
Comparing Object-Oriented

Datiibase Systems Benchmark

Methods

Jia-Lang Seng, Ph.D.

Associate Professor
Dept. of Management Information Systems

National Cheng-Chi University

Mu-Cha, 116, Taipei, Taiwan, ROC

(0) +886-2-9387692

jljan@cc.nccu,edu.tw
Abstract
With the increasing use of the object-oriented

database software, system performance has become

an important issue in the system procurements and

evaluation process. It is vital to understand and

predict the functionality and performance

characteristics of the systems to be procured in the

real world settings so as to justify the use of the

object-oriented systems over the traditional systems.

Benchmarks are considered the most common

approach to test and measure the quantitative

performance of database systems. We have seen a

set of de facto standard benchmarks such as the 001,

HyperModel, ACOB, and 007 benchmarks receiving

more and more attention and acceptance. It is hence

the intent of this paper to provide an elaborate

version of analysis of these benchmarks and to give

a systematic comparison of these standards with a

multi-set of comparison criteria. Through the

comparison and contrast, we point out the essence of

features of a desirable database benchmark.

1. Introduction

A benchmark is a standard by which something

can be measured or judged. A database benchmark

is defined as a standard set of executable instructions

which are used to measure and compare the relative

and quantitative performance of two or more database

systems through the execution of controlled

experiments. Benchmarking is therefore a process of

evaluating different database software systems on the

same or different hardware platforms. Each

experiment is made up of two kinds of variables.
One is the set of independent variables which will

affect the performance of database systems and are
1060-3425/98
called the experimental factors. The other is the set

of dependent variables which represent the

quantitative measurements collected from the

benchmarking process. They are called the

performance metrics. Common performance metrics

include the throughput metric which is the ratio of

work volume over certain time period and the

response time metric which is the ratio of time spent

over certain work volume. Benchmark results depend

on the workload, specific application requirements,

and system design and implementation. A workload

is the amount of work assigned to or performed by a

worker or unit of workers in a given time period.

The workload of a database benchmark is the amount

of work assigned to or performed by a database

system in a given period of time. The scope and

scale of benchmark hence rely on the workload

defined

Current database benchmarks such as the

Wisconsin, AS3AP, TPC-C, TPC-D, and TPC-E

benchmarks are used to measure the performance of

the relational database management systems

(RDBMS). These benchmarks cannot model the

features and functions of the object-oriented database

management systems (OODBMS). There is a new

set of de facto standard benchmarks which are

designed to measure the functionality and

performance of 00 DBMS. These methods have been

used in academia and industry and been received as

more 00DBMS are installed. They are used to study

the quantum improvement of 00DBMS performance.

These standard benchmarks are the 001,

HyperModel, ACOB, and 007 benchmarks.

In this paper, we describe each of the

benchmarks and compare their features. The

objective is to give us an opportunity to understand

the set of tests and controls a benchmark should have

to measure against OODBMS. We compare and

contrast these methods to show the movement and

improvement of 00DBMS benchmarks. A multi-set

of comparison criteria are used to distinguish each of

the benchmarks. These criteria relate to the

experimental nature of a database benchmark. One

set of criteria is based on the performance metric,

another set on the experimental factors, and the other

on the control characteristics. The paper is organized

into four sections. The first section is the

introduction. The second section details each of the

database benchmarks. The third section gives the
comparison and discussion. The fourth section

concludes the paper.
$10.00 (c) 1998 IEEE

2. 00DBMS Benchmark Methods

2.1 HyperModel Benchmark

The HyperModel benchmark described in [1]

is an early OODBMS benchmark method which is

designed to test the hypertext and hyperlink

applications. A hypertext is a graph of nodes and

links to be traversed and retrieved. The HyperModel

benchmark extends the graph and adds new

relationships between nodes, The benchmark

database is a graph of interconnected nodes which are

text nodes or form nodes. The new relationships

between nodes are the parent-child relationship, refer-

to and refer-from relationship, and partof relationship

between nodes which are considered as one

hierarchical (1 :N) relationship and two network

(M:N) relationships. The database begins with the

root node and forms a tree with a five-way fanout

which gives k-1 levels of non-leaf nodes plus a level

of leaf nodes as shown in Figure 1.
1060-3425/98 $10.0
igure 1: The HyperModeI benchmark
database
The HyperModel benchmark consist of six

types of tests. The first group measures the single

object lookup response time. The second group tests

objects with range lookup. The third group measures

the response time of the lookup over the new

relationships. The fourth group uses indices to test

the speed when traversing the three relationships.

The fifth group is a sequential scan of the entire

object hierarchy. The last group measures the
response time of the closure lookup with different

node relationships. Each of the closure operations

performs a reachability traversal, starting at a

randomly chosen node at level three of the 1:N

hierarchy. These tests are stated in Table 1.
2.2 001 Benchmark

The 001 benchmark described in [6] improves

upon the SUN benchmark specified in [17]. This

benchmark models the common requirements of

engineering applications. It defines the common

workload characteristic of computer-aided software

engineering (CASE) and computer-aided design

(CAD) applications. The benchmark assesses the

performance of OODBMS, RDBMS, network

database systems, and hierarchic database systems.

The 001 benchmark database is based upon part

objects and connections between them. Each part has
exactly three out-going (to) connections to other part

objects plus a variable number of incoming (from)
connections. The database size can range from 4 MB

(small), 40 MB (large, and 400 MB (huge). Table 2

gives the table fields.
2.3 ACOB Benchmark

The ACOB (Altair Complex Object

Benchmark) is a study of three workstation-server or

client-server OODBMS architectures described in [8].

These architectures ar the object-server, page-server,

and file-server systems. Object-server system

transfers data in the unit of object, page-server in the

unit of page, and file-server in the unit of file. The

benchmark is designed to understand the system

behavior of each architecture in the execution of the

object operations. They found that advantages and

disadvantages exist in these architectures. In short,

when the size of main memory and the buffer space

increase, the system performance of the page-server

and file-server systems outperform the object-server

system due to the higher hit rate on the cached data

and the successful swizzling scheme, otherwise,

object-server system does better in concurrency

control and recovery. Like the HyperModel

benchmark, the ACOB database imitates the hypertext

database and has complex objects in the tree structure

as shown in Figure 2. The ACOB tests include (1)

sequential scan of objects, (2) random reads, and (3)

random updates.
0 (c) 1998 IEEE

Table 1: The HyperModel benchmark tests

HyperModel Tests Test Description

Name Lookup Operations namelookupo, nameoidlookupo

Range Lookup Operations rangelookuphundredo, rangelookupmilliono

Group Lookup Operations grouplookupino, grouplookupmno,

grouplookupmnatto

Reference Lookup Operations reflookupino, reflookupmno, reflookmnatto

Sequential Scan seqscano

Course Traversal Operations closureino, closuremno, closuremnatto,

closureinattsumo, closureinattseto, closureinpredo,

closuremnattlinksumo
rable 2: The 001 Benchmark Database

record (id int; type char[10]; x, y int; build date)

record (from part-id; to part-id; type char[10]; length int)
I able 3: (he 001 Benchmark i ests

101 Tests Test Description

.ookup Generate 1000 random part id’s and fetch the

corresponding parts from the database. For each part,

call a null procedure written in any host programming

language, passing the x, y position and type of the put.

h-aversal Find all parts connected to randomly selected part, or

to a part connected to it, and so on, up to seven hops.

For each part, call a null programming language

procedure with the value of the x and y fields and the

part type. Also, measure time for reverse traversal,

swapping from to to direction to compare the results

obtained.

nsert Enter 100 parts and three connections from each to

other randomly selected parts. Time must be included

to update indices or other access structures used in the

execution of Lookup and Traversal. Call a null

programming language procedure to obtain the x, y

position for each insert. Commit the changes to the

disk.
1SSRECORD HEADER I KEY: LEFT CRILD I RIGHT CHILII I DUMMY STRING

m
LEVEL i LEVEL 1

\ \

LEVEL 7, LEVEL 2 LEVEL 2 LEVEL 2

~igure 2: The ACOB benchmark database
1060-3425/98 $10.00 (c) 1998 IEEE

2.3 ACOB Benchmark

The ACOB (Altair Complex Object
Benchmark) is a study of three workstation-

server or client-server OODBMS architectures

described in [8]. These architectures ar the

object-server, page-server, and file-server

systems, Object-server system transfers data in

the unit of object, page-server in the unit of

page, and file-server in the unit of file. The

benchmark is designed to understand the system

behavior of each architecture in the execution of

the object operations. They found that
advantages and disadvantages exist in these

architectures. In short, when the size of main

memory and the buffer space increase, the

system performance of the page-server and file-

server systems outperform the object-server

system due to the higher hit rate on the cached

data and the successful swizzling scheme,

otherwise, object-server system does better in

concurrency control and recovery. Like the

HyperModel benchmark, the ACOB database

imitates the hypertext database and has complex

objects in the tree structure as shown in Figure 2.

The ACOB tests include (1) sequential scan of

objects, (2) random reads, and (3) random

updates.

1060-3425/98 $1
d

Dvmmt

igure 3: The 007 Benchmark database
schema
2.4 007 Benchmark

The 007 benchmark described in [4] is

the key standard OODBMS benchmark method

which is considered an important extension of

the 001 benchmark where the benchmark

database and test sets are expanded to include

more complex objects and operations. The

complex objects refer to the atomic parts,

composite parts, base assembly, and complex

assembly in the 007 benchmark. The complex

operations consist of the raw and sparse

traversals, make and build tests, bulk updates,

and ad-hoc joins. The main performance metric

is still the elapsed time. The set of experimental

factors are broader and include the factors of the

types of complex objects, the size of complex

objects, the relationships of complex objects, the

types of tests, the complexity of tests, the dense

and sparse traversals, single and range lookups,

bulk and indexed updates, ad-hoc joins, bulk
insertions and deletions, and the number of users.
The 007 benchmark database imitates the

CASE/CAD database which centers on the

composite part that can be a procedure in a

software program. Each composite part

comprises a number of atomic parts which

connects to each other with the fanout number of

three, six, or nine links. Assembly hierarchy is

created to give levels of object classes to

traverse. Composite parts form the first level of

complex objects in the assembly hierarchy which

are called the base assemblies. Base assemblies,

in turn, form the complex assemblies for the

second level and the other higher levels of

objects in the hierarchy. Due to the fanout size

of the connections between the atomic parts and

the number of atomic parts in a composite part,

the 007 benchmark database can range from

small, medium, and large database bigger than

that in the 001 benchmark. Table 4 gives the

007 benchmark database parameters and Figure

3 shows the entity relationship diagram (ERD)

of the 007 benchmark database. The 007

benchmark tests have the raw traversal of the

atomic parts for each composite part, the sparse

traversal of the root of each composite parts, the

cached data traversal, the updates in the

complete and sparse traversals, the updates on

the indexed and unindexed object fields, exact-

match lookups, range lookups, manual searches,

bulk insertion and deletion. Table 5 is the list of

the 007 benchmark tests.
0.00 (c) 1998 IEEE

Table 4: The 007 Benchmark database parameters

Parameter Small Medium Large

NumAtomicPerComp 20 200 200

NumConnPerAtomic 3,6,9 3,6,9 3,6,9

DocumentSize 2000 20000 20000

ManualSize lOOK lM lM

NumCompPerModule 500 500 500

NumAssmPerAssm 3 3 3

NumAssmLevels 7 7 7

NumCompPerAssm 3 3 3

NumModules 1 1 10

Table 5: The 007 benchmark tests

007 Tests Test Description

Raw Traversal Speed: Traverse the assembly As each base assembly is visited, visit each of its

hierarchy. referenced unshared composite parts. As each

composite part is visited, perform a depth first search

on the graph of atomic parts. Return a count of the

number of atomic parts visited when done.

Sparse Traversal Speed: Traverse the assembly As each base assembly is visited, visit each of its

hierarchy. referenced unshared composite parts. As each

composite part is visited, visit the root atomic part.

Return a count of the number of atomic parts visited

when done.

Traversal with Update: Repeat raw traversal speed There are three types of update patterns in this

test, but update objects during the traversal. traversal. In each, a single update to an atomic part

consists of swapping its (x,y) attributes.

Traversal with Indexed Field Update: Repeat sparse The specific update is to increment the date if it is

traversal speed test, except that now the update is on odd, and decrement the date if it is even.

the date field, which is indexed.

Operations on Manual Scan the manual object, counting the number of

occurrences of the character “I”.

Operations on Manual Checks to see if the first and last character in the

manual object are the same.

Cached Update Repeat raw traversal speed test and traversal with

update test in a single transaction. Report the total

time minus the raw traversal speed test hot time and

minus the raw traversal speed cold time.
1060-3425/98 $10.00 (c) 1998 IEEE

007 Queries Query Description

Exact Match Lookup Generate 10 random atomic part id’s, for each part id

generated, lookup the atomic part with that id.

Return the number of atomic parts processed when

done.

1% Range Query Choose a range for dates that will contain the last 1%

of the dates found in the database’s atomic parts.

Retrieve the atomic parts that satisfy this range

predicate.

10% Range Query Choose a range for dates that will contain the last

10% of the dates found in the database’s atomic part.

Retrieve the atomic parts that satisfy this range

predicate.

Scan Scan all atomic parts.

Path Lookup Generate 100 random document titles. For each title

generated, find all base assemblies that use the

composite part corresponding to the document. Also,

count the total number of base assemblies that

qualify.

Single-Level Make Find all base assemblies that use a composite part

with a build date later than the build date of the base

assembly. Also report the number of qualifying base

assemblies found.

Ad-Hoc Join Find all pairs of documents and atomic parts where

the document id in the atomic part matches the id of

the document. Also return a count of the number of

such pairs encountered.

Insert Create five new composite parts, which includes

creating a number of new atomic parts (100 in the

small configuration, 1000 in the large, and five new

document objects) and insert them into the database

by installing references to these composite parts into

10 randomly chosen base assembly objects.

Delete Delete the five newly created composite parts and all

of their associated atomic parts and document objects.
1060-3425/98 $10.00 (c) 1998 IEEE

3. A Comparative Study

A comparative study is conducted to

compare and contrast these standard benchmark

methods. The study is based on a multi-set of

comparison criteria. One set is the performance

metrics the benchmark uses. Another set

comprises the experimental factors the method

includes. The other set cover the control

characteristics the method has.

On the performance metric, the query

elapsed time is used in each of the four

benchmarks. On the experimental factors, we

classify them into the factors of benchmark

database and the factors of object operations.

Database schema include the definitions of object

types (simple object, complex object, and object

hierarchy), object sizes, index types, and object

relationships (direct relationship, hierarchical

relationship, and network relationship). Object

operations consist of dense traversal, sparse

traversal, exact-match lookup, range lookup, join,

character search, string search, bulk update, bulk

insertion, and bulk deletion, Control

characteristics mean the number of users and the

system architectures (standalone and client/server

settings) the benchmark measures on. We mark

under the benchmark method for each criterion

that the method qualifies in Table 6.
In essence, the 007 benchmark ranks high as the

more comprehensive and complete benchmark

method in our study. The 001 benchmark is

known for the measures of the simple

navigational and update tasks. Though the

benchmark covers both OODBMS and RDBMS,

the benchmark does not support complex object

definition and semantic traversals. Many more

complex and extensive tests are found in the

HyperModel benchmark and the 007

benchmark. A minor point is the definition of

object locality which is considered to rough and

may mislead the performance readings. The

HyperModel benchmark gives more than 17 tests

to measure the system performance. Though it

is extensive, the method is difficult to implement.

There is a doubt if the additional tests give

insights of the system performance to be worthy

of the efforts. However, to test the three types

of object relationships are inventive in

performance evaluation. This gives the insight

of performance of closure operations. The
1060-3425/98 $
ACOB benchmark distinguishes itself from the

others by its contribution to the analysis of three

different clientlserver architecture for OODBMS.

The benchmark database and object operations

do not give inventive designs. But the test

results give an in-depth understanding of the

advantages and disadvantages of each of the

client/server structures.

4. summary

In this paper, we have compared four de

facto standard 00DBMS benchmark methods.

We use the essence of the design of a database

benchmark as the comparison base, A

benchmark is executed as a series of controlled

experiments. Each experiment is formed by two

sets of variables. They are the set of

independent variables and the set of dependent

variables. These give a natural distinguishing

base for the standard benchmarks. We add a

new dimension of distinguishment of control

characteristics for benchmarking. In the

execution of benchmark, the duration,

replication, input, steady state, single user versus

multi-user mode give the common distinguishing

points. Our future research is based on this

study to further the essence of these benchmarks

and develop a open-end custom object-oriented

database benchmark.

References

[1]

[2]

[3]

[4]

[5]

Ahrens, J., and Song, I. Y., “EER Data
Modeling Aids for Novice DatabaseDesigner,”
Proceedings of the 2nd International
Conference of the Information Resources
Management, Memphis, TN, May 19-22,1991,
pp. 99-114.
Anderson, T. L., Berre, A. J., Mallison, M.,
Porter, H. H., and Schneider, B., “The

HyperModel Benchmark,” Proceedings of the

Second International Conference on Extending

Database Technology, March, 1990, pp. 317-

331.

Astrahan, M., “System R: Relational Approach

to Database Management,” ACM Transactions

on Database Systems, 1(1), 1976.

Bitton, D. and C. Turbyfill, “Design and

Analysis of Multiuser Benchmarks for

Database System,” Proceedings of the HICSS-

18 Conference, 1985.

Boral, H. and D. J. DeWitt, “A Methodology

for Database System Performance Evaluation,”
10.00 (c) 1998 IEEE

.

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

Proceedings of the 1984 ACM SIGMOD

International Conference on Management of

Data, May 1984, pp. 176-185.

Carey, M. J., D. J. DeWitt, and J, F. Naughton,

“The 007 Benchmark,” Proceedings of the

1993 ACM SIGMOD International Conference

on Management of Data, May 1993, pp. 12-21.

Carey, M., DeWitt, D., Kant, C., Naughton, J.,

“A Status Report on the 007 00DBMS

Benchmarking Effort,” In Proceedings of the

ACM 00PSLA Conference, pp 414-426,

Portland, OR, Oct. 1994.

Cattell, R. G. G. and J. Skeen, “Engineering

Database Benchmark,” ACM Transactions on

Database Systems, 17(1): 1-31, March 1992.

Cattell, R. G. G., “An Engineering Database

Benchmark,” appears in The Benchmark

Handbook for Database and Transaction

Processing Systems, Ed. by Jim Gray, Morgan

Kaufmann, Inc., 1993, pp. 397-434.

Chen, P. P., “The Entity Relationship Model -

Toward a Unified View of Data,” ACM

Transactions on Database Systems, 1:1, 1976,

pp. 9-36.

DeWitt, D. J., S. Ghandeharizadeh, and D.

Schneider, “A Performance Analysis of the

Gamma Database Machine,” Proceedings of

the 1988 ACM SIGMOD International

Conference on Management of Data, May

1988, pp. 350-360.

DeWitt, D. J., P. Futtersack, D. Maier, and F.

Velez, “A Study of Three Alternative

Workstation Server Architectures for Object-

Oriented Database Systems,” Proceedings of

the 16th International Conference on Very

Large Data Bases, August 1990, pp. 107-121.

Duhl, J., Damon, C., “A Performance

Comparison of Object and Relational

Databases Using the Sun Benchmark,” In

Proceedings of the ACM OOPSLA

Conference, San Diego, CA, Sept. 1988.

Gray, J. N. and F. Putzolu, “The Five Minute

Rule for Trading Memory for Disk Accesses

and the 10 Byte Rule for Trading Memory for

CPU Time,” Proceedings of the 1987 ACM

SIGMOD International Conference on

Management of Data, May 1987, pp. 395-398.

Gray, J. N., The Benchmark Handbook for

Database and Transaction Processing

Systems,Ed., Morgan Kaufmann, Inc., 1993.

Gray, J. N., P. Sundaresan, S. Englert, K.

Baclawski, and P. J. Weinberger, “Quickly

Generating Billion-Record Synthetic

Databases,” Proceedings of the 1994 ACM

SIGMOD International Conference on

Management of Data, May 1994, pp. 243-252.
1060-3425/98 $
[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

Hagmann, R. and D. Ferrari, “Performance

Analysis of Several Back-End Database

Architectures,” ACM Transactions on

Database Systems, 1l(l): 1-26, March 1986.

Hawthorn, P. B. and D. J. DeWitt,

“Performance Analysis of Alternative Database

Machine Architectures,” IEEE Transactions on

Software Engineering, SE-8(l): 61-75, January

1982.

Heidelberger, P. and S. S. Lavenberg,

“Computer Performance Evaluation

Methodology,” IEEE Transactions on

Computers, C-33(12): 1195-1220, December

1984.

Leutenegger, S. T., and D. Dias, “A Modeling

Study of the TPC-C Benchmark,” Proceedings

of the 1993 ACM SIGMOD International

Conference on Management of Data, May

1993, pp. 22-31.

Park, S., Miller, K , “Random Number

Generators: Good Ones Are Hard to Find.

Communications of ACM, 31(10), 1988.

Rabb, F., “Overview of the TPC Benchmark

C: A Complex OLTP Benchmark,” appears in

The Benchmark Handbook for Database and

Transaction Processing Systems, Ed. by Jim

Gray, Morgan Kaufmann, Inc., 1993, pp. 131-

144.

Rubenstein, W. B., M. S. Kubicar, and R. G.

G. Cattell, “Benchmarking Simple Database

Operations,” Proceedings of the 1987 ACM

SIGMOD International Conference on

Management of Data, May 1987, pp. 387-394.

Song, X. and L. J. Osterweil, “Experience with

an Approach to Comparing Software Design

Methodologies,” IEEE Transactions on

Software Engineering, SE-20(5): 364-384,

May 1994.

Stonebraker, M., J. Frew, K. Gardels, and J.

Meredith, “The Sequoia 2000 Storage

Benchmark,” Proceedings of the 1993 ACM

SIGMOD International Conference on

Management of Data, May 1993, pp. 2-11.

Teorey, T. J., Yang, D., and Fry, J. P., “A

Logical Design Methodology for Relational

Databases Using the Extended Entity

Relationship Model,” Computing Surveys,

18:12, June 1986, pp. 197-222.

Turbyfill, C., C. Orji, and D. Bitton, “AS3AP

- A Comparative Relational Database

Benchmark,” Proceedings of the IEEE

COMPCON, 1989, pp. 560-564.

White, S., DeWitt, D., “A Performance Study

of Alternative Object Faulting and Pointer

Swizzling Strategies,” In Proceedings of

VLDB Conference, Vancouver, Aug. 1992.
10.00 (c) 1998 IEEE

Table 6: The OODBMS benchmark methods comparison

~omparison Criteria 001

‘performance Metric: x
ilapsed Time

ixperimen simple x
d Factors: object

)atabase complex

chema object

obJect

hierarchy

index

direct x
relationshi

P
hierarchic x
1

relationshi

P
network

relationshi

P
;xperimen dense x
d Factors: traversal

)bject sparse
)perations traversal

exact- X
match

lookup

range

lookup

character

search

string

search

Jom

bulk

update

bulk

insertion

bulk

deletion

;ontrol number of

;haracteris users

c chentiserve

r

architecture<

1

EIyperModel ACOB 007

x x x

I I

K x x I

A A A

x x x

K x x

1 N N
1060-3425/98 $10.00 (c) 1998 IEEE

