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1 Abstract  
In some applications, data capture domi-

nates query processing. For example, moni-
toring moving objects often requires more in-
sertions and updates than queries. Data gath-
ering using automated sensors often exhibits 
this imbalance. More generally, indexing 
streams is considered an unsolved problem.  

For those applications, B-tree indexes are 
good choices if some trade-off decisions are 
tilted towards optimization of updates rather 
than towards optimization of queries. This 
paper surveys some techniques that let B-
trees sustain very high update rates, up to 
multiple orders of magnitude higher than tradi-
tional B-trees, at the expense of query proc-
essing performance. Not surprisingly, some of 
these techniques are reminiscent of those 
employed during index creation, index rebuild, 
etc., while other techniques are derived from 
well known technologies such as differential 
files and log-structured file systems.  

2 Introduction  
Some applications capture more data than 

they query them. For example, a fleet man-
agement system for a trucking or taxi com-
pany might record each vehicle’s latest posi-
tion more often than the vehicles’ positions 
are queried by a fleet supervisor. In those 
cases, index and B-tree organization should 
be optimized for insertion and update per-
formance rather than for query performance, 
as has been the traditional objective.  

Another application domain for the tech-
niques discussed in this survey is indexing of 
continuous data streams. Filtering streams on 
the fly is reasonably well understood, but 
streams that contain identifiers of real-world 
objects often need to be matched by identifier 
and descriptive attribute against static data as 
well as other streams. Thus, it is imperative 
that streams can be captured, typically in the 
order of data arrival, as well as indexed by 
attributes other than arrival time, sometimes in 
multiple indexes with multiple orders. For ex-
ample, an incoming stream of credit card 
transactions might require, for efficient and 

near-instantaneous fraud detection, indexing 
by card number, customer identity or house-
hold (a customer might have lost multiple 
credit cards at the same time), and merchant 
(a dishonest employee might fraudulently 
charge credit cards from many customers).  

In the following, we assume that update 
and insertion performance are more important 
than query performance. If the reader is not 
concerned about such applications, traditional 
B-tree optimizations should be applied rather 
than the techniques surveyed here. Moreover, 
we assume that any throttling of the workload, 
e.g., “best effort” recording of current vehicle 
locations, has already been applied, such that 
the remaining update requests indeed must 
be captured in all indexes under considera-
tion. Finally, we assume that hardware assis-
tance has been considered and exploited to 
the extent possible and appropriate, e.g., disk 
striping and solid-state disks or disk buffers.  

3 I/O optimizations  
As with most database operations, focus-

ing on the efficiency of disk I/O is an effective 
means for improving performance and scal-
ability. However, one must separate between 
improvements to the overall system through-
put and improvements to the response time of 
individual transactions, which may or may not 
be tremendously interesting here.  

There are several very generic perform-
ance improvement technologies, e.g., data 
compression [WKH 00]. In update-intensive 
workloads, relevant compression applies not 
only to the data but also to the transaction log. 
Suffice it here to point out that some com-
pression techniques are surprisingly simple, 
e.g., truncating leading and trailing zeroes or 
blanks, and aggregating multiple log records 
from the same transaction into a single log 
record in order to save the overhead of many 
record headers in the transaction log.  

3.1 Prefetch, read-ahead, and 
write-behind  

Write-behind of log pages and of data 
pages are well known techniques. By itself, 
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write-behind does not improve system 
throughput, because the amount of writing 
does not decrease. However, write-behind 
often enables large writes, which is even more 
efficient that queued I/O. Moreover, they are 
helpful in the case of spikes in the workload 
and they permit additional optimizations. For 
example, modern disk drives support native 
command queuing and thus perform better if 
there are tens of I/O operations pending at all 
times [ADR 03].  

Read-ahead (as commonly used in scans) 
does not apply to append operations, but it 
applies to merging an entire batch of modifica-
tions into an existing B-tree. When merging 
multiple B-tree partitions (discussed below) 
into one, read-ahead with forecasting can im-
prove performance, as merging partitions is 
essentially the same problem as merging runs 
in an external merge sort [G 03a].  

Prefetch based on individual keys apply 
not only to retrieval operations, e.g., naviga-
tion from a non-clustered index into a clus-
tered index, but also to update operations. 
However, like read-ahead and write-behind, 
prefetch also does not directly improve sys-
tem throughput or bandwidth, only response 
time or latency of individual operations, which 
might improve system throughput indirectly by 
reducing concurrency control contention.  

3.2 Write-optimized B-trees  
In addition to asynchronous I/O, dynamic 

placement of contents on disk can improve 
write performance [G 04]. This effect is well 
known and has been extensively studied for 
log-structured file systems [OD 89], in particu-
lar in the context of RAID storage [PGK 88]. 
The principal idea of write-optimized B-trees is 
to allocate a new location on disk each time a 
page is written to disk, and to do so as part of 
the write operation, i.e., subsequent to the 
buffer manager’s replacement decision, and 
to allocate a page’s new location in such a 
way that multiple concurrent write operations 
all target the same area on disk.  

In order to avoid subsequent updates of 
neighboring pages, the traditional page chain 
using physical page identifiers is replaced by 
a logical page chain using separator keys, i.e., 
each page carries as lower and upper fences 
the separator key propagated to the page’s 
parent node when the page was split from its 
neighbors. In addition to supporting the same 
consistency checks and other maintenance 

operations supported by traditional physical 
page chains, fence keys simplify and improve 
key range locking, because it is never re-
quired to navigate to a neighboring leaf page 
in order to find the right key to lock. After 
physical page chains have been replaced by 
logical fence keys, the only role for physical 
page identifiers is in child pointers, and only 
those have to be updated when a node moves 
to a new location on disk.  

In traditional B-tree algorithms, a new loca-
tion is allocated as part of the B-tree man-
ager’s decision to split a node, such that sub-
sequent log records can refer to the page 
identifier. In write-optimized B-trees, a new 
page is given a temporary identifier that log 
records may refer to, and the page is moved 
as part of the write operation in a way very 
similar to a page move during B-tree defrag-
mentation. Thus, proven concurrency control 
and recovery mechanisms apply.  

The performance effect of write-optimized 
B-trees is such that random write operations 
are converted to large sequential write opera-
tions, with a bandwidth advantage of factor 10 
or more, at the expense of added mainte-
nance of each node’s parent each time a 
node is written to a new location on disk.  

4 Buffering insertions  
There are multiple ways to buffer and 

group new insertions in order to modify each 
B-tree node less often, with the advantage of 
less disk I/O, fewer faults in the CPU cache, 
etc. Query operations either need to search 
the buffer structure in addition to the B-tree 
index or they force some or all buffered re-
cords into the B-tree index.  

For correct transactional execution, both 
insertion and deletion in the buffer must be 
logged; thus the log volume in these methods 
may exceed the traditional log volume by a 
factor of three or more. However, only the 
initial insertion into the first buffer is a user 
transaction, whereas all subsequent move-
ments of a record can be system transactions 
that can commit inexpensively without forcing 
the tail of the transaction log to stable storage.  

4.1 Buffering within tree 
nodes  

Several researchers have explored data 
structures and algorithms that add a large 
buffer to each interior tree node [A 96, 
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AHV 02, VSW 97]. Often the size of this buffer 
exceeds the size of the area dedicated to tra-
ditional key-pointer pairs, not only because 
each buffered new record is larger than a key-
pointer pair but also because the number of 
retained records should be larger than the 
number of key-pointer pairs. When the buffer 
fills up, appropriate records are pushed down 
to the child with the most retained records.  

It seems that records should be retained 
only for those children not immediately avail-
able in the I/O buffer. Given that most B-trees 
have a fan-out of 100 or more, and given that 
in most database servers the memory size 
exceeds 1% of the disk size, and given that 
the B-trees discussed here are among the 
most active and performance-critical indexes 
within the database, one may infer that such 
buffering applies only at the nodes immedi-
ately above the leaves. In other words, there 
may be additional improvement possible be-
yond published methods that permit buffering 
in nodes of all B-tree levels.  

4.2 Buffering in separate 
structures  

An alternative to buffering insertions in tree 
nodes is to create a separate data structure to 
buffer new insertions [LJB 95, MOP 00, 
OCG 96]. This data structure can be another 
B-tree or it can be a different type of in-
memory data structure, e.g., a hash table. In 
fact, it can also be a collection of data struc-
tures, forming a hierarchy or cascade of stag-
ing areas. Interestingly, this organization is 
reminiscent both of generational garbage col-
lection [U 84].  

New structures imply new mechanisms for 
concurrency control and recovery. Thus, a 
standard index structure that is already im-
plemented might be the preferred mechanism. 
Otherwise, new locking modes or protocols 
require correctness arguments, implementa-
tion, testing, etc. Perhaps the most desirable 
implementation avoids both separate struc-
tures and modifications of existing structures, 
and instead only uses existing mechanisms in 
different ways.  

4.3 Buffering in B-tree parti-
tions  

One design motivated by the desire to 
avoid special-case code employs the main B-
tree as its own buffer data structure by intro-

ducing partitions within each B-tree [G 03a]. 
By introducing an artificial leading key column, 
the traditional B-tree structure is retained. The 
“main” B-tree is defined by a common value 
for the artificial leading key column, say 0 or 
null, and one or more “buffers” are defined by 
different values in that column, say 1, 2, etc.  

Traditional buffer management together 
with a size limit on newly added partitions can 
ensure that data insertions by user transac-
tions can be absorbed entirely in memory. In 
the extreme case, partitions of new insertions 
can be as small as a single record, i.e., each 
new insertion defines a new partition and can 
thus proceed with hardly any search or page 
reorganization within the B-tree. Thus, inser-
tion rates and throughput by user transactions 
are maximized, at the expense of more effort 
for index optimization and reorganization.  

Queries have to search in each partition, 
using traditional methods for queries that re-
strict some index columns but not the leading 
one [LJB 95], possibly augmented with op-
timizations to exploit the fact that successive 
integer values are used as partition identifiers. 
Alternatively, query activities may force some 
merge activities, executed prior to actual data 
retrieval and implemented using system 
transactions. Thus, B-tree maintenance work 
that traditionally is part of update operations is 
shifted to query operations or reorganization 
that may happen any time between insertion 
and query. In the extreme case, a query may 
force complete merging and optimization of all 
partitions, maybe excepting one partition tar-
geted by current insertions.  

Some interesting aspects of such B-trees 
are (i) that the reorganization operation that 
combines multiple partitions into one is very 
similar to a merge step in a traditional external 
merge sort, (ii) that such merge operations 
can execute as system transactions and 
commit a very small key range at a time, (iii) 
that merge and reorganization operations can 
pause and resume at any time in response to 
load spikes etc., and (iv) the same technique 
can aid bulk deletions, i.e., B-tree entries to 
be deleted are moved by small system trans-
actions into one dedicated partition and then 
deleted in one fast user transaction that cuts 
multiple full pages from the B-tree.  

4.4 Graceful degradation  
In addition to raw performance improve-

ments, buffering insertions also enables 
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graceful degradation after errors in cardinality 
estimation during query optimization. Today, 
query optimization can choose between row-
by-row update processing and index-by-index 
update processing. Updating row-by-row im-
plies maintenance of all appropriate indexes 
immediately for each row. Updating index-by-
index means that all changes are applied to 
one index at a time, possibly after splitting 
each update into a deletion and an insertion, 
sorting the changes on the index key, and re-
combining changes if appropriate; a general-
ized version of techniques described in 
[GKK 01] implemented in Microsoft SQL 
Server since release 7.0. Row-by-row updates 
are most appropriate for small changes, e.g., 
in online transaction processing, whereas in-
dex-by-index updates are more efficient for 
large updates, in particular if there are more 
individual changes than leaf pages in an in-
dex, e.g., in bulk insertion or bulk deletion. For 
graceful degradation, a query execution plan 
may prescribe row-by-row update processing 
due to an anticipated small update set, yet the 
actual execution may determine that the up-
date set is rather large and switch to index-by-
index updates. 

Buffering insertions as described above 
using partitioned B-trees is a third way to ap-
ply updates to a B-tree index, and it thus 
opens up another option for graceful degrada-
tion. Row-by-row processing targeting a new 
partition promises I/O pattern and efficiency 
better than index-by-index processing, albeit 
with the disadvantage of non-optimal indexes 
left behind. For graceful degradation, an up-
date plan may apply updates row-by-row in 
the main partition until the actual size of the 
update set becomes apparent and then switch 
to buffered or partitioned updates. While it is 
possible to implement graceful degradation 
from row-by-row to index-by-index updates 
using conditional execution in a traditional 
query execution plan, assigning a new parti-
tion identifier (artificial leading key column) to 
index changes is much simpler and it prom-
ises even faster update performance.  

5 Differential files and in-
dexes  

While the designs discussed in the prior 
section are able to buffer insertions, they can-
not buffer other update operations, i.e., modi-
fications or deletions. However, they can be 

extended to do so, by adapting ideas from 
differential files [SL 76] to B-tree indexes. In-
terestingly, some B-tree adaptations for multi-
version concurrency control and for historical 
indexes are very similar, including the logic 
required during query processing.  

The basic approach is to append records 
that invalidate prior records without actually 
modifying those prior records. In an update, a 
new record supersedes the prior B-tree entry 
with the same key. In a deletion, the newly 
appended record simply indicates the end of 
the history for a particular key, or at least the 
end of the history until a subsequent new in-
sertion with the same key.  

Query evaluation needs to search the his-
tory for each particular key, either for the most 
current state (for traditional query semantics) 
or for the state at a particular time (for point-
in-time historical queries). Merge operations 
may condense the history of keys depending 
on the desired future query capabilities.  

In other words, like buffering insertions, 
buffering updates and deletions in differential 
B-trees trades query performance in favor of 
update performance. Turning random single-
record insertions, deletions, and updates into 
append operations with large sequential write 
operations promises to improve the sustained 
update throughput by two orders of magni-
tude.  

Of course, there is also a relationship be-
tween differential files and the implementation 
of multi-version snapshot isolation. The main 
difference, however, is that differential files 
retain the oldest version plus the deltas for-
ward in time, whereas implementations of 
multi-version snapshot isolation are typically 
tuned for access to the most recent versions, 
i.e., they usually retain the most recent ver-
sion plus deltas backward in time.  

6 Transaction guarantees  
Another opportunity for performance im-

provement may be to weaken transactional 
guarantees for some indexes, in particular for 
redundant non-clustered indexes. We con-
sider three techniques that do so, one that 
dilutes the separation of individual transac-
tions by batching, one that weakens guaran-
tees in case of system failures, and one that 
records changes only in the transaction log 
without even attempting to apply them to the 
index, with the implicit danger that the attempt 
to apply such changes later might fail. Obvi-
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ously, these techniques apply only if the re-
maining transactional guarantees are still 
strong enough for the application at hand.  

6.1 Log-only operations  
If the index maintenance cannot keep up 

with the update stream, maybe at least the 
transaction log can. In that case, one could 
write logical redo records to the transaction 
log and apply them later, essentially using 
redo recovery. Of course, this process vio-
lates multiple traditional assumptions about 
logging, e.g., that redo operations are always 
physical operations that already happened, 
that redo operations cannot fail, etc. However, 
depending on the application, such failures 
might not be total disasters and could be ig-
nored, for example, when some individual 
location reports in a vehicle tracking applica-
tion cannot be recorded in the historical index. 
Clearly, this idea might apply, but details need 
to be worked out, e.g., what transaction com-
mit truly promises and what it guarantees, 
how checkpoints work and what they guaran-
tee, etc.  

6.2 Non-logged B-trees  
Some database systems employ special 

techniques during index creation such that the 
contents of the new index do not appear in the 
transaction log. Instead, only catalog changes 
and page allocation are logged. Failure during 
index creation results in deallocation of those 
pages and erasure of the new index in the 
catalogs. Index creation ends with flushing all 
newly allocated and filled pages to disk, and 
subsequent backup operations of the data-
base or even of the transaction log capture 
those new pages. Subsequent user transac-
tions log their changes to the new index in the 
usual way.  

This idea can be extended in the following 
way. If an index is truly redundant similar to a 
traditional cache, and if erasing the index dur-
ing media or system recovery is acceptable, 
then all operations on this index may be non-
logged, i.e., only space allocation is logged. 
This specifically includes user transactions 
running after index creation is complete. Roll-
back of a user transaction is driven by virtual 
log records attached to the transaction de-
scriptor in memory, similar to virtual log re-
cords used in other transaction processing 
designs [G 04, GK 85]. Details of this tech-

nique have not been published at this point, 
but the technique seems promising for some 
applications, in particular for temporary 
caches and for indexes that exist only in 
memory.  

6.3 Batching updates  
Finally, one may group multiple update 

operations and transactions into a single 
transaction. However, it seems important to 
separate the transaction semantics from the 
data structure. For example, many small user 
transactions may all insert into a single buffer 
as described above, leaving it to a subse-
quent system transaction (or series of small 
system transactions) to merge such insertions 
into the main B-tree. In other words, it might 
not be necessary or advantageous to modify 
or weaken the boundaries and semantics of 
user transactions in order to achieve the de-
sired advantages in performance and scalabil-
ity.  

7 Summary and conclu-
sions  

In summary, if one is willing to accept de-
terioration of query performance by an order 
of magnitude, e.g., due to searching multiple 
partitions, update and insertion performance 
can be improved by two orders of magnitude 
or more, e.g., by turning insertions into ap-
pend operations and by turning random in-
place writes into large sequential writes to 
newly allocated disk space. Less dramatic 
tradeoffs also exist. While most applications 
issue more queries than update requests and 
thus demand a query-optimized database or-
ganization, some applications (e.g., tracking 
moving objects) record more data changes 
than they answer queries (e.g., about current 
object location). For those applications, nu-
merous techniques are readily available for 
implementation by database vendors. Some 
are even available to database users, e.g., by 
introducing an artificial leading key column in 
the visible database schema and exploiting it 
for index creation and possibly for index main-
tenance during bulk operations [G 03b].  

This survey attempts to list a variety of 
possible techniques. New techniques include 
write-optimized B-trees, partitioned B-trees 
using partitions to buffer insertions or all modi-
fications in the manner of differential files, and 
non-logged B-trees. However, this intuitive 

SIGMOD Record, Vol. 35, No. 1, Mar. 2006 43



appraisal requires validation using prototyping 
or even product implementations.  

Numerous open questions present them-
selves, including the question for additional or 
better trade-offs between update and query 
performance, a comparative performance 
evaluation of the methods described above 
based on an appropriate benchmark, adapta-
tion of the techniques discussed above to 
other index structures, in particular to multi-
dimensional indexes such as UB-trees and R-
trees and to materialized and indexed views, 
and integration of query and update process-
ing with database maintenance operations 
such as consistency checks, defragmentation, 
and statistics refresh for query optimization. 
Maybe the present survey will stimulate and 
structure such research.  
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