
Monitoring Android Apps using the
logcat and iperf tools

Michalis Katsarakis katsarakis@csd.uoc.gr

Tutorial: HY-439 http://www.csd.uoc.gr/~hy439/

22 May 2015

mailto:katsarakis@csd.uoc.gr
http://www.csd.uoc.gr/~hy439/

Outline

• Introduction

• Monitoring the Android App usage

– Open source applications

– Closed source applications

• Monitoring the network QoS

– Passive measurements

– Active measurements
• Ping

• Iperf

• NDT

Application QoE vs. Network QoS

The Quality of Experience (QoE) of an Android application can
be influenced by network Quality of Service (QoS).

How can we assess this in influence?

We need to monitor:

• Events of application usage
(e.g. clicks on specific buttons, progress in the usage scenarios)

• User experience

• Network performance

Introduction

Outline

• Introduction

• Monitoring the Android App usage

– Open source applications

– Closed source applications

• Monitoring the network QoS

– Passive measurements

– Active measurements
• Ping

• Iperf

• NDT

How do we monitor the App usage?

Case 1: We have access to the App source code
(e.g., App is open-source or developed by us)

Case 2: We have no access to the source code
(e.g., closed-source commercial application)

Monitoring the Android app usage

Case 1: We have access to the App source code

We can add code snippets on specific locations of the App source
code.

• Write events in a text file

• Write events in a database

• Broadcast Intents or use a ContentProvider to send events on
a monitor App.

Monitoring the Android app usage

Case 2: We have no access to the source code

Use logcat to read the logs of the App.

The Android logging system provides a mechanism for collecting
and viewing system debug output. Logs from various
applications and portions of the system are collected in a
series of circular buffers, which then can be viewed and
filtered by the logcat command.

[adb] logcat [<option>] ... [<filter-spec>] ...

Android Apps can execute a logcat process and parse its stdout
stream.

Monitoring the Android app usage

Outline

• Introduction

• Monitoring the Android App usage

– Open source applications

– Closed source applications

• Monitoring the network QoS

– Passive measurements

– Active measurements
• Ping

• Iperf

• NDT

How do we monitor network QoS?

Case 1: We have access to the App source code
We have also access on the App’s sockets & packet streams.
Passively record measurements on these packet streams
(e.g., measure packet loss, jitter, bitrate).

Case 2: We have no access to the source code

– Solution 1: Use rooted Androids and tcpdump/wireshark
(This would provide access to the App’s packet streams).

– Solution 2: Send/receive additional packets and record
measurements on these packet streams (Active Probing).

Monitoring the network QoS

Case 1: We have access to the App source code

Passive measurements:
Add some code in specific locations of the App’s source (e.g., where

packets are received/sent) to record network measurements.

Example:
long t;
while (true) {

// Wait to receive a datagram
socket.receive(packet);

// Record interarrival time
long now = System.currentTimeMillis();
interarrival = now –t;
t= now;

}

Monitoring the network QoS

Case 2: We have no access to the source code

Active probing:

The monitor application creates additional packet streams that
at which it has access and performs measurements on these
additional packet streams.

The active probing approach degrades network performance in
order to measure it!
(if possible, choose a small transmission rate)

Popular tools for active probing:

ping, iperf, NDT

Monitoring the network QoS

Ping

Ping uses the ICMP protocol's mandatory ECHO_REQUEST
datagram to elicit an ICMP ECHO_RESPONSE from a host or
gateway.

Syntax:

ping [-QRadfnqrv] [-c count] [-i wait] [-l preload] [-p pattern] [-P

policy] [-s packetsize] [-S src_addr] [-t timeout] [host | [-L] [-I

interface] [-T ttl] mcast-group]

Monitoring the network QoS

Ping

Example:

ping localhost

Output:
PING localhost (127.0.0.1) 56(84) bytes of data.

64 bytes from localhost (127.0.0.1): icmp_seq=1 ttl=64 time=0.051 ms

64 bytes from localhost (127.0.0.1): icmp_seq=2 ttl=64 time=0.055 ms

^C

--- localhost ping statistics ---

2 packets transmitted, 2 received, 0% packet loss, time 999ms

rtt min/avg/max/mdev = 0.051/0.053/0.055/0.002 ms

Monitoring the network QoS

Iperf

iperf is a tool for performing network throughput
measurements. It can test either TCP or UDP throughput. To
perform an iperf test the user must establish both a server
(to discard traffic) and a client (to generate traffic).

Syntax:

iperf -s [options]

iperf -c server [options]

iperf -u -s [options]

iperf -u -c server [options]

Monitoring the network QoS

Iperf
Example (server-side):
#iperf -s -u -i 1

Output:

Server listening on UDP port 5001
Receiving 1470 byte datagrams
UDP buffer size: 8.00 KByte (default)
--
[904] local 10.1.1.1 port 5001 connected with 10.6.2.5 port 32781
[ID] Interval Transfer Bandwidth Jitter Lost/Total Datagrams
[904] 0.0- 1.0 sec 1.17 MBytes 9.84 Mbits/sec 1.830 ms 0/ 837 (0%)
[904] 1.0- 2.0 sec 1.18 MBytes 9.94 Mbits/sec 1.846 ms 5/ 850 (0.59%)
[904] 2.0- 3.0 sec 1.19 MBytes 9.98 Mbits/sec 1.802 ms 2/ 851 (0.24%)
[904] 3.0- 4.0 sec 1.19 MBytes 10.0 Mbits/sec 1.830 ms 0/ 850 (0%)
[904] 4.0- 5.0 sec 1.19 MBytes 9.98 Mbits/sec 1.846 ms 1/ 850 (0.12%)
[904] 5.0- 6.0 sec 1.19 MBytes 10.0 Mbits/sec 1.806 ms 0/ 851 (0%)
[904] 6.0- 7.0 sec 1.06 MBytes 8.87 Mbits/sec 1.803 ms 1/ 755 (0.13%)
[904] 7.0- 8.0 sec 1.19 MBytes 10.0 Mbits/sec 1.831 ms 0/ 850 (0%)
[904] 8.0- 9.0 sec 1.19 MBytes 10.0 Mbits/sec 1.841 ms 0/ 850 (0%)
[904] 9.0-10.0 sec 1.19 MBytes 10.0 Mbits/sec 1.801 ms 0/ 851 (0%)
[904] 0.0-10.0 sec 11.8 MBytes 9.86 Mbits/sec 2.618 ms 9/ 8409 (0.11%)

Monitoring the network QoS

Iperf

Example (client-side):
#iperf -c 10.1.1.1 -u -b 10m

Output:
--
Client connecting to 10.1.1.1, UDP port 5001
Sending 1470 byte datagrams
UDP buffer size: 108 KByte (default)
--
[3] local 10.6.2.5 port 32781 connected with 10.1.1.1 port 5001
[3] 0.0-10.0 sec 11.8 MBytes 9.89 Mbits/sec
[3] Sent 8409 datagrams
[3] Server Report:
[3] 0.0-10.0 sec 11.8 MBytes 9.86 Mbits/sec 2.617 ms 9/ 8409 (0.11%)

Monitoring the network QoS

Iperf

Iperf for Android:

Monitoring the network QoS

NDT

NDT (Network Diagnostic Tool) provides a sophisticated speed
and diagnostic test. An NDT test reports more than just the
upload and download speeds. It also attempts to determine
what, if any, problems limited these speeds, differentiating
between computer configuration and network infrastructure
problems. While the diagnostic messages are most useful for
expert users, they can also help novice users by allowing them
to provide detailed trouble reports to their network
administrator.

Monitoring the network QoS

NDT

Monitoring the network QoS

NDT Android client screenshots:

Monitoring the network QoS

Circular
buffer

Perf. estimator

QoE
GUI

Location

Monitor

Logcat parser

GUILog

Nova GO HF tracker client

Nova GO
client

videofeedback

PHP application

Active
prober

HTTP server

Data
receiver

geo-DB

Nova GO HF
tracker server

Android smartphone

Back-end
interface

DB

Nova GO
infrastructure

Iperf

Iperf

Active Prober

Customer

Internet

User

Monitored
App

Monitored
App server

QoE monitor App

QoE monitor
App server

