
15. Hierarchical Models and Software Tools for

Parallel Programming

Massimo Coppola and Martin Schmollinger

15.1 Introduction

Hierarchically structured architectures are becoming more and more perva-
sive in the field of parallel and high performance computing. While memory
hierarchies have been recognized for a long-time, only in the last years hi-
erarchical parallel structures have gained importance, mainly as a result of
the trend towards cluster architectures and high-performance application of
computational grids.

The similarity among the issues of managing memory hierarchies and
those of parallel computation has been pointed out before (see for instance
[213]). It is an open question if a single, unified model of both aspects ex-
ists, and if it is theoretically tractable. Correspondingly, a programming en-
vironment which includes support for both hierarchies is still lacking. We
thus need well-founded models and efficient new tools for hierarchical paral-
lel machines, in order to connect algorithm design and complexity results to
high-performance program implementation.

In this chapter we survey theoretically relevant results, and we compare
them with existing software tools and programming models. One aim of the
survey is to show that there are promising results with respect to the theoreti-
cal computational models, developed by merging the concepts of bulk-parallel
computational models with those from the hierarchical memory field. A sec-
ond goal is to investigate if software support has been realized, and what
is still missing, in order to exploit the full performance of modern high-
performance cluster architectures. Even in this case, solutions emerge from
combining results of different nature, those employing hardware-provided
shared memory and those explicitly dealing with message passing. We will
see that both at the theoretical level and on the application side, combination
of techniques from different fields is often promising, but still leaves many
open questions and unresolved issues.

The chapter is organized in three parts. The first one (Sect. 15.2) describes
the architectural background of current parallel platforms and supercomput-
ers. The basic architectural options of parallel architectures are explained,
showing that they naturally lead to a hierarchy concept associated with the
exploitation of parallelism. We discuss the technological reasons for, and fu-
ture expectations of current architectural trends.

The second part of the chapter gives an overview of parallel computational
models, exploring the connection among the so-called parallel bridging models

U. Meyer et al. (Eds.): Algorithms for Memory Hierarchies, LNCS 2625, pp. 320-354, 2003.
 Springer-Verlag Berlin Heidelberg 2003



15. Hierarchical Models and Software Tools for Parallel Programming 321

and external memory models, here mainly represented by the parallel disk
model (PDM) [754]. There is a similarity between problems in bulk parallelism
and block-oriented I/O. Both techniques try to efficiently exploit locality in
mapping algorithmic patterns to a hierarchical structure. We discuss the
issues of parallel computation models in Sect. 15.3. In Sect. 15.4 we get to
discuss parallel bridging models. We survey definitions and present some
models of the class. We describe their extensions to hierarchical parallelism,
and survey results on emulating their algorithms using sequential and parallel
external-memory models. At the end of Sect. 15.4 we describe two results that
exploit parallel hierarchical models for algorithm design.

The third part of the chapter shifts toward the practical approach to hi-
erarchical architectures. Sect. 15.5 gives an overview of software tools and
programming models that can be used for program implementation. We con-
sider libraries for parallel and external-memory programming, and combined
approaches. With respect to parallel software tools, we focus on the exist-
ing approaches which support hierarchy-aware program development. Sec-
tion 15.6 summarizes the chapter and draws conclusions.

15.2 Architectural Background

In the following, we assume the reader is familiar with the basic concepts of
sequential computational architectures. We also assume the notions of process
and thread1 are known. Table 15.1 summarizes some acronyms used in the
chapter.

Parallel architectures are made up from multiple processing and memory
units. A network connects the processing units and the memory banks (see
Fig. 15.1a). We refer the reader to [484], which is a good starting point to
understand the different design options available (the kind of network, which
modules are directly connected, etc.). We only sketch them here due to lack
of space.

Efficiency of communication is measured by two parameters, latency and
bandwidth. Latency is the time taken for a communication to complete, and
bandwidth is the rate at which data can be communicated. In a simple world,
these metrics are directly related. For communication over a network, how-
ever, we must take into account several factors like physical limitations, com-
munication startup and clean-up times, and the possible performance penalty
from many simultaneous communications through the network. As a very gen-
eral rule, latency depends on the network geometry and implementation, and
bandwidth increases with the length of the message, because of the lesser
1 Largely simplifying, a process is a running program with a set of resources, which

includes a private memory space; a thread is an activity within a process. A
thread has its own control flow but shares resources and memory space with
other threads in the same process.



322 Massimo Coppola and Martin Schmollinger

and lesser influence of fixed overheads. Communication latency and band-
width dictate the best computational grain of a parallel program. The grain
is the size of the (smallest) subproblem that can be assigned to a different
processor, and plays a main role in the trade-off between exploited parallelism
and communication overheads.

Extreme but realistic examples of networks are the bus connection and
the n × n crossbar. The former is a common hardware channel which can
link only a pair of modules at a time. It has the least circuital complexity
and cost. The latter is a square matrix of switches that can connect up to n
non-conflicting pairs of modules. It achieves the highest connectivity at the
highest circuital cost. A lot of systems use structures that are in between
these two, as a compromise between practical scalability and performance.

Different memory organizations and caching solutions have been devised
to improve the memory access performance (see Fig. 1b, 1c).

Almost all modern parallel computers belong to the MIMD class of par-
allel architectures. This means that processing nodes can execute indepent
programs over possibly different data. The MIMD class is subdivided in [744]
according to the characteristic of the physical memory, into shared memory
MIMD (SM-MIMD) and distributed memory MIMD (DM-MIMD).

The memory banks of a shared memory MIMD machine form a common
address space, which is actively supported by the network hardware. Differ-
ent processors can interfere with each other when accessing the same memory
module, and race conditions may show up in the behaviour of the programs.
Therefore, hardware lock and update protocols have to be used to avoid in-
consistencies in memory and among the caches2. Choosing the right network
structure and protocols are critical design issues, which drive the performance
of the memory system. Larger and larger shared memory machines lead to
difficult performance problems.

Multi-stage crossbars (networks made of smaller interconnected crossbars)
are getting more and more important with the increasing number of proces-
sors in shared memory machines. If the processors are connected by a multi-
stage crossbar and each processor has some local memory banks, there is a
memory hierarchy within the shared memory of the system.
2 We do not analyze in depth here either cache coherence issues (see Chapter 16),

multi-stage networks or cache-only architectures [484].

Table 15.1. Main acronyms used throughout the chapter.

MIMD multiple instruction, multiple data EM external memory
SM-MIMD shared-memory MIMD PDM parallel disk model
DM-MIMD distributed-memory MIMD HMM hierarchical memory model
SMP symmetric multiprocessor PBM parallel bridging model

BSP see Sec. 15.4, page 329
SDSM software distributed shared memory CGM see Sec. 15.4, page 330
LAN local area network QSM see Sec. 15.4, page 331

LogP see Sec. 15.4, page 331



15. Hierarchical Models and Software Tools for Parallel Programming 323

P P PP

processor
to memory
interconn.

C C C C

P P PP

M M M M

network
interprocessorM M M M M M M

C C C C

P P PP

(a) (b) (c)

Fig. 15.1. Overall structure of DM and SM-MIMD architectures. (a) Generic
MIMD machines have multiple processors and memory banks (not necessarily the
same number) – (b) example of SMP with multiple memory banks, processor caches
and a bus interconnection – (c) example of a MIMD architecture composed of single-
processor nodes and a more sophisticated interconnection network. Depending on
the network implementation, this can be either a DM-MIMD or a NUMA SM-
MIMD architecture.

Systems in which the access from a processor to some of the memory
banks, e.g. its local one, is faster than access to the rest of the memory
are called non-uniform memory access systems (NUMA), in contrast with
uniform memory access systems (UMA). Shared memory architectures, both
uniform and non-uniform ones, are often called Symmetric Multiprocessors
(SMP), because the architecture is fully symmetric from the point of view of
the running programs.

In contrast to the shared memory machines, in a distributed memory ma-
chine each processing node has its own address space. Therefore, it is up to
the user to define efficient data decompositions and explicit data exchange
patterns for the applications. Even distributed memory machines have to
confront with issues concerning the interconnection structure among the pro-
cessing nodes. Popular networks for distributed memory machines are the
hypercube, the 2D or 3D meshes, and multi-stage crossbars. Each processing
node has its own local memory, so distributed memory architectures obvi-
ously are non-uniform memory access architectures. The network is inher-
ently slower than the local memory, hence we have a memory hierarchy in
distributed memory MIMD machines too. However, distributed memory ar-
chitectures are less demanding with respect to the interconnection network3,
so they are much more scalable than the shared memory ones.

In recent years, a strong trend has emerged in the field of high performance
computers towards two kinds of architectures, (1) clusters of vector computers
and (2) clusters of scalar uni- and multiprocessors. Looking at the list of the
3 For instance, coherence and locking problems are not dealt with at the hard-

ware level. This removes some design constraints, and reduces communication
overheads.



324 Massimo Coppola and Martin Schmollinger

fastest 500 supercomputers in the world, the majority of them belongs to
these two classes [103, 549], with the latter steadily gaining more share.

Especially clusters of SMP nodes (SMP clusters, in the following) are a
more and more popular architecture for building supercomputers. At differ-
ent scales, these systems can be classified both as distributed memory and
as shared memory architectures, because SM-MIMD processing nodes are
connected together to form a larger distributed memory machine. The result
is a powerful parallel architecture, which combines the high effectiveness of
small shared-memory computing nodes with the scalability of the distributed
memory parallelism among the nodes.

In principle, we could classify SMP clusters either as shared memory or as
distributed memory MIMD depending on the existence of a common address
space abstraction for all the processors. A shared space can be provided by
the network hardware and firmware, or only by software means on top of
a general purpose network (see Section 15.5.3). However, in the latter case
algorithms which exploit memory locality within SMP nodes incur much
lesser communication overheads. We can thus enhance performance if we
explicitly consider SMP clusters as architectures with a parallel hierarchy of
at least two levels. The number of levels may actually be higher, depending
on the topology of the intra- and inter-node networks.

Grid or metacomputing technologies [309], where supercomputers or clus-
ters of workstations are connected with each other to run applications, result
in even more levels and a less regular parallel hierarchy. Broadband connec-

Table 15.2. Parameters for different levels in a hierarchical parallel architecture.
The reference commodity architecture is an Intel IA32 microprocessor core from a
Pentium4/Xeon. Network bandwidth and latency are measured w.r.t. a node.

Layer Peak Latency Notes
Bandwidth Best Worst

CPU and caches 10-100 GB/s < 1 ns 200 ns (1)
SM communication < 1 GB/s 200 ns ∼1000 ns (2)
DM communication 1-400 MB/s ∼2 µs 2 ms (3,4)
Local I/O 10-100 MB/s 4 ms 30 ms (4)
DM communication (WAN) 10-100 MB/s 2 ms 1s (5)

1. Worst-case latency is that of reading a block from memory into the external
cache. In the IA32 architecture, a cache line is 64 bytes.

2. Processors share the same memory bus through separate external caches. A
shared memory communication implies at least a L2 cache fault. The worst-
case accounts for other issues like acquiring hardware and software locks, and
thread scheduling.

3. From slow Ethernet up to Gbit Ethernet and Myrinet [744].
4. We do not include here using in parallel several disks, and multiple network

interfaces per node.
5. Multi-Gigabit geographic networks are being already built, but wide area net-

work (WAN) have higher latencies [309, sec. 21.4].



15. Hierarchical Models and Software Tools for Parallel Programming 325

tions, ranging from local area networks to geographic ones, add more levels
to the hierarchy, with different communication bandwidth and latency [309,
chapter 2].

Summing up, in modern parallel architectures we have the following hi-
erarchy of memory and communication layers.

– shared memory
– distributed memory
– local area network
– wide area network

Each one of these layers may exhibit hierarchical effects, depending on its
implementation choices.

The effects on latency and bandwidth of the parallel hierarchy are similar
and combine with those of the ordinary memory hierarchy. A crucial observa-
tion is that there is no strict order among the levels of these two hierarchies,
which we can easily exploit to build a unitary model. For instance, we can
see in Table 15.2 that the communication layers (both shared memory and
distributed memory based ones) provide a bandwidth lower than main mem-
ory, and in some cases lower than that of local I/O. However, their latency is
usually much lower than that of mechanical devices like disks. Different ac-
cess patterns thus lead to different relative performances of communication
and I/O.

Assessing the present and future characteristics of the parallel hierarchy
[193] and devising appropriate programming models to exploit it are among
the main open issues in modern parallel/distributed computing research.

15.2.1 Motivation and Technological Perspective

As we explained in the last section, parallel computing architectures employ
memory and parallel hierarchies. In the following we summarize arguments
that explain the trend towards even more hierarchical architectures than SMP
clusters, and we discuss possible future developments.

In [438] some main advantages of SMP cluster architectures are found,
most of them being technological and economical considerations.

– Standard off-the-shelf processors are getting faster and faster, even with
respect to special purpose architectures. Because of mass production, the
performance/price ratio of commercial parts is consistently better than
that of special purpose processors (e.g. vector processors). Architectures
made from commodity processors are going to be increasingly preferred to
build SMPs, massively parallel and cluster machines.

– A similar effect shows up for network and other architecture components.
Clusters ans small SMP, which employ standard components, will take
advantage of this phenomenon and will become cheaper and more scalable.
As soon as the performance advantages of the special purpose networks



326 Massimo Coppola and Martin Schmollinger

for massive parallelism disappear, SMP clusters will supersede massively
parallel architectures.

– SMP clusters are scalable and expandable. Their architecture is intrinsi-
cally more scalable, and it is moreover practically expandable by adding
more nodes and/or upgrading processing nodes. While it is often not pos-
sible to add processors in a monolithic SMP or in a special purpose con-
nection, it is easy to build a SMP cluster step by step.

– The size of memory, disk subsystem capacity and bandwidth are critical
resources in a supercomputer. SMP clusters are characterized by a greater
total memory size and number of disks. Hence, it is possible to have more
active jobs, which even have larger data storage available.

– Still according to [438], most software for massively parallel processors or
SMPs can easily be ported to SMP clusters achieving similar efficiency.
With the knowledge of software for SMP machines and the already exist-
ing software for the massively parallel processors, it should be possible to
provide a powerful environment for parallel software development and exe-
cution. We will give an overview of the efforts in this direction in Sect. 15.5.

Some of the preceding considerations have been recognized years ago, while
others are a more recent discovery. According to Bell and Gray [103], a similar
trend will last for more than a while. They depict a scenario of the evolution of
parallel computers and computing grid architectures, which implies a change
in the role played by Beowulf architectures and supercomputing centers.

Beowulf clusters are parallel machines built using commodity hardware
and software, where the hardware can even be a mixture of uniprocessor
workstations and small SMPs. Companies and research institutes, formerly
users of supercomputers and proprietary software, will gradually start to
build their own large Beowulf machines, which are more cost-effective than
remotely hosted super-computers. Moreover, thanks also to the increased
Internet bandwidth, cluster and Grid [309] technologies will merge. It will
then become possible to merge Beowulf computational resources into larger,
geographically distributed clusters. Applications that tolerate high commu-
nication latencies will easily be able to exploit a processing power measured
in Teraflops.

In this perspective, applications which need a large amount of shared
memory are seen as a weak point of Beowulf clusters. Computing centers
will still exist and host large vector machines and exotic architectures (like
processor-in-memory and cellular supercomputers) for the sake of running
these applications. In addition, centers will have the role of resource brokers
for computational grids, managing net-distributed clusters, and will provide
storage for peta-scale data sets. According to this analysis [103], hierarchi-
cal parallel systems will be the principal computing structure in the future.
Therefore, research on programming environments and in understanding hi-
erarchical parallelism has an essential role.



15. Hierarchical Models and Software Tools for Parallel Programming 327

15.3 Parallel Computational Models

We have already seen in this book that the classical random access machine
(RAM) sequential model, the archetype of the von Neumann computer, does
not properly account with the cost of memory access within a hierarchy
of memories. The PDM model [754], and more complex multi-level compu-
tational models have been developed to increase prediction accuracy with
respect to the practical performance of algorithms.

The same has happened in the field of parallel algorithms. The classical
parallel random access machine (PRAM) computational model is made up
of a number of sequential RAM machines, each one with its local memory.
These “abstract processors” compute in parallel and can communicate by
reading and writing to a global memory which they all share. Several precise
assumptions are made to keep the model general.

– Unlimited resources: no bound is put on the number of processors, the size
of local or global memory.

– Parallel execution is fully synchronous, all active processor always complete
one instruction in one time unit.

– Unitary cost of memory access, both for the local and global memory.
– Unlimited amount of simultaneous operations in the global memory is al-

lowed (though same-location collisions are forbidden).

These assumptions are appropriate for a theoretical model. They allow to
disregard the peculiarities of any specific architecture, and make the PRAM
an effective model in studying abstract computational complexity. However,
they are not realistic for the majority of physical architectures, as practical
bandwidth constraints, network traffic constraints and locality effects are
completely ignored.

Considering the issues discussed in Sect. 15.2, we see that real MIMD
machines are much more complex. Synchronous parallel execution is usu-
ally impossible on modern parallel computers, as well as to ensure constant,
uniform memory access times independently of machine size, amount of ex-
changed data and exploited parallelism. Indeed, optimal PRAM complexity
is often misguiding with respect to real computational costs.

Several variants of the PRAM model have been devised with the aim of
reconciling theoretical computational costs with real performance. They add
different kinds of constraints and costs on the basic operations. A survey on
these derived models is given in [354]. We do not even discuss the research
on communication and algorithmic performance of models which use a fixed
network structure (e.g. a mesh or hypercube). Despite the results on network
cross-simulation properties, network-specific algorithms are often too tied to
the geometry of the network, and show a sub-optimal behavior on other kinds
of interconnection.

We focus on different research track, which has started in the last years
and involves the class of parallel bridging computational models. Parallel



328 Massimo Coppola and Martin Schmollinger

bridging models aim at exploiting a higher degree of hardware independence,
and some of them explicitly consider the grain of the computation as a key
factor in devising efficient and practical algorithms. In the following section
we concentrate on this approach to modeling performance. We start from a
description of the approach and of the most widely adopted models of this
class, and then we survey some of the results about the connections with
hierarchical memory models for sequential programming.

15.4 Parallel Bridging Models

Computational models should exhibit the right balance of abstraction and
detail, to reflect the actual behavior of parallel algorithms while keeping the
analysis tractable. As in the sequential case, ideal parallel models should sat-
isfy both efficiency and universality requirements, so that most results about
computational costs can be applied in practice and that they are essentially
unaffected by the underlying architecture.

The need to develop such a “reference” parallel model has lead in the 1990s
to the concept of a parallel bridging model (PBM). A bridging model should
act as a standard, aiming at the best separation of algorithm and software
development from the architecture. Several models of this class have been de-
veloped. They use a more abstract approach in modeling the interconnection
architecture.

One of the pioneering works in the field is [742] by Valiant, where the
following goals stemming from the initial definition are stated.

Cost measure. A PBM should have a cost measure to guide algorithm de-
velopment, detailed enough for accurate performance prediction. The model
should be independent of a specific architecture and technology, but it should
reflect the fundamental constraints of parallel machines.

Efficient universality. Mapping high-level PBM algorithms onto actual ma-
chines should not lead to reduced efficiency. We wish to avoid logarithmic
simulation losses, and aim at constant bounded inefficiency, so that we can
afford developing algorithms for the PBM model only.

Neutrality and Portability. A PBM should be neutral with respect to the
number of processors, i.e. results should be applicable not only asymptoti-
cally, but also for very small parallel machines. It should also allow the pro-
grammer to write fully portable programs, avoiding explicit memory manage-
ment, low-level communications and synchronizations. We are thus requiring
that our computational model is a good programming model too.

Parallel slackness. This is the amount of excess parallelism in the algorithm
needed to achieve optimal execution. A PBM program written for v virtual
processors should be optimally simulated on p physical processors if p is
rather smaller than v (e.g. v = p log p). The approach ensures that there is a



15. Hierarchical Models and Software Tools for Parallel Programming 329

p number of processors
L message latency / synchronization
g cost parameter for message routing

for processor i in superstep t

wi,t local computation
λi,t num. sent messages
µi,t num. received messages
wt = maxi wi,t global work in t
ht = maxi max{λi,t, µi,t} global routing in t
wt + g · ht + L cost of superstep t

M M MM

. . .

interconnection network

PP1 P2 3 Pp

Fig. 15.2. BSP symbols and parameters (left). The BSP abstract architecture
(right).

chance to superimpose computation and communication of different virtual
processors on a wide range of interconnection networks. The higher degree of
asynchronism introduced in PBMs helps to avoid that fine-grain parallelism
negatively affects the algorithm execution.

15.4.1 The Bulk Synchronous Parallel Model

The bulk synchronous parallel model (BSP) that Valiant proposes (as de-
scribed in [75]) is made up of a set of p processing nodes with local memories
and a complete interconnection network which delivers messages between
pairs of nodes (Fig. 15.2). Three parameters are used to specify the under-
lying hardware: the number p of processors, a latency parameter L, which is
the maximum latency of a message or synchronization in the network, and
a gap parameter g, which is the amount of time that a processor must wait
after a send operation before sending a new message.

A BSP computation consists of supersteps. During a superstep processors
compute using their local memory and exchange a certain amount of messages
with each other. Messages sent during superstep t are received only at the
beginning of superstep t + 1. The components of a superstep, represented
in Fig. 15.3a, are thus a computation phase (the grey stripes), a varying
routing relation (which expresses the pattern of message exchange) and the
constant-bounded synchronization time L (the white vertical stripes). The
table of Fig. 15.2 summarizes the essential notation of the BSP model, with
respect to a superstep t and a processing node i.

We define hi,t = max(λi,t, µi,t) as the largest number of messages sent
or received by processor i during current superstep. The routing relation
among the nodes (the relation among sender and receiver processors for the
set of all messages) has size ht = maxi hi,t for superstep t. It is usually called
h-relation, to emphasize the fact that we look at its h parameter.

With these parameter definitions, wt and ht are the largest w and h
values in superstep t. If we imagine that supersteps are globally synchronized



330 Massimo Coppola and Martin Schmollinger

P1

P3

P2

Pp

w t g h t

P1

P3

P2

Pp

L

...

superstep t+1 f(n) g(n)work

co
m

m
. /

 m
er

ge

de
co

m
po

si
tio

n

...

s(n)f(n)

de
co

m
po

si
tio

n

m
er

ge

Fig. 15.3. (a) BSP superstep execution (b) CGM supersteps

by barriers (i.e. all units must complete a superstep before any of them can
proceed to the next superstep), we can estimate the length of a superstep
in time units as wt + g · ht + L. This value becomes an upper bound if we
assume instead that synchronization is only enforced when actually needed
(e.g. before receiving a message).

We can analyze a BSP algorithm by computing wt and ht for each super-
step. If the algorithm terminates in T supersteps, the local work W =

∑
t wt

and the communication volume H =
∑

t ht of the algorithm lead to the cost
estimate W + g · H + L · T . A more sound evaluation compares the perfor-
mance of the algorithm with that of the best known sequential algorithm.
Let Tseq be the sequential running time, we call c-optimal a BSP algorithm
that solves the problem with W = c · Tseq/p and g ·H +L · T = o(Tseq/p) for
a constant c.

Other parallel bridging models have been developed. Among them we
mention the CGM model, which is the closest to the BSP, the LogP and the
QSM models, which we describe below.

The Coarse-Grained Multicomputer. The coarse-grained multicomputer
(CGM) model [245] is based on supersteps too. The communication phase in
CGM is different from that of BSP, as it involves all processors in a global
communication pattern, and O(n) data are exchanged at each communica-
tion phase. In Fig. 15.3b the different patterns are the f, g, s functions. Only
two numeric parameters are used, the number of nodes p and the problem
size n. Each node has thus O(n/p) local memory.

In the original presentation the model was parametric, as the network
structure was left essentially unspecified. The communication phases were
allowed to be any global pattern (e.g. sorting, broadcasts, partial sums) which
could be efficiently emulated on various interconnection networks. To get the
actual algorithmic cost, one should substitute the routing complexity of the
parallel patterns on a given network (e.g. g(n, p) may be the complexity of
exchanging O(n/p) keys in a hypercube of diameter log2 p).

The challenge in the CGM model is to devise a coarse-grain decomposition
of the problem into independent subproblems by exploiting a set of “portable”
global parallel routines. The best algorithms will usually require the smallest



15. Hierarchical Models and Software Tools for Parallel Programming 331

possible number of supersteps. During the years, in the common use CGM
has been simplified and became close to BSP. In recent works [243, 244], the
network geometry is no longer considered. CGM algorithms are defined as
a special class of BSP algorithms, with the distinguishing feature that each
CGM superstep employs a routing relation of size h = Θ(n/v).

LogP Model. In the LogP [233] model, processors communicate through
point-to-point messages, ignoring the network geometry like in BSP. Unlike
BSP and the other PBMs, there are no supersteps in LogP.

LogP models physical communication behavior. It uses four parameters:
l, an upper bound on communication latency; o, the overhead involved in a
communication; g, a time gap between sending two messages; and the physical
parallelism P . Messages are considered to be of small, fixed length, thus
introducing the need to split large communications. There are two flavors
of the model, stalling LogP, which imposes a network capacity constraint (a
processor can have no more than �l/g� messages in transit to it at the same
time, or senders will stall), and non-stalling LogP, which has no constraint.

Because of the unstructured and asynchronous programming model, of the
need to split messages into packets, and to deal with the capacity constraint,
algorithm design and analysis with LogP is more complex than with the
other PBMs. There are comparably fewer results with LogP, even if most
basic algorithms (broadcasts, summing) have been analyzed.

QSM Model. The queuing shared memory (QSM) [330] model can be seen
both as a PRAM evolution and as a shared-memory variant of the BSP. Like
a PRAM, a set of processors with private memories communicate by means
of a shared memory. Like in the BSP, QSM computation is globally divided
into phases. Read and write operation are posted to the shared memory, and
they complete at the end of a phase. Concurrent reads or writes (but not
both) to a memory location are allowed.

Each processor must also perform a certain amount of local computation
within each phase. The cost of each phase is defined as max(mop, g ·mrw, κ),
where mop is the largest amount of local computation in the phase, mrw is
the largest number of shared reads and writes from the same processor, and
the gap parameter g is the overhead of each request. Latency is not explicitly
considered, and it is substituted by the maximum contention κ of the phase,
i.e. the maximum number of colliding accesses on any location in that phase.
A large number of algorithms designed for variants of the PRAM can be
easily mapped on the QSM.

A Comparison of Parallel Bridging Models. Several results about emu-
lation among different parallel bridging models can be found in the literature.
Emulations are work-preserving if the product p · t (processors per execution
time) on the emulating machine is the same as that on the machine being
emulated, to within a constant factor. Work-preserving emulations typically
increase the amount of parallel slackness (the emulating machine has fewer



332 Massimo Coppola and Martin Schmollinger

processor than the emulated one), and are characterized by a certain slow-
down. The slowdown is O(f), when we are able to map an algorithm, running
in t time on p processors, to one running on p′ ≤ p/f processors in time
t′ = O(t · (p/p′)). An ideal slowdown of 1 means that the emulation intro-
duces at most a constant factor of inefficiency. Table 15.3 summarizes some
asymptotic slowdown results taken from a recent survey by Ramachandran
[622]. The fact that a collection of work-preserving emulations with small
slowdown exists, suggests that these models are to a good extent equivalent
in their applicability as cost models to real parallel machines.

However, some of the bridging models are better suited than others for the
role of programming models, as a more abstract view of the algorithm struc-
ture and communication pattern allows easier algorithm design and analysis.

From this point of view, LogP is probably the hardest PBM to use. It
leads to difficult, low-level analysis of communication behavior, and thus it
has been rarely used to evaluate complex algorithms. The QSM can be used
to evaluate the practical performance of many existing PRAM algorithms,
but is a low-level model too. QSM is a “flat” model, which disregards the
hierarchical structure of the computation, and it has an abstract but fine-
grain approach to communication cost.

The bulk parallel models (BSP and CGM) have been used more exten-
sively to code parallel algorithms. They proved to be easier to use when
designing algorithms, and actually several software tools have been designed
to directly implement BSP algorithms. In the same direction there are even
more simplified model, like the one used in [690]. Aggregate computation cost
is measured in terms of total work, total network traffic (sum of messages)
and total number of messages. Thus the three “weights” of these operations
are the parameters of this model. It can be seen as a flat, close relative of BSP
and CGM, and at least a class of algorithms based on computation phases
with limited unbalancing can be analyzed using this model.

Both the CGM, and extensions of the original BSP model, allow to rep-
resent hierarchically structured networks. Finally, the concepts of parallel
slackness, medium-grain parallelism and supersteps have been exploited to
develop efficient emulation of BSP and CGM algorithms in external memory,

Table 15.3. Slowdown of work-preserving emulation between PBMs. Most of these
results concern randomized emulation algorithms. See [622] for details and refer-
ences.

Emulating model

Emulated model BSP LogP (stalling) QSM

BSP log4 p + (L/g) log2 p �(g log p)/L�
LogP (non stalling) L/l (det.) 1 (det.) �(g log p)/l�
QSM (L/g) + g log p log4 p + (l/g) log2 p + g · log p



15. Hierarchical Models and Software Tools for Parallel Programming 333

HMM (PDM)

E.M. locality

block−oriented I/O

BSP

CGM

LogP

QSM

bulk
parallelism

extensions

D−BSP

BSP*

E.M. emulations

locality models

Combination of
HMM and PBM

coarse−grain, bulk parallelism
minimize I/O and communications
exploiting hierarchical structures

better parallel

BSP, CGM onto HMM

map par. locality to E.M.

unconstrained
fine−grain

PRAM PBM

parallelism

Fig. 15.4. Development path of parallel bridging models and their relationship
with hierarchical memory models

showing up the connections among the design of parallel algorithms and that
of external-memory algorithms.

15.4.2 Parallel Bridging Models and Hierarchical Parallelism

As earlier noted by Cormen and Goodrich [213], the bulk-processing nature
of external memory algorithms is close to the bulk-parallel approach of most
parallel bridging models. Both kinds of models aim at properly accounting
in an abstract way for a kind of access locality. Moreover, most practical
problems involving large-scale data structures are definitely a target both for
parallel computing and for secondary memory computing techniques. Cormen
and Goodrich fostered the development of a single computation model which
included bulk-like measures for computation, communication and I/O. This
will be our main topic in the following.

Two different research paths, shown in Fig. 15.4, have been developed
from parallel bridging models by introducing a hierarchy concept. One path
aims at enhancing the performance accuracy of parallel bridging models. This
is done by exploiting the concepts of processor locality and block-oriented
communications. In doing this, solution are exploited which mimic those of
hierarchical memory models. A different path, discussed in Sect. 15.4.3, ex-
plores the relationships among PBMs and HMMs, by developing equivaleces
and emulation procedures that turn bulk-parallel algorithms into external
memory ones. As we will see in Sect. 15.4.4, there are some results which
show a possible convergence of the two approaches.

Because of the initial aim of modeling parallel computation, the main line
of development of PBMs is directed towards a more accurate model of par-
allel locality effects. Most parallel architectures exploit regular, hierarchical
structures which reward local data access. Even without making explicit ge-
ometric or implementation assumptions about the network, parallel bridging
models can be refined by including parameters that indirectly reflect actual
communication behavior.

The BSP communication model is simple and abstract enough to be re-
fined this way. We describe two different extensions of BSP, which account



334 Massimo Coppola and Martin Schmollinger

for (i) effects due to message length and (ii) for the relationship between
network size and parallel overhead in communications.

The BSP* Model. In real interconnection networks, communication time
is not independent of message length. The combination of bandwidth con-
straints, startup costs and latency effects is often modeled as a linear affine
function of message length. BSP disregards this aspect of communication.
The number of exchanged messages roughly measures the congestion effects
on the network.

Counting non-local accesses is a first-order approximation that has been
successfully used in external memory models like the PDM. On the other
hand, PDM uses a block size parameter to measure the number of page I/O
operation. To model the practical constraint of efficiency for real communi-
cations, the BSP* model [75] has been introduced in 1996.

BSP* adds a critical block size parameter b, which is the minimum size of
data for a communication to fully exploit the available bandwidth. The cost
function for communications is modified to account both for the number ht of
message start-ups in a phase, and for the communication volume st (the sum
of the sizes of all messages). Each message is charged a constant overhead,
and a time proportional to its length in blocks. Superstep cost is defined as
wt +g(st/b+ht)+L, often written as wt +g∗ ·(st +ht ·b)+L, where g∗ = g/b.
The effect on performance evaluation is that algorithm that pack information
when communicating are still rewarded like in BSP, but high communication
volumes and long messages are not. Thus the BSP* model explicitly pro-
motes both block-organized communications and a reduced amount of data
transfers, the same way external memory models do for I/O operations.

D-BSP Model. The BSP model inherits from the PRAM the assumption
that model behavior is independent of its size. While we can easily account
for a general behavior by changing parameter values (e.g. adding processors
to a bus interconnection leads to larger values of g and L), there is no way
we can model more complex situations where the network properties change
according to the part of it that we are using. This is an intentional trade-off
of the BSP model, but it can lead to inaccurate cost estimates in some cases.
We mention two examples.

– Networks with a regular geometry, like meshes or hypercubes, can behave
quite differently if most of the communication traffic is local, as compared
to the general case.

– Modern cluster of multiprocessors and multiple-level interconnections can-
not be properly modeled with any value of g, L, as shared memory and
physical message-passing communications among different kinds of con-
nections imply very different bandwidths and overheads.

De La Torre and Kruskal [240] introduce the decomposable BSP (D-BSP),
which rewards locality of computation by allowing hierarchical decomposition



15. Hierarchical Models and Software Tools for Parallel Programming 335

of the machine into smaller BSP-submachines. The g and L parameters of
BSP are replaced with two functions, Gm and Lm, of the submachine size m.

During algorithm execution, the computation can be recursively split,
and smaller subproblems can be assigned to different submachines. The sub-
computations are still D-BSP computations, which proceed independently
until they merge together again. Their computational cost is the maximum
of the costs, each one being evaluated with appropriate g, L values. The actual
shape of Gm,Lm controls the advantage of decomposing the computation into
local subcomputations.

This abstract way of accounting for parallel locality avoids directly dealing
with the geometry of the interconnection structure, which appears only by
means of its characteristic functions. D-BSP thus adds the power to explicitly
evaluate architectural effects on communications due to the geometry of the
network, or due to its implementation.

A first comparison among the D-BSP and BSP models can be found in
[111]. Meyer auf der Heide and Wanka [75] investigated the relationships
among the BSP* and the D-BSP models. Bilardi and others [126] also exam-
ine the D-BSP model, concluding that it offers the same design advantages
of BSP, but has higher effectiveness and portability over realistic parallel
architectures. They show results for the family of functions Gm,Lm of the
form C · (n/2i)α, where m = 2i, (0 ≤ i ≤ logn) and (0 < α < 1). These
functions capture a wide family of commonly used interconnection networks
with n nodes, including multidimensional arrays.

15.4.3 Emulation in External Memory

A classical result of emulation of parallel algorithms using external memory
techniques is the PRAM emulation algorithm in [192]. The result is described
in Chapter 3. It is an asymptotically good emulation, but the asymptotic
complexity hides quite large constant factors, as an external-memory sorting
of the whole memory is required at each PRAM execution step.

It is clearly a fundamental issue to distinguish those emulations that are
only asymptotically good, from those that can be practically exploited.

The emulation of PBM algorithms in external memory models has been
shown to improve over known external memory algorithms in some cases,
at least from the point of view of the abstract I/O complexity. The topic of
external memory algorithm design is addressed in other parts of the book.
Here we want to underline the connections among the two fields and the
option to merge the two approaches into a more general, hierarchy-aware
one.

Sequential BSP-like emulation. A simple simulation algorithm is presented in
[692] by Sibeyn and Kaufmann. The emulation is performed by a sequential
external-memory machine, simulating a number v of virtual BSP processors.



336 Massimo Coppola and Martin Schmollinger

Once for each superstep, the computational context of each virtual pro-
cessor is loaded into main memory in turn. A computational context con-
sists of the memory image and message buffers of a virtual processor. Local
computation and message exchange are emulated before switching to next
processor.

Efficient simulation needs picking the right number v of virtual BSP pro-
cessors with respect to the emulating machine. By implementing communi-
cation buffers using external memory data structures, we can derive efficient
external memory algorithms from a subclass of BSP algorithms, those that
require limited memory and communication bandwidth per processor. There
are interesting points to note.

– the use of a bandwidth gap G parameter, measuring the ratio between the
instruction execution speed and the I/O bandwidth,

– the introduction of a notion of x-optimality, close to that of c-optimality,
which relates the number of I/O operations of a sequential algorithm with
those of an emulated parallel algorithm for the same problem,

– the fact that the BSP* messages have a cost depending on their length
in blocks helps in determining a relationship among the parallel algorithm
and its external memory emulation.

Parallel emulation. In [242] the emulation results hold under more general
assumptions. To evaluate the cost of parallel emulation, the EM-BSP* model
is defined. EM-BSP* is a BSP* model extended with a secondary memory
which is local to the processing nodes, see Fig. 15.5. Alternatively, we can see
it as a PDM model augmented with a BSP* interconnection and a superstep
cost function. In addition to the L, g, b, p parameters of BSP*, we find also
local memory size M , the number (per processor) of local disks D, the I/O
block transfer size B (which is borrowed from the PDM model) and the
computational to I/O capacity ratio G as in the simpler simulation.

The emulation of BSP* algorithms proceeds by supersteps, but each em-
ulating processor loads from disk a set of the virtual processors (with their
needed context data) at the same time, instead of a single one. The emulation
procedure can run sequentially in external memory, or in parallel, where the
emulating machine is modeled using EM-BSP*. A reorganization algorithm
is provided to perform BSP message routing in the external memories using
an optimal amount of I/O.

Like in [692], the result in [242] exploits the BSP* cost function to simplify
the emulation algorithm. BSP*, BSP and CGM algorithms (by reduction to
BSP*) can be emulated if they satisfy given bounds on message sizes and of
the memory used by the processors.

The c-optimality criterion is refined, taking into account I/O, computa-
tion and communication time of the emulated algorithm. We thus have a
metric to compare EM-BSP* algorithms with the best sequential algorithms
known.



15. Hierarchical Models and Software Tools for Parallel Programming 337

Model additional parameters and features

BSP* b critical block size
g∗ reduced message cost (g/b)

D-BSP Gm g as function of submachine size m
Lm L as function of submachine size m

CGM constraint on communication steps

EM (PDM) M (node local) memory size
D (per node) number of disks
B block size for disk I/O

all models G ratio of I/O and computation

M M MM

P

D
D
D

D
D
D

D
D
D

D
D
D

BSP / BSP* / CGM / D−BSP

interconnection network :

P1 P2 3 Pp

Fig. 15.5. The common structure of the combined parallel and external-memory
models, and a summary of parameters used in the models, beyond those from BSP.

Parallel and serial external-memory emulation of bulk parallel algorithms
is still under development [243, 244]. New results focus more on the CGM
model, which is seen as a submodel of BSP with a known kind of routing
relation (see Sect. 15.4.1), which allows a more efficient emulation. Despite
technical improvements, the overall structure of the model and of the simu-
lation is essentially unchanged from those of Fig. 15.5. These new works also
identify an interesting subspace of algorithmic parameters where parallel ex-
ternal memory execution is efficient. Simulation has thus been used to obtain
new or improved complexity results for several external memory problems.

15.4.4 Algorithms Designed for Parallel Hierarchical Models

In this section, we briefly survey two works which exploit mixed models of
computation to develop parallel-external memory algorithms. The first work
pre-dates most of the results we have previously presented. Aggarwal and
Plaxton [16] define a multi-level storage model, made up of a chain of hyper-
cubes of increasing dimension 0 ≤ d ≤ a. A set of four primitive operations
is defined on such a structure, which includes a scan operation, two routings
and a shift of sub-cube data. A hypercube of dimension b > a is then made up
of the smaller ones, using bounded-degree networks to connect them through
a subset of their nodes. The networks are supposed to compute prefix and
scan operations in O(b) = O(log p) time. Due to its complexity, the model
was never further developed despite a promising result on sorting.

Apart from the details of the model and of the sorting algorithm, in [16] it
is indeed interesting to note how a parallel, hierarchical data space is defined
on which to compute. The authors choose a set of primitive operation that
can be practically implemented both in external memory and in parallel.
This choice allows a certain degree of flexibility in choosing which levels of
the computation to map to external memory, and which ones to perform in
parallel.

Newer approaches, following the path of Fig. 15.4 (page 333), are based
on external-memory extensions of BSP-like models. Dehne and others [246]



338 Massimo Coppola and Martin Schmollinger

use a D-BSP interconnection structure in the configuration of Fig. 15.5, thus
taking into account the hierarchy of the communication network and two
levels of physical memory. This kind of models is of great practical interest
for cluster and grid computing. The set of parameters in the composite model
is essentialy the same of the sequential and parallel emulation approaches
(table in Fig. 15.5). In particular, we now have a pair of g,G parameters
relating computation time respectively with communication and I/O costs.

In [246], a set of basic primitives for sorting, merging and broadcasting
is developed on the EM parallel model, by carefully composing D-BSP and
PDM algorithms. The other result shown is a geometric algorithm following
the distribution sweeping approach (see Chapter 6). It performs input parti-
tioning to execute in parallel local external-memory computations. Interme-
diate results of local computations need to be exchanged, and composing the
local and parallel parts of the algorithm is not simple, as the sweep paradigm
does not allow a simple, one-shot input decomposition.

The solution devised is recursive in nature, and it exploits an orthogonal
partitioning of the input and of the intermediate results of the recursion,
such that the algorithm takes maximum advantage of parallel locality, and
all the generated subproblems are independent and can be assigned to smaller
subclusters.

15.5 Software Tools

In this section we will survey a set of software tools and programming mod-
els that can be used to exploit parallel hierarchical architectures. We classify
them according to two main principles, the kind of hierarchy they exploit
(either the parallel hierarchy, the memory hierarchy or both), and the num-
ber of levels they actually manage, which is two or three. Corresponding to
the need for a unifying hierarchical model, we will see that there is a lack
of software tools which span across multiple levels and different hierarchies.
As a consequence, writing programs that fully exploit hierarchical parallel
architectures is a difficult and error-prone task, where a large part of the
effort is spent in tuning and debugging activities. In Sect. 15.5.1 we survey
tools targeted at one of the two hierarchies, and spanning across two levels.
Sect. 15.5.2 presents software systems that exploit parallelism and secondary
memory, but only deal with a 2-level parallel hierarchy. Sect. 15.5.3 reports
about recent proposals and experiments about extending existing parallel
programming models, and developing new ones, which can cope with archi-
tecture hierarchy at least within SMP clusters.

15.5.1 Tools for Managing Parallelism or External Memory

Software tools of this first kind manage only two levels of a hierarchy. Since
the mangement of parallelism and I/O are in principle completely separate,



15. Hierarchical Models and Software Tools for Parallel Programming 339

these tools can be combined within the same environment to exploit archi-
tectures which correspond to the EM parallel models of Sect. 15.4.3 and
15.4.4. The work in the two separate fields of external memory and paral-
lel programming is mature enough to have already produced some widely
recognized standards.

Parallel Programming Libraries. There are two main parallel program-
ming paradigms, which fit the two extremes of the MIMD architectural class,
the distributed memory paradigm and the shared memory paradigm.

In the message passing paradigm each process has its local data, and
it communicates with other processes by exchanging messages. This shared
nothing approach corresponds to the abstraction of a DM-MIMD architec-
ture, if we map each process to a distinct processor.

In the shared-memory programming paradigm, all the data is accessible
to all processes, hence this shared-everything approach fits perfectly the SM-
MIMD class of architectures. The programmer however has to formulate race-
conditions to avoid deadlocks or inconsistencies.

For both paradigms, there is one official or de facto standard library, re-
spectively the message-passing interface (MPI) standard, and the OpenMP
programming model for shared memory programming. In both, MPI and
OpenMP, possible hierarchies in the parallel target machine are not consid-
ered. They assume independent processors, either connected by an intercon-
nection network or by a shared memory. Of course, there are approaches to
incorporate hierarchy sensitive methods in both libraries. We will present
some of them in Section 15.5.3.

Message-Passing-Interface MPI. In 1994, the MPI-Forum unified the most
important concepts of message-passing-based programming interfaces into
the MPI standard [547]. The current, upward compatible version of the stan-
dard is known as MPI-2 [548], and it specifies primitive bindings for languages
of the C and Fortran families.

In its simplest form, an MPI program starts one process per processor on
a given number of processors. Each process executes the same program code,
but it operates on its local data, and it receives a rank (a unique identifier)
during the execution, that becomes its address w.r.t. communications. Sub-
ject to the rank, a process can execute different parts of the program. This
single program multiple data (SPMD) model of execution actually allows a
generic MIMD programming model.

There are MPI implementations for nearly all platforms, which is the pre-
requisite for program portability. Key features of the MPI standard include
the following, and those described on page 342 about the I/O.

Point-to-point communication: The basic MPI communication mechanism is
to exchange messages between pair of endpoint processes, regardless of the
actual network structure that delivers the data. One process initiates a
send operation and the other process has to start a receive operation in
order to start the data transfer.



340 Massimo Coppola and Martin Schmollinger

Several variants of the basic primitives are defined in the standard, which
differ in the communication protocol and the synchronous/asynchronous
behavior. For instance, we can choose to block or not until communica-
tion set-up or completion, or to use a specific amount of communication
buffers.
These different options are needed both to allow optimized implementa-
tion of the library and to allow the application programmer to overlap
communication and computation.

Collective operations: Collective communications involve a group of pro-
cesses, each one having to call the communication routine with matching
arguments, in order for the operation to execute.
Well-known examples of collective operations are the barrier synchro-
nization (processes wait for each other at a synchronization point), the
broadcast (spreading a message to a group of processes) or the scan op-
eration.

One-sided Communications: With one-sided communication all communica-
tion parameters for both, the sender and the receiver side, are specified
by one process, thus avoiding explicit intervention of the partner in the
communication. This kind of remote memory access separates communi-
cation and synchronization. Remote write, read and update operations
are provided this way, together with additional synchronization primi-
tives.

OpenMP. The OpenMP-API [593] is a standard for parallel shared memory
programming based on compiler directives. Directives are a way to param-
eterize a specific compiler behavior. They preserve program semantics, and
have to be ignored when unknown to a compiler. Thus they are coded as
#pragma statements in C and C++, and are put within comments in For-
tran. OpenMP directives allow to mark parallel regions in a sequential pro-
gram. This approach facilitates an incremental parallelization of sequential
programs.

The sequential part of the code is executed by one thread (master thread)
that forks new threads as soon as a parallel region starts and joins them at
the end of the parallel region (fork-join model). OpenMP has three types of
directives.

Parallelism directives mark parallel regions in the program.
Work sharing directives within a parallel region divide the computation

among the threads. An example is the for/DO directive (each thread
executes a part of the iterations of the loop).

Data environment directives control the sharing of program variables that
are defined outside a parallel region (e.g. shared, private and reduction).

Synchronization directives (barrier, critical, flush) are responsible for syn-
chronized execution of several threads. Synchronization is necessary to
avoid deadlocks and data inconsistencies.



15. Hierarchical Models and Software Tools for Parallel Programming 341

External Memory Programming Libraries. There are libraries de-
signed to simplify processing of external-memory data structures. While the
main reference model, PDM, is parallel, these libraries usually only support
sequential algorithm operation over parallel disks. To use these libraries in
a parallel setting, we can either use independent physical disks, or use in-
dependent data structures on a shared device (with a possible performance
loss).

TPIE. TPIE [57] is a library developed as a programming tool to simplify the
implementation of algorithms based on the PDM model. The assumption of
the TPIE approach is that all operations and access methods exploit the best
known EM algorithm for the problem, and that any TPIE-based program
can immediately benefit of theoretical and practical improvements in EM
algorithms, as soon as they are propagated to the library.

TPIE initially provided data structures and algorithms to solve batched
problems, providing a strongly stream-oriented interface to the data. A recent
work by Arge and others [66] presents an extension of TPIE to deal with
random-access data structures.

Common operations on streams are provided (e.g. sort, merge, distribu-
tion, permutation) as well as on simple external-memory data types (matri-
ces, stacks). A flexible, general support for external memory trees allows to
code several different tree management strategies.

The fundamental components of TPIE are the memory manager, which
controls in-core memory utilization, and the block transfer engine (BTE), the
software kernel that moves blocks of data from physical devices to main mem-
ory and back. Two separately designed BTEs deal respectively with streamed
and random accesses to the disk, interacting with a common memory man-
ager. The BTEs have different and interchangeable implementations based
on the UNIX stdio functions, on blocked read/write calls and on memory-
mapped I/O.

The current implementation of the library is completely sequential, as
each BTE manages a single physical disk, and BTEs on different processors
do not cooperate. Interprocess coordination is left to the user like it is in
PDM algorithms.

LEDA-sm. LEDA [570] is a commercial library of data structures and al-
gorithms for combinatorial and geometric computation. LEDA-sm is a sec-
ondary memory extension [229] which is publicly available under the GPL
software license. It provides external data structures (e.g. arrays, queues,
trees, strings) with basic operations, and algorithms that work on these struc-
tures. Like TPIE, the implementation relies on a library kernel, the EM man-
ager, which implements a PDM abstraction and programming interface over
concrete disk devices.



342 Massimo Coppola and Martin Schmollinger

15.5.2 Tools for Parallel-External Programming

In this section we present two tools that allow to implement external-memory
aware, parallel programs.

VIC*. The VIC* compiler [214] is a compiler for the C* language, an exten-
sion of C with virtual-memory data parallel constructs. The VIC* compiler
produces code which interfaces to an implementation of the PDM model.

It allows to fully exploit the PDM model, using parallel disks and pro-
cessing elements. The user can control the number of computing units and
data-server processes that are set up on the target machine. The run-time
support of VIC* has been implemented over a set of different sequential and
parallel architectures, exploiting existing conventional, networked and paral-
lel file systems. Widely available libraries, including MPI, are used to support
the communication.

VIC* has been used to evaluate the actual performance of sequential and
parallel PDM algorithms. It shows the effectiveness of the PDM model, as the
tested external-memory algorithms are mainly computation bound, whereas
their main-memory counterparts are severely I/O bound at the same problem
size [214].

While VIC* programs exploit available parallel resources, there is still
no model for the communication part. An interesting result in this view is
reported in [90] about the problem of external memory, parallel FFT. In [90],
the problem is solved by using the dimensional decomposability of the FFT
to devise a parallel partitioning of the out-of-core computation.

MPI-IO. The MPI-2 standard includes the specification of a parallel I/O
programming interface. Programs written using MPI-IO can exploit message
passing parallelism and a shared disk space, while remaining largely portable.
A full discussion of parallel file systems is not appropriate here, so we sum-
marize the MPI-IO approach and its rationale.

A typical parallel I/O scenario is that of multiple processors in a MIMD
machine (Fig. 15.1b,c) trying to access different parts of a single large file.
Shared memory architectures often use centralized I/O subsystems, and the
target is to minimize contention due this bottleneck. Distributed memory
architectures, on the other hand, usually have local disks in each processing
node. In order to exploit these disks as a single storage support within a
parallel program, data blocks are sent through the network from hosting
nodes to the requesting ones. In both cases, shared and distributed memory,
the solution to the performance problem of I/O lies in aggregating several
requests to serve them efficiently.

The UNIX-like semantics of most file systems does not allow this trans-
formation [722]. Indeed, the gain is significant if the program explicitly gives
information about collective I/O (parallel, logically synchronized I/O re-
quests from a set of processors). MPI-IO provides this interface. MPI derived
datatypes are a portable mechanism to specify the memory layout of a data



15. Hierarchical Models and Software Tools for Parallel Programming 343

structure. They allow MPI functions to minimize communication overheads,
and to automatically compact non-contiguous data structures. MPI-2 has ex-
tended the use of MPI datatypes from communication to parallel I/O. Since
MPI-IO also offers collective and asynchronous I/O functions, there is plenty
of room for optimizations.

ROMIO [722, 723] is a public domain implementation of the standard.
It is based on a virtual device interface, ADIO, which connects to most se-
quential, networked and parallel file systems in current use. [722, 723] show
that the following two optimizations are fundamental in boosting parallel I/O
performance.

Data sieving: Separate asynchronous requests are reordered and merged into
bigger ones. In doing this we can afford to read a certain amount of extra
data in the “holes”, in order to reduce the number of separate I/Os.

Collective request merging: Parallel I/O requests to the same file often ad-
dress small different regions of it, according to complex patterns which de-
pend on the application (e.g. processor i reads blocks i+k·j, j = 0, 1, . . .).
Merging together all of these patterns we can identify a much simpler I/O
pattern at the hosting nodes, which is used to satisfy all the requests by
means of a data reorganization phase.

We note two features of the library which are also of more general relevance.
The first one is that the same concepts are used for communication and
I/O programming interfaces: data types, contexts, asynchronous versus syn-
chronous operations. The second one it that most of the optimizations that
are possible with MPI-IO rely on exploiting a form of global architecture-
level caching. Data from the external memory level are loaded into memory
buffers which are shared by hardware and software means.

15.5.3 Tools for Parallel-Hierarchical Programming

In this section we survey some proposed approaches to the problem of pro-
ducing efficient programs on hierarchical parallel architectures like SMP clus-
ters. Starting from the shared memory and distributed memory programming
standard, we can choose one and try to develop optimizations and extensions,
we can try to merge the two, or we can develop new, different programming
models. Several approaches are still proposals, but, looking at the available
experimental results, those solutions that try to hide the architecture hierar-
chy to the programmer do not produce the expected performance gain.

Hierarchical Optimizations for MPI. The message-passing paradigm
does not consider the hierarchical architecture of SMP clusters. In the fol-
lowing, we present two approaches for adapting MPI to SMP clusters that
try do avoid this inefficiency.



344 Massimo Coppola and Martin Schmollinger

Shared-Memory Communication. This approach improves the communica-
tion between processors that reside in the same node by using the shared-
memory for point-to-point communication. When a message is sent, the sys-
tem detects if the target process works on a processor that resides in the same
node. If this is the case, the message will be delivered through shared mem-
ory, instead that over the network. Reducing the number of message copy
operation is a well known issue to reduce the host overhead and latency of
message-passing communication. For inner-node communication, in-memory
copying is the largest part of the message delivery cost, so such an optimiza-
tion is even more important.

In [712] optimizations are presented of inter-node and inner-node com-
munication for a special MPI implementation, that works on PC-based SMP
clusters. Performing an inner-node communication initially requires two mes-
sage copies, to go from the memory space of one process to that of another one
by means of the UNIX kernel primitives. Single-copy operation is achieved by
building a dedicated kernel primitive, that writes directly into the receiver’s
memory.

In order to test the library, the authors performed experiments using the
NAS Parallel Benchmark 2.3 [86]. This benchmark suite is a set of 8 programs
designed to help evaluate the performance of parallel supercomputers.

In [712], NAS results on an SMP cluster are compared with those on
a cluster of uni-processors with the same number of processors. The SMP
cluster achieved 70-100% of the performance of the uni-processor cluster.
Intuitively, the SMP clusters should perform better, thanks to the inner-node
communication. Several differences between the two clusters can all together
explain the results. Communication latency is higher for a process on the
SMP, as there is a single, shared network interface per node. Cluster-level
synchronization mechanisms are realized by means of messages, and their cost
is dominated by inter-node communication delay. Thus, for all applications
which do a lot of synchronizations, like those of the NAS benchmark, the
inner-node communication performance is wasted.

In conclusion, the approach can improve the average point-to-point com-
munication time, but it it is not guaranteed to improve the overall perfor-
mance of a program, when compared to that of a cluster of single-processor
machines. Indeed, the problem is that the programmer is not forced to con-
sider the SMP cluster architecture at all during the design of an application.
The SMP cluster is seen as flat parallel machine, thus there is no way to
match the program structure with the real architecture.

Threads Only MPI. The threads only MPI (TOMPI) [248] is an MPI for uni-
processor and SMP workstations. The aim is to make the development of MPI
programs on workstations less time-consuming. Most standard MPI imple-
mentations, for the sake of portability, use UNIX processes and UNIX domain
sockets. When working on a single workstation, this method is resource-
inefficient and involves an unneeded overhead. TOMPI uses a source code



15. Hierarchical Models and Software Tools for Parallel Programming 345

translator to rewrite MPI program into thread-based programs, which can
be executed on an SMP workstation.

This approach seems to have the potential to be more efficient than the
one based only on shared memory communication. It improves the speed
of communications and avoids the large memory overhead due to processes.
On the one hand, with TOMPI it is possible to execute MPI programs with
hundreds of MPI processes on a single workstation, without bringing the
system down. On the other hand, there is no extension of the approach to
SMP clusters yet, even if converting processes to threads is an interesting
opportunity for this kind of architectures.

Distributed Shared-Memory Programming with OpenMP. In the
following, we present two approaches that try to adapt OpenMP to SMP
clusters. The main issue for this approach is that there is either a need for a
global shared memory in physical distributed environment or OpenMP has
to be extended with data distribution facilities.

Software Distributed Shared Memory. Software distributed shared
memory (SDSM) systems are libraries that provide a global address space
for physically distributed memory machines. We can translate OpenMP di-
rectives into appropriate calls to the SDSM system. An example of this ap-
proach is described in [413]. The result of the source-to-source translation is
a standard C/C++ or Fortran program which can be compiled and linked
with the SDSM system TreadMarks [41].

Even in this case, the communication system is modified to exploit the
hardware shared memory within the SMP nodes. Experimental testing with
several algorithms showed that the performance of the modified software
distributed shared memory was much better than the original ThreadMarks
library. Nonetheless, performance was still worse than that achieved by an
MPI implementation of the programs. The speedups obtained were only 7-
30% of those achieved by the MPI versions. The reasons are the overhead
from coherence-maintenance network traffic, and the fact that the SDSM
system does not exploit application-specific data access patterns, because
only at run-time it is known whether communication will happen through
the network or not. Again, the issue is that the method does not allow the
programmer to explicitly address the hierarchical structure of the machine
at design and at compile time.

A more promising approach is the compiler directed SDSM one [662],
which is a two-step optimization.

In a first step, the OpenMP compiler inserts memory coherence code
primitives, called check code, to keep the node-distributed memory consistent.
There are three types of check codes. Two of them ensure that the data is
valid before a read or write of shared data, the third is responsible to inform
the other nodes that data has been changed by a shared write.



346 Massimo Coppola and Martin Schmollinger

In the second step, the compiler analyzes parallel regions in order to
optimize communication and synchronization by removing unnecessary check
codes. The following optimization strategies are applied.

Parallel extent detection. Memory coherence code only has to be used in
parallel regions. Therefore, the compiler can remove the check codes outside
parallel regions and in the static extent of parallel regions.

Redundant check code elimination. Flush directives are responsible for giving
all threads a consistent view of the memory. They are executed implicitly
at barrier synchronizations, at the end of work sharing constructs and at
references to volatile variables. Therefore, check codes after a write may be
delayed until the thread reaches a flush directive and check codes before a read
or write may be redundant if the data is already available by the preceding
read check at the same location. The compiler performs a data-flow analysis
of the statements in the parallel regions to determine the earliest possible read
check code, and the latest possible write check code. All others are redundant
and can be removed.

Merging multiple check codes. Arrays are very often accessed contiguously
within a loop structure. The corresponding check codes may be moved outside
the loop and simultaneously converted into a single one. This reduces the
number of check code calls. In the following example a and b are shared
arrays.

for (i=0; i<n;i++) a[i]=c*b[i];

The compiler inserts the check codes into the loop as follows.

for (i=0; i<n;i++) {
check_before_read(&b[i], size);
check_before_write(&a[i], size);
a[i]=c*b[i];
check_after_write(&a[i], size);

}

Since the loop does not contain any flush directive, the check codes can
be moved outside the loop.

check_before_read(&b[0], n*size);
check_before_write(&a[0], n*size);
for (i=0; i<n;i++) a[i]=c*b[i];
check_after_write(&a[0], n*size);

Data-parallel communication optimization. It is also possible to improve the
program by using data-parallel compilation techniques. For example, the com-
piler should determine data mappings of arrays that accessed within a loop
in such a way that iterations of the loop can be done locally, on the nodes



15. Hierarchical Models and Software Tools for Parallel Programming 347

where the data is stored. Since the number of threads is not known at com-
pile time, calls to a data mapping runtime library are inserted to compute
loop bounds and data that must be communicated. In this setting, the data
is stored locally and check codes can be removed.

Collective communication optimization. Inter-node communication is neces-
sary to implement a reduction operation on variables defined in the data scope
attribute of a parallel region. It can be performed efficiently using a collective
communication library. The execution starts after the local reduction at the
end of parallel regions or after work-sharing directives.

Distributed OpenMP. A different approach to adapt OpenMP to SMP
clusters is suggested in [546]. The authors propose the distributed OpenMP.
This extension of OpenMP with data locality features provides a set of new
directives, library routines and environment variables. One data-distribution
extensions is the distribute directive with which it is possible to parti-
tion an array over the node memories. For performance reasons, the threads
should work on local array elements. Hence, the user must distribute the data
in order to minimize remote data accesses. Another proposed extension is the
on home directive in a parallel region. With this directive, it is possible to
perform a parallel loop over a distributed array without redistributing the
array. The threads of a node perform the iterations for the array elements
that reside in their local memory. Further extensions are library routines and
environment variables that provide specific numbers of the run-time instance
of the SMP cluster, like for example the number of involved nodes or pro-
cessors per node. Disadvantages are that programs get more complex, and
the user has to take care about an efficient data decomposition. Since we are
providing more information to the compiler, after adding the new directives
to an OpenMP program a redesign step, and a performance tuning phase
have to be performed.

Hybrid Programming with MPI and OpenMP. The idea of the hybrid
programming model is to use message passing between the SMP nodes, and
shared memory programming inside the SMP nodes. The structure of this
model fits exactly to the architecture, therefore, the model has potential to
produce programs with significant performance improvement. But it is also
obvious that the model is more complicated to use, and that there may arise
unpredicted performance problems, because of the simultaneous usage of the
two programming models. There are several possibilities for choosing libraries
for each model, but it is straightforward to combine the de facto standards
MPI and OpenMP. In the following we give an overview of the different ap-
proaches to the production of hybrid programs, with no emphasis on technical
details. We also survey some performance evaluations that compare hybrid
programs with pure MPI ones.

The general execution scheme uses one process in each node, to handles
communications by means of MPI primitives. Inside the process, multiple
threads compute in parallel. The number of threads in a node is equal to the



348 Massimo Coppola and Martin Schmollinger

number of processors in that node. The base for the design of an efficient
hybrid program is an efficient MPI program. According to [171], there are
two approaches to incorporate OpenMP directives into MPI programs, the
fine-grain and the coarse-grain approach.

Fine-Grain Parallelization. The hybrid fine-grain parallelization is done in-
crementally. The computational part of an MPI program is examined, and the
loop nests are parallelized with OpenMP directives. Therefore, the approach
is also called loop-level parallelization. Clearly, the loops must be profiled,
and only loop nests with a significant contribution to the global execution
time are selected for OpenMP parallelization.

Some loop-nests can not be parallelized directly. If they are non negligible,
the developer can try to transform them into parallelizable loops. Techniques
like loop exchange and loop permutations, and introduction of temporary
variables, can often avoid false sharings and reduce the number of synchro-
nizations.

Performance of Fine-Grain Hybrid Programs. In [171, 172, 173, 200]
investigations to measure performance of fine-grain hybrid programs are pre-
sented. A comparison is shown of the performance achieved by a hybrid and
a pure MPI version of the NAS benchmark [86] on a SMP cluster. An impor-
tant subject of [171, 172, 173, 200] is the interpretation of the performance
measurements, in order to understand the behavior of the hybrid programs
and their performance. Experiments were made on a PC-based SMP clus-
ter with two processors per node and on IBM SP cluster systems with four
processors per node.

The comparison among the two kinds of models for SMP clusters shows
no general advantage of one over the other. Depending on the characteristics
of the application, some benchmarks perform better with the hybrid version,
others perform better with the pure MPI version. The following aspects have
influence on the performance of the models.

Level of shared memory parallelization. The more of the total computation
can be parallelized, the more interesting is the hybrid approach. The size
of the parallelized sections (OpenMP) compared to the whole computation
section must be significant.

Communication time. It depends on the communication pattern of an ap-
plication, and on the differences between the two models concerning latency,
bandwidth, and synchronization time. If more processes share one network
interface, then the latency for network accesses increases, but the per process
bandwidth increases too. If there is only one process per node, the latency is
low, but the process cannot transfer data fast enough to the network interface
to fully exploit the maximum network bandwidth. Therefore, the pure MPI
approach performs better if the application is bandwidth limited, and it is
worse for latency limited applications.



15. Hierarchical Models and Software Tools for Parallel Programming 349

Memory access patterns. The memory access patterns are different for the
two models. Whereas MPI allows to express multi-dimensional blocking,
OpenMP does not. To achieve the same memory access patterns, rewriting
of loop nests is necessary, which may be very complex.
Performance balance of the main components. (processors, memory and net-
work) can offset the communication/computation tradeoff. If the processors
are so fast that communication becomes the bottleneck, then the actual com-
munication pattern decides which model is best. If, on the other hand, com-
putation is the bottleneck, then MPI seems to be always the best.
Coarse-Grain Parallelization. In this approach a single program multi-
ple data style is used to incorporate OpenMP threads into MPI programs.
OpenMP is used to spawn threads immediately after the initialization of the
MPI processes in the main program. Each thread itself is acting similar to
an MPI process. For threads there are several issues to consider:

– The data distribution between the threads is different from that of MPI
processes. Because of the shared memory, it is only necessary to calculate
the bounds of the arrays for each thread. There has to be a mapping from
array regions to threads.

– The work distribution between the threads is made according to the data
distribution. Instead of an automatic distribution of the iterations, some
calculations of the loop boundaries depending of the thread number define
the schedule.

– The coordination of the threads means managing critical sections by either
the usage of OpenMP directives, like MASTER or thread library calls like
omp get thread num(), to construct conditional statements.

– Communication is still done by only one thread.

As far as we know, the coarse-grain approach has been proposed, but there
are no results yet. We can compare it with TOMPI, as both methods convert
MPI processes to threads. However, TOMPI programs on SMP clusters do
not share data structures common to all the processes, as they would do in
a coarse-grain parallelization.
High-Level Programming Models. Besides the programming libraries
and paradigms above, there are some programming models for SMP clusters
that try to build a higher level of abstraction for the programmer. All these
models are based on the hybrid programming paradigm where threads are
used for the internal computation and message passing libraries are used to
perform communication between the nodes.
SIMPLE Model. The significant difference between SIMPLE [82] and the
manual hybrid programming approach above lies in the provided primitives
for communication and computation.

The computation primitives comprise data parallel loops, control primi-
tives to address threads or nodes directly, and memory management primi-
tives.



350 Massimo Coppola and Martin Schmollinger

Data parallel loops: There are several parallel loop directives for executing
loops concurrently on one or more nodes of the SMP cluster, assuming
no data dependencies. The loop is partitioned implicitly to the threads
without need for explicit synchronization or communication between pro-
cessors. Both block and a cyclic partitioning is provided.

Control: With this class of primitives, it is possible to control which threads
are involved in the computation context. The execution of a block of code
can be restricted to one thread per node, all threads in one node, or to
only one thread in the SMP cluster.

Memory management: A heap for dynamic memory allocation is managed in
each processing node, and can be used by the threads of that node via
the node malloc and node free primitives.

SIMPLE provides three libraries for communication. There is an inter-
node-communication library, an SMP node library for thread synchroniza-
tion, and a SIMPLE communication library build on top of both. The SMP
node library implements the three primitives reduce, barrier and broadcast.
It is based on POSIX threads. Together with the functionality of the inter-
node-communication library, it is possible to implement the primitives bar-
rier, reduce, broadcast, allreduce, alltoall, alltoallv, gather, and scatter that
are assumed to be sufficient for the design of SIMPLE algorithms. The use
of these top-level primitives means using message passing between nodes and
shared memory communication within the nodes.

Hybrid-Parallel Programming with High Performance Fortran. High Perfor-
mance Fortran (HPF ) is a set of extensions to Fortran that enables users
to develop data-parallel programs for architectures where the distribution of
data impacts performance. Main features of HPF are directives for data distri-
bution within distributed memory machines and primitives for data parallel
and concurrent execution. HPF can be employed on both distributed memory
and shared memory machines, and it is possible to compile HPF programs
on SMP clusters. However, HPF does not provide primitives or directives
to exploit the parallel hierarchy of SMP clusters. Most HPF compilers just
ignore the shared memory within the nodes and treat the target system as a
distributed memory machine.

One exception is presented in [106]. Therein, HPF is extended with the
concept of processor mappings and the concept of hierarchical data mappings.
With these two concepts, it is possible for the programmer to consider the
hierarchical structure of SMP clusters. A product of this approach is the
Vienna Fortran Compiler [105]. It creates fine-grain hybrid programs using
MPI and OpenMP, starting from programs in an enriched HPF syntax.

Processor mappings: Beside the already existing abstract processor array
that is used as the target of data distribution directives, abstract node
arrays are defined. Together with an extended version of the distribute
directive it is possible to construct the structure of an SMP cluster.



15. Hierarchical Models and Software Tools for Parallel Programming 351

Hierarchical data mapping: In addition to the processor mappings it is nec-
essary to assign data arrays to nodes and processors. The distribute
directive is extended in the way that node arrays may appear as distribu-
tion targets. This defines an explicit inter-node mapping of the data. In
contrast, the share directive is introduced in order to define an explicit
intra-node mapping. The intra-node mapping controls the work sharing
between the processors within a node.

Intrinsic functions: Two new functions are provided, that return the num-
ber of nodes and the number of processors in the SMP cluster. They
are provided in order to support abstract node arrays whose sizes are
determined at program startup.

The following is a sample code fragment for the use of the new directives
and mappings. It defines a SMP cluster with four processors per node and
distributes an array A equally over the nodes and processors.

!hpf$ processors P(2,8) !abstract processor array
real, dimension (32,16) :: A !array of real

!hpfC nodes N(4) !abstract node array
!hpfC distribute P(*, block) onto N !processor mapping
!hpfC distribute A(*, block) onto N !inter-node mapping
!hpfC share A (block,*) !intra-node mapping
...

block is a standard HPF distribution format and divides the concerned di-
mension into equal parts with respect to the distribution target. The asterisk
defines that the whole dimension of the array will be mapped to the target
elements.

KeLP2 Model. The Kernel Lattice Parallelism 2 Model (KeLP2) [81] is a
C++ framework for implementing (irregular) block-structured numerical ap-
plications on SMP clusters. KeLP2 provides mechanisms to coordinate data
decomposition, data motion and parallel control flow similar to HPF. Like
HPF, it hides from the programmer low-level details like message-passing,
processes, threads, synchronization and memory allocation. In contrast to
HPF, KeLP2 performs no analysis of the code to make high-level restructur-
ing, and it provides no automated data decomposition.

The underlying assumption is that the programmer knows best the struc-
ture of his (irregular) data and algorithm. KeLP2 provides him a framework
and a methodology to define the decomposition, facilitating the construc-
tion of partitioning libraries. With respect to HPF, KeLP2 allows to overlap
computation and communication.

KeLP2 supports three levels of control, the collective level (SMP cluster),
the node-level, and the processor-level. Parallelism in programs is expressed
at the node and the processor levels, while communication takes place in
the collective (cluster) and node levels. The collective and the node levels



352 Massimo Coppola and Martin Schmollinger

have their own data layout and data motion plan. Three classes of KeLP2
programming abstractions help to manage this mechanisms.

1. The Meta-Data represents the abstract structure of some facet of the
calculation. It describes the data decomposition and the communication
patterns.

2. Instantiators execute the program according to the information contained
in the meta-data.

3. The primitives for parallel control flow are iterators, which iterate over
all nodes, or over all processors of a specified node.

When comparing KeLP2 with SIMPLE, the latter provides lower-level
primitives, does not support data-decomposition, and does not overlap com-
munication and computation. KeLP2 is of narrower scope concerning the
application domain, but it nevertheless enables a parallel specification that
is less dependent on the implementation.

15.6 Conclusions

It is clear from Sect. 15.2 that we need theoretical models and new software
tools to fully exploit hierarchical architectures like large clusters of SMP and
future Computational Grid super-clusters.

The interaction among parallel bridging models and external memory
models has produced several results, which we surveyed in Sect. 15.3, 15.4.
The exploitation of locality effects in these two classes of models employs
very similar solutions, that involve block-oriented cooperation and abstract
modeling of the hierarchical structure. The intuition underlying theoretical
and performance results on bulk parallel models, and their theoretical lesson,
is that the simple exploitation of fine-grain parallelism at the algorithm level
is not the right way to obtain portable parallel programs in practice.

However, there is still a lot of work to do in order to meet the need of
appropriate computational models. Hierarchical-parallel models like those of
Fig. 15.5 are already close to the structure of modern SMP clusters, and
they are relatively simple to understand, yet algorithms can be quite hard
to analyze. Composed models usually employ the full set of parameters of
their parallel part, those of their memory part, and at least another one to
asses the relative cost of I/O and communication operations. For the BSP
derivatives we have described, this leads to seven or eight parameters.

Excessive complexity of the analysis and poor intuitive understanding are
a limiting factor for the diffusion of computation models, as it was pointed
out in [213]. There is no answer yet to the questions “can all these parameters
be merged in some synthesis?” and “what are the four or five most important
parameters?”

For these reasons the impact of sophisticated parallel computational mod-
els is still limited, while simple disk I/O models like PDM have been quickly



15. Hierarchical Models and Software Tools for Parallel Programming 353

adopted to evaluate a corpus of external memory algorithms widely used in
practice.

The situation is the same for what concerns software tools. Indeed, most
of the efforts in parallel software development are spent in maintaining exist-
ing programming interfaces and optimizing them for new architectures. This
approach is not effective or efficient for hierarchical parallel architectures. As
we have reported, SMP cluster-enabled implementations of both MPI and
OpenMP libraries are quite far from exploiting the potential performance
of these machines. When programmers completely disregard the existence of
a hierarchy, and we try to hide all optimizations in the library, it is often
impossible to achieve program implementations with optimal performance.

A complementary approach is to compose existing libraries which manage
a portion of the hierarchy. Most standard libraries only exploit two level of
memory or parallel structure (e.g. MPI, OpenMP, TPIE). While it is possible
to compose libraries that manage well-separated hierarchies (e.g. main mem-
ory/disks and main memory/shared memory), we have seen in Sect. 15.5.3
that the hybrid programming model, resulting from the empirical combina-
tion of MPI and OpenMP, leads to much harder problems.

Nevertheless, the hybrid model is the only parallel and hierarchical pro-
gramming model accepted in practice, because it has the driving advantage
of exploiting the new cluster architectures using existing, available tools. It
has numerous drawbacks, though. Programs are more complex to design, im-
plement, debug and maintain. Implementation and debugging are also com-
plicated by the need for extensive performance analysis and tuning. The
complexity and the amount of the interactions among the architecture, the
algorithm and the software tools make it quite difficult to devise performance
models for the resulting programs.

According to us, two main directions for future research are now still open.
A first research and development track aims at simplifying the management
of hybrid parallel programming, by extending existing flat approaches with
ad-hoc optimizations, and with improvements to the compilation tools. Code
translators, e.g. from MPI to hybrid structured code, and semi-automatic
restructuring tools are two feasible solutions to ease and speed up hybrid
software development.

Another option is to devise simpler parallel hierarchical models that are
sound and intuitive, and thus can be used both for theory and as the base
for a programming environment. Too cumbersome models are ruled out, as
they fail in providing that kind of intuitive guidance that, even if not fully
trustworthy, is essential for the acceptance of a programming model.

Looking at the literature, an important resource in this perspective is a
set of common, basic operations that can be efficiently performed both in
parallel and exploiting the memory hierarchy. More freedom in choosing the
implementation level of the basic operations simplifies design and analysis of
more complex algorithms, as well as the implementation of software tools.



354 Massimo Coppola and Martin Schmollinger

Systems like SIMPLE and KeLP2 are close to this research path. Abstract,
high-level operations simplify program writing, while still providing the tools
with information about the best mapping to the architecture hierarchy.

Acknowledgments

We wish to thank all the participants to the GI-Dagstuhl-Forschungsseminar
“Algorithms for Memory Hierarchies”. In particular we would like to thank
Florin Isaila and Kay Salzwedel for their help in the bibliographic research,
and Peter Sanders, Jop Sibeyn, Ulrich Meyer, Rasmus Pagh, and Daniel
Jimenez for several discussion which contributed to improve the quality of
the paper.


	15.1 Introduction
	15.2 Architectural Background
	15.3 Parallel Computational Models
	15.4 Parallel Bridging Models
	15.5 Software Tools
	15.6 Conclusions

