
B-tree indexes for high update rates
Goetz Graefe

1 Abstract
In some applications, data capture domi-

nates query processing. For example, moni-
toring moving objects often requires more in-
sertions and updates than queries. Data gath-
ering using automated sensors often exhibits
this imbalance. More generally, indexing
streams is considered an unsolved problem.

For those applications, B-tree indexes are
good choices if some trade-off decisions are
tilted towards optimization of updates rather
than towards optimization of queries. This
paper surveys some techniques that let B-
trees sustain very high update rates, up to
multiple orders of magnitude higher than tradi-
tional B-trees, at the expense of query proc-
essing performance. Not surprisingly, some of
these techniques are reminiscent of those
employed during index creation, index rebuild,
etc., while other techniques are derived from
well known technologies such as differential
files and log-structured file systems.

2 Introduction
Some applications capture more data than

they query them. For example, a fleet man-
agement system for a trucking or taxi com-
pany might record each vehicle’s latest posi-
tion more often than the vehicles’ positions
are queried by a fleet supervisor. In those
cases, index and B-tree organization should
be optimized for insertion and update per-
formance rather than for query performance,
as has been the traditional objective.

Another application domain for the tech-
niques discussed in this survey is indexing of
continuous data streams. Filtering streams on
the fly is reasonably well understood, but
streams that contain identifiers of real-world
objects often need to be matched by identifier
and descriptive attribute against static data as
well as other streams. Thus, it is imperative
that streams can be captured, typically in the
order of data arrival, as well as indexed by
attributes other than arrival time, sometimes in
multiple indexes with multiple orders. For ex-
ample, an incoming stream of credit card
transactions might require, for efficient and

near-instantaneous fraud detection, indexing
by card number, customer identity or house-
hold (a customer might have lost multiple
credit cards at the same time), and merchant
(a dishonest employee might fraudulently
charge credit cards from many customers).

In the following, we assume that update
and insertion performance are more important
than query performance. If the reader is not
concerned about such applications, traditional
B-tree optimizations should be applied rather
than the techniques surveyed here. Moreover,
we assume that any throttling of the workload,
e.g., “best effort” recording of current vehicle
locations, has already been applied, such that
the remaining update requests indeed must
be captured in all indexes under considera-
tion. Finally, we assume that hardware assis-
tance has been considered and exploited to
the extent possible and appropriate, e.g., disk
striping and solid-state disks or disk buffers.

3 I/O optimizations
As with most database operations, focus-

ing on the efficiency of disk I/O is an effective
means for improving performance and scal-
ability. However, one must separate between
improvements to the overall system through-
put and improvements to the response time of
individual transactions, which may or may not
be tremendously interesting here.

There are several very generic perform-
ance improvement technologies, e.g., data
compression [WKH 00]. In update-intensive
workloads, relevant compression applies not
only to the data but also to the transaction log.
Suffice it here to point out that some com-
pression techniques are surprisingly simple,
e.g., truncating leading and trailing zeroes or
blanks, and aggregating multiple log records
from the same transaction into a single log
record in order to save the overhead of many
record headers in the transaction log.

3.1 Prefetch, read-ahead, and
write-behind

Write-behind of log pages and of data
pages are well known techniques. By itself,

SIGMOD Record, Vol. 35, No. 1, Mar. 2006 39

write-behind does not improve system
throughput, because the amount of writing
does not decrease. However, write-behind
often enables large writes, which is even more
efficient that queued I/O. Moreover, they are
helpful in the case of spikes in the workload
and they permit additional optimizations. For
example, modern disk drives support native
command queuing and thus perform better if
there are tens of I/O operations pending at all
times [ADR 03].

Read-ahead (as commonly used in scans)
does not apply to append operations, but it
applies to merging an entire batch of modifica-
tions into an existing B-tree. When merging
multiple B-tree partitions (discussed below)
into one, read-ahead with forecasting can im-
prove performance, as merging partitions is
essentially the same problem as merging runs
in an external merge sort [G 03a].

Prefetch based on individual keys apply
not only to retrieval operations, e.g., naviga-
tion from a non-clustered index into a clus-
tered index, but also to update operations.
However, like read-ahead and write-behind,
prefetch also does not directly improve sys-
tem throughput or bandwidth, only response
time or latency of individual operations, which
might improve system throughput indirectly by
reducing concurrency control contention.

3.2 Write-optimized B-trees
In addition to asynchronous I/O, dynamic

placement of contents on disk can improve
write performance [G 04]. This effect is well
known and has been extensively studied for
log-structured file systems [OD 89], in particu-
lar in the context of RAID storage [PGK 88].
The principal idea of write-optimized B-trees is
to allocate a new location on disk each time a
page is written to disk, and to do so as part of
the write operation, i.e., subsequent to the
buffer manager’s replacement decision, and
to allocate a page’s new location in such a
way that multiple concurrent write operations
all target the same area on disk.

In order to avoid subsequent updates of
neighboring pages, the traditional page chain
using physical page identifiers is replaced by
a logical page chain using separator keys, i.e.,
each page carries as lower and upper fences
the separator key propagated to the page’s
parent node when the page was split from its
neighbors. In addition to supporting the same
consistency checks and other maintenance

operations supported by traditional physical
page chains, fence keys simplify and improve
key range locking, because it is never re-
quired to navigate to a neighboring leaf page
in order to find the right key to lock. After
physical page chains have been replaced by
logical fence keys, the only role for physical
page identifiers is in child pointers, and only
those have to be updated when a node moves
to a new location on disk.

In traditional B-tree algorithms, a new loca-
tion is allocated as part of the B-tree man-
ager’s decision to split a node, such that sub-
sequent log records can refer to the page
identifier. In write-optimized B-trees, a new
page is given a temporary identifier that log
records may refer to, and the page is moved
as part of the write operation in a way very
similar to a page move during B-tree defrag-
mentation. Thus, proven concurrency control
and recovery mechanisms apply.

The performance effect of write-optimized
B-trees is such that random write operations
are converted to large sequential write opera-
tions, with a bandwidth advantage of factor 10
or more, at the expense of added mainte-
nance of each node’s parent each time a
node is written to a new location on disk.

4 Buffering insertions
There are multiple ways to buffer and

group new insertions in order to modify each
B-tree node less often, with the advantage of
less disk I/O, fewer faults in the CPU cache,
etc. Query operations either need to search
the buffer structure in addition to the B-tree
index or they force some or all buffered re-
cords into the B-tree index.

For correct transactional execution, both
insertion and deletion in the buffer must be
logged; thus the log volume in these methods
may exceed the traditional log volume by a
factor of three or more. However, only the
initial insertion into the first buffer is a user
transaction, whereas all subsequent move-
ments of a record can be system transactions
that can commit inexpensively without forcing
the tail of the transaction log to stable storage.

4.1 Buffering within tree
nodes

Several researchers have explored data
structures and algorithms that add a large
buffer to each interior tree node [A 96,

40 SIGMOD Record, Vol. 35, No. 1, Mar. 2006

AHV 02, VSW 97]. Often the size of this buffer
exceeds the size of the area dedicated to tra-
ditional key-pointer pairs, not only because
each buffered new record is larger than a key-
pointer pair but also because the number of
retained records should be larger than the
number of key-pointer pairs. When the buffer
fills up, appropriate records are pushed down
to the child with the most retained records.

It seems that records should be retained
only for those children not immediately avail-
able in the I/O buffer. Given that most B-trees
have a fan-out of 100 or more, and given that
in most database servers the memory size
exceeds 1% of the disk size, and given that
the B-trees discussed here are among the
most active and performance-critical indexes
within the database, one may infer that such
buffering applies only at the nodes immedi-
ately above the leaves. In other words, there
may be additional improvement possible be-
yond published methods that permit buffering
in nodes of all B-tree levels.

4.2 Buffering in separate
structures

An alternative to buffering insertions in tree
nodes is to create a separate data structure to
buffer new insertions [LJB 95, MOP 00,
OCG 96]. This data structure can be another
B-tree or it can be a different type of in-
memory data structure, e.g., a hash table. In
fact, it can also be a collection of data struc-
tures, forming a hierarchy or cascade of stag-
ing areas. Interestingly, this organization is
reminiscent both of generational garbage col-
lection [U 84].

New structures imply new mechanisms for
concurrency control and recovery. Thus, a
standard index structure that is already im-
plemented might be the preferred mechanism.
Otherwise, new locking modes or protocols
require correctness arguments, implementa-
tion, testing, etc. Perhaps the most desirable
implementation avoids both separate struc-
tures and modifications of existing structures,
and instead only uses existing mechanisms in
different ways.

4.3 Buffering in B-tree parti-
tions

One design motivated by the desire to
avoid special-case code employs the main B-
tree as its own buffer data structure by intro-

ducing partitions within each B-tree [G 03a].
By introducing an artificial leading key column,
the traditional B-tree structure is retained. The
“main” B-tree is defined by a common value
for the artificial leading key column, say 0 or
null, and one or more “buffers” are defined by
different values in that column, say 1, 2, etc.

Traditional buffer management together
with a size limit on newly added partitions can
ensure that data insertions by user transac-
tions can be absorbed entirely in memory. In
the extreme case, partitions of new insertions
can be as small as a single record, i.e., each
new insertion defines a new partition and can
thus proceed with hardly any search or page
reorganization within the B-tree. Thus, inser-
tion rates and throughput by user transactions
are maximized, at the expense of more effort
for index optimization and reorganization.

Queries have to search in each partition,
using traditional methods for queries that re-
strict some index columns but not the leading
one [LJB 95], possibly augmented with op-
timizations to exploit the fact that successive
integer values are used as partition identifiers.
Alternatively, query activities may force some
merge activities, executed prior to actual data
retrieval and implemented using system
transactions. Thus, B-tree maintenance work
that traditionally is part of update operations is
shifted to query operations or reorganization
that may happen any time between insertion
and query. In the extreme case, a query may
force complete merging and optimization of all
partitions, maybe excepting one partition tar-
geted by current insertions.

Some interesting aspects of such B-trees
are (i) that the reorganization operation that
combines multiple partitions into one is very
similar to a merge step in a traditional external
merge sort, (ii) that such merge operations
can execute as system transactions and
commit a very small key range at a time, (iii)
that merge and reorganization operations can
pause and resume at any time in response to
load spikes etc., and (iv) the same technique
can aid bulk deletions, i.e., B-tree entries to
be deleted are moved by small system trans-
actions into one dedicated partition and then
deleted in one fast user transaction that cuts
multiple full pages from the B-tree.

4.4 Graceful degradation
In addition to raw performance improve-

ments, buffering insertions also enables

SIGMOD Record, Vol. 35, No. 1, Mar. 2006 41

graceful degradation after errors in cardinality
estimation during query optimization. Today,
query optimization can choose between row-
by-row update processing and index-by-index
update processing. Updating row-by-row im-
plies maintenance of all appropriate indexes
immediately for each row. Updating index-by-
index means that all changes are applied to
one index at a time, possibly after splitting
each update into a deletion and an insertion,
sorting the changes on the index key, and re-
combining changes if appropriate; a general-
ized version of techniques described in
[GKK 01] implemented in Microsoft SQL
Server since release 7.0. Row-by-row updates
are most appropriate for small changes, e.g.,
in online transaction processing, whereas in-
dex-by-index updates are more efficient for
large updates, in particular if there are more
individual changes than leaf pages in an in-
dex, e.g., in bulk insertion or bulk deletion. For
graceful degradation, a query execution plan
may prescribe row-by-row update processing
due to an anticipated small update set, yet the
actual execution may determine that the up-
date set is rather large and switch to index-by-
index updates.

Buffering insertions as described above
using partitioned B-trees is a third way to ap-
ply updates to a B-tree index, and it thus
opens up another option for graceful degrada-
tion. Row-by-row processing targeting a new
partition promises I/O pattern and efficiency
better than index-by-index processing, albeit
with the disadvantage of non-optimal indexes
left behind. For graceful degradation, an up-
date plan may apply updates row-by-row in
the main partition until the actual size of the
update set becomes apparent and then switch
to buffered or partitioned updates. While it is
possible to implement graceful degradation
from row-by-row to index-by-index updates
using conditional execution in a traditional
query execution plan, assigning a new parti-
tion identifier (artificial leading key column) to
index changes is much simpler and it prom-
ises even faster update performance.

5 Differential files and in-
dexes

While the designs discussed in the prior
section are able to buffer insertions, they can-
not buffer other update operations, i.e., modi-
fications or deletions. However, they can be

extended to do so, by adapting ideas from
differential files [SL 76] to B-tree indexes. In-
terestingly, some B-tree adaptations for multi-
version concurrency control and for historical
indexes are very similar, including the logic
required during query processing.

The basic approach is to append records
that invalidate prior records without actually
modifying those prior records. In an update, a
new record supersedes the prior B-tree entry
with the same key. In a deletion, the newly
appended record simply indicates the end of
the history for a particular key, or at least the
end of the history until a subsequent new in-
sertion with the same key.

Query evaluation needs to search the his-
tory for each particular key, either for the most
current state (for traditional query semantics)
or for the state at a particular time (for point-
in-time historical queries). Merge operations
may condense the history of keys depending
on the desired future query capabilities.

In other words, like buffering insertions,
buffering updates and deletions in differential
B-trees trades query performance in favor of
update performance. Turning random single-
record insertions, deletions, and updates into
append operations with large sequential write
operations promises to improve the sustained
update throughput by two orders of magni-
tude.

Of course, there is also a relationship be-
tween differential files and the implementation
of multi-version snapshot isolation. The main
difference, however, is that differential files
retain the oldest version plus the deltas for-
ward in time, whereas implementations of
multi-version snapshot isolation are typically
tuned for access to the most recent versions,
i.e., they usually retain the most recent ver-
sion plus deltas backward in time.

6 Transaction guarantees
Another opportunity for performance im-

provement may be to weaken transactional
guarantees for some indexes, in particular for
redundant non-clustered indexes. We con-
sider three techniques that do so, one that
dilutes the separation of individual transac-
tions by batching, one that weakens guaran-
tees in case of system failures, and one that
records changes only in the transaction log
without even attempting to apply them to the
index, with the implicit danger that the attempt
to apply such changes later might fail. Obvi-

42 SIGMOD Record, Vol. 35, No. 1, Mar. 2006

ously, these techniques apply only if the re-
maining transactional guarantees are still
strong enough for the application at hand.

6.1 Log-only operations
If the index maintenance cannot keep up

with the update stream, maybe at least the
transaction log can. In that case, one could
write logical redo records to the transaction
log and apply them later, essentially using
redo recovery. Of course, this process vio-
lates multiple traditional assumptions about
logging, e.g., that redo operations are always
physical operations that already happened,
that redo operations cannot fail, etc. However,
depending on the application, such failures
might not be total disasters and could be ig-
nored, for example, when some individual
location reports in a vehicle tracking applica-
tion cannot be recorded in the historical index.
Clearly, this idea might apply, but details need
to be worked out, e.g., what transaction com-
mit truly promises and what it guarantees,
how checkpoints work and what they guaran-
tee, etc.

6.2 Non-logged B-trees
Some database systems employ special

techniques during index creation such that the
contents of the new index do not appear in the
transaction log. Instead, only catalog changes
and page allocation are logged. Failure during
index creation results in deallocation of those
pages and erasure of the new index in the
catalogs. Index creation ends with flushing all
newly allocated and filled pages to disk, and
subsequent backup operations of the data-
base or even of the transaction log capture
those new pages. Subsequent user transac-
tions log their changes to the new index in the
usual way.

This idea can be extended in the following
way. If an index is truly redundant similar to a
traditional cache, and if erasing the index dur-
ing media or system recovery is acceptable,
then all operations on this index may be non-
logged, i.e., only space allocation is logged.
This specifically includes user transactions
running after index creation is complete. Roll-
back of a user transaction is driven by virtual
log records attached to the transaction de-
scriptor in memory, similar to virtual log re-
cords used in other transaction processing
designs [G 04, GK 85]. Details of this tech-

nique have not been published at this point,
but the technique seems promising for some
applications, in particular for temporary
caches and for indexes that exist only in
memory.

6.3 Batching updates
Finally, one may group multiple update

operations and transactions into a single
transaction. However, it seems important to
separate the transaction semantics from the
data structure. For example, many small user
transactions may all insert into a single buffer
as described above, leaving it to a subse-
quent system transaction (or series of small
system transactions) to merge such insertions
into the main B-tree. In other words, it might
not be necessary or advantageous to modify
or weaken the boundaries and semantics of
user transactions in order to achieve the de-
sired advantages in performance and scalabil-
ity.

7 Summary and conclu-
sions

In summary, if one is willing to accept de-
terioration of query performance by an order
of magnitude, e.g., due to searching multiple
partitions, update and insertion performance
can be improved by two orders of magnitude
or more, e.g., by turning insertions into ap-
pend operations and by turning random in-
place writes into large sequential writes to
newly allocated disk space. Less dramatic
tradeoffs also exist. While most applications
issue more queries than update requests and
thus demand a query-optimized database or-
ganization, some applications (e.g., tracking
moving objects) record more data changes
than they answer queries (e.g., about current
object location). For those applications, nu-
merous techniques are readily available for
implementation by database vendors. Some
are even available to database users, e.g., by
introducing an artificial leading key column in
the visible database schema and exploiting it
for index creation and possibly for index main-
tenance during bulk operations [G 03b].

This survey attempts to list a variety of
possible techniques. New techniques include
write-optimized B-trees, partitioned B-trees
using partitions to buffer insertions or all modi-
fications in the manner of differential files, and
non-logged B-trees. However, this intuitive

SIGMOD Record, Vol. 35, No. 1, Mar. 2006 43

appraisal requires validation using prototyping
or even product implementations.

Numerous open questions present them-
selves, including the question for additional or
better trade-offs between update and query
performance, a comparative performance
evaluation of the methods described above
based on an appropriate benchmark, adapta-
tion of the techniques discussed above to
other index structures, in particular to multi-
dimensional indexes such as UB-trees and R-
trees and to materialized and indexed views,
and integration of query and update process-
ing with database maintenance operations
such as consistency checks, defragmentation,
and statistics refresh for query optimization.
Maybe the present survey will stimulate and
structure such research.

8 Acknowledgments
Theo Härder and Bernhard Mitschang read

earlier incomplete drafts and contributed mul-
tiple very helpful suggestions.

9 References
[A 96] Lars Arge: Efficient External-Memory

Data Structures and Applications. Univer-
sity of Aarhus (Denmark), 1996.

[ADR 03] Dave Anderson, Jim Dykes, Erik
Riedel: More Than an Interface - SCSI vs.
ATA. Conference on File and Storage
Technology (FAST), March 2003.

[AHV 02] Lars Arge, Klaus Hinrichs, Jan
Vahrenhold, Jeffrey Scott Vitter: Efficient
Bulk Operations on Dynamic R-Trees. Al-
gorithmica 33(1): 104-128 (2002).

[G 03a] Goetz Graefe: Sorting and Indexing
with Partitioned B-Trees. Conference on
Innovative Data Systems Research, 2003.

[G 03b] Goetz Graefe: Partitioned B-trees - a
user's guide. Datenbanksysteme für
Business, Technologie und Web (BTW)
2003: 668-671.

[G 04] Goetz Graefe: Write-Optimized B-
Trees. VLDB Conference 2004: 672-683.

[GK 85] Dieter Gawlick, David Kinkade: Varie-
ties of Concurrency Control in IMS/VS Fast
Path. IEEE Data Eng. Bulletin 8(2): 3-10
(1985).

[GKK 01] Andreas Gärtner, Alfons Kemper,
Donald Kossmann, Bernhard Zeller: Effi-
cient Bulk Deletes in Relational Data-
bases. IEEE ICDE 2001: 183-192.

[JNS 97] H. V. Jagadish, P. P. S. Narayan, S.
Seshadri, S. Sudarshan, Rama Kanne-
ganti: Incremental Organization for Data
Recording and Warehousing. VLDB Con-
ference 1997: 16-25

[LJB 95] Harry Leslie, Rohit Jain, Dave Bird-
sall, Hedieh Yaghmai: Efficient Search of
Multi-Dimensional B-Trees. VLDB Confer-
ence 1995: 710-719.

[MOP 00] Peter Muth, Patrick E. O'Neil,
Achim Pick, Gerhard Weikum: The LHAM
Log-Structured History Data Access
Method. VLDB J. 8(3-4): 199-221 (2000).

[OCG 96] Patrick E. O'Neil, Edward Cheng,
Dieter Gawlick, Elizabeth J. O'Neil: The
Log-Structured Merge-Tree (LSM-Tree).
Acta Inf. 33(4): 351-385 (1996).

[OD 89] John K. Ousterhout, Fred Douglis:
Beating the I/O Bottleneck: A Case for
Log-Structured File Systems. Operating
Systems Review 23(1): 11-28 (1989).

[PGK 88] David A. Patterson, Garth A. Gib-
son, Randy H. Katz: A Case for Redundant
Arrays of Inexpensive Disks (RAID). ACM
SIGMOD Conference 1988: 109-116.

[SL 76] Dennis G. Severance, Guy M. Loh-
man: Differential Files: Their Application to
the Maintenance of Large Databases.
ACM Trans. Database Syst. 1(3): 256-267
(1976).

[U 84] David Ungar: Generation Scavenging:
A Non-Disruptive High Performance Stor-
age Reclamation Algorithm. Software De-
velopment Environments (SDE), ACM
SIGPLAN Notices 19(5): 157-167 (1984).

[VSW 97] Jochen Van den Bercken, Bernhard
Seeger, Peter Widmayer: A Generic Ap-
proach to Bulk Loading Multidimensional
Index Structures. VLDB Conference 1997:
406-415.

[WKH 00] Till Westmann, Donald Kossmann,
Sven Helmer, Guido Moerkotte: The Im-
plementation and Performance of Com-
pressed Databases. ACM SIGMOD Re-
cord 29(3): 55-67 (2000).

44 SIGMOD Record, Vol. 35, No. 1, Mar. 2006

