
CS-457
Assignment 2 Tutorial

Christos K. Panorios, csdp1318

Assignment 2
● In this assignment you are asked to implement 3 ciphers and one

decryptor for part A, one program to crack MD5 hashes for part B,

and one simple RSA implementation for part C.

● For part A (ciphers), you should create 2 files and a test file (demo):
○ cs457_crypto.h, containing function declarations and
○ cs457_crypto.c, containing the implementation of the functions

● For parts B and C you should create separate files containing your
implementation.

Part A
Cryptography Algorithms

One-time pad
● It is a cryptographic cipher

● It uses a predetermined random shared key that is at least as the size of the plaintext

● The algorithm XORs each byte of the plaintext with the corresponding key byte

● Use /dev/urandom (Linux based system) to generate a random key

● Encryption is done by XORing the plaintext with the key and decryption by XORing the

ciphertext with the key

● Store the random generated key to use it for the decryption process

● Assume that plaintext consists only of letters or numbers

● Implement the functions:

○ one_time_pad_encr

○ one_time_pad_decr

● These functions take as arguments the plaintext or ciphertext, its size, and the random

generated key, and return the result of the operation

One-time pad encryption

Plaintext ThisIsACat

Key randombyte

Output (T⊕r)(h⊕a)(i⊕n)(s⊕d)(I⊕o)(s⊕m)(A⊕b)(C⊕y)(a⊕t)(t⊕e)=

Hex 26 09 07 17 26 1E 23 3A 15 11

Affine Cipher

● It is a cryptographic cipher that uses mathematical functions for encryption and

decryption to map letters to their equivalent counterparts.

● Encryption: (3x + 8) mod 26

● Decryption: 9(y - 8) mod 26

● Assume that the plaintext consists only of letters and/or spaces, and the program should

handle letters in both upper and lower cases.

● Implement the functions:

○ affine_encr

○ affine_decr

● The functions take as arguments the plaintext / ciphertext and return the result

accordingly.

Affine Cipher encryption
Map each letter of the alphabet to its corresponding numeric value.

● I

A B C D E F G H I J K L M

0 1 2 3 4 5 6 7 8 9 10 11 12

N O P Q R S T U V W X Y Z

13 14 15 16 17 18 19 20 21 22 23 24 25

Affine Cipher encryption

● I

PLAINTEXT A F F I N E C I P H E R

x 0 5 5 8 13 4 2 8 15 7 4 17

(3x+8) 8 23 23 32 47 20 14 32 53 28 20 59

(3x+8)mod26 8 23 23 6 21 20 14 6 1 2 20 7

ciphertext I X X G V U O G B C U H

Substitution algorithm decryptor
● Write a decryptor for the simple substitution algorithm, that decrypts a ciphertext without

knowing the key.

○ Usage of the frequencies of characters in the ciphertext and the English Dictionary

(https://github.com/dwyl/english-words) to detect word patterns (small recurring

words such as “in”, “the” etc.)

○ Each iteration:

■ Takes as input a mapping (cipher alphabet -> alphabet) and prints the

current plaintext

■ Takes as input a partially decrypted word and prints the matching words

● The case (upper/lower) of each letter of the ciphertext remains the same in the plaintext.

○ To make the process easier, you can convert the ciphertext to

uppercase/lowercase and restore the case in the generated plaintext.

An Example

Ciphertext: Zrwu wu i uwqflc ctiqflc hap zrc zezapwil za urao zrc euimc ah zrwu ilmapwzrq.

Detect small words that may be common from the frequency of the English Dictionary and the

ciphertext:

● “wu” has multiple occurrences

● can be the word “an”

● replace w with a and u with n

● repeat this process until the original message can be retrieved

Substitution algorithm decryptor

● a → w

a* a* * a* ******* *** *** *****a** ** **** *** ***** ** **a* *****a***.

● n → u

an an * na* ******* *** *** *****a** ** n*** *** *n*** ** **an *****a***.

Substitution algorithm decryptor

Scytale cipher
● It is a transposition cipher that involves a cylinder with a strip of parchment wound

around it, containing the written message.

● The recipient utilizes a rod of the same diameter on which the parchment is wrapped, to

read the message.

● It is essential to store the number of rods in memory for both encryption and decryption

processes.

● Implement the functions:

○ scytale_encr

○ scytale_decr

● The functions take as arguments the plaintext / ciphertext, the diameter of the rod and

return the result of the operation.

Scytale cipher Encryption
● Suppose we have 5 rods (number of columns).

● Initial text: “I am hurt very badly help”

● Plaintext after omitting the spaces and punctuation:

○ “Iamhurtverybadlyhelp”

● Ciphertext after unwinding across the rows:

○ “Iryyatbhmvaehedlurlp”

Scytale cipher Decryption
● Suppose we have 5 rods (number of columns).

● Ciphertext after unwinding across the rows:

○ “Iryyatbhmvaehedlurlp

● Every fourth letter will appear on the same line

● Plaintext after re-insertion of spaces:

○ “I am hurt very badly help”

Part Β
MD5 Hashing

MD5 Hashing
● MD5 stands for Message Digest 5.

● It produces a 128-bit (32-character hexadecimal) hash.

● Properties:

○ Deterministic: same input → same output.

○ Fast to compute.

○ Irreversible: it’s hard to find the original input from the hash.

● Used for:

○ Password storage (historically, now considered insecure)

○ Integrity checking (e.g., file downloads)

● Small Visual Idea:

○ Input "hello" ➔ MD5 ➔ 5d41402abc4b2a76b9719d911017c592

MD5 Hashing
How to solve the exercise

● You have three unknown passwords stored as MD5 hashes.

● Your task:

○ Dictionary attack: Try common passwords from rockyou.txt (click here to download).

○ Brute-force attack: Generate all possible passwords (a-z, 0-9, up to 8 characters).

○ Compare Execution Times

■ (Hint) For large passwords, if you think that brute-forcing takes forever, it’s normal.

■ You can stop it manually and write it in the report

● How fast is dictionary attack vs. brute-force?

● Tips:

○ Use OpenSSL library to compute MD5 hashes.

● Make functions clean and reuse hashing code.

https://github.com/brannondorsey/naive-hashcat/releases/download/data/rockyou.txt

Part C
RSA Implementation

RSA Implementation
● Asymmetric Encryption:

○ Two keys: Public key (encrypt) and Private key (decrypt).

● Main Idea:

○ Pick two large prime numbers p and q.

○ Compute n = p × q and

φ(n) = (p-1)(q-1).

○ Choose e such that gcd(e, φ) = 1.

■ Common choices for e include 3,17,65537
○ Compute d: the modular inverse of e mod φ(n), such that:

(d x e) mod φ(n) == 1
● Encryption: c = m^e mod n

● Decryption: m = c^d mod n

Notes

Notes

● This year assignment 1 is 15% of final grade

● Your final implementation should be one executable file per part

● Follow the execution instructions

○ e.g. CLI arguments, arguments order

● Allowed to use mentioned libraries

○ To use the openssl library you have to use the flag -lcrypto when

compiling!

Turnin

● What to submit:

a. Source files

b. Test programs

c. Makefile

d. README

● turnin assignment_1@hy457 directory_name

