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This chapter is a tutorial on basic data structures that perform well in mem-
ory hierarchies. These data structures have a large number of applications and
furthermore serve as an introduction to the basic principles of designing data
structures for memory hierarchies.

We will assume the reader to have a background in computer science that
includes a course in basic (internal memory) algorithms and data structures. In
particular, we assume that the reader knows about queues, stacks, and linked
lists, and is familiar with the basics of hashing, balanced search trees, and priority
queues. Knowledge of amortized and expected case analysis will also be assumed.
For readers with no such background we refer to one of the many textbooks
covering basic data structures in internal memory, e.g., [CLRS01].

The model we use is a simple one that focuses on just two levels of the memory
hierarchy, assuming the movement of data between these levels to be the main
performance bottleneck. (More precise models and a model that considers all
memory levels at the same time are discussed in Chapter ?? and Chapter ??.)
Speci�cally, we consider the external memory model described in Chapter ??.

Our notation is summarized in Fig. 1. The parameters M , w and B describe
the model. The size of the problem instance is denoted by N , where N � 2w.
The parameter Z is query dependent, and is used to state output sensitive I/O
bounds. To reduce notational overhead we take logarithms to always be at least
1, i.e., loga b should be read \max(loga b; 1)".

N { number of data items

M { number of data items that can be stored in internal memory

B { number of data items that can be stored in an external memory block

Z { number of data items reported in a query

w { word length of processor and size of data items in bits

Fig. 1. Summary of notation

We will not go into details of external memory management, but simply
assume that we can allocate a chunk of contiguous external memory of any size
we desire, such that access to any block in the chunk costs one I/O. (However,
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as described in Section 2.1 we may use a dictionary to simulate virtual memory
using just one large chunk of memory, incurring a constant factor I/O overhead).

1 Elementary Data Structures

We start by going through some of the most elementary data structures. These
are used extensively in algorithms and as building blocks when implementing
other data structures. This will also highlight some of the main di�erences be-
tween internal and external memory data structures.

1.1 Stacks and Queues

Stacks and queues represent dynamic sets of data elements, and support oper-
ations for adding and removing elements. They di�er in the way elements are
removed. In a stack , a remove operation deletes and returns the set element most
recently inserted (last-in-�rst-out), whereas in a queue it deletes and returns the
set element that was �rst inserted (�rst-in-�rst-out).

Recall that both stacks and queues for sets of size at most N can be im-
plemented eÆciently in internal memory using an array of length N and a few
pointers. Using this implementation on external memory gives a data structure
that, in the worst case, uses one I/O per insert and delete operation. However,
since we can read or write B elements in one I/O, we could hope to do con-
siderably better. Indeed this is possible, using the well-known technique of a
bu�er.

An External Stack. In the case of a stack, the bu�er is just an internal memory
array of 2B elements that at any time contains the k set elements most recently
inserted, where k � 2B. Remove operations can now be implemented using no
I/Os, except for the case where the bu�er has run empty. In this case a single
I/O is used to retrieve the block of B elements most recently written to external
memory.

One way of looking at this is that external memory is used to implement
a stack with blocks as data elements. In other words: The \macroscopic view"
in external memory is the same as the \microscopic view" in internal memory.
This is a phenomenon that occurs quite often { other examples will be the search
trees in Section 3 and the hash tables in Section 4.

Returning to external stacks, the above means that at least B remove op-
erations are made for each I/O reading a block. Insertions use no I/Os except
when the bu�er runs full. In this case a single I/O is used to write the B least
recent elements to a block in external memory. Summing up, both insertions
and deletions are done in 1=B I/O, in the amortized sense. This is the best per-
formance we could hope for when storing or retrieving a sequence of data items
much larger than internal memory, since no more that B items can be read or
written in one I/O. A desired goal in many external memory data structures
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is that when reporting a sequence of elements, only O(1=B) I/O is used per
element. We return to this in Section 3.

Exercise 1. Why does the stack not use a bu�er of size B?

An External Queue. To implement an eÆcient queue we use two bu�ers of
size B, a read bu�er and a write bu�er. Remove operations work on the read
bu�er until it is empty, in which case the least recently written external memory
block is read into the bu�er. (If there are no elements in external memory, the
contents of the write bu�er is transfered to the read bu�er.) Insertions are done
to the read bu�er which when full is written to external memory. Similar to
before, we get at most 1=B I/O per operation.

Problem 2. Above we saw how to implement stacks and queues having a �xed
bound on the maximum number of elements. Show how to eÆciently implement
external stacks and queues with no bound on the number of elements.

1.2 Linked Lists

Linked lists provide an eÆcient implementation of ordered lists of elements,
supporting sequential search, deletions, and insertion in arbitrary locations of the
list. Again, a direct implementation of the internal memory data structure could
behave poorly in external memory: When traversing the list, the algorithm may
need to perform one I/O every time a pointer is followed. (The task of traversing
an entire linked list on external memory can be performed more eÆciently. It is
essentially list ranking, described in Chapter ??.)

Again, the solution is to maintain locality, i.e., elements that are near each
other in the list must tend to be stored in the same block. An immediate idea
would be to put chunks of B consecutive elements together in each block and
link these blocks together. This would certainly mean that a list of length N

could be traversed in dN=Be I/Os. However, this invariant is hard to maintain
when inserting and deleting elements.

Exercise 3. Argue that certain insertions and deletions will require dN=Be I/Os
if we insist on exactly B consecutive elements in every block (except possibly
the last).

To allow for eÆcient updates, we relax the invariant to require that, e.g.,
there are more than 2

3
B elements in every pair of consecutive blocks. This in-

creases the number of I/Os needed for a sequential scan by at most a factor of
three. Insertions can be done in a single I/O except for the case where the block
supposed to hold the new element is full. If either neighbor of the block has
spare capacity, we may push an element to this block. In case both neighbors
are full, we split the block into two blocks of about B=2 elements each. Clearly
this maintains the invariant (in fact, at least B=6 deletions will be needed before
the invariant is violated in this place again). When deleting an element we check
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whether the total number of elements in the block and one of its neighbors is
2

3
B or less. If this is the case we merge the two blocks. It is not hard to see that

this reestablishes the invariant: Each of the two pairs involving the new block
now have more elements than the corresponding pairs had before.

To sum up, a constant number of I/Os suÆce to update a linked list. In
general this is the best we can hope for when updates may a�ect any part of
the data structure, and we want queries in an (eager) on-line fashion. In the
data structures of Section 1.1, updates concerned very local parts of the data
structure (the top of the stack and the ends of the queue), and we were able to
to better. Section 3.5 will show that a similar improvement is possible in some
cases where we can a�ord to wait for an answer of a query to arrive.

Exercise 4. Show that insertion of N consecutive elements in a linked list can
be done in O(1 +N=B) I/Os.

Exercise 5. Show how to implement concatenation of two lists and splitting of
a list into two parts in O(1) I/Os.

Problem 6. Show how to increase space utilization from 1=3 to 1��, where � > 0
is a constant, with no asymptotic increase in update time. (Hint: Maintain an
invariant on the number of elements in any �(1=�) consecutive blocks.)

Pointers. In internal memory one often has pointers to elements of linked lists.
Since memory for each element is allocated separately, a �xed pointer suÆces
to identify the element in the list. In external memory elements may be moved
around to ensure locality after updates in other parts of the list, so a �xed pointer
will not suÆce. One solution is to maintain a list of pointers to the pointers,
which allows them to be updated whenever we move an element. If the number
of pointers to each element is constant, the task of maintaining the pointers
does not increase the amortized cost of updates by more than a constant factor,
and the space utilization drops only by a constant factor, assuming that each
update costs 
(1) I/Os. (This need not be the case, as we saw in Exercise 4.)
A solution that allows an arbitrary number of pointers to each list element is to
use a dictionary to maintain the pointers, as described in Section 2.1.

2 Dictionaries

A dictionary is an abstract data structure that supports lookup queries: Given a
key k from some �nite set K, return any information in the dictionary associated
with k. For example, if we take K to be the set of social security numbers, a
dictionary might associate with each valid social security number the tax infor-
mation of its owner. A dictionary may support dynamic updates in the form
of insertions and deletion of keys (with associated information). Recall that N
denotes the number of keys in the dictionary, and that B keys (with associated
information) can reside in each block of external memory.
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There are two basic approaches to implementing dictionaries: Search trees
and hashing. Search trees assume that there is some total ordering on the key
set. They o�er the highest 
exibility towards extending the dictionary to support
more types of queries. We consider search trees in Section 3. Hashing based
dictionaries, described in Section 4, support the basic dictionary operations in
an expected constant number of I/Os (usually one or two). Before describing
these two approaches in detail, we give some applications of external memory
dictionaries.

2.1 Applications of Dictionaries

Dictionaries can be used for simple database retrieval as in the example above.
Furthermore, they are useful components of other external memory data struc-
tures. Two such applications are implementations of virtual memory and robust

pointers.

Virtual Memory. External memory algorithms often do allocation and deal-
location of arrays of blocks in external memory. As in internal memory this can
result in problems with fragmentation and poor utilization of external memory.
For almost any given data structure it can be argued that fragmentation can be
avoided, but this is often a cumbersome task.

A general solution that gives a constant factor increase in the number of I/Os
performed is to implement virtual memory using a dictionary. The key space is
K = f1; : : : ; Cg�f1; : : : ; Lg, where C is an upper bound of the number of arrays
we will ever use and L is an upper bound on the length of any array. We wish
the ith block of array c to be returned from the dictionary when looking up
the key (c; i). In case the block has never been written to, the key will not be
present, and some standard block content may be returned. Allocation of an
array consists of choosing c 2 f1; : : : ; Cg not used for any other array (using a
counter, say), and associating a linked list of length 0 with the key (c; 0). When
writing to block i of array c in virtual memory, we associate the block with the
key (c; i) in the dictionary and add the number i to the linked list of key (c; 0).
For deallocation of the array we simply traverse the linked list of (c; 0) to remove
all keys associated with that array.

In case the dictionary uses O(1) I/Os per operation (amortized expected) the
overhead of virtual memory accesses is expected to be a constant factor. Note
that the cost of allocation is constant and that the amortized cost of deallocation
is constant. If the dictionary uses linear space, the amount of external memory
used is bounded by a constant times the amount of virtual memory in use.

Robust Pointers into data structures. Pointers into external memory data
structures pose some problems, as we saw in Section 1.2. It is often possible to
deal with such problems in speci�c cases (e.g., level-balanced B-trees described
in Section 3.4), but as we will see now there is a general solution that, at the
cost of a constant factor overhead, enables pointers to be maintained at the cost
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of O(1) I/O (expected) each time an element is moved. The solution is to use
a hashing based dictionary with constant lookup time and expected constant
update time to map \pointers" to disk blocks. In this context a pointer is any
kind of unique identi�er for a data element. Whenever an element is moved we
simply update the information associated with its pointer accordingly. Assuming
that pointers are succinct (not much larger than ordinary pointers) the space
used for implementing robust pointers increases total space usage by at most a
constant factor.

3 B-trees

This section considers search trees in external memory. Like the hashing based
dictionaries covered in Section 4, search trees store a set of keys along with
associated information. Though not as eÆcient as hashing schemes for lookup
of keys, we will see that search trees, as in internal memory, can be used as
the basis for a wide range of eÆcient queries on sets (see, e.g., Chapter ?? and
Chapter ??). We use N to denote the size of the key set, and B to denote the
number of keys or pointers that �t in one block.

B-trees are a generalization of balanced binary search trees to balanced trees
of degree �(B) [BM72, Com79, HM82, Knu98]. The intuitive reason why we
should change to search trees of large degree in external memory is that we would
like to use all the information we get when reading a block to guide the search. In
a na�ive implementation of binary search trees there would be no guarantee that
the nodes on a search path did not reside in distinct blocks, incurring O(logN)
I/Os for a search. As we shall see, it is possible to do signi�cantly better. In this
section it is assumed that B=8 is an integer greater than or equal to 4.

The following is a modi�cation of the original description of B-trees, with
the essential properties preserved or strengthened. In a B-tree all leaves have
the same distance to the root (the height h of the tree). The level of a B-tree
node is the distance to its descendant leaves. Rather than having a single key
in each internal node to guide searches to one of two subtrees, a B-tree node
guides searches to one of �(B) subtrees. In particular, the number of leaves
below a node (called its weight) decreases by a factor of �(B) when going one
level down the tree. We use a weight balance invariant, �rst described for B-
trees by Arge and Vitter [AV96]: Every node at level i < h has weight at least
(B=8)i, and every node at level i � h has weight at most 4(B=8)i. As shown
in the following exercise, the weight balance invariant implies that the degree of
any non-root node is �(B) (this was the invariant in the original description of
B-trees [BM72]).

Exercise 7. Show that the weight balance invariant implies the following:

1. Any node has at most B=2 children.
2. The height of the B-tree is at most 1 + dlogB=8Ne.
3. Any non-root node has at least B=32 children.
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Note that B=2 pointers to subtrees, B=2�1 keys and a counter of the number
of keys in the subtree all �t in one external memory block of size B. All keys and
their associated information are stored in the leaves of the tree, represented by
a linked list containing the sorted key sequence. Note that there may be fewer
than �(B) elements in each block of the linked list if the associated information
takes up more space than the keys.

3.1 Searching a B-tree

In a binary search tree the key in a node splits the key set into those keys that
are larger or equal and those that are smaller, and these two sets are stored
separately in the subtrees of the node. In B-trees this is generalized as follows:
In a node v storing keys k1; : : : ; kdv�1 the ith subtree stores keys k with ki�1 �
k < ki (de�ning k0 = �1 and kdv =1). This means that the information in a
node suÆces to determine in which subtree to continue a search.

The worst-case number of I/Os needed for searching a B-tree equals the
worst-case height of a B-tree, found in Exercise 7 to be at most 1 + dlogB=8Ne.
Compared to an external binary search tree, we save roughly a factor logB on
the number of I/Os.

Example 8. If external memory is a disk, the number 1 + dlogB=8Ne is quite

small for realistic values of N and B. For example, if B = 212 and N � 227 the
depth of the tree is bounded by 4. Of course, the root could be stored in internal
memory, meaning that a search would require three I/Os.

Exercise 9. Show a lower bound of 
(logB N) on the height of a B-tree.

Problem 10. Consider the situation where we have no associated information,
i.e., we wish to store only the keys. Show that the maximum height of a B-
tree can be reduced to 1 + dlogB=8(2N=B)e by abandoning the linked list and
grouping adjacent leaves together in blocks of at least B=2. What consequence
does this improvement have in the above example?

Range Reporting. An indication of the strength of tree structures is that
B-trees immediately can be seen to support range queries, i.e., queries of the
form \report all keys in the range [a; b]" (we consider the case where there is no
associated information). This can be done by �rst searching for the key a, which
will lead to the smallest key x � a. We then traverse the linked list starting with
x and report all keys smaller than b (whenever we encounter a block with a key
larger than b the search is over). The number of I/Os used for reporting Z keys
from the linked list is O(Z=B), where dZ=Be is the minimum number of I/Os we
could hope for. The feature that the number of I/Os used for a query depends
on the size of the result is called output sensitivity. To sum up, Z elements in a
given range can be reported by a B-tree in O(logB N +Z=B) I/Os. Many other
reporting problems can be solved within this bound.
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It should be noted that there exists an optimal size (static) data structure
based on hashing that performs range queries in O(1+Z=B) I/Os [ABR01]. How-
ever, a slight change in the query to \report the �rst Z keys in the range [a; b]"
makes the approach used for this result fail to have optimal output sensitivity
(in fact, this query provably has a time complexity that grows with N [BF99]).
Tree structures, on the other hand, tend to easily adapt to such changes.

3.2 Inserting and Deleting Keys in a B-tree

Insertions and deletions are performed as in binary search trees except for the
case where the weight balance invariant would be violated by doing so.

Inserting. When inserting a key x we search for x in the tree to �nd the internal
node that should be the parent of the leaf node for x. If the weight constraint is
not violated on the search path for x we can immediately insert x, and a pointer
to the leaf containing x and its associated information. If the weight constraint
is violated in one or more nodes, we rebalance it by performing split operations
in overweight nodes, starting from the bottom and going up. To split a node v
at level i > 0, we divide its children into two consecutive groups, each of weight
between 2(B=8)i � 2(B=8)i�1 and 2(B=8)i + 2(B=8)i�1. This is possible as the
maximum weight of each child is 4(B=8)i�1. Node v is replaced by two nodes
having these groups as children (this requires an update of the parent node, or
the creation of a new root if v is the root). Since B=8 � 4 the weight of each
of these new nodes is between 3

2
(B=8)i and 5

2
(B=8)i, which is 
((B=8)i) away

from the limits.

Deleting. Deletions can be handled in a manner symmetric to insertions. When-
ever deleting a leaf would violate the lower bound on the weight of a node v, we
perform a rebalancing operation on v and a sibling w. If several nodes become
underweight we start the rebalancing at the bottom and move up the tree.

Suppose v is an underweight node at level i, and that w is (one of) its nearest
sibling(s). In case the combined weight of v and w is less than 7

2
(B=8)i we fuse

them into one node having all the children of v and w as children. In case v
and w were the only children of the root, this node becomes the new root. The
other case to consider is when the combined weight is more than 7

2
(B=8)i, but

at most 5(B=8)i (since v is underweight). In this case we make w share some
children with v by dividing all the children into two consecutive groups, each of
weight between 7

4
(B=8)i � 2(B=8)i�1 and 5

2
(B=8)i + 2(B=8)i�1. These groups

are then made the children of v and w, respectively. In both cases, the weight of
all changed nodes is 
((B=8)i) away from the limits.

An alternative to doing deletions in this way is to perform periodical global
rebuilding, a technique described in Section 5.2.
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Analysis. The cost of rebalancing a node is O(1) I/Os, as it involves a constant
number of B-tree nodes. This shows that B-tree insertions and deletions can be
done in O(logB N) I/Os.

However, we have in fact shown something stronger. Suppose that whenever
a level i node v of weight W = �((B=8)i) is rebalanced we spend f(W ) I/Os
to compute an auxiliary data structure used when searching in the subtree with
root v. The above weight balancing arguments show that 
(W ) insertions and
deletions in v's subtree are needed for each rebalancing operation. Thus, the
amortized cost of maintaining the auxiliary data structures is O(f(W )=W ) I/Os

per node on the search path of an update, or O( f(W )

W
logB N) I/Os per update

in total. As an example, if the auxiliary data structure can be constructed by
scanning the entire subtree in O(W=B) I/Os, the amortized cost per update is
O( 1

B
logB N) I/Os, which is negligible.

Problem 11. Modify the rebalancing scheme to support the following type of
weight balance condition: A B-tree node at level i < h is the root of a subtree
having �((B=(2+�))i) leaves, where � > 0 is a constant. What consequence does
this have for the height of the B-tree?

3.3 On the Optimality of B-trees

The bound of O(logB N) I/Os for searching is the best we can hope for if we
consider algorithms that use only comparisons of keys to guide searches. In this
case a decision tree argument shows that, in the worst case, reading one block
(containing at most B keys) reduces the number of keys to be searched by at
most a factor of B. Therefore at least logB(N=B) I/Os are necessary in general.
If we have a large amount of internal memory and are willing to use it to store
the top M=B nodes of the B-tree, the number of I/Os for searches and updates
drops to O(logB(N=M)).

Exercise 12. How large should internal memory be to make O(logB(N=M))
asymptotically smaller than O(logB N)?

There are non-comparison-based data structures that break the above bound.
For example, the predecessor dictionary mentioned in Section 4.2 uses linear
space and time O(logw) to search for a key, where w denotes the number of
bits in a key (below we call the amount of storage for a key a word). This is
faster than a B-tree if N is much larger than B and w. Note that a predecessor
dictionary also supports the range queries discussed in Section 3.1. There are
also predecessor data structures whose search time improves with the number
of bits that can be read in one step (in our case Bw bits). When translated
to external memory, these results (see [AT00, BF99, Hag98] and the references
therein) can be summarized as follows:

Theorem 13. There is an external memory data structure for N keys of w bits

that supports deterministic predecessor queries, insertions and deletions in the
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following worst-case number of I/Os:

O

�
min

�q
log
�

N
BM

�
= log log

�
N
BM

�
; logBw

�
N
M

�
; logw
log logw

log logBw
�
N
M

���

where internal space usage is O(M) words and external space usage is O(N=B)
blocks of B words.

Using randomization it is also possible to perform all operations in expected
O(logw) time, O(B) words of internal space, and O(N=B) blocks of external
space [Wil83]. If main memory size is close to the block size, the upper bounds
on predecessor queries are close to optimal, as shown by Beame and Fich [BF99]
in the following general lower bounds:

Theorem 14. Suppose there is a (static) dictionary for w bit keys using NO(1)

blocks of memory that supports predecessor queries in t I/Os, worst-case, using

O(B) words of internal memory. Then the following bounds hold:

1. t = 
(min(logw= log logw; logBwN)).
2. If w is a suitable function of N then t = 
(min(logB N;

p
logN= log logN)),

i.e., no better bound independent of w can be achieved.

Exercise 15. For what parameters are the upper bounds of Theorem 13 within
a constant factor of the lower bounds of Theorem 14?

Though the above results show that it is possible to improve slightly asymp-
totically upon the comparison-based upper bounds, the possible savings are so
small (logB N tends to be a small number already) that it has been common
to stick to the comparison-based model. Another reason is that much of the
development of external memory algorithms has been driven by computational
geometry applications. Geometric problems are usually studied in a model where
numbers have in�nite precision and can only be manipulated using arithmetic
operations and comparisons.

3.4 B-tree Variants

There are many variants of B-trees that add or enhance properties of basic
B-trees. The weight balance invariant we considered above was introduced in
the context of B-trees only recently, making it possible to associate expensive
auxiliary data structures with B-tree nodes at small amortized cost. Below we
summarize the properties of some other useful B-tree variants and extensions.

Parent Pointers and Level Links. It is simple to extend basic B-trees to
maintain a pointer to the parent of each node at no additional cost. A similarly
simple extension is to maintain that all nodes at each level are connected in a
doubly linked list. One application of these pointers is a �nger search: Given a
leaf v in the B-tree, search for another leaf w. We go up the tree from v until
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the current node or one of its level-linked neighbors has w below it, and then
search down the tree for w. The number of I/Os is O(logB Q), where Q is the
number of leaves between v and w. When searching for nearby leaves this is a
signi�cant improvement over searching for w from the root.

Divide and Merge Operations. In some applications it is useful to be able
to divide a B-tree into two parts, with keys smaller than and larger than some
splitting element, respectively. Conversely, if we have two B-trees where all keys
in one is smaller than all keys in the other, we may wish to eÆciently \glue"
these trees together into one. In normal B-trees these operations can be sup-
ported in O(logB N)) I/Os. However, it is not easy to simultaneously maintain
parent pointers. Level-balanced B-trees [AABV99] maintain parent pointers and
support divide, merge, and usual B-tree operations in O(logB N)) I/Os. If there
is no guarantee that keys in one tree are smaller than keys in the other, merging
is much harder, as shown in the following problem.

Problem 16. Show that, in the lower bound model of Aggarwal and Vitter [AV88],
merging two B-trees with �(N) keys requires �(N=B) I/Os in the worst case.

Partially Persistent B-trees. In partially persistent B-trees (sometimes called
multiversion B-trees) each update conceptually results in a new version of the
tree. Queries can be made in any version of the tree, which is useful when the
history of the data structure needs to be stored and queried. Persistence is
also useful in many geometric algorithms based on the sweepline paradigm (see
Chapter ??).

Partially persistent B-trees can be implemented as eÆciently as one could
hope for, using standard internal memory persistence techniques [DSST89, ST86a].
A sequence of N updates results in a data structure using O(N=B) external
memory blocks, where any version of the tree can be queried in O(logB N) I/Os.
Range queries, etc., are also supported. For details we refer to [BGO+96, ST86b,
VV97].

String B-trees. We have assumed that the keys stored in a B-tree have �xed
length. In some applications this is not the case. Most notably, in String B-

trees [FG99] the keys are strings of unbounded length. It turns out that all
the usual B-tree operations, as well as a number of operations speci�c to strings,
can be eÆciently supported in this setting. String B-trees are presented in Chap-
ter ??.

3.5 Batched Dynamic Problems and Bu�er Trees

B-trees answer queries in an on-line fashion, i.e., the answer to a query is pro-
vided immediately after the query is issued. In some applications we can a�ord
to wait for an answer to a query. For example, in batched dynamic problems a
\batch" of updates and queries is provided to the data structure, and only at the
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end of the batch is the data structure expected to deliver the answers that would
have been returned immediately by the corresponding on-line data structure.

There are many examples of batched dynamic problems in, e.g., computa-
tional geometry. As an example, consider the batched range searching problem:
Given a sequence of insertions and deletions of integers, interleaved with queries
for integer intervals, report for each interval the integers contained in it. A data
structure for this problem can, using the sweepline technique, be used to solve
the orthogonal line segment intersection problem: Given a set of horizontal and
vertical lines in the plane, report all intersections. We refer to Chapter ?? for
details.

Bu�er Trees. The bu�er tree technique [Arg95] has been used for I/O opti-
mal algorithms for a number of problems. In this section we illustrate the basic
technique by demonstrating how a bu�er tree can be used to handle batched dic-
tionary operations. For simplicity we will assume that the information associated
with keys has the same size as the keys.

A bu�er tree is similar to a B-tree, but has degree �(M=B). Its name refers
to the fact that each internal node has an associated bu�er which is a queue
that contains a sequence of up to M updates and queries to be performed in
the subtree where the node is root. New updates and queries are not performed
right away, but \lazily" written to the root bu�er in O(1=B) I/Os per operation,
as described in Section 1.1. Non-root bu�ers reside entirely on external memory,
and writing K elements to them requires O(1 +K=B) I/Os.

Whenever a bu�er gets full, it is 
ushed: Its content is loaded into internal
memory, where the updates and queries are sorted according to the subtree where
they have to be performed. These operations are then written to the bu�ers of
the �(M=B) children, in the order they were originally carried out. This may
result in bu�ers of children 
ushing, and so forth. Leaves contain �(B) keys.
When the bu�er of a node v just above the leaves is 
ushed, the updates and
queries are performed directly on its M=B children, whose elements �t in main
memory. This results in a sorted list of blocks of elements that form the new
children of v. If there are too few or too many children, rebalancing operations
are performed, similar to the ones described for B-trees (see [Arg95] for details).
Each node involved in a rebalancing operation has its bu�er 
ushed before the
rebalancing is done. In this way, the content of the bu�ers need not be considered
when splitting, fusing, and sharing.

The cost of 
ushing a bu�er is O(M=B) I/Os for reading the bu�er, and
O(M=B) I/Os for writing the operations to the bu�ers of the children. Note
that there is a cost of a constant number of I/Os for each child { this is the
reason for making the number of children equal to the I/O-cost of reading the
bu�er. Thus, 
ushing costs O(1=B) I/Os per operation in the bu�er, and since
the depth of the tree is O(logM

B

(N
B
)), the total cost of all 
ushes is O( 1

B
logM

B

(N
B
))

I/Os per operation.
The cost of performing a rebalancing operation on a node is O(M=B) I/Os,

as we may need to 
ush the bu�er of one of its siblings. However, the number of
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rebalancing operations during N updates is O(N=M) (see [HM82]), so the total
cost of rebalancing is O(N=B) I/Os.

Problem 17. What is the I/O complexity of operations in a \bu�er tree" of
degree Q?

3.6 Priority Queues

The priority queue is an abstract data structure of fundamental importance,
primarily due to its use in graph algorithms (see Chapter ?? and Chapter ??).
A priority queue stores an ordered set of keys, along with associated information
(assumed in this section to be of the same size as keys). The basic operations
are: insertion of a key, �nding the smallest key, and deleting the smallest key.
(Since only the smallest key can be inspected, the key can be thought of a prior-

ity, with small keys being \more important".) Sometimes additional operations
are supported, such as deleting an arbitrary key and decreasing the value of a
key. The motivation for the decrease-key operation is that it can sometimes be
implemented more eÆciently than by deleting the old key and inserting the new
one.

There are several ways of implementing eÆcient external memory priority
queues. Like for queues and stacks (which are both special cases of priority
queues), the technique of bu�ering is the key. We show how to use the bu�er
tree data structure described in Section 3.5 to implement a priority queue using
internal memory O(M), supporting insertion, deletion and delete-minimum in
O( 1B logM

B

(N
B )) I/Os, amortized, while keeping the minimum element in internal

memory.
The entire bu�er of the root node is always kept in internal memory. Also

present in memory are the O(M=B) leftmost leaves, more precisely the leaves
of the leftmost internal node. The invariant is kept that all bu�ers on the path
from the root to the leftmost leaf are empty. This is done in the obvious fashion:
Whenever the root is 
ushed we also 
ush all bu�ers down the leftmost path,
at a total cost of O(M

B
logM

B

(N
B
)) I/Os. Since there are O(M=B) operations

between each 
ush of the root bu�er, the amortized cost of these extra 
ushes is
O( 1

B
logM

B

(N
B
)) I/Os per operation. The analysis is completed by the following

exercise.

Exercise 18. Show that the current minimum can be maintained internally us-
ing only the root bu�er and the set of O(M) elements in the leftmost leaves.
Conclude that �nd-minimum queries can be answered on-line without using any
I/Os.

Optimality. It is not hard to see that the above complexities are, in a certain
sense, the best possible.

Exercise 19. Show that it is impossible to perform insertion and delete-minimums
in time o( 1B logM

B

(NB )) (Hint: Reduce from sorting, and use the sorting lower
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bound { more information on this reduction technique can be found in Chap-
ter ??).

In internal memory it is in fact possible to improve the complexity of insertion to
constant time, while preservingO(logN) time for delete-minimum (see [CLRS01,
Chapter 20] and [Bro96]). It appears to be an open problem whether it is possible
to implement constant time insertions in external memory.

One way of improving the performance the priority queue described is to
provide \worst case" rather than amortized I/O bounds. Of course, it is not
possible for every operation to have a cost of less than one I/O. The best one
can hope for is that any subsequence of k operations uses O(1 + k

B
logM

B

(N
B
))

I/Os. Brodal and Katajainen [BK98] have achieved this for subsequences of
length k � B. Their data structure does not support deletions.

A main open problem in external memory priority queues is the complex-
ity of the decrease-key operation (when the other operations have complex-
ity as above). Internally, this operation can be supported in constant time
(see [CLRS01, Chapter 20] and [Bro96]), and the open problem is whether a
corresponding bound of O(1=B) I/Os per decrease-key can be achieved. The
currently best complexity is achieved by \tournament trees", described in Chap-
ter ??, where decrease-key operations, as well as the other priority queue oper-
ations, cost O( 1

B
log(N

B
)) I/Os.

4 Hashing Based Dictionaries

We now consider hashing techniques, which o�er the highest performance for
the basic dictionary operations. One aspect that we will not discuss here, is
how to implement appropriate classes of hash functions. We will simply assume
to have access to hash functions that behave like truly random functions, in-
dependent of the sequence of dictionary operations. This means that any hash
function value h(x) is uniformly random and independent of hash function values
on elements other than x. In practice, using easily implementable \pseudoran-
dom" hash functions that try to imitate truly random functions, the behavior
of hashing algorithms is quite close to that of this idealized model. We refer the
reader to [Df96] and the references therein for more information on practical
hash functions.

4.1 Lookup With Good Expected Performance

Several classic hashing schemes (see [Knu98, Section 6.4] for a survey) perform
well in the expected sense in external memory. We will consider linear probing

and chaining with separate lists . These schemes need nothing but a single hash
function h in internal memory (in practice a few machine words suÆce for a
good pseudorandom hash function). For both schemes the analysis is beyond
the scope of this chapter, but we provide some intuition and state results on
their performance.
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Linear Probing. In external memory linear probing, a search for the key x

starts at block h(x) in a hash table, and proceeds linearly through the table
until either x is found or we encounter a block that is not full (indicating that x
is not present in the table). Insertions proceed in the same manner as lookups,
except that we insert x if we encounter a non-full block. Deletion of a key x

requires some rearrangement of the keys in the blocks scanned when looking
up x, see [Knu98, Section 6.4] for details. A deletion leaves the table in the state
it would have been in if the deleted element had never been inserted.

The intuitive reason that linear probing gives good average behavior is that
the pseudorandom function distributes the keys almost evenly to the blocks. In
the rare event that a block over
ows, it will be unlikely that the next block
is not able to accommodate the over
ow elements. More precisely, if the load
factor of our hash table is �, where 0 < � < 1 (i.e., the size of the hash table is
N=(�B) blocks), we have that the expected average number of I/Os for a lookup
is 1 + (1� �)�2 � 2�
(B) [Knu98]. If � is bounded away from 1 (i.e., � � 1� �

for some constant � > 0) and if B is not too small, the expected average is very
close to 1. In fact, the asymptotic probability of having to use k > 1 I/Os for a
lookup is 2�
(B(k�1)). In Section 4.4 we will consider the problem of keeping the
load factor in a certain range, shrinking and expanding the hash table according
to the size of the set.

Chaining With Separate Lists. In chaining with separate lists we again hash
to a table of size approximately N=(�B) to achieve load factor �. Each block in
the hash table is the start of a linked list of keys hashing to that block. Insertion,
deletion, and lookups proceed in the obvious manner. As the pseudorandom
function distributes keys approximately evenly to the blocks, almost all lists will
consist of just a single block. In fact, the probability that more than kB keys
hash to a certain block, for k � 1, is at most e��B(k=��1)

2=3 by Cherno� bounds
(see, e.g., [HR90, Eq. 6]).

As can be seen, the probabilities decrease faster with k than in linear probing.
On the other hand, chaining may be slightly more complicated to implement as
one has to manage 2�
(B)n blocks in chained lists (expected). Of course, if B
is large and the load factor is not too high, over
ows will be very rare. This can
be exploited, as discussed in the next section.

4.2 Lookup Using One External Memory Access

In the previous section we looked at hashing schemes with good expected lookup
behavior. Of course, an expected bound may not be good enough for some ap-
plications where a �rm guarantee on throughput is needed. In this and the
following section we investigate how added resources may provide dictionaries
in which lookups take just the time of a single I/O in the worst case. In particu-
lar, we consider dictionaries using more internal memory, and dictionaries using
external memory that allows two I/Os to be performed in parallel.

15



Making Use of Internal Memory. An important design principle in external
memory algorithms is to make full use of internal memory for data structures
that reduce the number of external memory accesses. Typically such an internal
data structure holds part of the external data structure that will be needed in
the future (e.g., the bu�ers used in Section 1), or it holds information that allows
the proper data to be found eÆciently in external memory.

If suÆcient internal memory is available, searching in a dictionary can be
done in a single I/O. There are at least two approaches to achieving this.

Over
ow area. When internal memory for 2�
(B)N keys and associated in-
formation is available internally, there is a very simple strategy that provides
lookups in a single I/O, for constant load factor � < 1. The idea is to store the
keys that cannot be accommodated externally (because of block over
ows) in an
internal memory dictionary. For some constant c(�) = 
(1� �) the probability
that there are more than 2�c(�)BN such keys is so small (by the Cherno� bound)
that we can a�ord to rehash, i.e., choose a new hash function to replace h, if
this should happen.

Alternatively, the over
ow area can reside in external memory (this idea
appeared in other forms in [GL88, RT89]). To guarantee single I/O lookups this
requires internal memory data structures that:

{ Identify blocks that have over
own.
{ Facilitate single I/O lookup of the elements hashing to these blocks.

The �rst task can be solved by maintaining a dictionary of over
owing blocks.
The probability of a block over
owing is O(2�c(�)B), so we expect to store the
indices of O(2�c(�)BN) blocks. This requires O(2�c(�)BN logN) bits of internal
space. If we simply discard the external memory blocks that have over
own,
the second task can be solved recursively by a dictionary supporting single I/O
lookups, storing a set that with high probability has size O(2�c(�)BN).

Perfect hashing. Mairson [Mai83] considered implementing a B-perfect hash

function p : K ! f1; : : : ; dN=Beg that maps at most B keys to each block.
Note that if we store key k in block p(k) and the B-perfect hash function resides
in internal memory, we need only a single I/O to look up k. Mairson showed
that such a function can be implemented using O(N log(B)=B) bits of internal
memory. (In the interest of simplicity, we ignore an extra term that only shows

up when the key set K has size 2B
!(N)

.) If the number of external blocks is only
dN=Be and we want to be able to handle every possible key set, this is also
the best possible [Mai83]. Unfortunately, the time and space needed to evaluate
Mairson's hash functions is extremely high, and it seems very diÆcult to obtain
a dynamic version. The rest of this section deals with more practical ways of
implementing (dynamic) B-perfect hashing.

Extendible Hashing. A popular B-perfect hashing method that comes close
to Mairson's bound is extendible hashing by Fagin et al. [FNPS79]. The expected
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space utilization in external memory is about 69% rather than the 100% achieved
by Mairson's scheme.

Extendible hashing employs an internal structure called a directory to deter-
mine which external block to search. The directory is an array of 2d pointers to
external memory blocks, for some parameter d. Let h : K ! f0; 1gr be a truly
random hash function, where r � d. Lookup of a key k is performed by using
h(k)d, the function returning the d least signi�cant bits of h(k), to determine an
entry in the directory, which in turn speci�es the external block to be searched.
The parameter d is chosen to be the smallest number for which at most B dic-
tionary keys map to the same value under h(k)d. If r � 3 logN , say, such a d

exists with high probability. In case it does not we simply rehash. Many pointers
in the directory may point to the same block. Speci�cally, if no more than B

dictionary keys map to the same value v under hd0 , for some d0 < d, all directory
entries with indices having v in their d0 least signi�cant bits point to the same
external memory block.

Clearly, extendible hashing provides lookups using a single I/O and con-
stant internal processing time. Analyzing its space usage is beyond the scope
of this chapter, but we mention some results. Flajolet [Fla83] has shown that
the expected number of entries in the directory is approximately 4N

B
B

p
N . If

B is just moderately large, this is close to optimal, e.g., in case B � logN
the number of bits used is less than 8N log(N)=B. In comparison, the opti-
mal space bound for perfect hashing to exactly N=B external memory blocks is
1

2
N log(B)=B +�(N=B) bits. The expected external space usage can be shown

to be around N=(B ln 2) blocks, which means that about 69% of the space is
utilized [FNPS79, Men82].

Extendible hashing is named after the way in which it adapts to changes of
the key set. The level of a block is the largest d0 � d for which all its keys map
to the same value under hd0 . Whenever a block at level d0 has run full, it is split
into two blocks at level d0+1 using hd0+1. In case d0 = d we �rst need to double
the size of the directory. Conversely, if two blocks at level d0, with keys having
the same function value under hd0�1, contain less than B keys in total, these
blocks are merged. If no blocks are left at level d, the size of the directory is
halved.

Using a Predecessor Dictionary. If one is willing to increase internal com-
putation from a constant to expected O(log logN) time per dictionary opera-
tion, both internal and external space usage can be made better than that of
extendible hashing. The idea is to replace the directory with a dictionary sup-
porting predecessor queries in a key set P � f0; 1gr: For any x 2 f0; 1gr it
reports the largest key y 2 P such that y � x, along with some information
associated with this key. In our application the set P will be the hash values of
a small subset of the set of keys in the dictionary.

We will keep the keys of the dictionary stored in a linked list, sorted according
to their hash values (interpreted as nonnegative integers). For each block in the
linked list we keep the smallest hash value in the predecessor dictionary, and
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associate with it a pointer to the block. This means that lookup of x 2 K can
be done by searching the block pointed to by the predecessor of h(x). Insertions
and deletions can be done by inserting or deleting the key in the linked list, and
possibly making a constant number of updates to the predecessor dictionary.

We saw in Problem 6 that a linked list with space utilization 1�� can be main-
tained in O(1) I/O per update, for any constant � > 0. The internal predecessor
data structure then contains at most dN=((1� �)B)e keys. We choose the range
of the hash function such that 3 logN � r = O(logN). Since the hash function
values are only O(logN) bits long, one can implement a very eÆcient linear
space predecessor dictionary based on van Emde Boas trees [vEB75, vEBKZ77].
This data structure [Wil83] allows predecessor queries to be answered in time
O(log logN), and updates to be made in expected O(log logN) time. The space
usage is linear in the number of elements stored.

In conclusion, we get a dictionary supporting updates in O(1) I/Os and time
O(log logN), expected, and lookups in 1 I/O and time O(log logN). For most
practical purposes the internal processing time is negligible. The external space
usage can be made arbitrarily close to optimal, and the internal space usage is
O(N=B).

4.3 Lookup Using Two Parallel External Memory Accesses

We now consider a scenario in which we may perform two I/Os in parallel, in
two separate parts of external memory. This is realistic, for example, if two disks
are available or when RAM is divided into independent banks. It turns out that,
with high probability, all dictionary operations can be performed accessing just a
single block in each part of memory, assuming that the load factor � is bounded
away from 1 and that blocks are not too small.

The hashing scheme achieving this is called two-way chaining, and was in-
troduced by Azar et al. [ABKU99]. It can be thought of as two chained hashing
data structures with pseudorandom hash functions h1 and h2. Key x may reside
in either block h1(x) of hash table one or block h2(x) of hash table two. New
keys are always inserted in the block having the smallest number of keys, with
ties broken such that keys go to table one (the advantages of this tie-breaking
rule were discovered by V�ocking [V�oc99]). It can be shown that the probability

of an insertion causing an over
ow is N=22

((1��)B)

[BCSV00]. That is, the fail-
ure probability decreases doubly exponentially with the average number of free
spaces in each block. The constant factor in the 
 is larger than 1, and it has
been shown experimentally that even for very small amounts of free space in each
block, the probability of an over
ow (causing a rehash) is very small [BM01]. The
e�ect of deletions in two-way chaining does not appear to have been analyzed.

4.4 Resizing Hash Tables

In the above we several times assumed that the load factor of our hash table
is at most some constant � < 1. Of course, to keep the load factor below �
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we may have to increase the size of the hash table employed when the size
of the set increases. On the other hand we wish to keep � above a certain
threshold to have a good external memory utilization, so shrinking the hash
table is also occasionally necessary. The challenge is to rehash to the new table
without having to do an expensive reorganization of the old hash table. Simply
choosing a new hash function would require a random permutation of the keys,
a task shown in [AV88] to require �(N

B
logM

B

(N
B
)) I/Os. When N = (M=B)O(B),

i.e, when N is not extremely large, this is O(N) I/Os. Since one usually has
�(N) updates between two rehashes, the reorganization cost can be amortized
over the cost of updates. However, more eÆcient ways of reorganizing the hash
table are important in practice to keep constant factors down. The basic idea is
to introduce more \gentle" ways of changing the hash function.

Linear Hashing. Litwin [Lit80] proposed a way of gradually increasing and
decreasing the range of hash functions with the size of the set. The basic idea
for hashing to a range of size r is to extract b = dlog re bits from a \mother"
hash function. If the extracted bits encode an integer k less than r, this is used
as the hash value. Otherwise the hash function value k�2b�1 is returned. When
expanding the size of the hash table by one block (increasing r by one), all keys
that may hash to the new block r + 1 previously hashed to block r + 1� 2b�1.
This makes it easy to update the hash table. Decreasing the size of the hash
table is done in a symmetric manner.

The main problem with linear hashing is that when r is not a power of 2, the
keys are not mapped uniformly to the range. For example, if r is 1:5 times a power
of two, the expected number of collisions between keys is 12:5% higher than
that expected for a uniform hash function. Even worse, the expected maximum
number of keys hashing to a single bucket can be up to twice as high as in the
uniform case. Some attempts have been made to alleviate these problems, but
all have the property that the hash functions used are not completely uniform,
see [Lar88] and the references therein. Another problem lies in the analysis,
which for many hashing schemes is complicated by nonuniform hash functions.
Below we look at a way of doing eÆcient rehashing in a uniform way.

Uniform Rehashing. We now describe an alternative to linear hashing that
yields uniform hash functions [ �OP02]. To achieve both uniformity and eÆcient
rehashing we do not allow the hash table size to increase/decrease in increments
of 1, but rather support that its size is increased/decreased by a factor of around
1 + � for some � > 0. This means that we are not able to control exactly the
relative sizes of the set and hash table. On the other hand, uniformity means
that we will be able to achieve the performance of linear hashing using a smaller
hash table.

As in linear hashing we extract the hash function value for all ranges from a
\mother" hash function � : U ! f0; : : : ; R� 1g. The factor between consecutive
hash table sizes will be between 1+�1 and 1+�2, where �2 > �1 > 0 are arbitrary
constants. The size R of the range of � is chosen as follows. Take a sequence of
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positive integers i1; : : : ; ik such that ik = 2p � i1 for some positive integer p, and
1 + �1 < ij+1=ij < 1 + �2 for j = 1; : : : ; k � 1.

Exercise 20. Show that i1; : : : ; ik can be chosen to satisfy the above require-
ments, and such that I =

Qk
j=1

ij is a constant (depending only on �1 and �2).

We let R = 2b � I , where I is de�ned in Exercise 20 and b is chosen such
that no hash function with range larger than 2bik will be needed. Whenever
r divides R we have the uniformly random hash function with range of size r:
hr = �(r) div (R=r), where div denotes integer division. The possible range sizes
are 2qij for q = 0; : : : ; b, j = 1; : : : ; k. If the current range size is r = 2qij and
we wish to hash to a larger table, we choose new range r0 = 2qij+1 if j < k

and r0 = 2q+pi2 if j = k. By the way we have chosen i1; : : : ; ik it holds that
1 + �1 < r0=r < 1 + �2. The case where we wish to hash to a smaller table is
symmetric.

The following property of our hash functions means that, for many hashing
schemes, rehashing can be performed by a single scan through the hash table
(i.e., in O(N=B) I/Os): If �(x) � �(y) then hr(x) � hr(y) for any r. In other
words, our hash functions never change the ordering of hash values given by �.

5 Dynamization Techniques

This section presents two general techniques for obtaining dynamic data struc-
tures for sets.

5.1 The Logarithmic Method

In many cases it is considerably simpler to come up with an eÆcient way of
constructing a static data structure than achieving a correspondingly eÆcient
dynamic data structure. The logarithmic method is a technique for obtaining
data structures with eÆcient (though often not optimal) insertion and query
operations in some of these cases. More speci�cally, the problem must be de-

composable: If we split the set S of elements into disjoint subsets S1; : : : ; Sk and
create a (static) data structure for each of them, then queries on the whole set
can be answered by querying each of these data structures. Examples of decom-
posable problems are dictionaries and priority queues.

The basic idea of the logarithmic method is to maintain a collection of data
structures of di�erent sizes, and periodically merge a number data structures
into one, in order to keep the number of data structures to be queried low. In
internal memory, the number of data structures for a set of size N is typically
O(logN), explaining the name of the method. We refer to [Ben79, BS80, OvL81]
and the references therein for more background.

In the external memory version of the logarithmic method that we describe [AV00],
the number of data structures used is decreased to O(logB N). Insertions are
done by rebuilding the �rst static data structure such that it contains the new

20



element. The invariant is that the ith data structure should have size no more
than Bi. If this size is reached, it is merged with the i+1st data structure (which
may be empty). Merging is done by rebuilding a static data structure containing
all the elements of the two data structures.

Exercise 21. Show that when inserting N elements, each element will be part of
a rebuilding O(B logB N) times.

Suppose that building a static data structure forN elements usesO(NB logkB N)
I/Os. Then by the exercise, the total amortized cost of inserting an element is
O(logk+1

B N) I/Os. Queries take O(logB N) times more I/Os than queries in the
corresponding static data structures.

5.2 Global Rebuilding

Some data structures for sets support deletions, but do not recover the space
occupied by deleted elements. For example, deletions in a static dictionary can
be done by marking deleted elements (this is called a weak delete). A general
technique for keeping the number of deleted elements at some fraction of the total
number of elements is global rebuilding: In a data structure ofN elements (present
and deleted), whenever �N elements have been deleted, for some constant � > 0,
the entire data structure is rebuilt. The cost of rebuilding is at most a constant
factor higher than the cost of inserting �N elements, so the amortized cost of
global rebuilding can be charged to the insertions of the deleted elements.

Exercise 22. Discuss pros and cons of using global rebuilding for B-trees instead
of the deletion method described in Section 3.2.

6 Summary

This chapter has surveyed some of the most important external memory data
structures for sets and lists: Elementary abstract data structures (queues, stacks,
linked lists), B-trees, bu�er trees (including their use for priority queues), and
hashing based dictionaries. Along the way, several important design principles
for memory hierarchy aware algorithms and data structures have been touched
upon: Using bu�ers, blocking and locality, making use of internal memory, out-
put sensitivity, data structures for batched dynamic problems, the logarithmic
method, and global rebuilding. In the following chapters of this volume, the
reader who wants to know more can �nd a wealth of information on virtually all
aspects of algorithms and data structures for memory hierarchies.

Since the data structure problems discussed in this chapter are fundamen-
tal they are well-studied. Some problems have resisted the e�orts of achieving
external memory results \equally good" as the corresponding internal memory
results. In particular, the problems of supporting fast insertion and decrease-key
in priority queues (or show that this is not possible) have remained challenging
open research problems.
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