
HY-457: Assignment 1

Implementation of a Software 
Security Suite

Papadogiannakis Manos
papamano@csd.uoc.gr

CS-457: Introduction to Information Security Systems
Computer Science Department

University of Crete

1



Outline

0. Motivation
1. Execution Monitoring
2. Network Traffic Analyzer
3. Secret Sharing System
4. Notes

2



Motivation

3



Motivation

4



Motivation

● Hypothetical attack at a corporate infrastructure

● Ransomware: encryption to hold a victim’s 
information at ransom
○ You need to pay to access your data

● Develop tools that will help study an attack
5



Execution Monitoring

6



Execution Monitoring

● Create a system that will monitor the behavior of an application
(i.e. executable)

● You get an executable, you run it and report what it did
○ The tracee will be executed!

● Need to:
○ Compute hash value
○ Extract strings
○ Monitor system calls
○ Create report with detailed information

● Running:
$ ./monitor application.out

7



Tracing

● Use ptrace() to monitor system calls

8



Tracing

● System calls:
○ Programmatic way to request a service from the operating system

● The tracee might be stopped at both the entry and the exit of 
system calls
○ Need to carefully count calls

● There are some system calls that are called when a program 
starts
○ Not a bug

9



Implementation Details

● Ptrace does not know system call symbolic names
○ Works with system call numbers

● Need to map names to numbers

● Important: System call numbers and their symbolic names 
may be different across architectures or kernel versions
○ Your implementation should be compatible with CSD workstations!

10



Implementation Details

● Deep inspection for 3 system calls
○ sendto()
○ read()
○ write()

● Read passed arguments
○ Read registers
○ Read memory content

● Not exhaustive tests. Don’t care of other ways one can open a file

Depends on architecture!

11



Implementation

● Need to examine content of files
○ What if they are binary?
○ Not allowed to use the strings utility tool! 

● Need to extract all strings from file
○ String == Sequence of printable characters

12



Hash Generators

● Need to compute the hash value of all files
○ Acts like a fingerprint or file signature

● Allowed to use OpenSSL
○ No need to reinvent the wheel

● Read the docs!
○ MD5, SHA256

13



Tracee

● You need to develop your own test applications

● You should submit enough tests to demonstrate the 
correct behavior of your system

● No need to create
complex applications
○ But you need to test with

a binary file

#!/bin/python3

import requests

with open("temp.txt", "w") as file:

   file.write("hy457")

requests.get(url="http://google.com" )

14



Example

$ ./monitor ./pha.out

[INFO] [20-Mar-25 13:53:43] Application Started with argument ‘pha.out’
[INFO] [20-Mar-25 13:53:43] MD5 hash:    7c1cadb6887373dacb595c47166bfbd9
[INFO] [20-Mar-25 13:53:43] SHA256 hash: 6d89b6cdd650e689ef35710b7e......
[INFO] [20-Mar-25 13:53:43] Initialized data structures
[INFO] [20-Mar-25 13:53:45] Running...
[INFO] [20-Mar-25 13:53:45] Subprocess called ‘mmap’ for the first time
...
[INFO] [20-Mar-25 13:53:46] Subprocess interacted with host ‘google.com’
...
[INFO] [20-Mar-25 13:53:47] Subprocess made file access (read) `/etc/cfg`
[INFO] [20-Mar-25 13:53:47] Subprocess made file access (write) `/etc/cfg`
...
[INFO] [20-Mar-25 13:53:53] Subprocess exited
[INFO] [20-Mar-25 13:53:53] Stored report to ‘report.txt’

15



Network Traffic Analyzer

16



Network Traffic Analyzer

● Create a packet analyzer for network 
traffic

● Monitors network traffic, analyzes 
protocols and prints statistical information

17



Overview

18



Wireshark

19

https://www.ccnablog.com/tcpip-and-the-osi-model/  

https://www.ccnablog.com/tcpip-and-the-osi-model/


Overview

$ analyze ./traffic.pcap 192.168.153.1

1. Read pcap file containing network traffic
2. Identify packets that match IP address
3. Collect information
4. Print statistics

20



Monitoring

● Use the pcap library to process captured traffic
○ No need to focus on real-time capture
○ You can test if you want (only on your personal workstation)

21



Monitoring

● You need to iterate over packets
○ e.g. pcap_loop()

● You need to parse protocol headers to get IP addresses and ports

● The headers you need to parse are:
○ Ethernet
○ IP
○ TCP
○ UDP

22

Don’t forget about encapsulation!



Implementation Details

You need to store:

a. Source and destination IP addresses
b. Source and destination Ports
c. Type
d. Packet length

23



IP Addresses

● Focus only on IPv4 addresses

● Dotted decimal notation
○ 192.168.1.1

● CIDR Notation
○ Network Prefix and Host Identifier
○ 192.168.1.0/24 is equivalent to 

192.168.1.*   or    192.168.1.0 - 255

24



Example

$ analyze ./traffic.pcap 192.168.153.1

[INFO] [20-Mar-25 14:12:27] Application Started with argument ‘ traffic.pcap’
[INFO] [20-Mar-25 14:12:27] MD5 hash:    cd6bc10414b9d3fdb8fba52579f654ad
[INFO] [20-Mar-25 14:12:28] SHA256 hash: 11760f811e5e82d293ac01..........
[INFO] [20-Mar-25 14:12:28] Initialized data structures
[INFO] [20-Mar-25 14:12:28] Filtering traffic of 192.168.153.1

IP: 142.162.123.43
5 outgoing packets [15623 Bytes]
Source Ports: 19981, 20010, 20024, 20034, 20036
Destination Ports: 80
Protocols: TCP

IP: 192.168.153.130
40 outgoing packets [637193 Bytes]
Source Ports: 3372, 19407, 19938
Destination Ports: 20041, 20042, 20043
Protocols: UDP, TCP

...

25



Secret Sharing

26



Motivation

● Place important documents inside a “vault”
○ Files inside the vault are encrypted and safe

● No single individual can open the “vault” on 
their own

27



Secret Sharing System

● Implement a secret sharing mechanism
○ In this case the secret would be the encryption key
○ No need to implement encryption

● Distribute a secret among a group so that the 
secret cannot be revealed unless X people are 
present

28



Overview

● Assume there are three friends: Alice, Bob and Carol

● The three people will share a secret number “c” by 
each taking a piece of the number

● Only when all three pieces are presented then all of 
them are able to reconstruct the secret number “c”

29



Introduction

● How can we achieve this?
○ Let’s assume the secret we want to share is a Euclidean line

● How many lines are there?
○ Infinite

● What defines a line?
○ Two points
○ We need to know them to reconstruct the line

● Can one person on their own reconstruct the line?
30

https://en.wikipedia.org/wiki/Euclidean_plane

https://en.wikipedia.org/wiki/Euclidean_plane


Euclidean Plane

y = 3x + 3

31



Simple Example

● Let's assume that Alice and Bob want to share the secret 
number 72
○ Since they are 2, the polynomial degree is 1

● They randomly choose “a” to be 14 and “b” is the secret 
number
○ f(x) = a∙x + b = 14∙x + 72

● They calculate f(1) = 86 and f(2) = 100
○ Alice gets (1, 86)
○ Bob gets (2, 100)

32



Simple Example

● To reconstruct the secret, they present their 
points and reconstruct the polynomial

86 = a + b a = 86 - b
100 = 2a + b 100 = 2(86 - b) + b 100 = 172 - 2b + b -72 = - b     b  = 72

33



Implementation

● Secret Sharing achieved by constructing the polynomial
f(x) = a∙x2 + b∙x + c

● Each person will take a point of the polynomial
○ Alice:   (1, f(1))
○ Bob:    (2, f(2))
○ Carol:  (3, f(3))

● When all 3 points are presented, they reconstruct the 
polynomial to retrieve secret number “c”

34



Implementation Details

● Using the split option and a secret number the program generates 
the individual points
○ $ ./vault split 9

> (1, 16), (2, 27), (3, 42)

● Using the join option and the 3 points, the program reconstructs the 
secret number
○ $ ./vault join (1, 16), (2, 27), (3, 42)

> 9

● Generalize your solution for N friends.
○ When any three present their points they are able to reconstruct the secret

35



Implementation Details

● Allowed to look up how to solve system of linear equations 
with three variables
○ Our focus is not maths ⇢ Cramer is your friend

● No need to create parser for unlock function
○ Use any format you like and assume the input will always be correct

● Feel free to generate random numbers any way you like
○ srand, rand
○ /dev/urandom

36



Advanced Example

● Select a secret shared number “c”
○ E.g. c is 9

● f(x) = 2∙x2 + 5∙x + 9 where a, b were randomly 
generated

● When 3 shares (x1, x2, x3) are present:
○ f(x1) = a∙x1

2 + b∙x1 + c    f(1) = 16       16 = a + b + c      (1)
○ f(x2) = a∙x2

2 + b∙x2 + c   f(2) = 27       27 = 4∙a + 2∙b + c  (2)
○ f(x3) = a∙x3

2 + b∙x3 + c    f(3) = 42       42 = 9∙a + 3∙b + c  (3)

37



Advanced Example

38

16 = a + b + c      (1)
27 = 4∙a + 2∙b + c  (2)
42 = 9∙a + 3∙b + c  (3)

   42 = 9∙a + 3∙b + c
-3∙16 = 3∙a + 3∙b + 3∙c
   -6 = 6∙a + 0 - 2∙c ⇔ a = (2∙c -6)/6

16 = a + b + c      (1)
27 = 4∙a + 2∙b +c   (2)
42 = 9∙a + 3∙b + c  (3)

   27 = 4*a + 2*b +c
-2*16 = 2*a + 2*b + 2*c
   -5 = 2*a - c ⇔ a = (c - 5)/2

(3) - 3∙(1)

(2) - 2∙(1)



Advanced Example

● We have computed that:
○ a = (2∙c -6)/6
○ a = (c - 5)/2

● (2∙c - 6)/6 = (c-5)/2 ⇔ c-5 = ⅔∙c - 2 ⇔ ⅓ c = 3 ⇔ c = 9

39



Notes

40



Notes

● Your final implementation should be a
one executable file per question
○ Many source code files

● Follow the execution instructions
○ e.g. CLI arguments, arguments order

● Allowed to use mentioned libraries
41



Turnin

42

What to submit:

1. Source files
2. Test programs
3. Makefile
4. README

➢  turnin assignment_1@hy457 directory_name



Notes

● This year assignment 1 is 25% of final grade

● Assignment 2 will be online after the Easter holidays

● 40% Assignments:
○ Assignment 1: 25%
○ Assignment 2: 15%

● 60% Final Exam

43



Credit
Icons from FlatIcon, made by Freepik

Thank You!

papamano@csd.uoc.gr

Questions?
44


