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a b s t r a c t

Cognitive radio technology, a revolutionary communication paradigm that can utilize the
existing wireless spectrum resources more efficiently, has been receiving a growing atten-
tion in recent years. As network users need to adapt their operating parameters to the
dynamic environment, who may pursue different goals, traditional spectrum sharing
approaches based on a fully cooperative, static, and centralized network environment
are no longer applicable. Instead, game theory has been recognized as an important tool
in studying, modeling, and analyzing the cognitive interaction process. In this tutorial sur-
vey, we introduce the most fundamental concepts of game theory, and explain in detail
how these concepts can be leveraged in designing spectrum sharing protocols, with an
emphasis on state-of-the-art research contributions in cognitive radio networking.
Research challenges and future directions in game theoretic modeling approaches are also
outlined. This tutorial survey provides a comprehensive treatment of game theory with
important applications in cognitive radio networks, and will aid the design of efficient,
self-enforcing, and distributed spectrum sharing schemes in future wireless networks.

� 2010 Elsevier B.V. All rights reserved.
1. Introduction

Cognitive radio technology [1] is emerging in recent
years as a revolutionary communication paradigm, which
can provide faster and more reliable wireless services by
utilizing the existing spectrum band more efficiently
[2,3]. A notable difference of a cognitive radio network
from traditional wireless networks is that users need to
be aware of the dynamic environment and adaptively ad-
just their operating parameters based on the interactions
with the environment and other users in the network. Tra-
ditional spectrum sharing and management approaches,
however, generally assume that all network users cooper-
ate unconditionally in a static environment, and thus they
are not applicable to a cognitive radio network.

In a cognitive radio network, users are intelligent and
have the ability to observe, learn, and act to optimize their
performance. If they belong to different authorities and
. All rights reserved.
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pursue different goals, e.g., compete for an open unlicensed
band, fully cooperative behaviors cannot be taken for
granted. Instead, users will only cooperate with others if
cooperation can bring them more benefit. Moreover, the
surrounding radio environment keeps changing, due to
the unreliable and broadcast nature of wireless channels,
user mobility and dynamic topology, and traffic variations.
In traditional spectrum sharing, even a small change in the
radio environment will trigger the network controller to
re-allocate the spectrum resources, which results in a lot
of communication overhead. To tackle the above chal-
lenges, game theory has naturally become an important
tool that is ideal and essential in studying, modeling, and
analyzing the cognitive interaction process, and designing
efficient, self-enforcing, distributed and scalable spectrum
sharing schemes.

Game theory is a mathematical tool that analyzes the
strategic interactions among multiple decision makers. Its
history dates back to the publication of the 1944 book The-
ory of Games and Economic Behavior by J. von Neumann and
O. Morgenstern, which included the method for finding
mutually consistent solutions for two-person zero-sum
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games and laid the foundation of game theory. During the
late 1940s, cooperative game theory had come into being,
which analyzes optimal strategies for groups of individu-
als, assuming that they can enforce collaboration between
them so as to jointly improve their positions in a game. In
early 1950s, J. Nash developed a new criterion, known as
Nash equilibrium, to characterize mutually consistent
strategies of players. This concept is more general than
the criterion proposed by von Neumann and Morgenstern,
since it is applicable to non-zero-sum games, and marks a
quantum leap forward in the development of non-cooper-
ative game theory. During the 1950s, many important con-
cepts of game theory were developed, such as the concepts
of the core, the extensive-form games, repeated games,
and the Shapley value. Refinement of Nash equilibriums
and the concepts of complete information and Bayesian
games were proposed in the 1960s. Application of game
theory to biology, i.e., the evolutionary game theory, was
introduced by J. M. Smith in the 1970s, during which time,
the concepts of correlated equilibrium and common
knowledge were introduced by R. Aumann. Starting from
the 1960s, game theorists have started to investigate a
new branch of game theory, mechanism design theory,
focusing on the solution concepts for a class of private
information games. In nowadays, game theory has been
widely recognized as an important tool in many fields,
such as social sciences, biology, engineering, political
science, international relations, computer science, etc.,
for understanding cooperation and conflict between
individuals.

In cognitive radio networks, network users make intel-
ligent decisions on their spectrum usage and operating
parameters based on the sensed spectrum dynamics and
actions adopted by other users. Furthermore, users who
compete for spectrum resources may have no incentive
to cooperate with each other and instead behave selfishly.
Therefore, it is natural to study the intelligent behaviors
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and interactions of selfish network users from a game the-
oretic perspective.

The importance of studying cognitive radio networks in
a game theoretic framework is multifold. First, by model-
ing dynamic spectrum sharing among network users (pri-
mary and secondary users) as games, network users’
behaviors and actions can be analyzed in a formalized
game structure, by which the theoretical achievements in
game theory can be fully utilized. Second, game theory
equips us with various optimality criteria for the spectrum
sharing problem. To be specific, the optimization of spec-
trum usage is generally a multi-objective optimization
problem, which is very difficult to analyze and solve. Game
theory provides us with well defined equilibrium criteria
to measure game optimality under various game settings.
Third, non-cooperative game theory, one of the most
important branch of game theory, enables us to derive effi-
cient distributed approaches for dynamic spectrum sharing
using only local information. Such approaches become
highly desirable when centralized control is not available
or flexible self-organized approaches are necessary.

In this tutorial survey, we aim at providing a compre-
hensive treatment of game theory oriented towards their
applications to cognitive radio networks in recent years.
Considering game theory is still rarely taught in engineer-
ing or computer science curricula, we assume that the
reader has very little background in this area. Therefore,
we start each section by introducing the most basic game
theoretic concepts, and then address how these concepts
can be leveraged in designing efficient spectrum sharing
schemes from a network designer’s perspective. The orga-
nization of the tutorial survey is illustrated in Fig. 1, where
the game theoretic spectrum sharing schemes are classi-
fied into four categories. We first discuss non-cooperative
spectrum sharing games in Section 2, since networks users
are mostly assumed to be selfish and only aim at maximiz-
ing their own spectrum usage. Then, we talk about the
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application of economic games and mechanism design to
cognitive radio networks in Section 3, including spectrum
pricing and auctions, where spectrum resources are traded
like exchangeable goods in a spectrum market. Coopera-
tive spectrum sharing games where network users have
an agreement on how to utilize and distribute the spec-
trum resources are discussed in Section 4, and stochastic
spectrum sharing games where network users adapt their
strategies according the changing environment and other
users’ strategies are discussed in Section 5. Section 6 pre-
sents some research challenges and future directions about
game theoretic spectrum sharing in cognitive radio
networks.
2. Non-cooperative games and Nash equilibrium

Nash equilibrium is a key concept to understand non-
cooperative game theory. Given a game where two or more
players interactively make their decisions, it is natural to
ask ‘‘What will the outcome of a game be like?” The answer
is given by Nash equilibrium, which, informally speaking,
is an equilibrium where everyone plays the best strategy
when taking decision-making of others into account. Then,
the next questions are ‘‘Does a Nash equilibrium always exist
in a game?”and ‘‘Is it unique?”. We will show in Section 2.1
that the existence of Nash equilibria is quite general, but
the uniqueness has to be analyzed case by case.

Nash equilibrium tells us what the equilibrium out-
come will be, but it does not answer the question ‘‘How
can we get to the equilibrium?”. This is more important in
the context of cognitive radio networks, where players
may lack the global information to directly predict the
equilibrium. Instead, they may start from an arbitrary
strategy, update their strategies according to certain rules,
and hopefully converge to the equilibrium. Section 2.2 pro-
vides two specific conditions that guarantee the conver-
gence to a unique Nash equilibrium.

When there exist multiple equilibria, one needs to se-
lect those equilibria that are superior to others. In Section
2.3, we discuss several equilibrium selection criteria. Pare-
to optimality is defined to compare multi-dimension pay-
off profiles, and an equilibrium not as good as others in
the Pareto sense can be ignored. Moreover, some refine-
ment can be used to narrow down the game outcomes,
e.g., removing the ones with incredible actions or implau-
sible beliefs. Evolutionary equilibrium is the one that is
evolutionarily stable.

In general, Nash equilibrium often suffers from exces-
sive competition among selfish players in a non-coopera-
tive game, and the outcome of the game is inefficient.
Hence, we are eager to know ‘‘Can we go beyond a Nash
equilibrium?” In Section 2.4, three approaches, namely,
usage of pricing, repeated game formulation, and corre-
lated equilibrium, are discussed that can improve the effi-
ciency of Nash equilibria.
2.1. Nash equilibrium

Game theory is a mathematical tool that analyzes the
strategic interactions among multiple decision makers.
Three major components in a strategic-form game model
are:

� a finite set of players, denoted by N;
� a set of actions, denoted by Ai, for each player i; and
� payoff/utility function, denoted by ui : A! R, which

measures the outcome for player i determined by the
actions of all players, A = �i2NAi.

Given the above definition and notations, a strategic
game is often denoted by hN, (Ai), (ui)i.

Since users in a cognitive radio network may compete
for the limited spectrum resources, we can model the
interactions between them as a game, which is detailed
as follows.

In a cognitive radio network, users who do not own a
spectrum license are known as secondary users or unli-
censed users, and the spectrum license holders are known
as primary users or licensed users. According to the spec-
trum bands that secondary users are using, spectrum shar-
ing and allocation schemes can be divided to two types.
Spectrum sharing among the secondary users who access
unlicensed spectrum bands is referred to as open spectrum
sharing. In open spectrum sharing, since no users own
spectrum licenses, they all have the same rights in using
the unlicensed spectrum. Spectrum sharing among the sec-
ondary users and primary users in licensed spectrum
bands is referred to as hierarchical access model or licensed
spectrum sharing. Secondary users are allowed to access the
licensed bands as long as they will not cause harmful inter-
ference to the primary users. For instance, in opportunistic
spectrum access, secondary users will listen to the licensed
spectrum before each transmission to make sure the pri-
mary users are inactive, and then they will choose proper
operating parameters to optimize the performance or qual-
ity of service (QoS) from sharing the spectrum. In negotia-
tion-based licensed spectrum sharing, the primary users
will announce the available spectrum bands to the second-
ary users and distribute these bands through auction/pric-
ing, where both primary and secondary users can
maximize their profits by leasing the licensed bands.

Efficient spectrum sharing schemes are essential for
improving spectrum utilization. However, since users in a
cognitive radio network are intelligent and able to observe,
learn, and act to optimize their performance, if they belong
to different authorities and pursue different goals, fully
cooperative behavior cannot be taken for granted. Instead,
selfish users will compete for the limited spectrum re-
sources, and only aim at maximizing their own benefit.
As traditional spectrum sharing approaches only assume
cooperative, static, and centralized network settings, new
solutions based on game theoretic modeling are preferred,
which can offer more flexibility in analyzing network
users’ strategic interactions and achieve efficient dynamic
spectrum sharing. An example that explains the compo-
nents of spectrum sharing games in cognitive radio net-
works is provided in Table 1.

In a non-cooperative spectrum sharing game with ra-
tional network users, each user only cares about his/her
own benefit and chooses the optimal strategy that can
maximize his/her payoff function. Such an outcome of



Table 1
Components of spectrum sharing games in cognitive radio networks.

Open spectrum sharing Licensed spectrum sharing (auction)

Players Secondary users that compete for an unlicensed
spectrum band

Both primary and secondary users

Actions Transmission parameters, such as transmission
power level, access rates, waveform, etc.

Secondary users: which licensed bands they want to rent and how much they would
pay for leasing the licensed bands; primary users: which secondary users they will
lease each unused band to and the charge

Payoff Non-decreasing function of the quality of service
(QoS) by utilizing the spectrum

Monetary gains, e.g., revenue minus cost, by leasing the licensed spectrum

Table 2
An example of multiple access game.

D C

D 0,0 6,3
C 3,6 5,5
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the non-cooperative game is termed as Nash equilibrium
(NE), which is the most commonly used solution concept
in game theory.

Definition 2.1. A Nash equilibrium of a strategic game
hN, (Ai), (ui)i is a profile a* 2 A of actions such that for every
player i 2 N we have

uiða�i ; a��iÞP uiðai; a��iÞ ð1Þ

for all ai 2 Ai, where ai denotes the strategy of player i and
a�i denotes the strategies of all players other than player i.

The definition indicates that no player can improve his/
her payoff by a unilateral deviation from the NE, given that
the other players adopt the NE. In other words, NE defines
the best-response strategy of each player, as stated below:

a�i 2 Biða��iÞ for all i 2 N; ð2Þ

with the set-valued function Bi defined as the best-re-
sponse function of player i, i.e.,

Biða�iÞ ¼ fai 2 Ai : uiða�i; aiÞP uiða�i; a0iÞg for all a0i 2 Ai:

ð3Þ

Given the definition of NE, one is naturally interested in
whether there exists an NE for a certain game so that we
can study its properties. Based on the fixed point theorem,
the following theorem has been shown [4].

Theorem 2.1. A strategic game hN,(Ai), (ui)i has a Nash
equilibrium if, for all i 2 N, the action set Ai of player i is a non-
empty compact convex subset of a Euclidian space, and the
payoff function ui is continuous and quasi-concave on Ai.

In the above definition and notation, it is implicitly as-
sumed that players only take deterministic strategies, also
known as pure strategies. More often, the players’ strate-
gies may not be deterministic and are regulated by proba-
bilistic rules. Mixed strategy Nash equilibrium concept is
then designed to describe such a scenario where players’
strategies are non-deterministic.

Denote D(Ai) as the set of probability distributions over
Ai, then each member of D(Ai) is a mixed strategy of player
i. In general, the players take their mixed strategies
independent of each other’s decision. If we denote a
strategy profile of player i by (ai)i2N which represents the
probability distribution over action set Ai, then the proba-
bility of the action profile a = (ai)i2N will be

Q
i2NaiðaiÞ,

and player j’s payoff under the strategy profile (ai)i2N isP
a2A

Q
i2NaiðaiÞ

� �
ujðaÞ, if each Ai is finite.

The NE defined for strategic games where players take
pure strategies can then be naturally extended, and a
mixed strategy Nash equilibrium of a strategic game is
a Nash equilibrium where players in the game adopt mixed
strategies, following the above extension. Without provid-
ing proof (interested readers can refer to [4]), we give the
property about the existence of a mixed strategy NE in
games where each player has a finite number of actions
in the following theorem.

Theorem 2.2. Every finite strategic game has a mixed
strategy Nash equilibrium.
We use the following example to explain how to derive
the NE of a game. In Table 2, we list the payoff of a two-
player game which can represent the competition between
two users for the access of an open spectrum band, where
action Dare (D) means access aggressively with a high rate
and action Chicken out (C) means access moderately with a
low rate. If one user accesses the spectrum aggressively
while the other moderately, the former will gain more. If
both access aggressively (no cooperation), neither of them
will gain due to frequent collisions. If both access moder-
ately, each will gain a much higher payoff than no
cooperation.

In this game, if one user is going to dare, it is better for
the other to chicken out. If one user is going to chicken out,
it is better for the other to dare. Therefore, there are two
pure strategy NEs in this game, namely, (D,C) and (C,D).
To calculate the mixed strategy NE, we can assume that
the probability distribution of player 1 (row player) over
Ai = (D,C) is a1 = [x,1 � x], and that of player 2 (column
player) is a2 = [y,1 � y]. Then, the expected payoff of player
1 is

�u1 ¼ 0 � x � yþ 3 � ð1� xÞ � yþ 6 � x � ð1� yÞ
þ 5 � ð1� xÞ � ð1� yÞ: ð4Þ

According to the definition in (3), at equilibrium, player
1’s expected payoff should satisfy @�u1

@x ¼ 0. Solving the equa-
tion, we obtain y = 1/4 and further get x = 1/4 in a similar
way. Thus, there is a mixed strategy equilibrium where
each user dares with probability 1/4.
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2.2. Uniqueness of equilibrium

Besides existence, the uniqueness of an equilibrium is
another desirable property. If we know there exists only
one equilibrium, we can predict the equilibrium strategy
of the players and the resulting performance of the cogni-
tive radio network. By optimally tuning the design param-
eters of the game, it is possible to manipulate the behavior
of the rational players towards efficient spectrum sharing
at the equilibrium. Unlike the establishment of existence
using the fixed point theorem, uniqueness of an equilib-
rium only holds for several special cases. For instance, if
the payoff function of each player is strictly convex and
the feasible region is also convex, then there exists a un-
ique equilibrium in the game. In the following, we will dis-
cuss two other special cases that can guarantee the
uniqueness of an equilibrium.

2.2.1. Potential games
The NE gives the best strategy given that all the other

players stick to their equilibrium strategy too. However,
the question is how to find the Nash equilibrium, espe-
cially when the system is implemented in a distributed
manner. One approach is to let players adjust their strate-
gies iteratively based on accumulated observations as the
game unfolds, and hopefully the process could converge
to some equilibrium point. Although not true in general,
the iteration does converge and lead to the NE, when the
game has certain special structures. For example, when
the game can be modeled as a potential game, convergence
to the NE is guaranteed.

The concept of potential games, proposed by [5], was
first applied to cognitive radio networks in [6] and has
been widely employed in the context of cognitive radio
since then.

Definition 2.2. A game hN, (Ai), (ui)i is a potential game if
there is a potential function P : A! R such that one of the
following conditions holds. The game is an exact potential
game if the first condition holds, and an ordinal potential
game if the second condition holds.
(i) Pðai; a�iÞ � Pða0i; a�iÞ ¼ uiðai; a�iÞ � uiða0i; a�iÞ for any
i 2 N, a 2 A, and a0i 2 Ai.

(ii) sgnðPðai; a�iÞ � Pða0i; a�iÞÞ ¼ sgnðuiðai;

a�iÞ � uiða0i; a�iÞÞ for any i 2 N, a 2 A, and a0i 2 Ai,
where sgn(�) is the sign function.

From the definition, it is easy to see that any single
player’s individual interest is aligned with the group’s
interest (i.e., the potential function), and any player choos-
ing a better strategy given all other players’ current strate-
gies will necessarily lead to improvement in the value of
potential function. A potential game in which all players
take better strategies sequentially will terminate in finite
steps to an NE that maximizes the potential function.

Several useful conditions for potential games have been
established in [5] and [7], and we summarize them in the
following theorem. These conditions can be used to prove
a game to be a potential game or guide the design of a
potential game. The third condition is of particular interest,
as it shows that a game is a potential game as long as
payoff functions have some symmetric property.

Theorem 2.3. A game hN,(Ai), (ui)i is an exact potential game
with a potential function P(�):

(i) if and only if
@2ui

@ai@aj
¼ @2uj

@ai@aj
for all i; j 2 N; ð5Þ

provided that Ai is an interval of real numbers and ui is
continuously differentiable for all i 2 N;
(ii) if and only if there exist functions P0 : A! R and
Pi : A�i ! Rði 2 NÞ such that
uiðai; a�iÞ ¼ P0ðai; a�iÞ þ Piða�iÞ for all i 2 N; ð6Þ

where P(ai,a�i) = P0(ai,a�i);

(iii) if there exist functions Pij : Ai � Aj ! R and Pi : Ai ! R

such that Pij(ai,aj) = Pji(aj,ai) and
uiðaÞ ¼
X

j2Nnfig
Pijðai; ajÞ � PiðaiÞ

for all i; j 2 N and a 2 A: ð7Þ

This is known as the bilateral symmetric game with
PðaÞ ¼

P
i2N

Pi�1
j¼1Pijðai; ajÞ �

P
i2NPiðaiÞ.
Potential games have been widely used in cognitive
radio networks, such as [8–14] and so on. For example,
let us mention a few applications as follows.

� Waveform selection [8]. In this game, players distribu-
tively choose their signature waveform ai 2 Ai to reduce
correlation. The signal-to-interference-and-noise ratio
(SINR) of player i is
ciðai; a�iÞ ¼
hipiP

j–ihjipjqðaj; aiÞ þ ni
; ð8Þ

where hi,pi,ni are the channel gain, power level, and
noise variance for player i, hji is the cross channel gain
from transmitter j to receiver i, and q(ai,aj) is the corre-
lation when player i and j choose waveform ai and aj,
respectively. The payoff function is defined as some
function of the SINR ci minus costs associated with
the selected waveform,

uiðai; a�iÞ ¼ fiðciðai; a�iÞÞ � ciðaiÞ: ð9Þ

In [8], the game is claimed to be a bilateral symmetric
game (Theorem 2.3, condition (iii)) when certain condi-
tions hold.
� Power control [8]. This game is similar to the previous

one except that the action space consists of all possible
power levels and the cost is associated with power lev-
els. The fixed waveforms result in correlation qji

between player i and j. The payoff function can be writ-
ten as
uiðai; a�iÞ ¼ fiðciðai; a�iÞÞ � ciðaiÞ

¼ fi;1ðhiaiÞ � fi;2

X
j–i

hjiajqji þ ni

 !
� ciðaiÞ;

ð10Þ
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when fi(�) can be detached to one function of the
numerator and another function of the denominator
(e.g., if fi(�) is in the form of a logarithm function). It is
easy to show the first condition in Theorem 2.3 is satis-
fied for this game, and hence it is a potential game.
� Channel allocation [9]. In this game, a player’s strategy

is to select a channel from multiple channels for trans-
mission, and players in the same band interfere with
each other. In order to reduce mutual interference, the
payoff function is defined as the total interference not
only caused by other players but also causing to other
players, i.e.,
uiðai; a�iÞ ¼ �
XN

j¼1;j–i

pjhji1ðaj ¼ aiÞ �
XN

j¼1;j–i

pihij1ðai ¼ ajÞ;

ð11Þ

where the indicator function 1(aj = ai) implies player i
and j have mutual interference only if they choose the
same channel. Condition (iii) in Theorem 2.3 is satisfied
when we define Pij(ai,aj) = �(pjhji + pihij)1(ai = aj) and
Pi(ai) = 0.

2.2.2. Standard function
Standard function is first introduced in [15] to aid the

power control in cellular networks. Assume there are N cel-
lular users, M base stations, and a common radio channel.
Denote pi as the transmitted power of user i,hm,i as the
channel gain of user i to base station m, and nm as the noise
power at base station m. Treating the interference at a base
station as noise, we can express the SINR of user i at base
station m as

lm;i ¼
hm;iP

j–ihm;jpj þ nm
: ð12Þ

Assume ki is user i’s assigned base station, to ensure an
acceptable communication performance, the received
power at the base station ki should be no less than a certain
level ci, i.e., pilki ;i

ðpÞP ci, where p denotes the power vec-
tor of the N users. The interference constraint can be
rewritten as an interference function I(p) = (I1(p), . . . , IN(p)),
with each Ii(p) defined below:

pi P IiðpÞ ¼
ci

lki ;i
: ð13Þ

It has been shown that the interference function I(p) de-
fined above and several other types of interference func-
tion are standard function, whose precise definition is
given as follows [15].

Definition 2.3. A function I(p) is standard if for all p P 0,
the following properties are satisfied:
� Positivity: I(p) > 0,
� Monotonicity: If p P p

0
, then I(p) P I(p

0
),

� Scalability: For all a > 1, aI(p) > I(ap).

Due to the nice properties associated with the standard
function, synchronous iterative power control algorithm
based on standard function p = I(p), also called standard
power control algorithm, is proposed with proved conver-
gence to a unique fixed point [15].

Theorem 2.4. If I(p) is feasible, then for any initial power
vector p, the standard power control algorithm converges to a
unique fixed point p*.

As the common radio channel is a shared medium, each
user’s transmission will cause interference to others, and
the interference is getting more severe with higher trans-
mitted power. On the other hand, the selfish users try to
pursue high utility by increasing their transmitted power.
Therefore, conventional power control can be cast into a
non-cooperative power control game (NPG). If the best re-
sponse strategy is a standard function of the variable that
represents the user’s action, then the NPG has a unique
equilibrium [16]. The idea of standard function has been
used in some previous works [17,18]. For instance, in
[18] which considers a cooperative cognitive radio net-
work, secondary users serve as cooperative relays for the
primary users, so that they can have the opportunity to ac-
cess the wireless channel. The secondary users target at
maximizing the utility defined as a function of their
achievable rate minus the payment, by selecting the proper
payment in the non-cooperative game. By proving the best
response payment is a standard function, it is shown that
the non-cooperative payment selection game has a unique
equilibrium.

2.3. Equilibrium selection

2.3.1. Pareto optimality
When there is more than one equilibrium in the game,

it is natural to ask whether some outperform others, and
whether there exists an optimal one. Because game theory
solves multi-objective optimization problem, it is not easy
to define the optimality in such scenarios. For example,
when players have conflicting interests with each other,
an increase in one player’s payoff might decrease others’
payoffs. In order to define the optimality, one possibility
is to compare the weighted sum of the individual payoffs,
which reduces the multi-dimension problem into a one-
dimension one. A more popular alternative is the Pareto
optimality, which, informally speaking, is a payoff profile
that no strategy can make at least one player better off
without making any other player worse off.

Definition 2.4. Let U # RN be a set. Then u 2 U is Pareto
efficient if there is no u

0 2 U for which u0i > ui for all i 2 N;
u 2 U is strongly Pareto efficient if there is no u

0 2 U for
which u0i P ui for all i 2 N and u0i > ui for some i 2 N. The
Pareto frontier is defined as the set of all u 2 U that are
Pareto efficient.

Pareto efficiency, or Pareto optimality, has been widely
used in game theory, as well as economics, engineering
and social sciences. If there are more than one equilibrium
candidates, usually the optimal ones in the Pareto sense
are preferred. For example, in the repeated game that we
will discuss later in this tutorial, a lot of equilibria may ex-
ist if certain strategies have been applied. Out of many pos-
sible choices, the ones on the Pareto frontier are superior to



Table 3
Equivalent strategic-form game.

B1B1 B1B2 B2B1 B2B2

B1 2,3 2,3 4,4 4,4
B2 2,6 1,2 2,6 1,2
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others. In the bargaining game, which is also a topic in the
tutorial, Pareto optimality has been used as an axiom to
define the bargaining equilibrium in this game.

However, because of the selfish nature of players in a
non-cooperative game, an NE may be Pareto inefficient
when compared with payoff profiles of all possible out-
comes. Several methods to improve an inefficient equilib-
rium will be introduced later.
2.3.2. Equilibrium refinement
The NE is an important concept, but it is a relatively

weak criterion in some sense, especially when the game
exhibits more complex structures. Hence, there may exist
multiple equilibria according to the Nash criterion, but
some of them may not be a desirable or reasonable out-
come, and it is necessary to narrow down, or refine, the
equilibrium solutions. One simple example is when the
game has a symmetric structure, sometimes we may be
more interested in symmetric equilibria where every
player adopts the same strategy. Take the multiple access
game (Table 2) as an example, we have known that there
are two pure strategy NE and one mixed strategy NE, but
if symmetry in the equilibrium is required, only the mixed
strategy NE will be the outcome.

Things become more involved as the game becomes
more complex. In the strategic-form game, it is assumed
that all players move simultaneously; however, it is possi-
ble that players move sequentially, and they are informed
of the previous moves. This is the extensive-form game,
also known as the multi-stage game and the dynamic
game. When all information of history is perfectly known
to all players, it is called a game with perfect information;
otherwise, it is a game with imperfect information.

Let us begin with a simple channel selection game illus-
trated by the tree in Fig. 2, which is an extensive-form
game with perfect information. In this game, player 1
moves first to select one channel B1 or B2, and then player
2 chooses one channel after observing player 1’s selection.
Different bands yield different communication gains to
players; for example, we assume player 1 gains 4 and 2
from exclusive usage of channel B1 and B2, respectively,
and player 2 gains 6 and 4, respectively. However, if both
players select the same channel, they can only receive half
of the gain due to time sharing of the band. The payoff pair
for each possible action history is given in the figure
accordingly. At the beginning of the game, player 2 has
four strategies, namely, B1B1, B1B2, B2B1, and B2B2, where
each strategy specifies the two actions given player 1
chooses B1 or B2, respectively. For example, strategy B2B1

implies that player 2 will choose B2 if player 1 chooses
Fig. 2. Extensive-form game with perfect information.
B1, and choose B1 if player 1 chooses B2. The other strate-
gies are defined in the same way. Then, this new game
can be reformed to an equivalent strategic-form game
given by Table 3, from which it is easy to verify that three
Nash equilibria exist, i.e., {B2,B1B1},{B1,B2B1}, and {B1,B2B2}.

Let us take a closer look at the equilibrium {B2,B1B1}.
This is an equilibrium because B2 is the best response to
a ‘‘threat” made by player 2, who pledges to always choose
B1. However, this is an incredible threat, because it is B2

rather than B1 that player 2 should choose for a higher pay-
off if player 1 has chosen B1 for some reason. Therefore,
although {B2,B1B1} is a Nash equilibrium viewed at the
beginning of the game, as the game progresses, the strat-
egy is not optimal any more for the subgame where player
1 has already chosen B1. Similar analysis disqualifies
{B1,B2B2} as a reasonable equilibrium. The remaining one,
{B1,B2B1}, guaranteeing the Nash equilibrium at any sub-
game of the original game, is called a subgame perfect
equilibrium.

For an extensive-form game with finite stages, back-
ward induction can be employed to obtain the subgame
perfect equilibria. For the previous example, player 2’s
credible strategy is B2B1 at stage 2, which reduces the pos-
sible outcomes of game to (4,4) and (2,6). Then, player 1’s
best response is B1, and {B1,B2B1} is the subgame perfect
equilibrium.

When the game has imperfect information, even the
concept of subgame perfect equilibria is not strong enough.
The tree in Fig. 3 presents another channel selection game,
where player 1 has an additional option to select a dedi-
cated channel B0 with gain 3, and player 2 is unable to ob-
serve whether player 1 has chosen B1 or B2, as indicated by
a dashed line in the figure. In this case, {B1,B2} and {B0,B1}
are two subgame perfect equilibria, but the latter is not
preferable because it is based on an implausible belief.
When making a decision, player 2 is uncertain about
whether player 1 has selected B1 or B2. To pursue a higher
expected payoff, it is easy to show that player 2 should
choose B1 only if he/she believes that player 1 selected B2

with a probability larger than 1/5. However, from player
1’s perspective, channel B2 is always dominated by B0. If
player 1 did not choose B0, he/she must have chosen B1

with probability 1, which makes player 2’s belief implausi-
ble. On the contrary, the other equilibrium {B1,B2} passes
Fig. 3. Extensive-form game with imperfect information.
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the plausible-belief criterion, and is called a sequential
equilibrium.

Furthermore, when stability is an issue, other stronger
refinements, such as trembling hand equilibria and prop-
er equilibria, are needed. Interested readers are referred to
[4] for more details.

2.3.3. Evolutionary equilibrium
In the above, we have discussed the concept of Pareto

optimality, under which no player can improve his/her
utility individually without hurting the others’ benefit.
The establishment of Pareto optimality usually relies on
the assumption that players are fully aware of the game
they are playing and others’ actions in the past, and that
players are rational and willing to cooperate in their
moves. More often, however, players only have limited
information about the other players’ strategies, or they
are even unaware of the game being played. In addition,
not all players are rational and always following their opti-
mal strategy. Under all these circumstances, will there ex-
ist an NE? If so, how many? If there is more than one
equilibrium, which one will be selected, if some players
play out-of-equilibrium strategy?

These questions can be answered by the evolutionary
game theory (EGT), with evolutionary equilibrium as the
core concept. The idea of evolutionary games was inspired
by the study of ecological biology. EGT differs from classi-
cal game theory by focusing on the dynamics of strategy
change more than the properties of strategy equilibria. It
can tell us how a rational player should behave to ap-
proach a best strategy against a small number of players
who do not follow the best strategy, and thus EGT can bet-
ter handle the unpredictable behavior of players.

More specifically, assume the game is played by a set of
homogeneous players, who have the same form of utility
function ui(�) = u(�) and action space [19]. Assume that
the players are programmed to play pure strategies at each
time. At time t, the number of players taking pure strategy
ai is pai

ðtÞ, then the population size is pðtÞ ¼
P

ai2Ai
pai
ðtÞ,

and the population share that is taking strategy ai becomes
xai
ðtÞ ¼ pai

ðtÞ=pðtÞ. Replicator dynamics in continuous time
format can be written by

_xai
¼ ½uðai; x�ai

Þ � �uðxÞ�xai
; ð14Þ

where uðai; x�ai
Þ denotes the average payoff of players

using ai, and �u(x) denotes the average payoff of the entire
population. Eq. (14) means that the higher payoff a strat-
egy ai achieves, the population share using ai will grow,
and the growth rate is proportional to the difference be-
tween ai’s average payoff and the average payoff in the en-
tire population.

Using the replicator dynamics, players can adapt their
strategy and converge to the evolutionarily stable strategy
(ESS). We provide the definition of ESS for a two-player
game as follows.

Definition 2.5. In a symmetric strategic game with two
players G = h{1,2}, (A,A), (ui)i, where u1(a,a

0
) = u2(a

0
,a) =

u(a,a
0
) for some utility function u, an evolutionarily stable

strategy (ESS) of G is an action a* 2 A for which u(a,a*) 6
u(a*,a*), and u(a,a) < u(a*,a) for every best response a 2 A
with a – a*.

These conditions ensure that as long as the fraction of
mutants who play a is not too large, the average payoff
of a will fall short of a*. Since strategies with a higher pay-
off value are expected to propagate faster, evolution will
cause the players not to use mutation strategy a, and in-
stead use ESS. Therefore, in a game with a few players tak-
ing out-of-equilibrium strategies, the equilibrium after the
convergence of the replicator dynamics is the ESS. Actually,
the first condition in Definition 2.5 says that the ESS must
first be a Nash equilibrium, and the second condition can
be viewed as a selection criterion that ensures the stability
of the equilibrium under strategy mutation.

Since the EGT with the replicator dynamics character-
izes the change of the population sizes, we can apply EGT
to cognitive radio networking, which can provide guide-
lines for upgrading existing networking protocols and
determining operating parameters related to new proto-
cols, and thus achieve reconfigurability to the time-varying
radio environment with stability guarantee. In [20], an
evolutionary game modeling for cooperative spectrum
sensing is proposed, where selfish users tend to overhear
the others’ sensing results and contribute less to the com-
mon task. The behavior dynamics of secondary users are
studied using the replicator dynamics equations. In the
distributed implementation derived from the replicator
dynamics, users update their strategies by exploring differ-
ent actions at each time, adaptively learning during the
strategic interaction, and approaching the best response
strategy. Another evolutionary game theoretic approach
in cognitive radio networking is considered in [21], where
sensor nodes act as players and interact in randomly
drawn pairs in an impulse radio UWB sensor network. Each
player adapts the pulse repetition frequency value upon
the observation about the bit error rate of the other player
in the interactive pair. It is shown that through the interac-
tion-learning process, a certain QoS can be guaranteed.

2.4. How to improve the inefficient NE

2.4.1. Pricing
From a network designer’s point of view, he/she would

like to have a satisfying social welfare, which can be de-
fined as maximizing the sum of all users’ payoff values
(utilitarian type), or maximizing the minimum payoff va-
lue among all users’ payoffs (egalitarian type). However,
this contradicts with users’ selfish nature, if they do not
work towards a common goal. In a cognitive radio network
consisting of selfish users competing for spectrum re-
sources, the social optimum is usually not achieved at
the NE, since selfish users are only interested in their
own benefit.

In order to study the optimality of the non-cooperative
game outcomes, Price of Anarchy is an important measure,
which is the ratio between the worst possible NE and social
optimum that can be achieved only if a central authority is
available. By studying the bounds on the price of anarchy,
we can gain better understanding about the NE of non-
cooperative games in cognitive radio networks.



B. Wang et al. / Computer Networks 54 (2010) 2537–2561 2545
In [22], the price of anarchy is extensively studied for
non-cooperative spectrum sharing games, in which the
channel assignment for the access points (APs) is studied
for WiFi networks. The price of anarchy in this scenario
represents the ratio between the number of APs assigned
spectrum channels in the worst NE and the optimal num-
ber of covered APs if a central authority assigns the chan-
nels. The analysis of the NE in spectrum sharing games is
performed by considering it as a maximal coloring prob-
lem. The theoretical bounds on the price of anarchy are de-
rived for the scenarios of different number of spectrum
buyers and sellers. One interesting finding is that the price
of anarchy is unbounded in general spectrum sharing
games unless certain constraints are applied such as the
distribution of the users. Similarly, in [23], the price of
anarchy is studied for spectrum assignment in a local-bar-
gaining scenario.

To improve the efficiency of the NE of non-cooperative
games in cognitive radio networks, pricing can be intro-
duced when designing the non-cooperative game, since
selfish network users will be guided to a more efficient
operating point [16]. Intuitively, pricing can be viewed as
the cost of the services or resources a network user re-
ceives, or the cost of harm the user imposes on other users,
in terms of performance degradation, revenue deduction,
or interference. As the selfish network users only optimize
their own performance, their aggressive behavior will de-
grade the performance or QoS of all the other users in
the network, and hence deteriorate the system efficiency.
By adopting an efficient pricing mechanism, selfish users
will be aware of the inefficient NE, encouraged to compete
for the network resources more moderately and efficiently,
bringing more benefit for all network users and a higher
revenue for the entire network.

Linear pricing which increases monotonically with the
transmit power of a user has been widely adopted
[17,24], because of its implementation simplicity and a
reasonable physical meaning. In [17], a network-user hier-
archy model consisting of a spectrum manager, service
provider and end users for dynamic spectrum leasing is
proposed for joint power control and spectrum allocation.
When optimizing their payoff, the end users trade off the
achievable data rate and the spectrum cost through trans-
mission power control. With a proper pricing term, which
is defined as a linear function of the spectrum access cost
and transmission power, efficient power control can be
achieved which alleviates interference between end users;
moreover, the revenue of the service provider is maxi-
mized. In [24], the service provider charges each user a cer-
tain amount of payment for each unit of the transmitting
power on the uplink channel in wide-band cognitive radio
networks for revenue maximization, while ensuring incen-
tive compatibility for the users. In [25], the authors further
point out that most existing pricing techniques, e.g., a lin-
ear pricing function with a fixed pricing factor for all users,
can usually improve the equilibrium by pushing it closer to
the Pareto optimal frontier. However, they may not be
(Pareto) optimal, and not suitable for distributed imple-
mentation, as they require global information. Therefore,
a user-dependent linear pricing function which drives the
NE close to the Pareto optimal frontier is proposed [25],
through analysis of the Karush–Kuhn–Tucker conditions.
The optimal pricing factor for a link only depends on its
neighborhood information, so the proposed spectrum
management can be implemented in a distributed way.

More sophisticated nonlinear pricing function can also
be used, according to the specific problem setting and
requirements. In an underlay spectrum sharing problem
[26] where secondary users transmit in the licensed spec-
trum concurrently primary users, secondary users’ trans-
mission is constrained by the interference temperature
limit (ITL),XN

j¼1

pjhmj 6 Q max
m ; ð15Þ

where pj denotes secondary user j’s transmit power, hmj de-
notes the channel gain from secondary user j to primary
user m, and Q max

m denotes the ITL of primary user m. Thus,

an exponential part, exm , with xm ¼ d

PN

j¼1
pjhmj�Qmax

m

Qmax
m

 !
, is

introduced as a pricing factor into the pricing function, as
well as another part representing the interference to other
secondary users. When the ITL is violated, the utility func-
tion will decrease dramatically. This way, efficient second-
ary spectrum sharing will be achieved, with sufficient
protection of primary transmission. In the spectrum shar-
ing problem considered in [27], each wireless transmitter
selects a single channel from multiple available channels
and the transmission power. To mitigate the effects of
interference externalities, users should exchange informa-
tion that can reflect interference levels. Such information is
defined by interference ‘‘prices”,

puðkÞ
k ¼ @ukðcuðkÞ

k ðpuðkÞÞÞ
@
P

j–kpuðkÞ
j huðkÞ

jk

� �
������

������; ð16Þ

where ukðcuðkÞ
k ðpuðkÞÞÞ represents users’ utility function that

is a concave and increasing function of the received SINR
cuðkÞ

k ðpuðkÞÞ, and
P

j–kpuðkÞ
j huðkÞ

jk represents the interference
at receiver k. So the interference price in (16) indicates
the marginal loss/increase in user k’s utility if its received
interference is increased/decreased by one unit. With the
definition of interference price, user k’s new utility be-
comes the net benefit

ukðcuðkÞ
k ðpuðkÞÞÞ � puðkÞ

k

X
j–k

puðkÞ
j huðkÞ

jk : ð17Þ

It is shown [27] that the proposed algorithm considering
interference price always outperforms the heuristic algo-
rithm where each user only picks the best channel with-
out exchanging interference prices, and the iterative
water-filling algorithm where users do not exchange
any information.

2.4.2. Repeated game and folk theorems
In order to model and analyze long-term interactions

among players, the repeated game model is used where
the game is played for multiple rounds. A repeated game
is a special form of an extensive-form game in which each
stage is a repetition of the same strategic-form game. The
number of rounds may be finite or infinite, but usually
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the infinite case is more interesting. Because players care
about not only the current payoff but also the future pay-
offs, and a player’s current behavior can affect the other
players’ future behavior, cooperation and mutual trust
among players can be established.

Definition 2.6. Let hN, (Ai), (ui)i be a strategic game. A d-
discounted infinitely repeated game of hN, (Ai), (ui)i
(0 < d < 1) is an extensive-form game with perfect infor-
mation and simultaneous moves in which

� the set of players is N;
� for every value of t, the chosen action at may depend on

the history (a1,a2, . . . ,at�1);
� the set of actions available to any player i is Ai, regard-

less of any history;
� the payoff function for player i is the discounted

average of immediate payoffs from each round of the
repeated game, i.e., uiða1; a2; . . . ; at ; . . .Þ ¼ ð1� dÞP1

t¼1d
t�1uiðatÞ.

Note that the discount factor d measures how much the
players value the future payoff over the current payoff. The
larger the value is, the more patient the players are. There
are alternative ways to define an infinitely repeated game
without the use of the discount factor, such as the limited
of means infinitely repeated game and the overtaking
infinitely repeated game, but they are rarely applied to
cognitive radio networks.

In order to stimulate cooperation among selfish players,
the so-called ‘‘grim trigger” strategy is a common ap-
proach. In the beginning, all players are in the cooperative
stage, and they continue to cooperate with each other until
someone deviates from cooperation. Then, the game jumps
to the punishment stage where the deviating player will be
punished by other peers, and there will be no cooperation
forever. A less harsh alternative, also known as the ‘‘pun-
ish-and-forgive” strategy, is similar except for the limited
punishment where deviation is forgiven and cooperation
resumes after long enough punishment. Because coopera-
tion is often more beneficial, the threat of punishment will
prevent players from deviation, and hence cooperation is
maintained. This is formally established by folk theorems,
a family of theorems characterizing equilibria in repeated
games. To begin with, we give some definitions.

Definition 2.7. Player i’s minmax payoff in a strategic
game hN, (Ai), (ui)i is

min
a�i2A�i

max
ai2Ai

uiðai; a�iÞ: ð18Þ

The minmax payoff is the lowest payoff that the other
players can force upon player i, and can be used as the
threat of punishment. Another option is to threat to use
the NE as punishment. It is known that the NE gives at least
the minmax payoff to any player, so the Nash threat is usu-
ally weaker than the minmax threat.
1u0
A

D

Fig. 4. The feasible utility region of a repeated two-player game.
Definition 2.8. A vector v 2 RN is a payoff profile of
hN, (Ai), (ui)i if there is an outcome a 2 A = �i2NAi such that
v = u(a). A vector v 2 RN is referred to as a feasible payoff
profile of game hN, (Ai), (ui)i if it is a convex combination of
payoff profiles of outcomes in A. Denote the minmax payoff
of player i as v0

i . A payoff profile v is (strictly) individually
rational if v i > v0

i for all i 2 N.

Depending on the type of the equilibrium (the NE or the
subgame perfect equilibrium), the length of punishment
(grim-trigger or punish-and-forgive), the punishment pay-
off (the minmax threat or the Nash threat), and the crite-
rion of the infinitely repeated game (d-discounted or
others), folk theorems vary slightly from case to case. Here,
we only pick one of them to present, that is, the perfect
grim-trigger-strategy folk theorem with Nash threats for
the discounting criterion. The proof and other variants
can be found in [28] and [4].

Theorem 2.5. For any feasible and strictly payoff profile v
such that v i > vN

i , for all i 2 N, and vN
i being the payoff of the

stage-game Nash equilibrium, there exists d 2 (0,1), such that
for all d 2 [d, 1), there exists a repeated-game strategy profile
which is a subgame perfect equilibrium of the repeated game
and yields the expected payoff profile v.

In Fig. 4, we illustrate the feasible utility region of a re-
peated game with two players that can be envisioned in a
simplified power control problem for Gaussian interfer-
ence channel with two power levels. Point D can represent
that both users transmit with very high power levels and
suffer from severe interference, point A or C represents
that one user transmits with high power while the other
uses low transmit power, and point B represents that the
two users cooperate by transmitting with low power levels
to alleviate interference and improve utility. If the game is
only played for only one round, the NE will correspond to D
and thus is very inefficient; however, if the game is played
for multiple rounds, any point lying in the convex hull
(shaded area in Fig. 4) can be achievable, according to
the folk theorems. In other words, the efficiency of the
game can be greatly improved.

Other than the grim trigger strategy and the punish-
and-forgive strategy, ‘‘tit-for-tat” and ‘‘fictitious play” are
also popular strategies in a repeated game. Both of them
involve learning from opponents. When using the ‘‘tit-
for-tat” strategy, a player chooses an action based on the
outcome of the very last stage of the game, for example,
he/she decides to cooperate only when all the other play-
ers cooperated in the last time. If the ‘‘fictitious play” strat-
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egy is used, a player learns the empirical frequency of each
action of the other players from all history outcomes, and
then chooses the best strategy accordingly assuming the
opponents are playing stationary strategies.

Examples of cooperation enforcement and adaptive
learning in repeated games can be found in context of cog-
nitive radio networks, e.g., [29–33] and so on. For instance,
it is shown in [29] that any achievable rate in a Gaussian
interference channel, in which multiple unlicensed users
share the same band, can be obtained by piece-wise con-
stant power allocations in that band with the number of
segments at most twice of the number of users. The paper
also shows that only the pure strategy Nash equilibria ex-
ist, and under certain circumstances, spreading power
evenly over the whole band is the unique NE that is often
inefficient. Then, a set of Pareto optimal operating points
are made possible by repeated game modeling and punish-
ment-based strategies. Extending this work to time-vary-
ing channels, [30] also applies the repeated game
framework to achieve better performance than the ineffi-
cient NE. In this paper, users exchange instantaneous chan-
nel state information and cooperatively share the spectrum
using the ‘‘punish-and-forgive” strategy.

2.4.3. Correlated equilibrium
In deriving the NE of a game, players are assumed to

take their strategies independent of the others’ decisions.
When they no longer do so, for instance, following the rec-
ommendation of a third party [34–37], the efficiency of the
game outcome can be significantly improved. In the fol-
lowing, we will discuss the concept of correlated equilib-
rium, if the recommended strategy further satisfies a
certain property.

Correlated equilibrium is a more general equilibrium
concept than the NE, where players can observe the value
of a public signal and choose their actions accordingly.
When no player would deviate from the recommended
strategy, given that the others also adopt the recommenda-
tion, the resulting outcome of the game is a correlated
equilibrium.

Take the multiple access game shown in Table 2 as an
example. Assume now both players observe a public signal
from a third party, who draws one of three cards labeled
(D,C), (C,D), and (C,C) uniformly (with probability 1/3 for
each card). The players choose their actions according to
the one assigned from the card drawn by the third party.
If a player is assigned D, he/she will not deviate, since
the payoff of 6 is the highest, assuming the other player
also played the assigned action. If action C is assigned, both
cards (C,D) and (C,C) can be drawn, with equal probability.
Thus, the expected payoff of action D is 0 � 1

2

� �
þ 6 � 1

2

� �
¼ 3,

while the expected payoff of action C is 3 � 1
2

� �
þ 5 � 1

2

� �
¼ 4.

So the player will not deviate from action C, either. Clearly,
no player has an incentive to deviate, and the resulting
outcome forms a correlated equilibrium. Note that in this
equilibrium, the expected payoff of a player is 14

3 , greater
than that of the pure-strategy NE or mixed-strategy NE,
as can be calculated in Section 2.1. Hence, correlated equi-
librium can be more system efficient than NE.

After explaining the multiple access game example, we
now give the definition of correlated equilibrium [4].
Definition 2.9. A correlated equilibrium of a strategic
game hN, (Ai), (ui)i consists of

� a finite probability space (X,p), where X is a set of
states and p is a probability measure on X,
� an information partition Pi of X, "i 2 N, and
� a function ri :X ? Ai, which represents player i’s strat-

egy and maps an observed state to an action, with
ri(x) = ri(x

0
), x,x

0 2 Pi, for some Pi 2 Pi,

such thatX
x2X

pðxÞuiðr�iðxÞ;riðxÞÞP
X
x2X

pðxÞuiðr�iðxÞ; siðxÞÞ;

ð19Þ

for all i 2 N, and any strategy function si(�).
From this definition, we know that action ri(x) in equi-

librium, where state x occurs with a positive probability, is
optimal to player i, given the other players’ strategies also
following the correlated equilibrium. Since the equilibrium
points are defined by a set of linear constraints in (19),
there can exist multiple correlated equilibrium points of
a game. For instance, in the multiple access game we con-
sidered above, drawing the three cards (D,C), (C,D), and
(C,C) with probability 0.2, 0.2, and 0.6, respectively, is an-
other equilibrium. Moreover, the set of mixed strategy
NE is a subset of the set of correlated equilibria.

In order to adjust their strategies and converge to the
set of correlated equilibria, players can track a set of ‘‘re-
gret” values for strategy update [38]. The regret value can
be defined by

RT
i ðai; a0iÞ ¼ max

1
T

X
t6T

½ut
i ða0i; a�iÞ � ut

i ðai; a�iÞ�;0
( )

; ð20Þ

where ut
i ða0i; a�iÞ represents the payoff of player i at time t

by taking action a0i against the other players taking action
a�i. Therefore, the regret value denotes the average payoff
that player i would have obtained, if he/she had adopted
action a0i every time in the past instead of action ai. If the
regret value is smaller than 0, meaning adopting action ai

brings a higher average payoff, then there will be no regret,
and thus the regret value is lower bounded by 0. According
to the regret value, players can update their strategies by
adjusting the probability of taking different actions. If
player i’s action at time t is at

i ¼ ai, then the probability
of taking action a0i–ai at time t + 1 is updated by

ptþ1
i ða0iÞ ¼

1
l
Rt

i ðai; a0iÞ; ð21Þ

otherwise, it is updated by

ptþ1
i ðaiÞ ¼ 1�

X
a0

i
–ai

ptþ1
i ða0iÞ: ð22Þ

If all players learn their strategies according to (21) and
(22), then their strategies will converge to the set of corre-
lated equilibria almost surely, as time goes to infinity [38].

The concept of correlated equilibrium and regret learn-
ing has been used to design dynamic spectrum access pro-
tocols [35,36], where a set of secondary users compete for
the access of spectrum white space. Users’ utility function



2548 B. Wang et al. / Computer Networks 54 (2010) 2537–2561
is defined as the average throughput in [35], and in [36] a
term representing performance degradation due to excess
access and collisions is further included. Since the common
history observed by all users can serve as a natural coordi-
nation device, users can pick their actions based on the
observation about the past actions and payoff values, and
achieve better coordination with a higher performance.
3. Economic games, auction games, and mechanism
design

As game theory studies interaction between rational
and intelligent players, it can be applied to the economic
world to deal with how people interact with each other
in the market. The marriage of game theory and economic
models yields interesting games and fruitful theoretic re-
sults in microeconomics and auction theory. On one hand,
they can be regarded as applied branches of game theory
which builds on top of key game theoretic concepts such
as rationality and equilibria. Often, players are sellers and
buyers in the market (e.g., firms, individuals, and so on),
payoff functions are defined as the utility or revenue that
players want to maximize, and equilibrium strategies are
of considerable interest. On the other hand, they are distin-
guished from fundamental game theory, not only because
additional market constraints such as supply and demand
curves and auction rules give insight on market structures,
but also because they are fully-developed with their own
research concerns. In fact, the research on the Cournot
model, one of market equilibria, dates back much earlier
than game theory literally exists as a unique field. Hence,
we make a separate section to address those economic
games, so as to respect the distinction of these games
and to highlight their intensive use in cognitive radio
networks.

The application of games in economy into cognitive
radio networks has the following reasons. First, economic
models are suitable for the scenario of the secondary spec-
trum market where primary users are allowed to sell un-
used spectrum rights to secondary users. Primary users,
as sellers, have the incentive to trade temporarily unused
spectrum for monetary gains, while secondary users, as
buyers, may want to pay for spectrum resources for data
transmissions. The deal is made through pricing, auctions,
or other means. Second, these games in economy do not
confine themselves to the scenario with explicit buyers
and sellers, and the ideas behind can be extended to some
cognitive radio scenarios other than secondary spectrum
markets. One example is that the Stackelberg game, origi-
nally describing an economic model, has been generalized
to a strategic game consisting of a leader and a follower.
More details and other examples will be discussed in this
section. Third, as cognitive radio goes far beyond technol-
ogy and its success will highly rely on the combination of
technology, policy, and markets, it is of extreme importance
to understand cognitive radio networks from the economic
perspective and develop effective procedures (e.g., auction
mechanisms) to regulate the spectrum market.

To highlight the underlining economic features in these
games, we will use p and q to refer to prices and quantities
in this section. In general, p and q are interrelated given a
certain market, and their relation can be modeled by the
demand curve and the supply curve. For example, at the gi-
ven market price p, the amount of a good that buyers are
willing to buy is q ¼ DðpÞ, whereas the amount that sellers
are willing to sell is q ¼SðpÞ. Functions Dð�Þ and Sð�Þ are
known as the demand function and the supply function.
Moreover, if the quantity q is fixed in the market, the price
that buyers are willing to pay can be derived by the inverse
demand function, i.e., p ¼ D�1ðqÞ, and similarly, the price
charged by sellers is given by the inverse supply function,
i.e., p ¼S�1ðqÞ. Often, the demand function is a non-
increasing function of p and the supply function is a non-
decreasing function of p.

3.1. Oligopolistic competition

When the market is fully competitive, the market equi-
librium, denoted by (p*,q*), is the intersection of the de-
mand curve and the supply curve,

q� ¼ Dðp�Þ and q� ¼Sðp�Þ: ð23Þ

The other extreme is monopoly, when only one firm con-
trols all over the market of one product. Assume the cost
associated with the quantity q is CðqÞ, the firm can maxi-
mize the profit which is revenue minus cost,

uðqÞ ¼ qD�1ðqÞ � CðqÞ; ð24Þ

by applying the first-order condition

@uðqÞ
@q

¼ D�1ðqÞ þ q
@D�1ðqÞ
@q

� @CðqÞ
@q

¼ 0: ð25Þ

Lying between the full competition and no competition
(monopoly), oligopoly is more complicated and interesting,
which is defined as a market with only a few firms and
with substantial barriers to entry in economics. Because
the number of firms is limited, each one can influence
the price and hence affect other firms; for example, their
strategies are to decide quantity or the price of goods sup-
plied to the market. The interaction and competition be-
tween different firms can be well modeled by game
theory, and several models have been proposed long be-
fore. These models share common attributes including
price–quantity relations, profit-maximizing goals, and
first-order optimality, but they are different in actions
(quantities vs. prices), structures (simultaneous moves vs.
sequential moves), or forms (competition vs. cooperation).
In what follows, we give a brief summary of these games.
We assume there are only two competing firms (i.e., a
duopoly) for convenience, but it is straightforward to gen-
eralize to the scenario with multiple firms.

In the Cournot game, oligopoly firms choose their
quantities q1,q2 independently and simultaneously. Be-
cause the market price depends on the total quantity, each
firm’s action directly affects others’ profits. The market
price is determined by the inverse demand function
p ¼ D�1ðq1 þ q2Þ. Assume the cost associated with a pro-
duction quantity qi is CiðqiÞ; i ¼ 1;2; for the two firms.
The utility function of each firm is revenue minus cost,

uiðqiÞ ¼ qiD
�1ðq1 þ q2Þ � CiðqiÞ; i ¼ 1;2: ð26Þ
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Hence, the equilibrium of this game ðq�1; q�2Þ is the solution
to the following equations derived from first-order
conditions:

@u1ðq1Þ
@q1
¼ D�1ðq1 þ q2Þ þ q1

@D�1ðq1þq2Þ
@q1

� @C1ðq1Þ
@q1

¼ 0;
@u2ðq2Þ
@q2
¼ D�1ðq1 þ q2Þ þ q2

@D�1ðq1þq2Þ
@q2

� @C2ðq2Þ
@q2

¼ 0:

8<
: ð27Þ

In the Bertrand game, firms also decide their actions
independently and simultaneously, but their decisions
are prices p1, p2 and their produce capacity is unlimited.
Although it looks like the Cournot game, the outcome is
significantly different. Since the firm with the lower price
will occupy the entire market, firms will try to reduce their
price until hitting the bottom line with zero profit. Hence,
the equilibrium of this game is trivial. A modification of the
game is to assume each firm produces a somewhat differ-
entiated product. The demand function of product 1 is
D1ðp1; p2Þ, a decreasing function of p1 and often an increas-
ing function of p2. Similarly, we can define D2ðp1; p2Þ. Then,
the equilibrium price can be found through first-order con-
ditions that maximize the profit given by

uiðpiÞ ¼ piDiðp1;p2Þ � CiðDiðp1;p2ÞÞ; i ¼ 1;2: ð28Þ

In the Stackelberg game, firms still choose their quanti-
ties q1,q2 as in the Cournot game, but the two firms make
decisions sequentially rather than simultaneously. The
firm that moves first is called the leader, and the other is
called the follower. Without loss of generality, we assume
firm 1 is the leader in this game. Because firm 2 takes ac-
tion after firm 1 announces the quantity q1, the best re-
sponse of firm 2 can be derived from

@u2ðq2Þ
@q2

¼ D�1ðq1 þ q2Þ þ q2
@D�1ðq1 þ q2Þ

@q2
� @C2ðq2Þ

@q2
¼ 0;

ð29Þ

which is essentially a function of q1. We denote it by q�2ðq1Þ
to emphasize that it is firm 2’s best response to the an-
nounced quantity q1. Knowing that firm 2 will choose the
quantity q�2ðq1Þ, firm 1 can maximize the profit by setting
q1 according to the first-order condition,

@u1ðq1Þ
@q1

¼ @ðq1D
�1ðq1 þ q�2ðq1ÞÞ � C1ðq1ÞÞ

@q1
¼ 0: ð30Þ

This process is known as the backward induction. If firm 1
chooses the Cournot equilibrium quantity, the best re-
sponse of firm 2 will also be the Cournot equilibrium quan-
tity. Because the optimal quantity from (30) works better
than (at least equal to) the Cournot equilibrium, the leader
takes an advantage from the asymmetric structure.

In the Cartel maintenance game, things are quite differ-
ent because firms no longer compete with each other but
cooperate with each other. In general, they can reduce
the output, which leads to higher prices and higher profits
for each firm. One example is the OPEC that manipulates
the stability of international oil price. In order to enforce
cooperation among selfish firms, the Cartel maintenance
can be modeled as a repeated game that has been intro-
duced earlier. From the firms’ perspective, cooperation in
the form of Cartel reduces competition and improves their
profits, but in reality, it is harmful to economic systems
and hence is forbidden by antitrust laws in many countries.

In what follows, we will show some examples on how
these microeconomic concepts inspire research in cogni-
tive radio networks. Depending on the assumptions and
structures of spectrum markets, different models can be
applied.

The spectrum market in [39] consists of one primary
user and multiple secondary users who compete for spec-
trum resources. Secondary user i requests a quantity qi for
the allocated spectrum size, and the price is determined by
the inverse supply function S�1 P

i2Nqi

� �
. This is essentially

a Cournot game, but the players in the game are buyers in-
stead of sellers in the original setting. With the inverse
supply function in the paper specified as

S�1
X
i2N

qi

 !
¼ c1 þ c2

X
i2N

qi

 !c3

; ð31Þ

where c1,c2,c3 are non-negative constants and c3 P 1, the
payoff is defined as

uiðqiÞ ¼ u0
i qi � qi c1 þ c2

X
j2N

qj

 !c3
 !

; ð32Þ

where u0
i is the effective revenue per unit bandwidth for

user i. The equilibrium can be derived from the first-order
condition, i.e.,

u0
i � c1 � c2

X
j2N

q�j

 !c3

� c2c3q�i
X
j2N

q�j

 !c3�1

¼ 0: ð33Þ

Another spectrum market proposed in [40] consists of
multiple competing primary users and one secondary user
network. This game falls into the category of Bertrand
games, as primary users adjust the price of spectrum re-
sources. To avoid the triviality that we mentioned in the
introduction of the Bertrand game, the spectrum resources
cannot be identical, and the authors adopt a commonly
used quadratic utility function [41] for the secondary user
network

u ¼
X
i2N

u0
i qi �

1
2

X
i2N

q2
i þ 2m

X
i–j

qiqj

 !
�
X
i2N

piqi; ð34Þ

leading to linear demand functions

DðpÞ ¼
ð1þ ðN � 2ÞmÞðu0

i � piÞ � m
P

i–jðu0
j � pjÞ

ð1� mÞð1þ ðN � 1ÞmÞ : ð35Þ

Here, pi and qi are the price and quantity purchased from
primary user i; u0

i is the effective revenue per unit band-
width, and the parameter m(�1 6 m 6 1) reflects the cross
elasticity of demand among different spectrum resources.
Specifically, m > 0 implies substitute products, that is, one
spectrum band can be used in place of another, while
m < 0 implies complementary products, that is, one band
has to be used together with another (like uplink and
downlink). The value of m measures the degrees of substi-
tution or complement. In this model, the revenue is de-
fined as the sum of monetary gains collected from the
secondary network and the transmission gains of primary
services, whereas the cost is defined as the performance
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loss to primary services due to spectrum transactions.
Then, the equilibrium pricing is derived from the first-or-
der condition.

The structure of spectrum markets could be more com-
plicated. For instance, [42] proposes a hierarchical model
in which there are two levels of markets: in the upper le-
vel, a few wireless service providers buy some spectrum
bands from spectrum holders, and in the lower level, they
sell these bands to end users. Wireless service providers
are the players in this game who not only decide the quan-
tity bought from spectrum holders but also the price
charged to end users, and therefore, it is actually a combi-
nation of the Cournot game in the upper level with the in-
verse supply function (31) and the Bertrand game in the
lower level with the demand function (35). The two levels
are coupled in that the quantity sold to end users cannot
exceed the quantity bought from license holders. The
authors discuss four possible cases in the lower-level game
due to quantity limitation, and conclude that only one
equilibrium exists in the whole game. Another hierarchical
market is proposed in [17] which considers both channel
allocation and power allocation. In this model, the spec-
trum holder takes control of the upper-level market and
hence the market fits in the monopoly model. In the low-
er-level game, service providers adjust the price of re-
sources in the market, but the demand from end users
comes from the equilibrium of a non-cooperative power-
control game.

Just like other non-cooperative games, the Nash equilib-
ria in these games are often inefficient due to competition
among players. The difference between the equilibrium
utility and the ideal maximum utility is known as the price
of anarchy, which has been introduced in Section 2.4.1. In
[39,40] and [42], the price of anarchy for the proposed
spectrum market has been analyzed through theoretical
derivation or demonstrated by simulation results. In addi-
tion, [40,43] shows that the efficiency can be improved by
enforcing cooperation among users, that is, establishing a
Cartel.

In game models, it is common to assume all players
have full knowledge about each other. However, it is not
always true in realistic setting such as in a cognitive radio
network. For instance, one player may know nothing about
other players’ profits or current strategies. Therefore, to
make those games implementable in spectrum markets,
it is crucial to involve learning processes. The learning pro-
cesses in [39,40,42] and [17] can be roughly classified into
two categories. When the information of strategies is avail-
able, players always update their strategies with the best
response against other players’ current strategies

aiðt þ 1Þ ¼ Bða�iðtÞÞ; ð36Þ

where action a may refer to the quantity or the price
depending on the market model. When only local informa-
tion is available, a gradient-based update rule can be ap-
plied, i.e.,

aiðt þ 1Þ ¼ aiðtÞ þ e
@uiðaðtÞÞ
@ai

; ð37Þ

where e is the learning rate and the partial derivative can
be approximated by local observations. The convergence
of the learning process has been analyzed using the Jaco-
bian matrix, e.g., see [40].

Although originally a game between two sellers of the
same product, the Stackelberg game in a broad sense can
refer to any two-stage game where one player moves after
the other has made a decision. The problem can be formu-
lated as

max
a12A1 ;a22A2

u1ða1; a2Þ;

s:t: a2 2 arg max
a022A2

u2ða1; a02Þ
ð38Þ

where player 1 is the leader and player 2 is the follower.
Similar to the Stackelberg game in an oligopoly market,
the general Stackelberg game can also be solved using
the backward induction. A few applications on cognitive
radio networks can be found in [44,18,45,46] and so on.

For instance, in [44], the Stackelberg game is employed
to model and analyze the cooperation between a primary
user and several secondary users where the primary user
trade some spectrum usage to some secondary users for
cooperative communications. Specifically, the primary user
can choose to transmit the entire time slot on its own, or
choose to ask for secondary users’ cooperation by dividing
one time slot to three fractions with two parameters s1,s2

(0 6 s1,s2 6 1). In the first (1 � s1) fraction of the slot, the
primary transmitter sends data to secondary users, and
then they form a distributive antenna array and coopera-
tively transmit information to the primary receiver in the
following s1s2 fraction of the slot. As rewards, the second-
ary users involved in the cooperative communications are
granted with the spectrum rights in the rest s1(1 � s2) frac-
tion of the slot. The primary user chooses the strategy
including s1,s2, and the set of secondary users for cooper-
ation, and then the selected secondary users will choose
powers for transmission according to the primary user’s
strategy. As the leader of the game, the primary user is
aware of secondary users’ best response to any given strat-
egy, and hence is able to choose the optimal strategy that
maximizes the payoff. The cooperation structure in [18]
is similar, where the major difference is that the secondary
users pay for spectrum opportunities in addition to cooper-
ative transmissions for the primary user. The implementa-
tion protocol and utility functions change, but the
underlying Stackelberg game remains the same.

3.2. Auction games

Auction theory is an applied branch of game theory
which analyzes interactions in auction markets and re-
searches the game theoretic properties of auction markets.
An auction, conducted by an auctioneer, is a process of
buying and selling products by eliciting bids from poten-
tial buyers (i.e., bidders) and deciding the auction outcome
based on the bids and auction rules. The rules of auction, or
auction mechanisms, determine whom the goods are allo-
cated to (i.e., the allocation rule) and how much price they
have to pay (i.e., the payment rule).

As efficient and important means of resource allocation,
auctions have quite a long history and have been widely
used for a variety of objects, including antiques, real
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properties, bonds, spectrum resources, and so on. For
example, the Federal Communications Commission (FCC)
has used auctions to award spectrum since 1994, and the
United States 700 MHz FCC wireless spectrum auction held
in 2008, also known as Auction 73, generated 19.1 billion
dollars in revenue by selling licenses in the 698–806 MHz
band [47]. The spectrum allocation problem in cognitive
radio networks, although micro-scaled and short-termed
compared with the FCC auctions, can also be settled by
auctions.

Auctions are used precisely because the seller is uncer-
tain about the values that bidders attach to the product.
Depending on the scenario, the values of different bidders
to the same product may be independent (the private val-
ues model) or dependent (the interdependent values
model). Almost all the existing literature on auctions in
cognitive radio networks assumes private values. More-
over, if the distribution of values is identical to all bidders,
the bidders are symmetric. Last, it is common to assume a
risk neutral model, where the bidders only care about the
expected payoff, regardless of the variance (risk) of the
payoff.

There are a lot of ways to classify auctions. We start
with the four simple auctions:

� English auction: a sequential auction where price
increases round by round from a low starting price until
only one bidder is left, who wins the product and pays
his/her bid.
� Dutch auction: a sequential auction where price

decreases round by round from a high starting price
until one bidder accepts the price, who wins the prod-
uct and pays the price at acceptance.
� Second-price (sealed-bid) auction: an auction where

each bidder submits a bid in a sealed envelope simulta-
neously, and the highest bidder wins the product with
payment equal to the second highest bid.
� First-price (sealed-bid) auction: an auction where

each bidder submits a bid in a sealed envelope simulta-
neously, and the highest bidder wins the product with
payment equal to his/her own bid.

Interestingly, the four simple auctions, albeit quite dif-
ferent at first glance, are indeed equivalent in some sense
under certain conditions. The main idea was established
in the seminal work [48] by William Vickrey, a Nobel lau-
reate in Economics. This is summarized in the following
theorem; interested readers are referred to [49] for more
details.

Theorem 3.1.

(1) The Dutch auction is strategically equivalent to the
first-price sealed-bid auction, that is, for every strategy
in the first-price auction, there is an equivalent strategy
in the Dutch auction, and vice versa.

(2) Given the assumption of private values, the English
auction is equivalent to the second-price sealed-bid
auction.

(3) Given symmetric and risk-neutral bidders and private
values, all four auctions yield the same expected reve-
nue of the seller. This is a special case of a more general
revenue equivalence theorem.

If the assumption in Theorem 3.1 holds, it will suffice to
study or adopt only one kind of auction out of the four ba-
sic forms. Usually, the second-price auction is a favorite
candidate, because the procedure is simple, and more
importantly, the mechanism enforces bidders to bid their
true values, as stated in Theorem 3.2. In a second-price
auction, bidder i whose value of the product is vi submits
a sealed bid bi to the auctioneer. Then, the winner of the
auction is argmaxj2N bj, and payoffs are

ui ¼
v i �max

j–i
bj if i ¼ arg max

j2N
bj;

0 otherwise:

(
ð39Þ
Theorem 3.2. In a second-price sealed-bid auction, it is a
weakly dominant strategy to bid truthfully, i.e., bi = vi for all
i 2 N.

The seller plays a passive role in the auctions so far, be-
cause his/her benefit has not been taken into consider-
ation. When the seller wants to design an auction game
that has the NE with the highest possible expected reve-
nue, it is called the optimal auction [50]. Assume that all
bidders’ values of the product are drawn from i.i.d. random
variables with the same probability distribution, whose
probability density function and probability distribution
function are denoted by f(v) and F(v), respectively. Then,
an optimal auction may be constructed by adding a re-
serve price on top of a second-price auction. In this case,
the seller reserves the right not to sell the product to any
bidder if the highest bid is lower than the reserve price.

Theorem 3.3. Suppose the values of all bidders are private
and symmetric, and the function TðvÞ ¼ v � 1�FðvÞ

f ðvÞ is increas-
ing. Then setting a reserve price equal to

b0 ¼ T�1ðv0Þ ð40Þ

in a second-price auction represents an optimal auction. The
function T�1(�) is the inverse function of T(�), and v0 is the sell-
er’s value of the product.

In addition, setting a reserve price is also an effective
measure against bidding ring collusion, where some or
even all of the bidders collude not to overbid each other
and hence the price is kept low.

An auction becomes more involved when more than
one item are simultaneously sold and bidders bid for
‘‘packages” of products instead of individual products. This
is known as the combinatorial auction [51]. The second-
price mechanism can be generalized to the Vickrey-
Clarke-Groves (VCG) mechanism, which maintains the
incentive to bid truthfully. The basic idea is that the alloca-
tion of products maximizes the social welfare and each
winner in the auction pays the opportunity cost that their
presence introduces to all the other bidders.

Beyond the basic types of auctions, there are other
forms of auctions such as the clock auction, the proxy auc-
tion, the double auction, and so on. Furthermore, there are
a lot of practical concerns and variants in the real-world
auctions. We will not go into the details of these issues;
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instead, we will focus on the auction games in cognitive
radio networks in what follows.

In [52], SINR auctions and power auction mechanisms
are studied subjected to a constraint on the accumulated
interference power, or the so-called ‘‘interference temper-
ature”, at a measurement point, which must be below the
tolerable amount of the primary system. In this auction
game, the resource to sell is not the spectrum band; in-
stead, users compete for the portion of interference that
they may cause to the primary system, because the inter-
ference is the ‘‘limited resources” in this auction. Another
kind of auctions has been used in [53], where spectrum
sensing effort, rather than monetary payment, is the price
to pay for the spectrum opportunities. The auction still fol-
lows the form of first-price and second-price sealed-bid
auctions.

In the auction framework proposed in [54], users bid for
a fraction of the band and the auction outcome has to sat-
isfy the interference constraint. In this auction, each user
has a piece-wise linear demand curve, and it is assumed
that all users reveal demand curves to the auctioneer
truthfully. Because the corresponding revenue is a piece-
wise quadratic function, the auctioneer can find the reve-
nue-maximizing point under the constraint that the alloca-
tion is conflict-free.

The cheat-proof property is a major concern in auction
design, and we have mentioned that the VCG mechanism is
capable of enforcing truth-telling. However, the VCG
mechanism sometimes suffers from high complexity and
vulnerability to collusive attacks. In [55] and [56], system
efficiency is traded for low complexity using the greedy
algorithm, while the authors carefully design the mecha-
nism to guarantee that truth-telling is still a dominant
strategy in this auction game.

Because of the unique feature in wireless communica-
tions that spectrum can be reused by users geographically
far apart, spectrum resources are quite different from other
commercial commodities in that they are often interfer-
ence-limited rather than quantity-limited. From this point
of view, [57] establishes a new auction not existing in eco-
nomic literature. In this auction game, one spectrum band
is simultaneously awarded to multiple users without inter-
ference, and the number of winners highly depends on the
mutual interference among secondary users. For this so-
called ‘‘multi-winner auction”, proper auction mechanisms
are developed to eliminate user collusion and improve rev-
enue, and near-optimal algorithms are further applied to
reduce the complexity.

When there are multiple sellers who also compete in
selling the spectrum, the scenario can be modeled as a
double auction. A truth-telling enforced double auction
mechanism has been proposed in [58], and an anti-collu-
sion double auction mechanism has been developed in
[59] where history observations are employed to estimate
users’ private values.

3.3. Mechanism design

Auction is one of the many possible ways of selling
products. If striping off any particular selling format (e.g.,
an auction format), we arrive at a fundamental question:
what is the best way to allocate a product? This general-
ized allocation problem falls into the category of mecha-
nism design, a field of game theory on a class of private
information games. The 2007 Nobel Memorial Prize in Eco-
nomic Sciences was awarded to Leonid Hurwicz, Eric Ma-
skin, and Roger Myerson as the founders of mechanism
design theory.

The distinguishing feature of mechanism design is that
the game structure is ‘‘designed” by a game designer called
a ‘‘principal” who wants to choose a mechanism for his/
her own interest. Like in an auction, the players, called
the ‘‘agents”, hold some information that is not known
by the others, and the principal asks the agents for some
messages (like the bids in an auction) to elicit the private
information. Hence, this is a game of incomplete informa-
tion where each agent’s private information, formally
known as the ‘‘type”, is denoted by hi, a value drawn from
a set Hi, for i 2 N. Based on the messages from agents, the
principal makes an allocation decision d 2 D, where D is
the set of all potential decisions on how resources are allo-
cated. Because agents are not necessarily honest, incen-
tives have to be given in terms of monetary gains, known
as transfers. The transfer may be negative values (as if
paying tax) or positive values (as if receiving compensa-
tion). Then, agent i’s utility is the benefit from the decision
d plus a transfer, i.e., ui = vi(d,hi) + ti, which may provide
agents with incentives to reveal the information truthfully.
In summary, the basic insight of mechanism design is that
both resource constraints and incentive constraints are co-
equally considered in an allocation problem with private
information [60].

Definition 3.1. A mechanism defines a message space Mi

for each agent i 2 N and an allocation function
ðd; ti;i2NÞ : �i2NMi ! D� RN . For a vector of messages
m 2 �i2NMi, d(m) is the decision while ti(m) is agent i’s
transfer.

For a given mechanism, the agents’ strategy is mapping
the individual type to a message, i.e., m :Hi ? Mi, being
aware that their own utilities depend on all the reported
messages. Each agent only has the prior distribution or be-
liefs of others’ types but not the exact type; hence, this is a
Bayesian game because players have incomplete informa-
tion of others. As a result, each agent has to maximize the
expected payoff which averages out the unknowns. Just as
the NE presents an equilibrium for games with complete
information, the Bayesian equilibrium, with payoffs in
the NE replaced by expected payoffs, defines the equilib-
rium for Bayesian games. For this message game, the strat-
egy profile, fm�i ðhiÞ; i 2 Ng is a Bayesian equilibrium if for
all i 2 N

Eðv iðdðm�ðhÞÞ; hiÞ þ tiðm�ðhÞÞÞ
P Eðv iðdðmiðhiÞ;m��iðh�iÞÞ; hiÞ
þ tiðmiðhiÞ;m��iðh�iÞÞÞ 8miðhiÞ 2 Mi: ð41Þ

Notice that the expectation is taken over the prior distribu-
tion given that agent i’s type is hi.

Because there are unlimited possibilities of choosing
message spaces and allocation functions, analyzing the
equilibrium and designing the mechanism seem to be
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Fig. 5. NBS of a two-player game.
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extremely challenging. However, thanks to the equivalence
established in the ‘‘revelation principle” in Theorem 3.4,
as shown below, we can restrict attention to only ‘‘direct”
mechanisms in which the message space coincides with
the type space, i.e., Mi = Hi, and all agents will truthfully
announce their types [61].

Theorem 3.4. For any Bayesian equilibrium supported by
any general mechanism, there exists an equivalent direct
mechanism with the same allocation and an equilibrium
mi(hi) = hi "i 2 N.

In [62], mechanism design has been applied to multi-
media resource allocation problem in cognitive radio net-
works. For the multimedia transmission, the utility
function is defined as the expected distortion reduction
resulting from using the channels. Since the system de-
signer wants to maximize the system utility, mechanism-
based resource allocation is used to enforce users to repre-
sent their private parameters truthfully. A cheat-proof
strategy for open spectrum sharing has been proposed
based on the Bayesian mechanism design [30,63]. In this
work, a cooperative sharing is maintained by repeated
game modeling, and users share the spectrum based on
their channel state information. In order to provide users
an incentive to reveal their private information honestly,
mechanism design has been employed to determine prop-
er transfer functions.
4. Cooperative games

In this section, we discuss two important types of coop-
erative spectrum sharing games, bargaining games and
coalitional games, where network users have an agreement
on how to fairly and efficiently share the available spec-
trum resources.

4.1. Bargaining games

The bargaining game is one interesting kind of cooper-
ative games in which individuals have the opportunity to
reach a mutually beneficial agreement. In this game, indi-
vidual players have conflicts of interest, and no agreement
may be imposed on any individual without his/her ap-
proval. Despite there are other models such as the strategic
approach with a specified bargaining procedure [64], we
will focus on Nash’s axiomatic model which has been
established in Nash’s seminal paper [65], because it has
been widely applied to cognitive radio networks.

For convenience, we consider the two-player bargaining
game N = {1,2}, which can be extended to more players
straightforwardly. For a certain agreement, player 1 re-
ceives utility u1 and player 2 receives utility u2. If players
fail to reach any agreement, they receive utilities u0

1 and
u0

2, respectively. The set of all possible utility pairs is the
feasible set denoted by U.

Definition 4.1. A two-player bargaining problem is a pair
hU; ðu0

1;u
0
2Þi, where U � R2 is a compact and convex set,

and there exists at least one utility pair (u1,u2) 2 U such
that u1 > u0

1 and u2 > u0
2. A bargaining solution is a
function ðu�1;u�2Þ ¼ f ðU;u0
1;u

0
2Þ that assigns a bargaining

problem hU; ðu0
1;u

0
2Þi to a unique element of U.

The axioms imposed on the bargaining solution ðu�1;u�2Þ
are listed as follows [66]:

� Individual rationality. u�1 > u0
1 and u�2 > u0

2.
� Feasibility. ðu�1;u�2Þ 2 U.
� Pareto efficiency. If ðu1;u2Þ; ðu01;u02Þ 2 U; u1 < u01, and

u2 < u02, then f ðU;u0
1;u

0
2Þ–ðu1;u2Þ.

� Symmetry. Suppose a bargaining problem is symmetric,
i.e., (u1,u2) 2 S, (u2,u1) 2 S and u0

1 ¼ u0
2. Then, u�1 ¼ u�2.

� Independence of irrelevant alternatives. If ðu�1;u�2Þ 2
U0 � U, then f ðU0;u0

1;u
0
2Þ ¼ f ðU;u0

1;u
0
2Þ ¼ ðu�1; u�2Þ.

� Independence of linear transformations. Let U
0
be obtained

from U by the linear transformation u01 ¼ c1u1 þ c2 and
u02 ¼ c3u2 þ c4 with c1,c3 > 0. Then, f ðU0; c1u0

1 þ c2;

c3u0
2 þ c4Þ ¼ ðc1u�1 þ c2; c3u�2 þ c4Þ.

Theorem 4.1. There is a unique bargaining solution satisfy-
ing all the axioms above, which is given by

ðu�1;u�2Þ ¼ arg max
ðu1 ;u2Þ2U;u1>u0

1
;u2>u0

2

ðu1 � u0
1Þðu2 � u0

2Þ: ð42Þ

This is called the Nash bargaining solution (NBS).
Fig. 5 illustrates the feasible utility region of a two-

player game. The shaded area U represents the feasible
range of u1 and u2, and the NBS corresponds to point
ðu�1;u�2Þ in the figure, where Cmax is the largest value of
ðu1 � u0

1Þðu2 � u0
2Þ for the feasible set U. The meaning of

the NBS is that after the players are assigned with the min-
imal utility, the remaining welfare are divided between
them in a ratio equal to the rate at which the utility can
be transferred [67].

Remarks.

(1) The NBS is well-defined. Since the function ðu1 � u0
1Þ

ðu2 � u0
2Þ is strictly quasi-concave on fðu1;u2Þ 2 U :

u1 > u0
1;u2 > u0

2g, a non-empty compact and convex
set guaranteed by the definition of the bargaining
problem, there exists a unique maximizer for this
maximization problem.

(2) The proof of the theorem can be found, e.g., in [68].
The idea is first to show the NBS satisfies these
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axioms, and then to show that it is the only choice
satisfying all axioms.

(3) Moreover, a detailed discussion has been included in
[68] to show that no axioms are superfluous. In
other words, removing any of the axioms will not
guarantee the uniqueness of the bargaining solution.

(4) It is ready to extend Theorem 4.1 to the bargaining
problem with more than two players. Specifically,
the NBS for the bargaining problem with the player
set N is the solution to the following optimization
problem,
arg max
ðu1 ;u2 ;...Þ2U;uk>u0

k
;8k2N

Y
k2N

ðuk � u0
kÞ: ð43Þ
(5) As shown in [67], when u0
k ¼ 0; 8k 2 N, the NBS

coincides with the proportional fairness which is
one of the widely-used criteria for resource alloca-
tion. In simpler words, the NBS achieves some
degree of fairness among cooperative players
through bargaining.

In what follows, we give a brief summary on how bar-
gaining games have been applied to cognitive radio net-
works where cooperation among players is possible and
fairness is an important concern.

In [69], the NBS is directly applied to allocate fre-
quency-time units in an efficient and fair way, after a
learning process is first applied to find the payoffs with
disagreement.

The symmetry axiom implies that all players are equal
in the bargaining game; however, sometimes it is not true
because some players have priority over others. To accom-
modate this situation, a variant of the NBS is to offset the
disagreement point to some other payoff vectors that
implicitly incorporate the asymmetry among players. An
alternative approach is to modify the objective function
to
Q

k2Nðuk � u0
kÞ

wk with weights wk reflecting the priority
of players. For instance, in the power allocation game con-
sisting of primary users and secondary users [70], different
values of u0

k are set to primary users and secondary users
because primary users have the priority to use spectrum
resources in cognitive radio networks. In [71] with heter-
ogenous wireless users, the disagreement point in the
NBS objective function is replaced by the threat made by
individual players.

Moreover, finding the NBS needs global information
which is not always available. A distributed implementa-
tion is proposed in [23] where users adapt their spectrum
assignment to approximate the optimal assignment
through bargaining within local groups. Although not
explicitly stated, it actually falls into the category of the
NBS, because the objective is to maximize the total loga-
rithmic user throughput which is equivalent to maximiz-
ing the product of user payoffs. In this work, neighboring
players adjust spectrum band assignment for better sys-
tem performance through one-to-one or one-to-many bar-
gaining. In addition, a theoretic lower bound is derived to
guide the bargaining process.

A similar approach is conducted in [72] which itera-
tively updates the power allocation strategy using only lo-
cal information. In this game, players allocate power to
channels and their payoffs are the corresponding capacity.
Given the assumption that players far away from each
other have negligible interference, from a particular
player’s perspective, the global objective is detached to
two parts: the product of faraway players’ payoffs and
the product of neighboring players’ payoffs. Because the
player’s power allocation strategy only affects the second
term, maximizing the second term is equivalent to maxi-
mizing the global objective. Each player sequentially ad-
justs the strategy, and it is proved that the iterative
process is convergent. Although it is not sure whether it
converges to the NBS, simulation results show that the
convergence point is close to the true NBS.

The concept of the NBS can also be applied to scenarios
without explicit bargaining. For example, the NBS is em-
ployed to determine how to split payment among several
users in a cognitive spectrum auction in [57], where the
auctioneer directly set the NBS as the price to each player,
and they will be ready to accept because the NBS is an
equilibrium. In this paper, the objective function is defined
as the product of individual payoffs which is similar to the
NBS, but additional constraints have been introduced to
eliminate collusive behavior in the auction.

4.2. Coalitional games

Coalitional game is another type of cooperative game. It
describes how a set of players can cooperate with others by
forming cooperating groups and thus improve their payoff
in a game.

Denote the set of players by N, and a non-empty subset
of N, i.e., a coalition, by S. Since the players in coalition S
have agreed to cooperate together, they can be viewed as
one entity and is associated with a value v(S) which repre-
sents the worth of coalition S. Then, a coalitional game is
determined by N and v(S). This kind of coalitional games
is known as games with transferrable payoff, since the value
v(S) is the total payoff that can be distributed in any way
among the members of S, e.g., using an appropriate fairness
rule.

However, in some coalitional games, it is difficult to as-
sign a single real-number value to a coalition. Instead, each
coalition S is characterized by an arbitrary set V(S) of con-
sequences. Such games are known as coalitional games
without transferrable payoff. In these games, the payoff that
each player in S receives depends on the joint actions of the
members of S, and V(S) becomes a set of payoff vectors,
where each element xi of a vector x 2 V(S) represents player
i’s payoff as a member of S.

In coalitional games with or without transferrable pay-
off values, the value of a coalition S only depends on the
members of S, while not affected by how the players out-
side coalition S are partitioned. We call these coalition
games are in characteristic function form. Sometimes, the
value of S is also affected by how the players in NnS are
partitioned into various coalitions, and we call those coali-
tional games are of the partition function form [73]. In par-
tition form games, the coalitional structure is denoted by a
partition S of N, where S ¼ fS1; . . . ; SKg; Si

T
Sj ¼ ;, for

i – j, and
SK

i¼1Si ¼ N. The value of Si 2S depends on the
coalitional structure S, and can be denoted by vðS;SÞ.
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In characteristic function form coalitional games, coop-
eration by forming larger coalitions is beneficial for players
in terms of a higher payoff. This property is referred to as
superadditivity. For instance in games with transferrable
payoff, superadditivity means

vðS1

[
S2ÞP vðS1Þ þ vðS2Þ; 8S1; S2 � N; S1

\
S2 ¼ ;:

ð44Þ

Therefore, forming larger coalitions from disjoint (smaller)
coalitions can bring at least a payoff that can be obtained
from the disjoint coalitions individually. Due to this prop-
erty, it is always beneficial for players in a superadditive
game to form a coalition that contains all the players, i.e.,
the grand coalition.

As the grand coalition provides the highest total payoff
for the players, it is the optimal solution that is preferred
by rational players. Naturally, one may wonder: is the grand
coalition always achievable and stable? To answer this
question, we first introduce the solution concept for coali-
tional games, the core [4]. The idea behind the core is similar
to that behind a Nash equilibrium of a non-cooperative
game: a strategy profile where no player would deviate uni-
laterally to obtain a higher payoff. In a coalitional game, an
outcome is stable if no coalition is willing to deviate and ob-
tain an outcome that is better for all its members. Let hN,vi
denote a coalitional game. For any payoff profile (xi)i2N of
real numbers and any coalition S, let xðSÞ ¼

P
i2Sxi. A vector

(xi)i2S is an S-feasible payoff vector if x(S) = v(S).

Definition 4.2. The core of the coalitional game hN,vi is
the set of feasible payoff profile (xi)i2N for which there is no
coalition S and S-feasible payoff vector (yi)i2S, such that
yi > xi for all i 2 S.

In other words, no coalition S � N has an incentive to re-
ject the proposed payoff profile in the core, deviate from
the grand coalition, and form coalition S instead. Therefore,
the definition of the core is equivalent to

C ¼ fðxiÞ :
X
i2N

xi ¼ vðNÞ and
X
i2S

xi P vðSÞ; 8S # Ng:

ð45Þ

As long as one can find a payoff allocation (xi) that lies in
the core, the grand coalition is a stable and optimal solu-
tion for the coalitional game.

It can be seen that the core is the set of payoff profiles
that satisfy a system of weak linear inequalities, and thus
is closed and convex. Moreover, we can find the core by
solving a linear program

min
ðxiÞi2N

X
i2N

xi; s:t:
X
i2N

xi ¼ vðNÞ;
X
i2S

xi P vðSÞ 8S # N:

ð46Þ

The existence of the core depends on the feasibility of
the linear program and is related to the balanced property
of a game. A coalitional game with transferrable payoff is
called balanced if and only if the following inequality:X
S # N

kSvðSÞ 6 vðNÞ; ð47Þ

holds for all non-negative weight collections k = (kS)S # N,
where the collection ðkSÞS2S of numbers in [0,1] denotes
a balanced collection of weights, and the sum of kS over
all the coalitions that contain player i is

P
S	ikS ¼ 1. If we

assume any player i 2 N has a single unit of time for distri-
bution among all the coalitions in which he/she is a mem-
ber, in order for a coalition S to be active for a fraction of
time kS, all members of S must be active in S during kS,
and the resulting payoff is kSv(S). Then, the balanced prop-
erty means that there exists no feasible allocation of time
that can yield a total payoff higher than that of the grand
coalition v(N), and thus the grand coalition is optimal, indi-
cating there may exist a non-empty core. Without giving
the detailed proof (interested reader can refer to [4]), we
present the result about the existence of a non-empty core
in the following theorem [4].

Theorem 4.2. A coalitional game with transferrable payoff
has a non-empty core if and only if it is balanced.

If the balanced property of a game does not hold, the
core will be empty, and one will have trouble in finding a
suitable solution of a coalitional game. Thus, an alternative
solution concept that always exists in a coalitional game is
in need. Shapley proposed a solution concept, known as
the Shapley value w, to assign a unique payoff value to
each player in the game. In the following, we provide an
axiomatic characterization of the Shapley value, where wi

denotes the payoff assigned to player i according to the
Shapley value.

� (Symmetry) If player i and player j are interchangeable
in v, i.e., v(S

S
{i}) = v(S

S
{j}) for every coalition S that

does not contain player i or j, then wi(v) = wj(v).
� (Dummy player) If player i is a dummy in v, i.e.,

v(S) = v(S
S

{i}) for every coalition S, then wi(v) = 0.
� (Additivity) For any two games u and v, define the game

u + v by (u + v)(S) = u(S) + v(S), then wi(u + v) = wi(u) +
wi(v) for all i 2 N.
� (Efficiency)

P
i2NwiðvÞ ¼ vðNÞ.

The Shapley value is the only value that satisfies all the
above axioms, and is usually calculated as the expected
marginal contribution of player i when joining the grand
coalition given by

wiðvÞ ¼
X

S # jNjnfig

jSj!ðjNj � jSj � 1Þ!
jNj! ½vðS [ figÞ � vðSÞ�: ð48Þ

In a cognitive radio network, cooperation among ra-
tional users can generally improve the network perfor-
mance due to the multiuser diversity and spatial
diversity in a wireless environment. Thus, coalitional game
theory has been used to study user cooperation and
design optimal, fair, and efficient collaboration strategies.
In [74], spectrum sharing through receiver cooperation is
studied under a coalitional game framework. The authors
model the receiver cooperation in a Gaussian interference
channel as a coalitional game with transferrable payoff,
where the value of the game is defined as the sum-rate
achieved by jointly decoding all users in the coalition. It
is shown that the grand coalition that maximizes the
sum-rate is stable, and the rate allocation to members of a
coalition is solved by a bargaining game modeling. Receiver



2556 B. Wang et al. / Computer Networks 54 (2010) 2537–2561
cooperation by forming a linear multiuser detector is
modeled as a game without transferrable payoff, where
the payoff of each player is the received SINR. At high SINR
regime, the grand coalition is proved to be stable and
sum-rate maximizing. The work in [75] has modeled
cooperative spectrum sensing among secondary users as a
coalition game without transferrable payoff, and a distributed
algorithm is proposed for coalition formation through
merge and split. It is shown that the secondary users can
self-organize into disjoint independent coalitions, and the
detection probability is maximized while maintaining a
certain false alarm level.
5. Stochastic games

In the above, we have discussed the various aspects of
game theory with their applications to cognitive radio net-
working, from non-cooperative spectrum competition, to
spectrum trading using market equilibrium concepts, and
to cooperative spectrum sharing games. Generally speak-
ing, in these games the players are assumed to face the
same stage game at each time, meaning the game and
the players’ strategies are not depending on the current
state of the network. However, this is not true for a cogni-
tive radio network where the spectrum opportunities and
the surrounding radio environment keep changing over
time. In order to study the cooperation and competition
behaviors of cognitive users in a dynamic environment,
the theory of stochastic games is a better fit.

A stochastic game [76] is an extension of Markov Deci-
sion Process (MDP) [77] by considering the interactive
competition among different agents. In a stochastic game
G, there is a set of states, denoted by S, and a collection
of action sets, A1, . . . ,AjNj, one for each player in the game.
The game is played in a sequence of stages. At the begin-
ning of each stage the game is in some state. After the play-
ers select and execute their actions, the game then moves
to a new random state with transition probability deter-
mined by the current state and one action from each
player: T : S� A1 � � � � � AjNj#PDðSÞ. Meanwhile, at each
stage each player receives a payoff ui : S� A1 � � � � �
AjNj#R, which also depends on the current state and the
chosen actions. The game is played continually for a num-
ber of stages, and each player attempts to maximize an
objective function. The objective function can be defined
as the expected sum of discounted payoffs in an infinite
horizon, Ef

P1
j¼0cjui;tþjg, where ui,t+j is the reward received

j steps into the future by player i and c is the discount fac-
tor. It can also be defined as the expected sum of dis-
counted payoffs over a finite time horizon, or the limit of
the average reward. Since in a cognitive radio network,
data transmission is usually assumed to last for a suffi-
ciently long time and be sensitive to time delay (e.g., multi-
media content), the most widely adopted form of objective
function is the expected sum of discounted payoffs over an
infinite horizon.

The solution, also called a policy of a stochastic game is
defined as a probability distribution over the action set at
any state, pi : S! PDðAiÞ, for all i 2 N. Given the current
state st at time t, if player i’s policy pt

i at time t is indepen-
dent of the states and actions in all previous time slots, the
policy pi is said to be Markov. If the policy is further inde-
pendent of time, it is said to be stationary.

The stationary policy of the players in a stochastic
game, i.e., their optimal strategies, can be obtained by va-
lue iteration according to Bellman’s optimality condition.
For example, in a two-player stochastic game with oppo-
site objectives, let us denote V(s) as the expected reward
(of player 1) for the optimal policy starting from state s,
and Q(s,a1,a2) as the expected reward of player 1 for taking
action a1 against player 2 taking action a2 from state s and
continuing optimally thereafter [78]. Then, the optimal
strategy for player 1 can be obtained from the following
iterations:

VðsÞ ¼ max
p2aðA1Þ

min
a22A2

X
a12A1

Qðs; a1; a2Þpa1 ; ð49Þ

Qðs; a1; a2Þ ¼ u1ðs; a1; a2Þ þ c
X
s02S

Tðs; a1; a2; s0ÞVðs0Þ; ð50Þ

where pa1 denotes player 1’s strategy profile, and
T(s,a1,a2,s

0
) denotes the transition probability from state s

to s
0
, when player 1 takes a1 and player 2 takes a2.

For several special kinds of stochastic games, linear pro-
gram can also formulated to obtain the optimal policy,
which is defined as the probability profile (pi(s,a1, . . . ,
ajNj))i2N, for all s 2S, and ai 2 Ai. Examples include single-
controller discounted games, separable reward state inde-
pendent transition discounted games, and switching con-
troller discounted games. Interested readers are referred
to [77] for more details.

In the following, we use several example applications of
stochastic game theory to cognitive radio networking to
illustrate how to formulate a stochastic game for different
problems and how to solve the game.

� Spectrum auction [79]: At each time slot, a central spec-
trum moderator auctions the currently available spec-
trum resources, and a set of secondary users
strategically bid for the resources. As secondary users
need to cope with uncertainties from both the environ-
ment (e.g., channel availability and quality variations,
packet arrivals from the source) and interactions with
the other secondary users (e.g., resource allocation from
the auction), the state of the stochastic game is com-
posed of the buffer state and channel state, where the
buffer state is dependent on the current spectrum alloca-
tion status. The transition probability of the game can be
derived, since the packet arrival is assumed to be a Pois-
son process and the channel state transition is modeled
as a Markov chain. Strategic secondary users want to
maximize the number of transmitted packets by choos-
ing the optimal bidding strategy. To this end, an interac-
tive learning algorithm is proposed, where the high
dimensional state space is decomposed and reduced to
a simpler expression, based on the conjecture from pre-
vious spectrum allocations, and state transition proba-
bilities are further estimated using past observations
on transitions between different states. In this way, sec-
ondary users can approximate the future reward and
approach the optimal policy through value iteration.



B. Wang et al. / Computer Networks 54 (2010) 2537–2561 2557
� Transmission control [80]: The secondary users’ rate
adaptation problem is formulated as a constrained
zero-sum stochastic game. Under TDMA assumption,
the system state transition probabilities are only depen-
dent on the user who is transmitting, and thus the game
falls into the category of switching controller game. The
state of the transmission control stochastic game com-
prises channel state, secondary users’ buffer state, and
incoming traffic state; and the action of each user is
the transmission rate. The cost that the users try to min-
imize is composed of a transmission cost, which is a
function related to channel quality and transmission
rate, and a holding cost, which is a function related to
the buffer state. It is shown that there exist NE in the
transmission control game, since it is a zero-sum game;
moreover, a stochastic approximation algorithm is pro-
posed to search for the NE.
� Anti-jamming defense [81]: Cognitive attackers may

exist in a cognitive radio network, who can adapt their
attacking strategy to the time-varying spectrum oppor-
tunities and secondary users’ strategy. To alleviate the
damage caused by cognitive attackers, a dynamic secu-
rity mechanism is investigated in [81] by a stochastic
game modeling. The state of the anti-jamming game
includes the spectrum availability, channel quality,
and the status of jammed channels observed at the cur-
rent time slot. The action of the secondary users reflects
how many channels they should reserve for transmit-
ting control and data messages and how to switch
between the different channels. Since the secondary
users and attackers have opposite objectives, the anti-
jamming game is a zero-sum game, and the optimal
policy of the secondary users is obtained by the mini-
max-Q learning algorithm based on (49) and (50).

6. Research challenges and future directions

Although game theory has been extensively used and
has offered a lot of benefits in studying, modeling, and ana-
lyzing the strategic interaction process among various
users in cognitive radio networks, there are still some re-
search challenges that require the research community to
pay close attention to. In this section, we discuss some ma-
jor challenges and future directions in this area, which we
hope could inspire researchers’ interests for the develop-
ment of game theoretic modeling approaches for cognitive
radio networks.

6.1. Defining a proper payoff function

The payoff function reflects the objective that a player
wants to achieve from playing a game. For games in cogni-
tive radio networks, different payoff functions have been
chosen for different problem settings: in auction games
or spectrum trading, the payoff function is usually defined
as the net profit, i.e., the gain from using the spectrum
minus the cost of holding the spectrum band. In other
works that are not directly related to spectrum trading,
the most commonly adopted payoff function is usually a
simple (often concave) function containing one or more
QoS metrics, such as throughput/rates/capacity, delay, or
error probability. Although choosing a simple payoff func-
tion may simplify the analysis of equilibrium and other
properties of the game, a lot of real-world constraints
and situations are largely ignored. For instance, several
works (e.g., [17,24]) have chosen the cost term in the pay-
off function as a linear function of the transmit power.
However, the cost of the transmit power may depend on
the specific device/user and the remaining power level,
and thus is probably not linear in the transmit power. Even
a linear function can roughly capture the cost, if the gain
term (e.g., a function of some QoS metric) in the payoff
function is in another unit rather than power unit, how
to choose the weight of the linear function to balance the
gain and the cost still remains a problem. Therefore, it is
important to choose a meaningful payoff function that
can precisely characterize players’ objectives, instead of
choosing an easy-to-analyze one while over-simplifying
the practical problem.

6.2. Learning in games

The focus of most game theoretic spectrum allocation
approaches is on solving the equilibrium and analyzing
its properties, without further considering how players
should interact to approach the equilibrium. These works
implicitly assume that players have complete knowledge
about the game being played, such as the action space
and payoff functions of each other, and hence NE can be
achieved without exploring the action space. However,
the benefit of selfish players who compete for spectrum re-
sources may get impaired if they reveal their private infor-
mation to other players, since others tend to take
advantage of such information to improve their own pay-
offs. Thus, complete knowledge about the game cannot
be taken for granted, and equilibrium may not be achieved
within a small number of stages. Instead, the game is usu-
ally played in a series of stages, where players gradually
improve their payoffs according to the observation about
the others’ actions and the payoff received in the past, if
such observation is available.

Learning is involved in this process, and a good learning
algorithm will enable players to choose the right strategy
that converges to a desirable equilibrium. While network
researchers can refer to existing learning approaches intro-
duced by game theorists, e.g., [82,83], to help network de-
sign, practical learning algorithms that are suitable for
communication networks are worth further research, espe-
cially for games with multiple players which are often
encountered in spectrum allocation. First, in decentralized
networks, information that can be gathered by different
users may be asymmetric. With different levels of side
information and different objectives, users can adopt vari-
ous learning approaches, and it cannot be anticipated
where the outcome of the game will converge to. Even if
learning algorithms can be programmed in cognitive radio
devices, when those devices are attacked and compro-
mised by malicious attackers, the learning algorithms can
still be tampered. Thus, we need to study the users’ behav-
ior dynamics and see how their strategies converge in
establishing an equilibrium. In addition, due to the limited
processing capability, no devices can monitor and process
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every piece of information at any time. Therefore, effective
learning with limited observation is needed so that the
improvement of network performance can be speeded up.

6.3. Efficiency of equilibrium

When selfish players compete for spectrum resources,
the resulting NE is usually not efficient in terms of social
welfare. Thus, how to stimulate and enforce cooperation
becomes critical for further improving the overall spectrum
efficiency. As discussed in Section 2.4, pricing and repeated
game have been proposed to prevent the tragedy of com-
mons; by introducing recommendation of a third party,
selfish players’ strategies will be led into the set of corre-
lated equilibria with probably a more efficient outcome.
However, not all of these approaches will be effective in
suppressing over-competition under some circumstances.
For instance, most repeated game modeling approaches as-
sume that the game is played for infinitely many times and
the discount factors of all players are very close to 1. This
way, no player will deviate from mutual cooperation since
the gain from deviation will be negated by potential pun-
ishment from the other players. However, if the discount
factors of some players are much smaller than those of
the others, e.g., when some players have much shorter data
sequences to transmit and thus will access the spectrum
band for a shorter time period, they may take advantage
of players with larger discount factors, and desirable coop-
eration and system efficiency cannot be guaranteed. Even
within the set of correlated equilibria, not all operating
points are efficient, such as those coincide with the NE
points. Therefore, cooperation stimulation still remains a
challenging task for efficient spectrum utilization.

6.4. Issues in mechanism design

Mechanism design can be viewed as another way to im-
prove the efficiency of equilibrium by motivating players
to compete honestly, so that the spectrum resources are
allocated to players who value them most by means of
transfers. Transfers must be collected and redistributed
by a trusted entity. In spectrum auction games, a specific
form of mechanism design, a spectrum auctioneer collects
bids and allocates spectrum bands according to some dis-
tribution rule, e.g., using a second-price auction, and the
honesty of players in bidding can be assured. In general
spectrum allocation games without monetary gain explic-
itly involved, however, transfers can no longer be chosen
as money, and alternative forms of transfers (e.g., ‘‘virtual
credits” or ‘‘virtual currency”) must be properly defined,
and a trusted management point (e.g., a ‘‘virtual central
bank”) is required in the game. If there exists no trustful
entity, it will be difficult to have honest competition and
effective mechanisms.

6.5. Issues in stochastic games

The theory of stochastic games, in which players can
update their strategy for each observed state by policy iter-
ation or value iteration, has been recently used to effec-
tively model players’ interactions and derive their
optimal strategies in dynamic spectrum access. How much
information players can observe during the game will
heavily affect their choice on adjusting strategy, especially
in a stochastic spectrum access game that requires players
to closely observe the states of the environment for correct
decision making. Usually, the states of a stochastic game
must be fully observable by all players. When the state
information of the game is only partially observable, play-
ers need to either define new state variables that can be
observed or estimate and build a belief of the original state
based on the available observation. It is difficult to have a
good estimate if there is little information available or if
the dimension of state space is very large which requires
approximation to further reduce complexity. In addition,
the estimation will become much more complicated if
the state set is a continuous set. Usually when the state
or action set is a continuous set, players can ‘‘quantize”
the continuous variable(s) to discrete values. However,
the granularity of discretization will influence the policy,
and better performance can only be achieved at the cost
of higher complexity. Hence, how to obtain an optimal pol-
icy when the state information is only partially observable
and when the state set is continuous is worth further
investigation.

6.6. Security

Due to the intrinsic feature of dynamic spectrum access,
a cognitive radio network is very vulnerable to malicious
attacks. First, in the opportunity-based spectrum access,
secondary users do not own the spectrum band, and hence
their access to that band cannot be protected from adver-
saries. Second, the spectrum availability is highly dynamic
in nature, and the traditional security enhancing mecha-
nisms are not directly applicable, since they only fit in a
static spectrum environment. Moreover, some cognitive
radio networks may work in a distributed fashion, which
makes it more difficult to fight against malicious attacks
than in a centralized system. Last but not least, as cognitive
radio networks benefit from technology evolution to be
capable of utilizing spectrum adaptively and intelligently,
the same technologies can also be exploited by malicious
attackers to launch more complicated and unpredictable
attacks with even greater damage. Therefore, ensuring
security is critical for the wide deployment of cognitive
radio networks.

Game theory is a natural tool for the design of defense,
since the attackers will try every means to prevent legiti-
mate users from efficiently utilizing the spectrum re-
sources, and the interactions between the mutually
distrustful parties can be modeled as a non-cooperative
game. Dynamic games, e.g., stochastic games, can be used
to help derive the optimal defense strategies that accom-
modate both the environment dynamics and the adaptive
attacking strategy. Pursuit-evasion modeling can be used
for attacker tracking in multi-band networks. Evolutionary
game theory can help legitimate users find stable equilib-
rium strategies that will overwhelm possible attacks, if
the attackers are viewed as mutants. Coalitional games,
graphical games, and network formation games can help
legitimate users form optimal partitions or networks to
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defend against multiple distributed attackers in a large
area. Establishing reputation systems can identify mali-
cious attackers who provide false feedback, create feed-
back from fake identities (sybil attack), acquire new
identities and start over with a clear reputation (white-
washing), and etc. The games we mentioned here are just
a few examples that are potential solutions to security
enhancement in cognitive radio networks. They can also
be used to design dynamic spectrum allocation schemes
in an environment without malicious attackers.
7. Conclusions

In this tutorial survey, we provided a comprehensive
overview of game theory, and its applications to the re-
search on cognitive radio networks. To this end, we classify
state-of-the-art game theoretic research contributions on
cognitive radio networking into four categories, non-coop-
erative spectrum sharing, spectrum trading and mecha-
nism design, cooperative spectrum sharing, and
stochastic spectrum sharing games. For each category, we
explained the fundamental concepts and properties, and
provided a detailed discussion about the methodologies
on how to apply these games in spectrum sharing protocol
design. We also discussed some research challenges and
suggested future research directions related to game theo-
retic modeling in cognitive radio networks. This article
provides a tutorial survey on game theoretic approaches
for dynamic spectrum sharing in cognitive radio networks,
by in-depth theoretic analysis and an overview of the most
recent practical implementations, and thus fills a void in
the existing literature of cognitive radio communications
and networking.
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