
HY-457: Assignment 2

Implementation of a Ransomware
Protection Software Suite

Papadogiannakis Manos
papamano@csd.uoc.gr

CS-457: Introduction to Information Security Systems
Computer Science Department

University of Crete

Outline

0. Motivating Scenario
1. Scanning for Infected Files
2. Detecting Potential Harmful Network Traffic
3. Securing Valuable Files
4. Protecting from Unauthorized Access
5. Notes

2

0. Motivation

3

Motivation

4

Motivation

5

Hackers Behind the Change Healthcare Ransomware
Attack Just Received a $22 Million Payment

https://www.wired.com/story/alphv-change-healthcare-ra
nsomware-payment/

Windows includes built-in ransomware protection. Here’s
how to turn it on

https://www.pcworld.com/article/2245853/how-to-turn-on
-microsoft-windows-ransomware-protection.html

The transaction, visible on
Bitcoin's blockchain,

suggests the victim of one
of the worst ransomware
attacks in years may have
paid a very large ransom.

https://www.wired.com/story/alphv-change-healthcare-ransomware-payment/
https://www.wired.com/story/alphv-change-healthcare-ransomware-payment/
https://www.pcworld.com/article/2245853/how-to-turn-on-microsoft-windows-ransomware-protection.html
https://www.pcworld.com/article/2245853/how-to-turn-on-microsoft-windows-ransomware-protection.html

Motivation

● Hypothetical attack at a corporate
infrastructure

● Discover files already infected with malware

● Discover ransomware that locks files
6

1. Scanning for Infected Files

7

Infected Files

1. Some files have been infected by virus

2. Some files are malicious shared libraries

3. Some files are used by the attackers as utilities

8

Implementation

● Goal: Find these files

● Search for:
a. File Signatures (i.e. specific files)
b. Virus Signature (i.e. bytes inside files)
c. Bitcoin Address (i.e. text inside files)

9

Running

● Follow execution instructions:
$./antivirus scan /home/ceo/Downloads

● Need to handle all files in the given directory

● What if files are binary?
○ Still need to search for strings inside the files

10

Subdirectories

● Need to parse subdirectories as well
○ Sounds like recursion!

11

Hash Generators

● Need to compute the hash value of all files
○ Acts like a fingerprint or file signature

● Allowed to use OpenSSL
○ No need to reinvent the wheel

● Read the docs!
○ MD5, SHA256

12

Needle in Haystack

● How do I search for specific bytes inside the file?
○ Simply go over the file’s content byte-by-byte

● How do I search for strings inside the file?
○ Naive approach would be strstr

● What about binary files?
○ Can extract sequences of printable characters

13

2. Detecting Potential Harmful Network Traffic

14

Network Traffic

● Programs connect to the Web/Internet and
exchange data

● Often the addresses are hardcoded

● We can extract them and know who an
application talks to

15

Hardcoded Addresses

16

Implementation

● Need to examine content of files
○ What if they are binary?
○ Not allowed to use the strings utility tool!

● Need to extract all strings from file
○ String == Sequence of printable characters
○ If something is 3 chars long, can it be an address?

17

Discovering Addresses

● From previous step we have collected an array of strings
○ Are they all addresses?

● Use regular expressions
○ Free to use any you think is good enough
○ #include <regex.h>
○ $ man -S3 regex

● Might need to play around a bit
○ https://regexr.com/

18

https://regexr.com/

Malicious Domains

● We’ve now formed a list of domains
○ Are they all malicious?

● How to tell if a domain is “bad”?
○ Cloudflare's Malware and Adult Content Filter

● Free DNS resolver
○ Automatically filters out bad sites
○ “Malware Blocking Only” or “Malware and Adult Content”

19

Sending Requests

● How to use?
○ Send a simple request and handle response
○ No need to parse JSON response

● Use libcurl for sending requests programmatically
○ C API
○ Super powerful but you’ll need ~10 LOC

● Flags you might need:
○ CURLOPT_URL
○ CURLOPT_HTTPHEADER

20

○ CURLOPT_WRITEFUNCTION
○ CURLOPT_WRITEDATA

$ curl -H "accept: application/dns-json"
‘https://family.cloudflare-dns.com/dns-query?name=biawwer.com’

{
 ...
 “Answer”: [
 {
 “name”: “biawwer.com”

 “type”: 1,
 “TTL”: 60,
 “data”: “0.0.0.0”
...

 “Comment”: [

 “EDE(16) Censored”

Example

21

$ curl -H "accept: application/dns-json"
‘https://1.1.1.1/dns-query?name=cretalive.gr’

{
 “Status”: 0,
 “TC”: false,
 ...
 “Answer”: [
 {
 “name”: “cretalive.gr”

 “type”: 1,
 “TTL”: 295,
 “data”: “104.21.54.106”
...

Cloudflare Endpoints

● Various endpoints available

● Default DNS resolver
○ https://cloudflare-dns.com/dns-query?name=example.com
○ https://1.1.1.1/dns-query?name=example.com

● Block malware
○ https://security.cloudflare-dns.com/dns-query?name=example.com
○ https://1.1.1.2/dns-query?name=example.com

● Block malware and adult content
○ https://family.cloudflare-dns.com/dns-query?name=example.com
○ https://1.1.1.3/dns-query?name=example.com

22

Execution

$./antivirus scan /home/ceo/Downloads
[INFO] [9046] [14-Mar-24 13:53:43] Application Started
[INFO] [9046] [14-Mar-24 13:53:43] Scanning directory /home/ceo/
[INFO] [9046] [14-Mar-24 13:53:45] Found 18312 files
[INFO] [9046] [14-Mar-24 13:53:45] Searching…
[INFO] [9046] [14-Mar-24 13:53:55] Operation finished
[INFO] [9046] [14-Mar-24 13:53:55] Processed 18312 files.

| FILE | PATH | DOMAIN | EXECUTABLE | RESULT |
===
foo.exe	/home/ceo/docs/secret	www.google.com	True	Safe
bar.txt	/home/ceo/hy457grade/	alphaxiom.com	False	Malware
libd.so	/home/ceo/Desktop/	https://bbc.com	False	Safe
wget.sh	/home/ceo/aws/plugin	biawwer.com	True	Malware

23

3. Securing Valuable Files

24

Motivation

● Need to create a “safe” where we can place important
files

● A directory that will be
constantly monitored

● When a ransomware tries to
lock our files we will be notified
○ Monitor filesystem events

25

Implementation

● Search for specific behavior
a. File x is opened
b. File x.locked is created
c. File x.locked is stored
d. File x is deleted

● Monitor filesystem events using inotify
○ API that can monitor specific files or entire directories

● How to test?
○ Open another terminal and create/modify/delete
○ Create your own dummy ransomware

26

Example

27

$ antivirus monitor /root/vault/

[INFO] [9046] [14-Mar-24 13:53:43] Application Started
[INFO] [9046] [14-Mar-24 13:53:43] Monitoring directory /root/vault/
[INFO] [9046] [14-Mar-24 13:53:43] Waiting for events...
File ‘info.txt’ was created
File ‘info.txt’ was opened
File ‘info.txt’ that was not opened for writing was closed
File ‘passwords.txt’ was opened
File ‘passwords.txt’ was accessed
File ‘.tmpSjxiska.dat’ was deleted from watched directory
File ‘passwords.txt.locked’ was created
File ‘passwords.txt.locked’ was modified
File ‘passwords.txt.locked’ that was opened for writing was closed
File ‘passwords.txt’ was deleted from watched directory
[WARN] Ransomware attack detected on file passwords.txt
File ‘.tmpSIfwiunew.dat’ was created
File ‘studentGrades.csv’ was opened

inotify

● An API that monitors filesystem events

● Can monitor individual files or entire directories

● Use can specify which events to monitor
○ e.g. file was accessed
○ directory deleted

28

inotify

● Event-based
○ Need to specify which events to monitor
○ Implemented as bit masks

● Need to handle events
○ Use poll() function and while(1) loop
○ If event is X …

if event is Y …
if event is Z …

● Need to remember what has already happened
○ Need to store previous events

29

List of Events

30

● Need to store previous
events
○ Can convert

them to something
easier to use

○ E.g. array of strings
or array of custom
structs

C Standard Library

31

4. Protecting From Unauthorized Access

32

Motivation

● Place important documents inside a “vault”
○ Files inside the vault are encrypted and safe

● No single individual can open the “vault” on
their own

33

Secret Sharing System

● Implement a secret sharing mechanism
○ In this case the secret would be the encryption key
○ No need to implement encryption

● Distribute a secret among a group so that the
secret cannot be revealed unless X people are
present

34

Overview

● Assume there are three friends: Alice, Bob and Carol

● The three people will share a secret number “c” by
each taking a piece of the number

● Only when all three pieces are presented then all of
them are able to reconstruct the secret number “c”

35

Introduction

● How can we achieve this?
○ Let’s assume the secret we want to share is a Euclidean line

● How many lines are there?
○ Infinite

● What defines a line?
○ Two points
○ We need to know them to reconstruct the line

● Can one person on their own reconstruct the line?
36

https://en.wikipedia.org/wiki/Euclidean_plane

https://en.wikipedia.org/wiki/Euclidean_plane

Euclidean Plane

y = 3x + 3

37

Simple Example

● Let's assume that Alice and Bob want to share the secret
number 72
○ Since they are 2, the polynomial degree is 1

● They randomly choose “a” to be 14 and “b” is the secret
number
○ f(x) = a∙x + b = 14∙x + 72

● They calculate f(1) = 86 and f(2) = 100
○ Alice gets (1, 86)
○ Bob gets (2, 100)

38

Simple Example

● To reconstruct the secret, they present their
points and reconstruct the polynomial

86 = a + b a = 86 - b
100 = 2a + b 100 = 2(86 - b) + b 100 = 172 - 2b + b -72 = - b b = 72

39

Implementation

● Secret Sharing achieved by constructing the polynomial
f(x) = a∙x2 + b∙x + c

● Each person will take a point of the polynomial
○ Alice: (1, f(1))
○ Bob: (2, f(2))
○ Carol: (3, f(3))

● When all 3 points are presented, they reconstruct the
polynomial to retrieve secret number “c”

40

Implementation Details

● Using the slice option and a secret number the program generates
the 3 points
○ $./antivirus slice 9

> (1, 16), (2, 27), (3, 42)

● Using the unlock option and the 3 points, the program reconstructs
the secret number
○ $./antivirus unlock (1, 16), (2, 27), (3, 42)

> 9

● Generalize your solution for N friends.
○ When any three present their points they are able to reconstruct the secret

41

Implementation Details

● Allowed to look up how to solve system of linear equations
with three variables
○ Our focus is not maths ⇢ Cramer is your friend

● No need to create parser for unlock function
○ Use any format you like and assume the input will always be correct

● Feel free to generate random numbers any way you like
○ srand, rand
○ /dev/urandom

42

Advanced Example

● Select a secret shared number “c”
○ E.g. c is 9

● f(x) = 2∙x2 + 5∙x + 9 where a, b were randomly
generated

● When 3 shares (x1, x2, x3) are present:
○ f(x1) = a∙x1

2 + b∙x1 + c f(1) = 16 16 = a + b + c
(1)

○ f(x2) = a∙x2
2 + b∙x2 + c f(2) = 27 27 = 4∙a + 2∙b +c (2)

○ f(x3) = a*x3
2 + b∙x3 + c f(3) = 42 42 = 9∙a + 3∙b + c

(3) 43

Advanced Example

44

16 = a + b + c (1)
27 = 4∙a + 2∙b + c (2)
42 = 9∙a + 3∙b + c (3)

 42 = 9∙a + 3∙b + c
-3∙16 = 3∙a + 3∙b + 3∙c
 -6 = 6∙a + 0 - 2∙c ⇔ a = (2∙c -6)/6

16 = a + b + c (1)
27 = 4∙a + 2∙b +c (2)
42 = 9∙a + 3∙b + c (3)

 27 = 4*a + 2*b +c
-2*16 = 2*a + 2*b + 2*c
 -5 = 2*a - c ⇔ a = (c - 5)/2

(3) - 3∙(1)

(2) - 2∙(1)

Advanced Example

● We have computed that:
○ a = (2∙c -6)/6
○ a = (c - 5)/2

● (2∙c - 6)/6 = (c-5)/2 ⇔ c-5 = ⅔∙c - 2 ⇔ ⅓ c = 3 ⇔ c = 9

45

Notes

46

Notes

● Your final implementation should be a
single executable file
○ Many source code files

● Follow the execution instructions
○ e.g. CLI arguments, arguments order

● Allowed to use mentioned libraries
47

Optional Task

● There is an optional task
○ Bonus +1 point (maximum)

● Need to write a simple YARA rule for the
hypothetical attack

● Use a tool to generate test files based on YARA
rules

48

YARA Rule

rule silent_banker : banker
{
 meta:
 description = "This is just an example"
 threat_level = 3
 in_the_wild = true

 strings:
 $a = {6A 40 68 00 30 00 00 6A 14 8D 91}
 $b = {8D 4D B0 2B C1 83 C0 27 99 6A 4E 59 F7 F9}
 $c = "UVODFRYSIHLNWPEJXQZAKCBGMT"

 condition:

 $a or $b or $c

}

49

https://virustotal.github.io/yara/

This rule is telling
YARA that any file
containing one of
the three strings
must be reported
as silent_banker.

https://virustotal.github.io/yara/

Credit
Icons from FlatIcon, made by Freepik

Thank You!

papamano@csd.uoc.gr

Questions?

