stated in Section � Finally�
we present our conclusions in Section ��

� Motivating Examples

We use an example taken from TPC�D 	TPCD
���
a decision�support benchmark to motivate the index�
selection problem� The example illustrates the com�
plexity of this problem� and the di�culty of doing the
selection well in the two�step selection process�

For this example� we use only a subset of the dimen�
sions that exist in the schema of the TPC�D bench�



mark� TPC�D models a business warehouse with di�
mensions part� supplier� and customer� The busi�
ness buys a part from a supplier and sells it to a
customer� The measure of interest is the total sales�
sales� We use the TPC�D database as a running ex�
ample throughout this paper and wherever it is clear
from the context� we abbreviate part to p� supplier
to s� and customer to c� We also use the terms dimen�
sions and attributes interchangeably�

We �rst discuss the universe of subcubes� queries�
and indexes possible� This discussion is formalized in
Section ��

Subcubes

The subcubes considered for precomputation corre�
spond to elements of the power set of the set of di�
mensions viz� fpart� supplier� customerg� The ele�
ment fpart� customerg� for example� corresponds to
the subcube which has the sales for each �part�
customer� pair over all supplier�s� In SQL terms�
the subcubes di�er only in their groupby clause� and
an element of the power set gives the attributes in
the groupby clause of the corresponding subcube�
The eight subcubes considered for precomputation are
shown in Figure � organized into a lattice as explained
in Section ���� The numbers �e�g�� M� i�e��  mil�
lion� associated with the subcubes denote the number
of rows �cells� in each and none indicates the empty
subset�

Queries

The queries we consider can use each dimension as a
selection attribute or as an output attribute �in SQL
terms� as a groupby clause attribute or as a where

clause attribute respectively�� A possible query Q is�

� Find the sales to each customer of a given part

�widget� bought from a given supplier

�Widgets�r�us��

In this query� sales and customer are output at�
tributes� and part and supplier are selection at�
tributes� Since all queries have sales as an output
attribute� we do not use the sales dimension in spec�
ifying a query� Using the abbreviations for the dimen�
sions� we write query Q as �c�ps� � speci�es the output
or groupby attributes� while � speci�es the selection
attributes of the query� The order of the dimensions in
� and � is unimportant� Also� any subcube that has
all the output and the selection attributes of a query
can be used to answer the query�

Indexes

We can construct B�Tree indexes �or variants� to speed
up query processing� For subcube ps� for example� we
can construct the following indexes�
� Ips� the search key for this index is a concatenation

of the p and s dimensions�
� Isp� the search key for this index is a concatenation

of the s and p dimensions�
The order of the dimensions in the indexes matter�

Given a value for p� we can use Ips to retrieve those
rows in subcube ps that have this value for p� Simi�
larly for ps� given a value for p and s we can use Ips to
retrieve the required row from subcube ps� However�
given a value for s� the index Ips cannot be used e��
ciently to retrieve those rows in subcube ps with that
given value of s� In general� an index IX������Xk

is only
useful in answering any query which has some pre�x of
X�� � � � � Xk in its selection attributes�

Cost Model

Suppose that the cost of answering any query is the
number of rows processed� Consider answering Q��
�p�s� Now Q� can be answered using either subcube
ps at a cost of ���M rows� or using subcube psc at a
cost of M rows� Consider now answering Q� using
the index Isp on subcube ps�� The average number of
rows associated with each value of s in subcube ps is
jpsj
jsj � ��� Thus the cost of answering Q� using Isp is

the cost of processing �� rows� Indexes are thus very
useful in reducing query costs dramatically and should
be considered in any precomputation strategy�

Figure � also shows the queries and indexes associ�
ated with one subcube� ps� Queries are associated with
the smallest subcube that can be used to answer them�

EXAMPLE ��� Returning to our original problem�
the precomputation strategy for the TPC�D bench�
mark database� the question is now� which of the
possible subcubes and indexes do we materialize for
good query performance� For simplicity� assume that
all queries are equiprobable� To materialize all possi�
ble subcubes and indexes� we would require space for
around ��M rows� In most practical situations there
is not enough space �or equivalently load time� to pre�
compute everything� For this example� assume that we
have around ��M rows worth of space available�
The Two�Step Approach� The two�step pro�

cess 	MS
�� would divide this available space between
subcubes and indexes� Subcubes are picked in the �rst

�In this example� we restrict ourselves to only �fat� ��cover
ing�� indexes� i�e�� the indexes which correspond to the permu
tations of the dimensions in the subcube�
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Figure �� Subcubes� Queries and Indexes in the TPC�D database�

step to �t within the space allotted to them and in�
dexes are picked in the second step again �tting within
the space allotted to them� Note that indexes can only
be built for those subcubes picked in the previous step�
An important problem is dividing the space available
between the subcubes and the indexes� One possibility
is dividing the space available equally between the sub�
cubes and indexes� In this example� we use a greedy
algorithm as given in 	HRU
� to pick the best sub�
cubes and indexes in each step� On dividing the space
equally between the two steps and running this algo�
rithm� we pick the following subcubes in the �rst step�
psc� ps� c� s� p� none� sc� and the following indexes in the
next step� Icsp� Ipcs� This selection leads to an average
query cost of ����M rows� That is� each query requires
us to process on an average ����M rows �

The ��Greedy Approach� Now consider inte�
grating the subcube selection and index selection into
one step� We use the simplest algorithm we give
in this paper� a ��greedy algorithm that at every
stage picks the subcube or the index on a subcube
�if the underlying subcube has already been picked�
that gives the greatest benefpit in terms of the number
of rows processed� The ��greedy algorithm gives us
the following selection in order of decreasing bene�t�
psc� Icsp� ps� Ipcs� Ispc� c� s� p� none�

The selections made by this algorithm result in an
average query cost of ����M rows� By integrating the
two�steps into one� we have improved the average query
cost by almost �� percent� The reason is the following�
while in the two�step process we allocate half of the
��M rows available to the indexes� it turns out that we
are best o� allocating three�quarters of the available
space to the indexes� The actual fraction of space we
should allocate to the indexes depends on a number

of factors like the sizes of the subcubes and indexes�
and it is di�cult to determine this fraction a priori
without considering the relative bene�ts of subcubes
and indexes at every stage of the selection process�

Interestingly� we see a law of diminishing returns
here too� The remaining subcubes and indexes which
have a total of around ��M rows provide virtually no
bene�t and do not impact the query cost at all� �

It may still be argued that one can design better
strategies to ensure that the two�step process does not
perform so badly� But as we shall show� even the one�
step ��greedy algorithm can perform arbitrarily badly
in the general case� In practice moreover� the general
strategy used in the two�step case is one of trial�and�
error� The algorithms and the associated performance
guarantees that we give in this paper are thus a sig�
ni�cant step towards automating this complex task of
deciding what to precompute for the best query per�
formance�

� Views� Queries� and Indexes

In this section� we outline the type of views� queries
and indexes which we consider in a data cube� Note
that� our algorithms are robust and their correctness or
performance guarantees do not depend upon the choice
of views� queries and indexes�

��� Views

In a data cube� we associate a subcube with every
set of groupby attributes possible� These subcubes
are the units of precomputation and form the potential
views considered for materialization� Here� we provide



a rationale for such a partitioning scheme of the data
cube into its subcubes�

There are many ways of partitioning a data cube�
The boundary cases illustrate the problems of too many
partitions and too few� When every row of the data
cube is treated as a subcube� in a ROLAP setting� a
separate table is associated with each row� The over�
head cost and complexity of the metadata make such a
choice very di�cult to implement� On the other hand�
consider the case when we have only one partition� the
entire data cube itself� This approach leads to poor
utilization of space� since we do not precompute any�
thing unless we can precompute the entire cube� Thus
any available space which is less than the size of the
entire data cube is wasted�

It is important that we strike a balance between
these two extremes� A commonly used ROLAP parti�
tioning scheme 	HRU
�� is to associate a subcube with
every element of the power set of the set of dimensions�
as was mentioned in Section �� The subcubes when
speci�ed in SQL di�er only in the groupby clause�
The element of the power set gives the set of attributes
in the groupby clause of the corresponding subcube�
Thus� for example� fpart� customerg corresponds to
the subcube given by the SQL query�

SELECT Part� Customer� SUM�sales�
AS TotalSales

FROM R
GROUP BY Part� Customer�

In this paper we denote a subcube by the attributes
in the groupby clause� The subcube above is denoted
by part� customer� When we abbreviate the dimen�
sions� we just concatenate the abbreviations in speci�
fying the subcubes � the subcube above could also be
written as pc� Note that the order of the dimensions is
irrelevant�

In practice too� such a partitioning scheme is com�
mon� The popular �snow�ake schema� 	ADS
� is an
example of this partitioning scheme� Since the sub�
cubes are now just aggregate views� some of which are
materialized� we refer to them as views�

��� Queries

A user query in the TPC�D example� asks for the
sales grouped by a certain set of attributes� after se�
lecting on another set of attributes� The selection at�
tributes are disjoint from the group�by attributes� For
example� a user query could ask only for the sales of a
single part� say �widgets�� grouped by the customer�s
it was sold to� We write this query as �c

�
�p�widget�R�

�
�

Here the subscripts of � denote the group�by attributes
and those of �� the selection attributes�

In general� a query of the form �c
�
�p�constant�R�

�

asks for a slice through the subcube customer� part�
We denote a generic query of this form by �c�p and call
it a slice query on the subcube customer� part� We
can associate a query �G������Gk

�S������Sl with the sub�
cube denoted by G�� � � � � Gk� S�� � � � � Sl� which is the
smallest subcube that can answer this query� We re�
gard a user query that asks for an entire subcube as
a special kind of slice query where the set of selection
attributes is empty� Thus all queries are slice queries�
An r�dimensional subcube has �r slice queries associ�
ated with it� because any subset of the dimensions can
occur in the select part� An n�dimensional data cube
has a total of

�
n
r

�
r�dimensional subcubes� Therefore�

the total number of slice queries associated with an
n�dimensional data cube is

Pn
r��

�
n
r

�
�r� which equals

�n�

��� Indexes

B�Tree indexes can improve query response times
substantially� There can be several indexes on a given
view� For subcube ps� for example� we can construct
the following four indexes� Ip�ps�� Is�ps�� Ips�ps��
Isp�ps�� In each case we list the search key attributes
as the subscript� while the subcube ps on which the
index is built� is mentioned in parentheses� The order
of the attributes in the indexes matters as we saw in
Section ��

We can have one index for every subset of the at�
tributes of a view and every ordering of the subset�
Thus the number of possible indexes for a view with
m attributes is given by

Pm
r��

�
m
r

�
r which approaches

�e � ��m for large m� Using a similar calculation�
the total number of indexes associated with an n�
dimensional data cube is close to �e � ���n which
is approximately �n � The number of fat indexes �
search key attributes are permutations of the subcube
attributes � in an n�dimensional cube is �e � ��n �
or approximately �n � In general� an index can help
answer slice queries when some pre�x of the index at�
tributes correspond to some of the selection attributes
in the query�

��� The Computability and Dependence
Relations

We de�ne the computability relation � between
queries and views as follows� For a query Q and a
view V � we say Q�V if the result of query Q can be
computed using the tuples in view V � For example�
the query Q� � �c�s can be computed from the view
V� � sc and also from the view V� � psc� Therefore�



Q��V� and Q��V�� However� if V� � pc� Q� cannot
be computed from V��

De�ne the partial order � on the views as follows�
V� � V� i� the set of attributes of V� is a super�
set of the set of attributes of V�� Thus� part� part

and part� part� customer� but part �� customer and
customer �� part� The di�erent subcubes of a data�
cube form a lattice under �� which we call the de�
pendence relation for views� The lattice of the views
�subcubes� involved in the TPC�D example is shown
in Figure ��

There is a relationship between the computability
relation � and the dependence relation �� if V� � V��
and Q��V�� then Q��V�� Therefore� the lattice in
Figure � also helps us build the � relation�

The � relation can be represented using a bipar�
tite graph as done in Section �� If a query Q is com�
putable from a view V � we draw an edge between Q
and V � Each edge �Q� V � also has a weight� the cost
of answering Q using V � Consider now an index I on
a view V that helps answer a query Q more quickly�
The e�ect of this index on the graph is an additional
edge between Q and V labeled by a pair consisting of
I and the cost of answering Q using V and I� The
algorithms we outline in Section � take this graph for
the � relationship as an input�

��� Summary

An n�dimensional data cube has associated with it�
� �n views�
� �n slice queries� and
� about �n possible indexes� about �n of these

being fat indexes�
It is to be noted here that the problem size varies as

a factorial of the number of dimensions�

� A Cost Model

In this section� we present a cost model to estimate
the time to answer a query using a view in conjunc�
tion with an index on the view� We then consider the
problem of estimating the sizes of views� indexes� and
query results without actually materializing all of them
�as we have seen� the number of queries� views� and in�
dexes can be quite large even for data cubes of small
dimension�� Our algorithms do not depend upon any
cost model for correctness and performance guarantees�

��� The Linear Cost Model

Suppose we answer a query Q using a view V � We
need to process the table corresponding to V to answer

Q� Depending on the availability of indexes� we may
have to process only some of the rows of the table for V �
The cost of answering Q is a function of the number of
rows of the table V we must process in order to answer
Q� In this paper� we choose the simplest possible cost
model�
� The cost of answering Q is the number of rows of

the table for V that must be processed to

construct the result of Q�
This �linear cost model� was presented in 	HRU
� and
is also used in the MetaCube product 	STG
���

Let Q be a slice query such that Q�V � and con�
sider answering Q using V � For example� suppose Q
is a query about the sales of a single part �wid�
get�� and V is the view part� supplier� That is�
Q � �none�p� If there are no suitable indexes on V �
we must scan almost the entire table for V � and the
query cost is given by jV j� where jV j is the number of
rows in V � Suppose we have available the index Ip�V ��
We can use this index to process only those rows of
V that Q asks for� On average� V has jV j � j�p�V �j
rows corresponding to each part� and so this is the
average number of rows we would have to process to
answer the slice query Q� Here � is the distinct pro�
jection� and so j�p�V �j gives the number of distinct
values of part in V � Noticing that the number of dis�
tinct part values is the same as the number of rows
in the subcube part� we get j�part�V �j � jpartj�
where jpartj is the size of the subcube part� We
conclude that the average cost of answering the slice
query �none�p using the view V and the index Ip�V �
is jV j � jpartj � jpart� supplierj � jpartj� In comput�
ing the cost� we disregard the number of index nodes
processed�

We can follow exactly the same process and arrive at
the same cost if we had used the index Ips�V � instead�
However� suppose we had either the index Is�V � or the
index Isp�V � available� We cannot use either of these
indexes to reduce the number of rows of V that we
need to process to answer Q� Therefore� the cost of
answering Q is jV j� if there are no helpful indexes�

����� Cost Formula

We generalize these observations to obtain a formula
for the cost of answering query Q using view V and
index J �

Let Q be the query � �A� �B� where !A and !B are sets of
dimensions� We have !B � � i� Q is a subcube query�
and !A � � denotes aggregation over all dimensions� Let
V be a view !C� Now� Q�V if and only if !A� !B 	 !C�
Also� let J be the index I�D�V �� We use �D to emphasize

that the order of attributes matters� �D is a sequence



of attributes rather than a set� In particular� D � hi
�the empty sequence� denotes the case where we are
not using an index�

Let !E denote the largest subset of !B such that the
attributes in !E form a pre�x �not necessarily proper�

of �D� The cost of answering Q using the view V in
conjunction with the index J is given by�

c�Q� V� J� �
j� !C�j

j� !E�j

Recall that j� !C�j and j� !E�j denote the number of rows
in the tables corresponding to views � !C� and � !E� re�
spectively�

As an example consider the TPC�D database� with
the view V � psc of size  million rows� query Q �
�c� �ps and the index J � Iscp on subcube psc� In
this case� !C � psc and !E � s� since the largest sub�
set of attributes of ps that forms a pre�x in scp is
s� From Section � we know the desired cardinalities�
j� !psc�j � M � j�!s�j � ����M � The cost is therefore
c�Q� V� J� � �M

����M � �� In other words� �� rows
have to be accessed in answering query Q using index
J on view V �

The above formula works in all cases� The case when
!E � � deserves some discussion� This case might occur
either because no index is available on V � or because
Q is a subcube query� or because the index used has
no pre�x composed only of select attributes of Q� In
all these cases� we must process all the rows in V to
answer Q� and so c�Q� V� J� � jV j� The formula gives
exactly the same result� because j���j � � �recall that
��� denotes the view none� which has � row��

��� Determining View and Index Sizes

Our algorithms require the following information�

� The size of each view�
� The size of each index�
� For each �query� view� index� triple� the cost of

answering the query using the view and an
index�

Section ����� shows how to obtain item ��� given
item ���� But we still need to know the sizes of each
view and each index� The problem is nontrivial because
the number of views and indexes is very large even for
cubes of moderate dimension �Section � shows that the
number of views and indexes is exponential in the cube
dimension��

����� Estimating View Sizes

There are many ways of estimating the view sizes that
avoid materializing all the views� We can use sampling

and analytical methods to compute the sizes of the dif�
ferent views if we only materialize the largest element
Vl in the lattice �the view that groups by all the di�
mensions�� For a view� if we know that the grouping
attributes are statistically independent� we can esti�
mate the size of the view analytically� given the size
of Vl� Otherwise we can sample Vl �or the raw data�
to estimate the size of the other views� The size of a
given view is the number of distinct values of the at�
tributes it groups by� Thus for example� the size of the
view that groups by part and supplier is the number
of distinct values of part�supplier in the raw data�
There are many well�known sampling techniques that
we can use to determine the number of distinct values
of attributes in a relation 	HNSS
���

����� Estimating Index Sizes

Given the view sizes� we can estimate index sizes� The
size of each view in our cost model is the number of
rows in the view� For indexes too� we follow a similar
model to estimate the space cost� The size of each index
�B�Tree� is the number of leaf nodes in the index� The
number of leaf nodes of an index is approximately the
number of rows in the underlying view� Thus�
� The size of any index on a view V is the same as

the size of view V �
Our model of index sizes has the important conse�

quence of pruning our space of possible indexes� Con�
sider two indexes J� � I �A�V � and J� � I�B�V � on

the same view V � If �B is a proper pre�x of �A� then
surely c�Q� V� J�� 
 c�Q� V� J�� for any query Q� us�
ing our cost formula� Moreover� the sizes of J� and
J� are approximately the same under our index size
model� Therefore� in any reasonable scheme of mate�
rializing views and indexes� we can ignore the index
J� in favor of the index J�� Thus� for each view� we
need to consider only the fat indexes� those indexes
whose search attributes are not a proper pre�x of the
search attributes of any other index on the same view�
If the view V is � !C�� the exactly the set of indexes

is fI�D�V � j �D is a permutation of !Cg� This result is
similar to that in 	JS
�� where they consider only fat
indexes� It can be shown that this pruning reduces the
number of indexes of interest by approximately a factor
of e� �� where e is the base of the natural logarithms�

� Materializing Views with Indexes

In this section� we develop algorithms for selecting
views and indexes to be materialized in the data cube�
Informally� we are given a set of views� each of which
has a set of indexes� and a set of queries that are to



be supported by the system� A view with one of its
indexes can be used to answer a query at some spec�
i�ed cost� The goal is to select a set of views and
indexes which will minimize the total cost to answer
the queries� under the constraint that the set of views
and indexes selected do not occupy more than a given
amount of space� S�

The above problem is NP�complete� even in the
absence of indexes and even when each view occu�
pies a unit space� there is a straightforward reduction
from Set�Cover� We develop heuristic algorithms which
provably deviate from the optimum selection of views
and indexes by only a small amount�

First� we state the above problem formally� Then�
we present a class of algorithms which have di�erent
guarantees of performance ratios and time complexi�
ties� We also rigorously analyze the performance of
the algorithms presented�

��� Problem De�nition

Consider a bipartite multigraph� G � �V � Q�E��
called a query�view graph� V contains the set of views
and Q contains the set of queries�

� With each view vi � V is associated a tuple
�Si� Ii�� where

Si is the space occupied by the view� and

Ii is the set of indexes on the view� Iik is used to
denote the kth index of vi�

� With each query qi � Q is associated a default
cost Ti of answering the query qi� even without
using any other view or index in G� �In data
cube� the default cost of answering any query is
the cost incurred in answering the query using
the raw data table�s���

� Every edge �qi� vj� has a label �k� tijk� associated
with it� where tijk is the cost of answering the
query qi using the view vj and its kth index�
When k � �� tijk is the cost of answering qi using
just vj�

Goal� Given a set of views V and a set of queries Q�
we must select M 	 V � a set of views and indexes to
be materialized� under the constraint that the views
and indexes in M can be accommodated in S �a given
constant� units of space� M must minimize the total
cost incurred answering each query in Q from one of
the views in M � More formally� we wish to minimize
the following quantity

� �G�M � �

jQjX

i��

min�Ti� min
vj�Ij�k�M�

tijk�

under the constraint that the total space occupied by
the structures� in M is less than S�

The above problem is a simple formalization of the
problem of selecting views and indexes in data cube�
We have assumed that the queries supported by the
system are uniformly distributed across the queries in
Q� Our algorithms generalize easily to the case when
there is a frequency fi associated with each query qi
�by including the factor fi with the term associated
with qi in the summation used to de�ne � ��

��� The Bene�t of a Choice of Structures

Let C be an arbitrary set of views and indexes in
a query�view graph G� We use S�C� to denote the
total space occupied by the structures in C� The ben�
e�t of C with respect to M � an already selected set
of structures� is denoted by B�C�M � and is de�ned as
�� �G�M �� � �G�M �C��� where � is the function de�
�ned above� Bene�t of C per unit space with respect
to M is B�C�M ��S�C�� Also� B�C� 	� is called the
absolute bene�t of the set C�

��� The r�Greedy Algorithm

The r�greedy algorithm executes in a number of
stages� selecting at each stage a subset C having at
most r structures� The set C consists either of
� A view and some of its indexes� or
� A single index whose view has already been

selected in one of the previous stages�

At any given stage� the set C that has the maximum
bene�t per unit space with respect to M � the set of
structures selected prior to this stage� is selected� See
Algorithm ����

Suppose there are v views and each view has at
most i indexes� Then at each stage� the r�greedy al�
gorithm must consider and calculate the bene�t of at
most vi " v

�
i

r��

�
possible sets� Hence an upper bound

on the running time of the algorithm is O�kmr�� where
m is the number of structures in the given query�view
graph and k is the number of structures selected by the
algorithm� which is S in the worst case�

EXAMPLE ��� We illustrate the working of r�
greedy algorithm through a simple example�

�A structure is a view or an index�
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Figure �� A query�view graph

Consider the query�view shown in Figure �� For
simplicity� we have assigned a space cost of � unit to
each of the indexes and views� Let the value of S be �
units�

We now see how the r�greedy algorithm works on
the example for di�erent values of r�

�� ��greedy� Initially� absolute bene�t of every in�
dex is zero� Absolute bene�ts of the views in
order of their subscripts are viz� �� �� � �� and
�� Hence� at the �rst stage the ��greedy algo�
rithm selects V�� Except for the indexes of V��
the bene�ts of all views and indexes with respect
to M � fV�g remain the same as their abso�
lute bene�ts� The bene�ts of I��i� � 
 i 
 ��
relative to M become � each� Hence� the ��
greedy algorithm choses one by one all the in�
dexes of V� in the later stages� followed by V� and
V	� Thus� the solution returned by ��greedy is
fV�� I���� I���� I���� I��	� V�� V	g� with an absolute
bene�t of ��

�� ��greedy� In the �rst stage� the ��greedy algo�
rithm selects C � fV�� I���g which has an abso�
lute bene�t of �� � 
 � 
�� Bene�t of fV�� I��ig
for any i 
 � with respect to C is �� �i�e�� ��
per unit space�� Hence� fV	� I	��g� whose bene�
�t with respect to C is �� �i�e�� ���� per unit
space�� gets selected in the second stage In the
later stages� the other indexes of V	 get selected
one by one� Thus� the solution returned by ��
greedy is fV�� I���� V	� I	��� I	��� I	��� I	�	g with an
absolute bene�t of �
��

�� 	�greedy� As in the ��greedy case� the �rst stage
of the ��greedy algorithm selects C � fV�� I���g�

Algorithm ��� r�Greedy Algorithm

Given� G� a query�view graph� and S� the space�
BEGIN

M � 	� #� M � set of structures selected so far� �#
while �S�M � 
 S�

Look at all sets of one of the following forms�
� fvi� Iij�� Iij� � � � � � Iijpg� such that vi ��M �
Iijl ��M for � 
 l 
 p� and � 
 p 
 r� or
� fIijg� such that vi is in M � and Iij ��M �

Among these sets� let C be the set which has the
maximum bene�t per unit space w�r�t� M �

M � M �C�
end while


return M�
END�

�



with the absolute bene�t of 
�� The second stage
selects fV�� I���� I���g� having a bene�t of �� with
respect to C �i�e�� ���� per unit space�� as the
bene�t of V� with any two of its indexes is at most
�� with respect to C �i�e�� ��� per unit space��
The structures selected in the later stages are
I���� and I��	� Thus� the solution returned by ��
greedy is fV�� I���� V�� I���� I���� I���� I��	g� which
has an absolute bene�t of ���

�� Optimal Solution� It is not di�cult to see that
the optimal solution for the given example is
fV�� I���� I���� I���� I��	� I���� I���g� having an abso�
lute bene�t of ����

�

Theorem ��� In the case when each structure occu�
pies a unit space� the r�greedy algorithm produces a so�
lutionM that uses at most S"r�� units of space� Also�
the absolute bene�t of M is at least �� � ��e
r����r�
times the optimal bene�t achievable using as much
space as that used by M �

Proof� It is easy to see that the solution M produced
by the r�greedy algorithm has at most S " r� � struc�
tures� Let k � jM j� Let the optimal solution contain�
ing k structures be O and the absolute bene�t of O be
B�

Consider a stage at which the r�greedy algorithm
has already chosen a set Gl having l structures with
�incremental� bene�ts a�� a�� a�� � � � � al� The absolute
bene�t of Gl is thus

Pl
i�� ai� Surely the absolute bene�

�t of the set O�Gl is at least B� Therefore� the bene�t
of the set O with respect to Gl� B�O�Gl�� is at least

B �
Pl

i�� ai�
Without loss of generality� we can assume that

the optimal set O doesn�t contain any index whose
corresponding view is not in O� Hence� if O con�
tains m views� it can be split into m disjoint sets
O�� O�� � � � � Om� such that each Oi consists of a
view and its indexes in O� Then� B�O�Gl� 
Pm

i��B�Oi� Gl�� Therefore� by pigeon hole princi�
ple� there exists an Oi such that B�Oi� Gl��jOij 
B�O�Gl��k� Now� consider the best r�subset	 Oc of
such anOi� Its bene�t per unit space with respect to Gl

is at least � r��
r

�� k
k����B�Oi� Gl��jOij�� which happens

when the bene�t of the view in Oi is zero and jOij � k�
Let� k� � � r��

r �� k
k���� As Oc �or its best subset� is also

considered for selection at this stage of the r�greedy
algorithm� the bene�t per unit space with respect to
Gl of the set C selected by the algorithm is at least
k�B�Oi� Gl��jOij� which is at least k��B �

Pl
i�� ai��k�

�i�e�� set of size at most r�

Note that Oc may contain some structures from Gl�
but the argument still holds� Distributing the bene�t
of C over each of its structures equally �for the pur�

pose of analysis�� we get al�j  k��B�
Pl

i�� ai��k� for
� 
 j 
 jCj� As this is true for each set C selected at
any stage� we have

B 

k

k�
aj "

j��X

i��

ai� for � 
 j 
 k�

Let k�� � k�k�� Multiplying the jth equation by

�k
����
k��

�k�j� and after adding all the equations and some

minor manipulations we get A�B  ���k
����
k��

�k� where

A �
Pk

i�� ai� the absolute bene�t of M � This implies

A�B  �� �k
����
k��

�k
��k�

 �� ��ek
�

 �� ��e
r����r�

We have come up with instances of the problem for
which the r�greedy algorithm performs as bad as the
worst case bound of �� ��e
r����r�

��� Inner�Level Greedy Algorithm

The Inner�level greedy algorithm works in stages� At
each stage� it selects a subset C� which consists either
of
� A view and some of its indexes selected in a greedy

manner� or
� A single index whose view has already been

selected in one of the previous stages�

Note that there is no constraint on the size of set
C� Each stage can be thought of as consisting of two
phases� In the �rst phase� for each view vi we construct
a set IGi which initially contains only the view� Then�
one by one its indexes are added to IGi in the order
of their incremental bene�ts until the bene�t per unit
space of IGi with respect to M � the set of structures
selected till this stage� reaches its maximum� That
IGi having the maximum bene�t per unit space with
respect to M is chosen as C� In the second phase� an
index whose bene�t per unit space is the maximum
with respect to M is selected� The bene�t per unit
space of the selected index is compared with that of C�
and the better one is selected for addition to M � See
Algorithm ����

The running time of the Inner�level greedy algorithm
is O�k�m��� where m is the total number of structures
in the given query�view graph and k is the maximum
number of structures that can �t in S units of space�
which in the worst case is S�

EXAMPLE ��� We illustrate the working of the
Inner�level greedy algorithm for the example in Fig�
ure ��



Algorithm ���

Inner�Level Greedy Algorithm

Given� G� a query�view graph� and S� the space�
BEGIN

M � 	� #� M � Set of structures selected so far �#
while �S�M � 
 S�

C � 	�
#� C � Best set containing a view and some

of its indexes found so far �#
for each view vi �� M

IG � fvig�
#� IG � Set of vi and some of its indexes

selected in a greedy manner� �#
while �S�IG� 
 S� #� Construct IG �#

Let Iic be the index of vi whose bene�t per
unit space w�r�t �M � IG� is maximum�

IG � IG � Iic�
end while


if �B�IG�M ��S�IG� � B�C�M ��jCj�
or C � 	
C � IG�

end for


for each index Iij such that its view vi �M
if B�Iij �M ��S�Iij� � B�C�M ��S�C�

C � fIijg�
end for


M � M �C�
end while


returnM �
END�

�

As the absolute bene�t per unit space of V� with at
most six of its indexes is less than ��� the algorithm
selects fV�� I���g� whose absolute bene�t is 
� �i�e�� ��
per unit space� in the �rst stage� In the next stage�
the algorithm selects V� and six of its indexes with an
�incremental� bene�t of ��� �i�e�� ���� per unit space��
Thus� the solution returned by the Inner�level greedy
is fV�� I���� V�� I���� I���� I���� I��	� I���� I���g with an ab�
solute bene�t of ���� Note that the size of the solution
returned is 
 units� slightly more than the given space
limit� The optimal solution using 
 units of space is
V� with its eight indexes� having an optimal bene�t of
���� �

Theorem ��� The Inner�level greedy algorithm pro�
duces a solution M that uses at most � � S units
of space� Also� the absolute bene�t of M is at least
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Figure �� Performance guarantees of various

algorithms

�� � ��e����� � ���� of the optimal bene�t achievable
using as much space as that used by M � assuming that
no structure occupies more than S units of space�

Proof� The proof is almost identical to the proof of
Theorem ���� The only di�erence is that in the case
of Inner�level greedy algorithm the value of k� is ���
and is independent of the sizes of the views and in�
dexes� This follows from the result in 	HRU
� on the
performance guarantee of the simple greedy algorithm
under space constraint� As the value of k� is indepen�
dent of the relative sizes of structures� the result holds
for arbitrary sizes of views and indexes�

� Performance of the Algorithms

Figure � plots the performance guarantees of the
family of r�greedy algorithms against r� Observe that
the performance guarantee of the ��greedy is �� it is
possible to construct examples where the the ratio of
the bene�t of the ��greedy choice to that of the opti�
mal choice arbitrarily small� The performance guaran�
tee initially rises rapidly as we increase r beyond �� but
the increases are exponentially diminishing� The actual
performance guarantees for ��greedy� ��greedy� and ��
greedy are ���
� ���
� and ���� respectively� The graph
has a �knee� at r � �� and the increments for greater r
are vanishingly small� The performance guarantee ap�
proaches ��� as r approaches in�nity �more precisely�
as r approaches the number of structures we are willing
to materialize�� Recall that the running time is O�mr�
where m is the total number of structures� and that
m is large even for small cube dimensions� Therefore�
it seems that in practice� using r�greedy algorithms is
not worth the additional complexity for r � ��



For comparison� the Inner�greedy algorithm runs in
time O�m�� and has a performance guarantee of �����
which is between the ratios for ��greedy and ��greedy�
Thus Inner�greedy is preferable to ��greedy because
it gives a better guarantee than ��greedy for approxi�
mately the same running time�

We experimented with the r�greedy family of al�
gorithms on cubes of dimension up to � for r �
�� �� �� We generated cubes using the analytical model
in 	HRU
�� extended to incorporate indexes and slice
queries� We varied di�erent parameters� the cardinal�
ity of each dimension� the sparsity of the cube� and the
query frequencies� �The sparsity of a data cube is the
ratio of the number of rows in the raw data relation
to the product of the cardinalities of the individual di�
mensions�� For dimensions up to � we observed that
the algorithms in the r�greedy family produced solu�
tions that were extremely close to the optimal� The
results are encouraging because they indicate that in
practice� we can obtain near�optimal solutions using an
algorithm of low complexity�

	 Conclusions

In this paper we investigate the problem of what in�
dexes to build to improve OLAP query performance�
While this problem is very important to the success
of ROLAP systems� commercial systems today usually
use ad hoc solutions� In this paper we show that the
precomputation of subcubes and indexes should be in�
tegrated into one step� ROLAP systems currently use a
two�step process which can adversely a�ect query per�
formance� We give an example of the poor performance
of the two�step process using an example based on the
TPC�D benchmark database�

We provide a family of one�step algorithms that se�
lect which subcubes and indexes should be precom�
puted for improved query performance� given the space
constraint� We give strong performance bounds for our
algorithms and show the trade�o� between the perfor�
mance bounds and the complexity of the algorithm�
Our results indicate that an algorithm of moderate
complexity performs almost as well as that of high com�
plexity� We also present the experimental results which
validate our analysis�
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